Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway

Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts i...

Full description

Saved in:
Bibliographic Details
Published inAutophagy Vol. 15; no. 5; pp. 843 - 870
Main Authors Niu, Chao, Chen, Zhiwei, Kim, Kyoung Tae, Sun, Jia, Xue, Mei, Chen, Gen, Li, Santie, Shen, Yingjie, Zhu, Zhongxin, Wang, Xu, Liang, Jiaojiao, Jiang, Chao, Cong, Weitao, Jin, Litai, Li, Xiaokun
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 04.05.2019
Subjects
Online AccessGet full text
ISSN1554-8627
1554-8635
1554-8635
DOI10.1080/15548627.2019.1569913

Cover

Loading…
Abstract Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI-family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation. Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV-Cdh5-sh-Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV-Cdh5-sh-Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV-Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad-BNIP3 = adenoviruses harboring human BNIP3`; Ad-GLI1 = adenoviruses harboring human GLI1; Ad-sh-ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh-BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh-GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7 flox/flox mice = mice bearing an Atg7 flox allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A 1 ; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh-PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek, in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling
AbstractList Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI-family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation. Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV-Cdh5-sh-Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV-Cdh5-sh-Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV-Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad-BNIP3 = adenoviruses harboring human BNIP3`; Ad-GLI1 = adenoviruses harboring human GLI1; Ad-sh-ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh-BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh-GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7 flox/flox mice = mice bearing an Atg7 flox allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A 1 ; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh-PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek, in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling
Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI-family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation. Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV-Cdh5-sh-Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV-Cdh5-sh-Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV-Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad-BNIP3 = adenoviruses harboring human BNIP3`; Ad-GLI1 = adenoviruses harboring human GLI1; Ad-sh-ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh-BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh-GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7 mice = mice bearing an Atg7 allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A ; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh-PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek, in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.
Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI -family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation. Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV- Cdh5 -sh- Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV- Cdh5 -sh- Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV- Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad- BNIP3 = adenoviruses harboring human BNIP3`; Ad- GLI1 = adenoviruses harboring human GLI1; Ad-sh- ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh- BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh- GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7 flox/flox mice = mice bearing an Atg7 flox allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A 1 ; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh- PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek , in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling
Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI-family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation. Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV-Cdh5-sh-Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV-Cdh5-sh-Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV-Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad-BNIP3 = adenoviruses harboring human BNIP3`; Ad-GLI1 = adenoviruses harboring human GLI1; Ad-sh-ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh-BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh-GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7flox/flox mice = mice bearing an Atg7flox allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A1; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh-PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek, in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI-family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation. Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV-Cdh5-sh-Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV-Cdh5-sh-Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV-Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad-BNIP3 = adenoviruses harboring human BNIP3`; Ad-GLI1 = adenoviruses harboring human GLI1; Ad-sh-ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh-BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh-GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7flox/flox mice = mice bearing an Atg7flox allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A1; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh-PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek, in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.
Author Chen, Zhiwei
Xue, Mei
Wang, Xu
Shen, Yingjie
Li, Santie
Jiang, Chao
Niu, Chao
Chen, Gen
Jin, Litai
Sun, Jia
Liang, Jiaojiao
Cong, Weitao
Zhu, Zhongxin
Kim, Kyoung Tae
Li, Xiaokun
Author_xml – sequence: 1
  givenname: Chao
  surname: Niu
  fullname: Niu, Chao
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 2
  givenname: Zhiwei
  surname: Chen
  fullname: Chen, Zhiwei
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 3
  givenname: Kyoung Tae
  surname: Kim
  fullname: Kim, Kyoung Tae
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 4
  givenname: Jia
  surname: Sun
  fullname: Sun, Jia
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 5
  givenname: Mei
  surname: Xue
  fullname: Xue, Mei
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 6
  givenname: Gen
  surname: Chen
  fullname: Chen, Gen
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 7
  givenname: Santie
  surname: Li
  fullname: Li, Santie
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 8
  givenname: Yingjie
  surname: Shen
  fullname: Shen, Yingjie
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 9
  givenname: Zhongxin
  surname: Zhu
  fullname: Zhu, Zhongxin
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 10
  givenname: Xu
  surname: Wang
  fullname: Wang, Xu
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 11
  givenname: Jiaojiao
  surname: Liang
  fullname: Liang, Jiaojiao
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 12
  givenname: Chao
  surname: Jiang
  fullname: Jiang, Chao
  email: jin_litai@126.com, cwt97126@126.com, chaojiang10@hotmail.com
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 13
  givenname: Weitao
  surname: Cong
  fullname: Cong, Weitao
  email: jin_litai@126.com, cwt97126@126.com, chaojiang10@hotmail.com
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 14
  givenname: Litai
  surname: Jin
  fullname: Jin, Litai
  email: jin_litai@126.com, cwt97126@126.com, chaojiang10@hotmail.com
  organization: School of Pharmaceutical Science, Wenzhou Medical University
– sequence: 15
  givenname: Xiaokun
  surname: Li
  fullname: Li, Xiaokun
  organization: School of Pharmaceutical Science, Wenzhou Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30653446$$D View this record in MEDLINE/PubMed
BookMark eNqFkU-P0zAQxSO0iP0DHwHkI5cWO06cWEiI1QpYpEVc4GxN7Eli5NjBcVrl25Oq3Qo4wMkjz3u_Gc27zi588JhlLxndMlrTN6wsi1rk1TanTG5ZKaRk_El2dfjf1IKXF-c6ry6z62n6QSkXtcyfZZecipIXhbjKdl8wtSEO1hNwDncWEk6kX0aMnVs0DhY21ptZoyHoTUg9OguO2GEEGwf0iTQLMWHvI3azg2R9R2BOYeyhW8jKI6uF3KPpsA8dGSH1e1ieZ09bcBO-OL032fePH77d3W8evn76fHf7sNGFqNMGDIeam4YxpJo3ddGUTZXLmrVCVCVnBluUeSFzrCshuK5YU0HJciEN11Iiv8neHbnj3Axo9LpvBKfGaAeIiwpg1Z8db3vVhZ0SZS5qKlfA6xMghp8zTkkNdtLoHHgM86RyVsmC8oKJVfrq91nnIY_HXgXlUaBjmKaI7VnCqDqEqh5DVYdQ1SnU1ff2L5-2ab10OKxs3X_d749u6w9Bwz5EZ1SCxYXYRvDaTor_G_ELIDy-YQ
CitedBy_id crossref_primary_10_1016_j_exer_2024_109808
crossref_primary_10_1507_endocrj_EJ21_0480
crossref_primary_10_3390_life13061296
crossref_primary_10_1016_j_exer_2021_108559
crossref_primary_10_1097_CM9_0000000000002769
crossref_primary_10_1080_21655979_2022_2048993
crossref_primary_10_3390_immuno3010001
crossref_primary_10_1111_bph_15701
crossref_primary_10_14336_AD_2021_1213
crossref_primary_10_1002_ctm2_569
crossref_primary_10_1016_j_jaad_2021_02_042
crossref_primary_10_1002_ame2_12418
crossref_primary_10_1097_CM9_0000000000002493
crossref_primary_10_1016_j_ebiom_2024_105026
crossref_primary_10_3389_fphar_2020_575390
crossref_primary_10_3390_cells10030625
crossref_primary_10_1016_j_expneurol_2019_113138
crossref_primary_10_1038_s41419_023_06154_8
crossref_primary_10_4196_kjpp_2021_25_5_425
crossref_primary_10_1007_s10853_023_08730_x
crossref_primary_10_1177_14791641221102513
crossref_primary_10_1186_s12967_023_04310_4
crossref_primary_10_37349_emed_2024_00249
crossref_primary_10_1186_s13098_024_01264_5
crossref_primary_10_1002_adhm_202300019
crossref_primary_10_1093_ndt_gfad165
crossref_primary_10_1007_s00018_020_03702_9
crossref_primary_10_3390_ijms23158552
crossref_primary_10_61958_NDHA2099
crossref_primary_10_1016_j_metabol_2024_156002
crossref_primary_10_1016_j_yexcr_2023_113867
crossref_primary_10_1186_s12989_022_00462_1
crossref_primary_10_1007_s13167_023_00314_8
crossref_primary_10_1016_j_actbio_2025_02_048
crossref_primary_10_1007_s10753_022_01716_y
crossref_primary_10_1097_PPO_0000000000000374
crossref_primary_10_3389_fphar_2020_607796
crossref_primary_10_1016_j_trsl_2022_03_007
crossref_primary_10_1016_j_jdiacomp_2024_108801
crossref_primary_10_1002_jcla_24607
crossref_primary_10_1007_s00210_024_03295_1
crossref_primary_10_1016_j_bbadis_2024_167329
crossref_primary_10_3390_biomedicines9010003
crossref_primary_10_1155_2020_4028635
crossref_primary_10_1007_s12264_023_01099_6
crossref_primary_10_1016_j_biopha_2021_111286
crossref_primary_10_1080_15548627_2024_2367184
crossref_primary_10_1038_s41419_023_06270_5
crossref_primary_10_3389_fendo_2024_1359255
crossref_primary_10_1007_s11095_023_03471_7
crossref_primary_10_1016_j_biocel_2021_106111
crossref_primary_10_1016_j_apsb_2019_10_003
crossref_primary_10_1007_s13105_022_00924_2
crossref_primary_10_1016_j_bioactmat_2023_01_020
crossref_primary_10_1177_0271678X211039617
crossref_primary_10_3390_jcdd11120408
crossref_primary_10_62347_TIUW1528
crossref_primary_10_1016_j_phrs_2024_107562
crossref_primary_10_1038_s41419_020_02745_x
crossref_primary_10_1186_s12964_022_00966_5
crossref_primary_10_3390_ph15060657
crossref_primary_10_1186_s12951_025_03285_2
crossref_primary_10_47583_ijpsrr_2022_v76i02_022
crossref_primary_10_1016_j_tox_2021_152707
crossref_primary_10_3390_ijms23073630
crossref_primary_10_1016_j_neuroscience_2020_05_045
crossref_primary_10_2147_JIR_S436147
crossref_primary_10_1002_rmb2_12426
crossref_primary_10_1016_j_phrs_2020_105390
crossref_primary_10_2139_ssrn_3916096
crossref_primary_10_3892_mmr_2024_13296
crossref_primary_10_1155_2022_4061713
crossref_primary_10_3389_fimmu_2021_682853
crossref_primary_10_1186_s13045_020_01000_2
crossref_primary_10_1016_j_bbrc_2019_11_181
crossref_primary_10_1016_j_intimp_2023_111241
crossref_primary_10_1016_j_dsx_2019_06_028
crossref_primary_10_1016_j_ejphar_2021_174531
crossref_primary_10_4196_kjpp_23_251
crossref_primary_10_20960_nh_04555
crossref_primary_10_1186_s10020_022_00490_9
crossref_primary_10_1038_s41401_023_01174_8
crossref_primary_10_3390_ijms242216260
crossref_primary_10_1097_MD_0000000000032313
crossref_primary_10_3390_cells12232691
crossref_primary_10_3390_cells12060947
crossref_primary_10_1002_ctm2_660
crossref_primary_10_1016_j_jid_2024_03_005
crossref_primary_10_1016_j_biopha_2023_115802
crossref_primary_10_1248_bpb_b23_00317
crossref_primary_10_1371_journal_ppat_1010912
crossref_primary_10_3390_cells11132081
crossref_primary_10_1016_j_ecoenv_2023_114701
crossref_primary_10_3389_fendo_2023_1191426
crossref_primary_10_1007_s00125_025_06398_3
crossref_primary_10_3390_ijms222313068
crossref_primary_10_1111_1440_1681_13846
crossref_primary_10_1590_1678_7757_2022_0447
crossref_primary_10_1016_j_fct_2020_111828
crossref_primary_10_1096_fj_202300478RR
Cites_doi 10.1111/j.1476-5381.2011.01230.x
10.3892/ijmm.2012.891
10.1002/dvdy.20643
10.7150/ijbs.7.629
10.1242/dev.128.24.5161
10.2337/db11-1132
10.1016/j.diabres.2008.02.006
10.1182/blood-2006-11-059352
10.1038/ncomms2212
10.3892/ijmm.2015.2217
10.1152/ajpendo.00308.2009
10.1016/j.yjmcc.2011.03.002
10.1111/j.1365-2125.1981.tb01206.x
10.1016/j.molcel.2010.09.023
10.1177/009127009603601105
10.4161/auto.6260
10.4161/auto.4734
10.1038/nm.3288
10.1593/neo.11148
10.1038/45257
10.1038/nsmb.1607
10.1158/0008-5472.CAN-07-2310
10.1038/cdd.2011.88
10.2337/diabetes.55.02.06.db05-1064
10.1161/CIRCRESAHA.109.206706
10.2337/db13-0014
10.1093/cvr/cvp131
10.4161/auto.7.8.15598
10.1152/japplphysiol.91353.2008
10.1074/jbc.M202489200
10.1038/cddis.2013.497
10.1172/JCI200315792
10.1038/ncomms14152
10.1111/j.1463-1326.2010.01268.x
10.1126/science.290.5497.1717
10.1016/S0735-1097(01)01129-9
10.1248/bpb.b14-00172
10.1210/en.2005-1433
10.1016/j.tcm.2004.09.003
10.1073/pnas.94.7.3058
10.1038/nchembio.1184
10.2337/db16-0915
10.2337/db15-1594
10.1016/j.bcp.2015.10.008
10.1083/jcb.200412022
10.1016/S0076-6879(08)02007-7
10.1016/j.cardiores.2004.04.012
10.1074/jbc.M109.041616
10.1159/000358676
10.2337/db10-0351
10.1161/CIRCRESAHA.116.303356
10.1006/dbio.2000.0106
10.1124/jpet.115.226894
10.1080/15548627.2015.1100356
10.1073/pnas.0438011100
10.1038/sj.emboj.7601689
10.4161/auto.18658
10.1038/ncb2152
10.1038/ncomms16002
10.1016/j.molcel.2011.02.009
10.1042/CS20110386
10.1038/nri1568
10.1146/annurev-pathol-020712-163918
10.1016/j.cell.2007.12.018
10.1038/nrendo.2011.183
10.1247/csf.23.33
10.1016/S0092-8674(00)80678-9
10.1093/cvr/cvu082.169
10.1038/nprot.2011.435
10.1073/pnas.1305732110
10.1084/jem.193.6.741
10.1016/S0042-6989(98)00308-3
10.1038/nm.3322
10.4161/auto.3595
10.1016/j.cell.2005.07.002
10.1161/CIRCULATIONAHA.105.603167
10.1161/01.CIR.0000013952.86046.DD
10.1152/physrev.00030.2009
10.1016/j.diabres.2011.10.029
10.1161/CIRCRESAHA.110.227371
10.3389/fimmu.2017.01507
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group 2019 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1080/15548627.2019.1569913
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate C. NIU ET AL
EISSN 1554-8635
EndPage 870
ExternalDocumentID PMC6526809
30653446
10_1080_15548627_2019_1569913
1569913
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Nature Science Foundation of China
  grantid: 81770498; 81773346; 81573069; 81570368; 81600304
– fundername: Public Projects of Wenzhou
  grantid: Y20160001
– fundername: ;
  grantid: Y20160001
– fundername: ;
  grantid: 81770498; 81773346; 81573069; 81570368; 81600304
GroupedDBID ---
0BK
0R~
23N
30N
4.4
53G
5GY
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
AEISY
AENEX
AEYOC
AGDLA
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AVBZW
AWYRJ
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EJD
EMOBN
F5P
GTTXZ
H13
HYE
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
P2P
RIG
RNANH
ROSJB
RPM
RTWRZ
SNACF
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
TUROJ
ZGOLN
AAGDL
AAHIA
AAYXX
ADHGD
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
AAGME
ABFMO
ACDHJ
ACZPZ
ADOPC
AURDB
BFWEY
C1A
CGR
CUY
CVF
CWRZV
ECM
EIF
NPM
PCLFJ
7X8
TASJS
5PM
ID FETCH-LOGICAL-c468t-ad3a83db11e0c3b84b5b72981f667531defe92492e87663c71b7a51269d3c99e3
ISSN 1554-8627
1554-8635
IngestDate Thu Aug 21 18:36:37 EDT 2025
Tue Aug 05 11:15:21 EDT 2025
Thu Apr 03 06:57:19 EDT 2025
Tue Jul 01 02:48:58 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Wed Dec 25 09:08:11 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Angiogenesis
diabetes mellitus
GLI1
LC3
endothelial dysfunction
BNIP3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c468t-ad3a83db11e0c3b84b5b72981f667531defe92492e87663c71b7a51269d3c99e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Co-first authors.
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.1080/15548627.2019.1569913?needAccess=true
PMID 30653446
PQID 2179403416
PQPubID 23479
PageCount 28
ParticipantIDs crossref_primary_10_1080_15548627_2019_1569913
proquest_miscellaneous_2179403416
pubmed_primary_30653446
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6526809
informaworld_taylorfrancis_310_1080_15548627_2019_1569913
crossref_citationtrail_10_1080_15548627_2019_1569913
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-04
PublicationDateYYYYMMDD 2019-05-04
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Autophagy
PublicationTitleAlternate Autophagy
PublicationYear 2019
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0072
CIT0071
CIT0030
CIT0074
CIT0073
CIT0032
CIT0076
CIT0031
CIT0075
CIT0034
CIT0078
CIT0077
CIT0070
CIT0036
CIT0035
CIT0079
CIT0038
Nakamura M (CIT0058) 2014; 34
CIT0037
CIT0039
CIT0083
CIT0082
CIT0041
CIT0040
CIT0084
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0081
CIT0080
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
Liao H (CIT0057) 2012; 27
CIT0006
Xu L (CIT0064) 2011; 52
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
CIT0014
CIT0013
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
CIT0019
CIT0061
CIT0060
CIT0063
CIT0062
CIT0021
CIT0065
CIT0020
CIT0023
CIT0067
CIT0022
CIT0066
Bai CB (CIT0033) 2001; 128
CIT0025
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0029
CIT0028
35549650 - Autophagy. 2023 Jan;19(1):374-375
References_xml – ident: CIT0051
  doi: 10.1111/j.1476-5381.2011.01230.x
– ident: CIT0012
  doi: 10.3892/ijmm.2012.891
– ident: CIT0070
  doi: 10.1002/dvdy.20643
– ident: CIT0016
  doi: 10.7150/ijbs.7.629
– volume: 128
  start-page: 5161
  year: 2001
  ident: CIT0033
  publication-title: Development
  doi: 10.1242/dev.128.24.5161
– ident: CIT0050
  doi: 10.2337/db11-1132
– ident: CIT0055
  doi: 10.1016/j.diabres.2008.02.006
– ident: CIT0013
  doi: 10.1182/blood-2006-11-059352
– ident: CIT0032
  doi: 10.1038/ncomms2212
– ident: CIT0059
  doi: 10.3892/ijmm.2015.2217
– ident: CIT0025
  doi: 10.1152/ajpendo.00308.2009
– ident: CIT0044
  doi: 10.1016/j.yjmcc.2011.03.002
– ident: CIT0072
  doi: 10.1111/j.1365-2125.1981.tb01206.x
– ident: CIT0046
  doi: 10.1016/j.molcel.2010.09.023
– ident: CIT0073
  doi: 10.1177/009127009603601105
– ident: CIT0039
  doi: 10.4161/auto.6260
– ident: CIT0015
  doi: 10.4161/auto.4734
– ident: CIT0048
  doi: 10.1038/nm.3288
– ident: CIT0056
  doi: 10.1593/neo.11148
– ident: CIT0038
  doi: 10.1038/45257
– ident: CIT0026
  doi: 10.1038/nsmb.1607
– volume: 27
  start-page: 1873
  year: 2012
  ident: CIT0057
  publication-title: Oncol Rep
– ident: CIT0020
  doi: 10.1158/0008-5472.CAN-07-2310
– ident: CIT0065
  doi: 10.1038/cdd.2011.88
– ident: CIT0074
  doi: 10.2337/diabetes.55.02.06.db05-1064
– ident: CIT0060
  doi: 10.1161/CIRCRESAHA.109.206706
– ident: CIT0077
  doi: 10.2337/db13-0014
– ident: CIT0054
  doi: 10.1093/cvr/cvp131
– ident: CIT0017
  doi: 10.4161/auto.7.8.15598
– ident: CIT0004
  doi: 10.1152/japplphysiol.91353.2008
– ident: CIT0021
  doi: 10.1074/jbc.M202489200
– ident: CIT0042
  doi: 10.1038/cddis.2013.497
– ident: CIT0024
  doi: 10.1172/JCI200315792
– ident: CIT0084
  doi: 10.1038/ncomms14152
– ident: CIT0045
  doi: 10.1111/j.1463-1326.2010.01268.x
– ident: CIT0008
  doi: 10.1126/science.290.5497.1717
– ident: CIT0007
  doi: 10.1016/S0735-1097(01)01129-9
– ident: CIT0011
  doi: 10.1248/bpb.b14-00172
– ident: CIT0005
  doi: 10.1210/en.2005-1433
– ident: CIT0023
  doi: 10.1016/j.tcm.2004.09.003
– ident: CIT0069
  doi: 10.1073/pnas.94.7.3058
– ident: CIT0080
  doi: 10.1038/nchembio.1184
– ident: CIT0063
  doi: 10.2337/db16-0915
– ident: CIT0018
  doi: 10.2337/db15-1594
– ident: CIT0053
  doi: 10.1016/j.bcp.2015.10.008
– ident: CIT0067
  doi: 10.1083/jcb.200412022
– ident: CIT0079
  doi: 10.1016/S0076-6879(08)02007-7
– ident: CIT0019
  doi: 10.1016/j.cardiores.2004.04.012
– ident: CIT0066
  doi: 10.1074/jbc.M109.041616
– ident: CIT0010
  doi: 10.1159/000358676
– ident: CIT0043
  doi: 10.2337/db10-0351
– ident: CIT0081
  doi: 10.1161/CIRCRESAHA.116.303356
– ident: CIT0031
  doi: 10.1006/dbio.2000.0106
– ident: CIT0052
  doi: 10.1124/jpet.115.226894
– ident: CIT0027
  doi: 10.1080/15548627.2015.1100356
– ident: CIT0036
  doi: 10.1073/pnas.0438011100
– ident: CIT0041
  doi: 10.1038/sj.emboj.7601689
– ident: CIT0037
  doi: 10.4161/auto.18658
– ident: CIT0029
  doi: 10.1038/ncb2152
– ident: CIT0076
  doi: 10.1038/ncomms16002
– ident: CIT0062
  doi: 10.1016/j.molcel.2011.02.009
– ident: CIT0006
  doi: 10.1042/CS20110386
– volume: 34
  start-page: 1765
  year: 2014
  ident: CIT0058
  publication-title: Anticancer Res
– ident: CIT0061
  doi: 10.1038/nri1568
– ident: CIT0047
  doi: 10.1146/annurev-pathol-020712-163918
– volume: 52
  start-page: 5434
  year: 2011
  ident: CIT0064
  publication-title: Invest Ophth Vis Ssi
– ident: CIT0049
  doi: 10.1016/j.cell.2007.12.018
– ident: CIT0002
  doi: 10.1038/nrendo.2011.183
– ident: CIT0028
  doi: 10.1247/csf.23.33
– ident: CIT0034
  doi: 10.1016/S0092-8674(00)80678-9
– ident: CIT0030
  doi: 10.1093/cvr/cvu082.169
– ident: CIT0078
  doi: 10.1038/nprot.2011.435
– ident: CIT0014
  doi: 10.1073/pnas.1305732110
– ident: CIT0068
  doi: 10.1084/jem.193.6.741
– ident: CIT0071
  doi: 10.1016/S0042-6989(98)00308-3
– ident: CIT0082
  doi: 10.1038/nm.3322
– ident: CIT0035
  doi: 10.4161/auto.3595
– ident: CIT0040
  doi: 10.1016/j.cell.2005.07.002
– ident: CIT0022
  doi: 10.1161/CIRCULATIONAHA.105.603167
– ident: CIT0003
  doi: 10.1161/01.CIR.0000013952.86046.DD
– ident: CIT0009
  doi: 10.1152/physrev.00030.2009
– ident: CIT0001
  doi: 10.1016/j.diabres.2011.10.029
– ident: CIT0083
  doi: 10.1161/CIRCRESAHA.110.227371
– ident: CIT0075
  doi: 10.3389/fimmu.2017.01507
– reference: 35549650 - Autophagy. 2023 Jan;19(1):374-375
SSID ssj0036892
Score 2.5746877
Snippet Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 843
SubjectTerms Angiogenesis
Animals
Autophagy - drug effects
Autophagy - genetics
BNIP3
Capillary Permeability - drug effects
Capillary Permeability - genetics
Cells, Cultured
diabetes mellitus
Diabetes Mellitus, Experimental - complications
Diabetes Mellitus, Experimental - drug therapy
Diabetes Mellitus, Experimental - pathology
Diabetes Mellitus, Experimental - physiopathology
Diabetic Angiopathies - metabolism
Diabetic Angiopathies - pathology
Diabetic Angiopathies - physiopathology
Diabetic Angiopathies - prevention & control
Down-Regulation - drug effects
Down-Regulation - genetics
endothelial dysfunction
Endothelium, Vascular - drug effects
Endothelium, Vascular - metabolism
Endothelium, Vascular - physiopathology
Gene Expression Regulation - drug effects
GLI1
Hedgehog Proteins - drug effects
Hedgehog Proteins - genetics
Hedgehog Proteins - metabolism
HEK293 Cells
Human Umbilical Vein Endothelial Cells
Humans
Hyperglycemia - complications
Hyperglycemia - drug therapy
Hyperglycemia - metabolism
Hyperglycemia - physiopathology
LC3
Metformin - pharmacology
Metformin - therapeutic use
Mice
Mice, Inbred C57BL
Mice, Transgenic
Research Paper
Retina - drug effects
Retina - metabolism
Retina - pathology
Signal Transduction - drug effects
Signal Transduction - genetics
Title Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway
URI https://www.tandfonline.com/doi/abs/10.1080/15548627.2019.1569913
https://www.ncbi.nlm.nih.gov/pubmed/30653446
https://www.proquest.com/docview/2179403416
https://pubmed.ncbi.nlm.nih.gov/PMC6526809
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKIiQuiDflJSNxq1KSOHGd4wqBKhBc6EorLpFju22kkqKS7Kqc-eHMxImTQKTlcamqJHaizJeZ-ex5EPIyM75UmTGellp4USilJ5I480SoQiWFlkzXUb4f-fIsencen08mP3pRS1WZzdX30bySf5EqHAO5YpbsX0jWTQoH4D_IF35BwvD7RzL-YEr0OfNihh1RLnL0G2dbYJaHze6ozJdcekC5K9ziN4XGXKtd3aMDVEB-qKMAwPnUwMMPtiN9nbBYYakBuTnOYL7aLV3iktt2v8EarNtLOdgHPm2v7vY3qmYXf99FDljV9nmbX5q82_Svkfj-iOpmtpIOYJ8qmy6Sy_6KBCZBxZ7frUiufmsO0tevceQBibI21vSP2aolTinHPfDFPQ0rbFUnZ6z9UTtgAydxZrwZRvAlc2Cq4AyzzvC5cMTmzDVyPQSyEbZrPtaeMy7q1tru0ds8MOG_Gr3BwMMZ1L8dYzG_BuP2vJvVbXKroSX01GLsDpmY4i65YRuVHu-RC4c02iGNjiKN9pBGO6TR7EiHSKMOaRTmozCEtkijDdLuk7O3b1avl17TscNTERelJzWTguksCIyvWCaiLM6AvYlgzYGYskCbtUHCHxowwpypRZAtJLicPNFMJYlhD8hJsS_MI0IVvJAg4Fon8MErwwU3QKaRDSx8s2ZsSqL2LaeqKWePXVV2adBUvW2Fk6Jw0kY4UzJ3w77aei5XDUj6IkzLGt1rC-yUXTH2RSvvFLQ2bsXJwuyrb2mIdtAHD5JPyUMrf_c4DMtFRxGcWQyQ4S7AivDDM0W-rSvDcyze5CeP_-OZn5Cb3Tf9lJyUh8o8A7-7zJ7Xn8VP24TYHA
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMGlPAvL00hcvSRx1rGPCFEt0O6plXqz_Eo26jaLlmyr8Os7k8dqtwL10LMzVuyM7W-cme8j5LMNkXE2BOaNlyxNjGFSTSyTiUuckd5w32b5zsT0NP15NjnbqoXBtEqMofOOKKLdq3Fx42X0kBL3Bc9AQOIZZmapMUQgAHL4ffJgokSGKgY8mg27MReyFUZGE4Y2QxXP_7rZOZ922Ev_hUFvplJunU2HT4gbRtWlpJyP17Udu783CB_vNuynZL-HrvRr52vPyL1QPScPOzHL5gW5PA41DqOsKOqzXJaIYukc4txVsWhcuCgNKysPruRpqDxWfi3A-SnWaZYrvKSktqF-eQUOXbSiYlVBzRqJD0zRUOiPggmd4gXgfFlQ1FK-Ms1Lcnr4_eTblPWqDsylQtbMeG4k9zaOQ-S4lamdWED4Ms4FBC889iEPGBQmATZqwV0W28wALBHKc6dU4Adkr1pW4TWhDqY9joX3Cpa6C0KKAAEXIsYsCjnnI5IO31K7nvIclTcWOu6ZUYcp1Tilup_SERlvzH53nB-3GahtR9F1e9mSd8oomt9i-2nwKg0rG3_XmCos1390gntlBChDjMirzss2r8ORUhgi-RHJdvxv8wCyhu-2VOW8ZQ8XSPATqTd3eOeP5NH05PhIH_2Y_XpLHmNTmwOaviN79Wod3gNOq-2HdiFeA8R2MxI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa2Dht62btd9tSAXZ3ZliPLx2FbkL2CHVZgN0EvO0ZTp0idFt6vH-lH0BQbeuhZpmDJJPVRJj8CvDM-1NZ4HzjtZJDEWgcym5hAxja2WjrNXZvlOxezo-Tr78mQTXjWp1VSDJ13RBGtrybjPnX5kBH3no5ABOIpJWZlYwxAEOPw23BHEHk4VXGE88EZcyHbvsgkEpDMUMTzv2l2jqcd8tJ_QdCrmZSXjqbpAzDDorqMlOPxpjZj--cK3-ONVv0Q7vfAlX3oNO0R3PLVY7jbtbJsnsD5D1_TKsqKUXeW85IwLFtglLsulo31J6UOMPxHRXLMV47qvpao-oyqNMs1XVEy0zC3ukB1LtqWYlXB9IZoD3TRMJyPoQib0fXfYlUw6qR8oZuncDT9_OvjLOh7OgQ2EbIOtONacmeiyIeWG5mYiUF8L6NcYOjCI-dzTyFh7NFNC27TyKQaQYnIHLdZ5vkB7FWryj8DZnHXo0g4l6GhWy-k8BhuEV5MQ59zPoJk-JTK9oTn1HdjqaKeF3XYUkVbqvotHcF4K3baMX5cJ5Bd1hNVt1ctedcXRfFrZN8OSqXQrulnja78anOmYvKUIWIMMYLDTsm2r8OJUBjj-BGkO-q3fYA4w3dHqnLRcocLovcJs-c3eOc3cO_np6n6_mX-7QXs00ibAJq8hL16vfGvEKTV5nVrhn8B1cQxtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metformin+alleviates+hyperglycemia-induced+endothelial+impairment+by+downregulating+autophagy+via+the+Hedgehog+pathway&rft.jtitle=Autophagy&rft.au=Niu%2C+Chao&rft.au=Chen%2C+Zhiwei&rft.au=Kim%2C+Kyoung+Tae&rft.au=Sun%2C+Jia&rft.date=2019-05-04&rft.pub=Taylor+%26+Francis&rft.issn=1554-8627&rft.eissn=1554-8635&rft.volume=15&rft.issue=5&rft.spage=843&rft.epage=870&rft_id=info:doi/10.1080%2F15548627.2019.1569913&rft.externalDocID=1569913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon