Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway
Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts i...
Saved in:
Published in | Autophagy Vol. 15; no. 5; pp. 843 - 870 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
04.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1554-8627 1554-8635 1554-8635 |
DOI | 10.1080/15548627.2019.1569913 |
Cover
Loading…
Abstract | Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI-family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation.
Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV-Cdh5-sh-Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV-Cdh5-sh-Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV-Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad-BNIP3 = adenoviruses harboring human BNIP3`; Ad-GLI1 = adenoviruses harboring human GLI1; Ad-sh-ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh-BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh-GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7
flox/flox
mice = mice bearing an Atg7
flox
allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A
1
; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh-PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek, in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling |
---|---|
AbstractList | Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI-family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation.
Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV-Cdh5-sh-Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV-Cdh5-sh-Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV-Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad-BNIP3 = adenoviruses harboring human BNIP3`; Ad-GLI1 = adenoviruses harboring human GLI1; Ad-sh-ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh-BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh-GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7
flox/flox
mice = mice bearing an Atg7
flox
allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A
1
; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh-PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek, in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI-family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation. Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV-Cdh5-sh-Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV-Cdh5-sh-Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV-Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad-BNIP3 = adenoviruses harboring human BNIP3`; Ad-GLI1 = adenoviruses harboring human GLI1; Ad-sh-ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh-BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh-GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7 mice = mice bearing an Atg7 allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A ; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh-PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek, in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling. Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI -family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation. Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV- Cdh5 -sh- Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV- Cdh5 -sh- Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV- Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad- BNIP3 = adenoviruses harboring human BNIP3`; Ad- GLI1 = adenoviruses harboring human GLI1; Ad-sh- ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh- BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh- GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7 flox/flox mice = mice bearing an Atg7 flox allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A 1 ; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh- PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek , in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI-family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation. Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV-Cdh5-sh-Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV-Cdh5-sh-Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV-Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad-BNIP3 = adenoviruses harboring human BNIP3`; Ad-GLI1 = adenoviruses harboring human GLI1; Ad-sh-ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh-BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh-GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7flox/flox mice = mice bearing an Atg7flox allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A1; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh-PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek, in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling.Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an endothelial protective effect of metformin, but the underlying mechanisms remain unclear. We aimed to investigate whether metformin exerts its protective role against hyperglycemia-induced endothelial impairment through the autophagy machinery. db/db mice were treated with intravitreal metformin injections. Human umbilical vein endothelial cells (HUVECs) were cultured either in normal glucose (NG, 5.5 mM) or high glucose (HG, 33 mM) medium in the presence or absence of metformin for 72 h. We observed an obvious inhibition of hyperglycemia-triggered autophagosome synthesis in both the diabetic retinal vasculature and cultured HUVECs by metformin, along with restoration of hyperglycemia-impaired Hedgehog (Hh) pathway activity. Specifically, deletion of ATG7 in retinal vascular ECs of db/db mice and cultured HUVECs indicated a detrimental role of autophagy in hyperglycemia-induced endothelial dysfunction. Pretreatment with GANT61, a Hh pathway inhibitor, abolished the metformin-mediated downregulation of autophagy and endothelial protective action. Furthermore, GLI-family (transcription factors of the Hh pathway) knockdown in HUVECs and retinal vasculature revealed that downregulation of hyperglycemia-activated autophagy by the metformin-mediated Hh pathway activation was GLI1 dependent. Mechanistically, GLI1 knockdown-triggered autophagy was related to upregulation of BNIP3, which subsequently disrupted the association of BECN1/Beclin 1 and BCL2. The role of BNIP3 in BECN1 dissociation from BCL2 was further confirmed by BNIP3 overexpression or BNIP3 RNAi. Taken together, the endothelial protective effect of metformin under hyperglycemia conditions could be partly attributed to its role in downregulating autophagy via Hh pathway activation. Abbreviations: 3-MA = 3-methyladenine; 8×GLI BS-FL = 8×GLI-binding site firefly luciferase; AAV = adeno-associated virus; AAV-Cdh5-sh-Atg7 = AAV vectors carrying shRNA against murine Atg7 under control of murine Cdh5 promoter; AAV-Cdh5-sh-Gli1 = AAV vectors carrying shRNA against murine Gli1 under control of murine Cdh5 promoter; AAV-Cdh5-Gli1 = AAV vectors carrying murine Gli1 cDNA under the control of murine Cdh5 core promoter; ACAC = acetyl-CoA carboxylase; Ad-BNIP3 = adenoviruses harboring human BNIP3`; Ad-GLI1 = adenoviruses harboring human GLI1; Ad-sh-ATG7 = adenoviruses harboring shRNA against human ATG7; Ad-sh-BNIP3 = adenoviruses harboring shRNA against human BNIP3; Ad-sh-GLI = adenoviruses harboring shRNA against human GLI; AGEs = advanced glycation end products; ATG = autophagy-related; atg7flox/flox mice = mice bearing an Atg7flox allele, in which exon 14 of the Atg7 gene is flanked by 2 loxP sites; BafA1 = bafilomycin A1; BECN1 = beclin 1; CDH5/VE-cadherin = cadherin 5; CASP3 = caspase 3; CASP8 = caspase 8; CASP9 = caspase 9; ECs = endothelial cells; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; GCL = ganglion cell layer; GFP-LC3B = green fluorescent protein labelled LC3B; HG = high glucose; Hh = Hedgehog; HHIP = hedgehog interacting protein; HUVECs = human umbilical vein endothelial cells; IB4 = isolectin B4; INL = inner nuclear layer; i.p. = intraperitoneal; MAP1LC3/LC3 = microtubule-associated protein 1 light chain 3; MAN = mannitol; MET = metformin; NG = normal glucose; ONL = outer nuclear layer; p-ACAC = phosphorylated acetyl-CoA carboxylase; PECAM1/CD31= platelet/endothelial cell adhesion molecule 1; PRKAA1/2 = protein kinase AMP-activated catalytic subunits alpha 1/2; p-PRKAA1/2 = phosphorylated PRKAA1/2; PTCH1 = patched 1; RAPA = rapamycin; RL = Renilla luciferase; SHH = sonic hedgehog; shRNA = short hairpin RNA; sh-PRKAA1/2 = short hairpin RNA against human PRKAA1/2; scrambled shRNA = the scrambled short hairpin RNA serves as a negative control for the target-specific short hairpin RNA, which has the same nucleotide composition as the input sequence and has no match with any mRNA of the selected organism database; SMO = smoothened, frizzled class receptor; sqRT-PCR = semi-quantitative RT-PCR; TEK/Tie2 = TEK receptor tyrosine kinase; Tek-Cre (+) mice = a mouse strain expressing Cre recombinase under the control of the promoter/enhancer of Tek, in a pan-endothelial fashion; TUNEL = terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling. |
Author | Chen, Zhiwei Xue, Mei Wang, Xu Shen, Yingjie Li, Santie Jiang, Chao Niu, Chao Chen, Gen Jin, Litai Sun, Jia Liang, Jiaojiao Cong, Weitao Zhu, Zhongxin Kim, Kyoung Tae Li, Xiaokun |
Author_xml | – sequence: 1 givenname: Chao surname: Niu fullname: Niu, Chao organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 2 givenname: Zhiwei surname: Chen fullname: Chen, Zhiwei organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 3 givenname: Kyoung Tae surname: Kim fullname: Kim, Kyoung Tae organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 4 givenname: Jia surname: Sun fullname: Sun, Jia organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 5 givenname: Mei surname: Xue fullname: Xue, Mei organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 6 givenname: Gen surname: Chen fullname: Chen, Gen organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 7 givenname: Santie surname: Li fullname: Li, Santie organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 8 givenname: Yingjie surname: Shen fullname: Shen, Yingjie organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 9 givenname: Zhongxin surname: Zhu fullname: Zhu, Zhongxin organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 10 givenname: Xu surname: Wang fullname: Wang, Xu organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 11 givenname: Jiaojiao surname: Liang fullname: Liang, Jiaojiao organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 12 givenname: Chao surname: Jiang fullname: Jiang, Chao email: jin_litai@126.com, cwt97126@126.com, chaojiang10@hotmail.com organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 13 givenname: Weitao surname: Cong fullname: Cong, Weitao email: jin_litai@126.com, cwt97126@126.com, chaojiang10@hotmail.com organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 14 givenname: Litai surname: Jin fullname: Jin, Litai email: jin_litai@126.com, cwt97126@126.com, chaojiang10@hotmail.com organization: School of Pharmaceutical Science, Wenzhou Medical University – sequence: 15 givenname: Xiaokun surname: Li fullname: Li, Xiaokun organization: School of Pharmaceutical Science, Wenzhou Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30653446$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU-P0zAQxSO0iP0DHwHkI5cWO06cWEiI1QpYpEVc4GxN7Eli5NjBcVrl25Oq3Qo4wMkjz3u_Gc27zi588JhlLxndMlrTN6wsi1rk1TanTG5ZKaRk_El2dfjf1IKXF-c6ry6z62n6QSkXtcyfZZecipIXhbjKdl8wtSEO1hNwDncWEk6kX0aMnVs0DhY21ptZoyHoTUg9OguO2GEEGwf0iTQLMWHvI3azg2R9R2BOYeyhW8jKI6uF3KPpsA8dGSH1e1ieZ09bcBO-OL032fePH77d3W8evn76fHf7sNGFqNMGDIeam4YxpJo3ddGUTZXLmrVCVCVnBluUeSFzrCshuK5YU0HJciEN11Iiv8neHbnj3Axo9LpvBKfGaAeIiwpg1Z8db3vVhZ0SZS5qKlfA6xMghp8zTkkNdtLoHHgM86RyVsmC8oKJVfrq91nnIY_HXgXlUaBjmKaI7VnCqDqEqh5DVYdQ1SnU1ff2L5-2ab10OKxs3X_d749u6w9Bwz5EZ1SCxYXYRvDaTor_G_ELIDy-YQ |
CitedBy_id | crossref_primary_10_1016_j_exer_2024_109808 crossref_primary_10_1507_endocrj_EJ21_0480 crossref_primary_10_3390_life13061296 crossref_primary_10_1016_j_exer_2021_108559 crossref_primary_10_1097_CM9_0000000000002769 crossref_primary_10_1080_21655979_2022_2048993 crossref_primary_10_3390_immuno3010001 crossref_primary_10_1111_bph_15701 crossref_primary_10_14336_AD_2021_1213 crossref_primary_10_1002_ctm2_569 crossref_primary_10_1016_j_jaad_2021_02_042 crossref_primary_10_1002_ame2_12418 crossref_primary_10_1097_CM9_0000000000002493 crossref_primary_10_1016_j_ebiom_2024_105026 crossref_primary_10_3389_fphar_2020_575390 crossref_primary_10_3390_cells10030625 crossref_primary_10_1016_j_expneurol_2019_113138 crossref_primary_10_1038_s41419_023_06154_8 crossref_primary_10_4196_kjpp_2021_25_5_425 crossref_primary_10_1007_s10853_023_08730_x crossref_primary_10_1177_14791641221102513 crossref_primary_10_1186_s12967_023_04310_4 crossref_primary_10_37349_emed_2024_00249 crossref_primary_10_1186_s13098_024_01264_5 crossref_primary_10_1002_adhm_202300019 crossref_primary_10_1093_ndt_gfad165 crossref_primary_10_1007_s00018_020_03702_9 crossref_primary_10_3390_ijms23158552 crossref_primary_10_61958_NDHA2099 crossref_primary_10_1016_j_metabol_2024_156002 crossref_primary_10_1016_j_yexcr_2023_113867 crossref_primary_10_1186_s12989_022_00462_1 crossref_primary_10_1007_s13167_023_00314_8 crossref_primary_10_1016_j_actbio_2025_02_048 crossref_primary_10_1007_s10753_022_01716_y crossref_primary_10_1097_PPO_0000000000000374 crossref_primary_10_3389_fphar_2020_607796 crossref_primary_10_1016_j_trsl_2022_03_007 crossref_primary_10_1016_j_jdiacomp_2024_108801 crossref_primary_10_1002_jcla_24607 crossref_primary_10_1007_s00210_024_03295_1 crossref_primary_10_1016_j_bbadis_2024_167329 crossref_primary_10_3390_biomedicines9010003 crossref_primary_10_1155_2020_4028635 crossref_primary_10_1007_s12264_023_01099_6 crossref_primary_10_1016_j_biopha_2021_111286 crossref_primary_10_1080_15548627_2024_2367184 crossref_primary_10_1038_s41419_023_06270_5 crossref_primary_10_3389_fendo_2024_1359255 crossref_primary_10_1007_s11095_023_03471_7 crossref_primary_10_1016_j_biocel_2021_106111 crossref_primary_10_1016_j_apsb_2019_10_003 crossref_primary_10_1007_s13105_022_00924_2 crossref_primary_10_1016_j_bioactmat_2023_01_020 crossref_primary_10_1177_0271678X211039617 crossref_primary_10_3390_jcdd11120408 crossref_primary_10_62347_TIUW1528 crossref_primary_10_1016_j_phrs_2024_107562 crossref_primary_10_1038_s41419_020_02745_x crossref_primary_10_1186_s12964_022_00966_5 crossref_primary_10_3390_ph15060657 crossref_primary_10_1186_s12951_025_03285_2 crossref_primary_10_47583_ijpsrr_2022_v76i02_022 crossref_primary_10_1016_j_tox_2021_152707 crossref_primary_10_3390_ijms23073630 crossref_primary_10_1016_j_neuroscience_2020_05_045 crossref_primary_10_2147_JIR_S436147 crossref_primary_10_1002_rmb2_12426 crossref_primary_10_1016_j_phrs_2020_105390 crossref_primary_10_2139_ssrn_3916096 crossref_primary_10_3892_mmr_2024_13296 crossref_primary_10_1155_2022_4061713 crossref_primary_10_3389_fimmu_2021_682853 crossref_primary_10_1186_s13045_020_01000_2 crossref_primary_10_1016_j_bbrc_2019_11_181 crossref_primary_10_1016_j_intimp_2023_111241 crossref_primary_10_1016_j_dsx_2019_06_028 crossref_primary_10_1016_j_ejphar_2021_174531 crossref_primary_10_4196_kjpp_23_251 crossref_primary_10_20960_nh_04555 crossref_primary_10_1186_s10020_022_00490_9 crossref_primary_10_1038_s41401_023_01174_8 crossref_primary_10_3390_ijms242216260 crossref_primary_10_1097_MD_0000000000032313 crossref_primary_10_3390_cells12232691 crossref_primary_10_3390_cells12060947 crossref_primary_10_1002_ctm2_660 crossref_primary_10_1016_j_jid_2024_03_005 crossref_primary_10_1016_j_biopha_2023_115802 crossref_primary_10_1248_bpb_b23_00317 crossref_primary_10_1371_journal_ppat_1010912 crossref_primary_10_3390_cells11132081 crossref_primary_10_1016_j_ecoenv_2023_114701 crossref_primary_10_3389_fendo_2023_1191426 crossref_primary_10_1007_s00125_025_06398_3 crossref_primary_10_3390_ijms222313068 crossref_primary_10_1111_1440_1681_13846 crossref_primary_10_1590_1678_7757_2022_0447 crossref_primary_10_1016_j_fct_2020_111828 crossref_primary_10_1096_fj_202300478RR |
Cites_doi | 10.1111/j.1476-5381.2011.01230.x 10.3892/ijmm.2012.891 10.1002/dvdy.20643 10.7150/ijbs.7.629 10.1242/dev.128.24.5161 10.2337/db11-1132 10.1016/j.diabres.2008.02.006 10.1182/blood-2006-11-059352 10.1038/ncomms2212 10.3892/ijmm.2015.2217 10.1152/ajpendo.00308.2009 10.1016/j.yjmcc.2011.03.002 10.1111/j.1365-2125.1981.tb01206.x 10.1016/j.molcel.2010.09.023 10.1177/009127009603601105 10.4161/auto.6260 10.4161/auto.4734 10.1038/nm.3288 10.1593/neo.11148 10.1038/45257 10.1038/nsmb.1607 10.1158/0008-5472.CAN-07-2310 10.1038/cdd.2011.88 10.2337/diabetes.55.02.06.db05-1064 10.1161/CIRCRESAHA.109.206706 10.2337/db13-0014 10.1093/cvr/cvp131 10.4161/auto.7.8.15598 10.1152/japplphysiol.91353.2008 10.1074/jbc.M202489200 10.1038/cddis.2013.497 10.1172/JCI200315792 10.1038/ncomms14152 10.1111/j.1463-1326.2010.01268.x 10.1126/science.290.5497.1717 10.1016/S0735-1097(01)01129-9 10.1248/bpb.b14-00172 10.1210/en.2005-1433 10.1016/j.tcm.2004.09.003 10.1073/pnas.94.7.3058 10.1038/nchembio.1184 10.2337/db16-0915 10.2337/db15-1594 10.1016/j.bcp.2015.10.008 10.1083/jcb.200412022 10.1016/S0076-6879(08)02007-7 10.1016/j.cardiores.2004.04.012 10.1074/jbc.M109.041616 10.1159/000358676 10.2337/db10-0351 10.1161/CIRCRESAHA.116.303356 10.1006/dbio.2000.0106 10.1124/jpet.115.226894 10.1080/15548627.2015.1100356 10.1073/pnas.0438011100 10.1038/sj.emboj.7601689 10.4161/auto.18658 10.1038/ncb2152 10.1038/ncomms16002 10.1016/j.molcel.2011.02.009 10.1042/CS20110386 10.1038/nri1568 10.1146/annurev-pathol-020712-163918 10.1016/j.cell.2007.12.018 10.1038/nrendo.2011.183 10.1247/csf.23.33 10.1016/S0092-8674(00)80678-9 10.1093/cvr/cvu082.169 10.1038/nprot.2011.435 10.1073/pnas.1305732110 10.1084/jem.193.6.741 10.1016/S0042-6989(98)00308-3 10.1038/nm.3322 10.4161/auto.3595 10.1016/j.cell.2005.07.002 10.1161/CIRCULATIONAHA.105.603167 10.1161/01.CIR.0000013952.86046.DD 10.1152/physrev.00030.2009 10.1016/j.diabres.2011.10.029 10.1161/CIRCRESAHA.110.227371 10.3389/fimmu.2017.01507 |
ContentType | Journal Article |
Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1080/15548627.2019.1569913 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | C. NIU ET AL |
EISSN | 1554-8635 |
EndPage | 870 |
ExternalDocumentID | PMC6526809 30653446 10_1080_15548627_2019_1569913 1569913 |
Genre | Research Article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Nature Science Foundation of China grantid: 81770498; 81773346; 81573069; 81570368; 81600304 – fundername: Public Projects of Wenzhou grantid: Y20160001 – fundername: ; grantid: Y20160001 – fundername: ; grantid: 81770498; 81773346; 81573069; 81570368; 81600304 |
GroupedDBID | --- 0BK 0R~ 23N 30N 4.4 53G 5GY AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADBBV ADCVX ADGTB AEISY AENEX AEYOC AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AVBZW AWYRJ BAWUL BLEHA CCCUG DGEBU DIK DKSSO E3Z EBS EJD EMOBN F5P GTTXZ H13 HYE IPNFZ KYCEM LJTGL M4Z O9- OK1 P2P RIG RNANH ROSJB RPM RTWRZ SNACF TBQAZ TDBHL TEI TFL TFT TFW TQWBC TR2 TTHFI TUROJ ZGOLN AAGDL AAHIA AAYXX ADHGD ADYSH AFRVT AIYEW AMPGV CITATION AAGME ABFMO ACDHJ ACZPZ ADOPC AURDB BFWEY C1A CGR CUY CVF CWRZV ECM EIF NPM PCLFJ 7X8 TASJS 5PM |
ID | FETCH-LOGICAL-c468t-ad3a83db11e0c3b84b5b72981f667531defe92492e87663c71b7a51269d3c99e3 |
ISSN | 1554-8627 1554-8635 |
IngestDate | Thu Aug 21 18:36:37 EDT 2025 Tue Aug 05 11:15:21 EDT 2025 Thu Apr 03 06:57:19 EDT 2025 Tue Jul 01 02:48:58 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Wed Dec 25 09:08:11 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Angiogenesis diabetes mellitus GLI1 LC3 endothelial dysfunction BNIP3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c468t-ad3a83db11e0c3b84b5b72981f667531defe92492e87663c71b7a51269d3c99e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-first authors. |
OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.1080/15548627.2019.1569913?needAccess=true |
PMID | 30653446 |
PQID | 2179403416 |
PQPubID | 23479 |
PageCount | 28 |
ParticipantIDs | crossref_primary_10_1080_15548627_2019_1569913 proquest_miscellaneous_2179403416 pubmed_primary_30653446 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6526809 informaworld_taylorfrancis_310_1080_15548627_2019_1569913 crossref_citationtrail_10_1080_15548627_2019_1569913 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-04 |
PublicationDateYYYYMMDD | 2019-05-04 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Autophagy |
PublicationTitleAlternate | Autophagy |
PublicationYear | 2019 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | CIT0072 CIT0071 CIT0030 CIT0074 CIT0073 CIT0032 CIT0076 CIT0031 CIT0075 CIT0034 CIT0078 CIT0077 CIT0070 CIT0036 CIT0035 CIT0079 CIT0038 Nakamura M (CIT0058) 2014; 34 CIT0037 CIT0039 CIT0083 CIT0082 CIT0041 CIT0040 CIT0084 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0081 CIT0080 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 Liao H (CIT0057) 2012; 27 CIT0006 Xu L (CIT0064) 2011; 52 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 CIT0014 CIT0013 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0065 CIT0020 CIT0023 CIT0067 CIT0022 CIT0066 Bai CB (CIT0033) 2001; 128 CIT0025 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 35549650 - Autophagy. 2023 Jan;19(1):374-375 |
References_xml | – ident: CIT0051 doi: 10.1111/j.1476-5381.2011.01230.x – ident: CIT0012 doi: 10.3892/ijmm.2012.891 – ident: CIT0070 doi: 10.1002/dvdy.20643 – ident: CIT0016 doi: 10.7150/ijbs.7.629 – volume: 128 start-page: 5161 year: 2001 ident: CIT0033 publication-title: Development doi: 10.1242/dev.128.24.5161 – ident: CIT0050 doi: 10.2337/db11-1132 – ident: CIT0055 doi: 10.1016/j.diabres.2008.02.006 – ident: CIT0013 doi: 10.1182/blood-2006-11-059352 – ident: CIT0032 doi: 10.1038/ncomms2212 – ident: CIT0059 doi: 10.3892/ijmm.2015.2217 – ident: CIT0025 doi: 10.1152/ajpendo.00308.2009 – ident: CIT0044 doi: 10.1016/j.yjmcc.2011.03.002 – ident: CIT0072 doi: 10.1111/j.1365-2125.1981.tb01206.x – ident: CIT0046 doi: 10.1016/j.molcel.2010.09.023 – ident: CIT0073 doi: 10.1177/009127009603601105 – ident: CIT0039 doi: 10.4161/auto.6260 – ident: CIT0015 doi: 10.4161/auto.4734 – ident: CIT0048 doi: 10.1038/nm.3288 – ident: CIT0056 doi: 10.1593/neo.11148 – ident: CIT0038 doi: 10.1038/45257 – ident: CIT0026 doi: 10.1038/nsmb.1607 – volume: 27 start-page: 1873 year: 2012 ident: CIT0057 publication-title: Oncol Rep – ident: CIT0020 doi: 10.1158/0008-5472.CAN-07-2310 – ident: CIT0065 doi: 10.1038/cdd.2011.88 – ident: CIT0074 doi: 10.2337/diabetes.55.02.06.db05-1064 – ident: CIT0060 doi: 10.1161/CIRCRESAHA.109.206706 – ident: CIT0077 doi: 10.2337/db13-0014 – ident: CIT0054 doi: 10.1093/cvr/cvp131 – ident: CIT0017 doi: 10.4161/auto.7.8.15598 – ident: CIT0004 doi: 10.1152/japplphysiol.91353.2008 – ident: CIT0021 doi: 10.1074/jbc.M202489200 – ident: CIT0042 doi: 10.1038/cddis.2013.497 – ident: CIT0024 doi: 10.1172/JCI200315792 – ident: CIT0084 doi: 10.1038/ncomms14152 – ident: CIT0045 doi: 10.1111/j.1463-1326.2010.01268.x – ident: CIT0008 doi: 10.1126/science.290.5497.1717 – ident: CIT0007 doi: 10.1016/S0735-1097(01)01129-9 – ident: CIT0011 doi: 10.1248/bpb.b14-00172 – ident: CIT0005 doi: 10.1210/en.2005-1433 – ident: CIT0023 doi: 10.1016/j.tcm.2004.09.003 – ident: CIT0069 doi: 10.1073/pnas.94.7.3058 – ident: CIT0080 doi: 10.1038/nchembio.1184 – ident: CIT0063 doi: 10.2337/db16-0915 – ident: CIT0018 doi: 10.2337/db15-1594 – ident: CIT0053 doi: 10.1016/j.bcp.2015.10.008 – ident: CIT0067 doi: 10.1083/jcb.200412022 – ident: CIT0079 doi: 10.1016/S0076-6879(08)02007-7 – ident: CIT0019 doi: 10.1016/j.cardiores.2004.04.012 – ident: CIT0066 doi: 10.1074/jbc.M109.041616 – ident: CIT0010 doi: 10.1159/000358676 – ident: CIT0043 doi: 10.2337/db10-0351 – ident: CIT0081 doi: 10.1161/CIRCRESAHA.116.303356 – ident: CIT0031 doi: 10.1006/dbio.2000.0106 – ident: CIT0052 doi: 10.1124/jpet.115.226894 – ident: CIT0027 doi: 10.1080/15548627.2015.1100356 – ident: CIT0036 doi: 10.1073/pnas.0438011100 – ident: CIT0041 doi: 10.1038/sj.emboj.7601689 – ident: CIT0037 doi: 10.4161/auto.18658 – ident: CIT0029 doi: 10.1038/ncb2152 – ident: CIT0076 doi: 10.1038/ncomms16002 – ident: CIT0062 doi: 10.1016/j.molcel.2011.02.009 – ident: CIT0006 doi: 10.1042/CS20110386 – volume: 34 start-page: 1765 year: 2014 ident: CIT0058 publication-title: Anticancer Res – ident: CIT0061 doi: 10.1038/nri1568 – ident: CIT0047 doi: 10.1146/annurev-pathol-020712-163918 – volume: 52 start-page: 5434 year: 2011 ident: CIT0064 publication-title: Invest Ophth Vis Ssi – ident: CIT0049 doi: 10.1016/j.cell.2007.12.018 – ident: CIT0002 doi: 10.1038/nrendo.2011.183 – ident: CIT0028 doi: 10.1247/csf.23.33 – ident: CIT0034 doi: 10.1016/S0092-8674(00)80678-9 – ident: CIT0030 doi: 10.1093/cvr/cvu082.169 – ident: CIT0078 doi: 10.1038/nprot.2011.435 – ident: CIT0014 doi: 10.1073/pnas.1305732110 – ident: CIT0068 doi: 10.1084/jem.193.6.741 – ident: CIT0071 doi: 10.1016/S0042-6989(98)00308-3 – ident: CIT0082 doi: 10.1038/nm.3322 – ident: CIT0035 doi: 10.4161/auto.3595 – ident: CIT0040 doi: 10.1016/j.cell.2005.07.002 – ident: CIT0022 doi: 10.1161/CIRCULATIONAHA.105.603167 – ident: CIT0003 doi: 10.1161/01.CIR.0000013952.86046.DD – ident: CIT0009 doi: 10.1152/physrev.00030.2009 – ident: CIT0001 doi: 10.1016/j.diabres.2011.10.029 – ident: CIT0083 doi: 10.1161/CIRCRESAHA.110.227371 – ident: CIT0075 doi: 10.3389/fimmu.2017.01507 – reference: 35549650 - Autophagy. 2023 Jan;19(1):374-375 |
SSID | ssj0036892 |
Score | 2.5746877 |
Snippet | Studies regarding macroautophagic/autophagic regulation in endothelial cells (ECs) under diabetic conditions are very limited. Clinical evidence establishes an... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 843 |
SubjectTerms | Angiogenesis Animals Autophagy - drug effects Autophagy - genetics BNIP3 Capillary Permeability - drug effects Capillary Permeability - genetics Cells, Cultured diabetes mellitus Diabetes Mellitus, Experimental - complications Diabetes Mellitus, Experimental - drug therapy Diabetes Mellitus, Experimental - pathology Diabetes Mellitus, Experimental - physiopathology Diabetic Angiopathies - metabolism Diabetic Angiopathies - pathology Diabetic Angiopathies - physiopathology Diabetic Angiopathies - prevention & control Down-Regulation - drug effects Down-Regulation - genetics endothelial dysfunction Endothelium, Vascular - drug effects Endothelium, Vascular - metabolism Endothelium, Vascular - physiopathology Gene Expression Regulation - drug effects GLI1 Hedgehog Proteins - drug effects Hedgehog Proteins - genetics Hedgehog Proteins - metabolism HEK293 Cells Human Umbilical Vein Endothelial Cells Humans Hyperglycemia - complications Hyperglycemia - drug therapy Hyperglycemia - metabolism Hyperglycemia - physiopathology LC3 Metformin - pharmacology Metformin - therapeutic use Mice Mice, Inbred C57BL Mice, Transgenic Research Paper Retina - drug effects Retina - metabolism Retina - pathology Signal Transduction - drug effects Signal Transduction - genetics |
Title | Metformin alleviates hyperglycemia-induced endothelial impairment by downregulating autophagy via the Hedgehog pathway |
URI | https://www.tandfonline.com/doi/abs/10.1080/15548627.2019.1569913 https://www.ncbi.nlm.nih.gov/pubmed/30653446 https://www.proquest.com/docview/2179403416 https://pubmed.ncbi.nlm.nih.gov/PMC6526809 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKIiQuiDflJSNxq1KSOHGd4wqBKhBc6EorLpFju22kkqKS7Kqc-eHMxImTQKTlcamqJHaizJeZ-ex5EPIyM75UmTGellp4USilJ5I480SoQiWFlkzXUb4f-fIsencen08mP3pRS1WZzdX30bySf5EqHAO5YpbsX0jWTQoH4D_IF35BwvD7RzL-YEr0OfNihh1RLnL0G2dbYJaHze6ozJdcekC5K9ziN4XGXKtd3aMDVEB-qKMAwPnUwMMPtiN9nbBYYakBuTnOYL7aLV3iktt2v8EarNtLOdgHPm2v7vY3qmYXf99FDljV9nmbX5q82_Svkfj-iOpmtpIOYJ8qmy6Sy_6KBCZBxZ7frUiufmsO0tevceQBibI21vSP2aolTinHPfDFPQ0rbFUnZ6z9UTtgAydxZrwZRvAlc2Cq4AyzzvC5cMTmzDVyPQSyEbZrPtaeMy7q1tru0ds8MOG_Gr3BwMMZ1L8dYzG_BuP2vJvVbXKroSX01GLsDpmY4i65YRuVHu-RC4c02iGNjiKN9pBGO6TR7EiHSKMOaRTmozCEtkijDdLuk7O3b1avl17TscNTERelJzWTguksCIyvWCaiLM6AvYlgzYGYskCbtUHCHxowwpypRZAtJLicPNFMJYlhD8hJsS_MI0IVvJAg4Fon8MErwwU3QKaRDSx8s2ZsSqL2LaeqKWePXVV2adBUvW2Fk6Jw0kY4UzJ3w77aei5XDUj6IkzLGt1rC-yUXTH2RSvvFLQ2bsXJwuyrb2mIdtAHD5JPyUMrf_c4DMtFRxGcWQyQ4S7AivDDM0W-rSvDcyze5CeP_-OZn5Cb3Tf9lJyUh8o8A7-7zJ7Xn8VP24TYHA |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMGlPAvL00hcvSRx1rGPCFEt0O6plXqz_Eo26jaLlmyr8Os7k8dqtwL10LMzVuyM7W-cme8j5LMNkXE2BOaNlyxNjGFSTSyTiUuckd5w32b5zsT0NP15NjnbqoXBtEqMofOOKKLdq3Fx42X0kBL3Bc9AQOIZZmapMUQgAHL4ffJgokSGKgY8mg27MReyFUZGE4Y2QxXP_7rZOZ922Ev_hUFvplJunU2HT4gbRtWlpJyP17Udu783CB_vNuynZL-HrvRr52vPyL1QPScPOzHL5gW5PA41DqOsKOqzXJaIYukc4txVsWhcuCgNKysPruRpqDxWfi3A-SnWaZYrvKSktqF-eQUOXbSiYlVBzRqJD0zRUOiPggmd4gXgfFlQ1FK-Ms1Lcnr4_eTblPWqDsylQtbMeG4k9zaOQ-S4lamdWED4Ms4FBC889iEPGBQmATZqwV0W28wALBHKc6dU4Adkr1pW4TWhDqY9joX3Cpa6C0KKAAEXIsYsCjnnI5IO31K7nvIclTcWOu6ZUYcp1Tilup_SERlvzH53nB-3GahtR9F1e9mSd8oomt9i-2nwKg0rG3_XmCos1390gntlBChDjMirzss2r8ORUhgi-RHJdvxv8wCyhu-2VOW8ZQ8XSPATqTd3eOeP5NH05PhIH_2Y_XpLHmNTmwOaviN79Wod3gNOq-2HdiFeA8R2MxI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa2Dht62btd9tSAXZ3ZliPLx2FbkL2CHVZgN0EvO0ZTp0idFt6vH-lH0BQbeuhZpmDJJPVRJj8CvDM-1NZ4HzjtZJDEWgcym5hAxja2WjrNXZvlOxezo-Tr78mQTXjWp1VSDJ13RBGtrybjPnX5kBH3no5ABOIpJWZlYwxAEOPw23BHEHk4VXGE88EZcyHbvsgkEpDMUMTzv2l2jqcd8tJ_QdCrmZSXjqbpAzDDorqMlOPxpjZj--cK3-ONVv0Q7vfAlX3oNO0R3PLVY7jbtbJsnsD5D1_TKsqKUXeW85IwLFtglLsulo31J6UOMPxHRXLMV47qvpao-oyqNMs1XVEy0zC3ukB1LtqWYlXB9IZoD3TRMJyPoQib0fXfYlUw6qR8oZuncDT9_OvjLOh7OgQ2EbIOtONacmeiyIeWG5mYiUF8L6NcYOjCI-dzTyFh7NFNC27TyKQaQYnIHLdZ5vkB7FWryj8DZnHXo0g4l6GhWy-k8BhuEV5MQ59zPoJk-JTK9oTn1HdjqaKeF3XYUkVbqvotHcF4K3baMX5cJ5Bd1hNVt1ctedcXRfFrZN8OSqXQrulnja78anOmYvKUIWIMMYLDTsm2r8OJUBjj-BGkO-q3fYA4w3dHqnLRcocLovcJs-c3eOc3cO_np6n6_mX-7QXs00ibAJq8hL16vfGvEKTV5nVrhn8B1cQxtg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metformin+alleviates+hyperglycemia-induced+endothelial+impairment+by+downregulating+autophagy+via+the+Hedgehog+pathway&rft.jtitle=Autophagy&rft.au=Niu%2C+Chao&rft.au=Chen%2C+Zhiwei&rft.au=Kim%2C+Kyoung+Tae&rft.au=Sun%2C+Jia&rft.date=2019-05-04&rft.pub=Taylor+%26+Francis&rft.issn=1554-8627&rft.eissn=1554-8635&rft.volume=15&rft.issue=5&rft.spage=843&rft.epage=870&rft_id=info:doi/10.1080%2F15548627.2019.1569913&rft.externalDocID=1569913 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon |