Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection
Rapid detecting damages/defeats in the large-scale civil engineering structures, assessing their conditions and timely decision making are crucial to ensure their health and ultimately enhance the level of public safety. Advanced sensor network techniques recently allow collecting large amounts of d...
Saved in:
Published in | KSCE journal of civil engineering Vol. 21; no. 2; pp. 523 - 534 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Society of Civil Engineers
01.02.2017
Springer Nature B.V 대한토목학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rapid detecting damages/defeats in the large-scale civil engineering structures, assessing their conditions and timely decision making are crucial to ensure their health and ultimately enhance the level of public safety. Advanced sensor network techniques recently allow collecting large amounts of data for structural health monitoring and damage detection, while how to effectively interpret these complex sensor data to technical information posts many challenges. This paper presents three optimization-algorithm based support vector machines for damage detection. The optimization algorithms, including grid-search, partial swarm optimization and genetic algorithm, are used to optimize the penalty parameters and Gaussian kernel function parameters. Two types of feature extraction methods in terms of time-series data are selected to capture effective damage characteristics. A benchmark experimental data with the 17 different scenarios in the literature were used for verifying the proposed data-driven methods. Numerical results revealed that all three optimized machine learning methods exhibited significantly improvement in sensitivity, accuracy and effectiveness over conventional methods. The genetic algorithm based SVM had a better prediction than other methods. Two different feature methods used in this study also demonstrated the appropriate features are crucial to improve the sensitivity in detecting damage and assessing structural health conditions. The findings of this study are expected to help engineers to process big data and effectively detect the damage/defects, and thus enable them to make timely decision for supporting civil infrastructure management practices. |
---|---|
AbstractList | Rapid detecting damages/defeats in the large-scale civil engineering structures, assessing their conditions and timely decision making are crucial to ensure their health and ultimately enhance the level of public safety. Advanced sensor network techniques recently allow collecting large amounts of data for structural health monitoring and damage detection, while how to effectively interpret these complex sensor data to technical information posts many challenges. This paper presents three optimization-algorithm based support vector machines for damage detection. The optimization algorithms, including grid-search, partial swarm optimization and genetic algorithm, are used to optimize the penalty parameters and Gaussian kernel function parameters. Two types of feature extraction methods in terms of time-series data are selected to capture effective damage characteristics. A benchmark experimental data with the 17 different scenarios in the literature were used for verifying the proposed data-driven methods. Numerical results revealed that all three optimized machine learning methods exhibited significantly improvement in sensitivity, accuracy and effectiveness over conventional methods. The genetic algorithm based SVM had a better prediction than other methods. Two different feature methods used in this study also demonstrated the appropriate features are crucial to improve the sensitivity in detecting damage and assessing structural health conditions. The findings of this study are expected to help engineers to process big data and effectively detect the damage/defects, and thus enable them to make timely decision for supporting civil infrastructure management practices. Rapid detecting damages/defeats in the large-scale civil engineering structures, assessing their conditions and timely decision making are crucial to ensure their health and ultimately enhance the level of public safety. Advanced sensor network techniques recently allow collecting large amounts of data for structural health monitoring and damage detection, while how to effectively interpret these complex sensor data to technical information posts many challenges. This paper presents three optimization-algorithm based support vector machines for damage detection. The optimization algorithms, including grid-search, partial swarm optimization and genetic algorithm, are used to optimize the penalty parameters and Gaussian kernel function parameters. Two types of feature extraction methods in terms of time-series data are selected to capture effective damage characteristics. A benchmark experimental data with the 17 different scenarios in the literature were used for verifying the proposed data-driven methods. Numerical results revealed that all three optimized machine learning methods exhibited significantly improvement in sensitivity, accuracy and effectiveness over conventional methods. The genetic algorithm based SVM had a better prediction than other methods. Two different feature methods used in this study also demonstrated the appropriate features are crucial to improve the sensitivity in detecting damage and assessing structural health conditions. The findings of this study are expected to help engineers to process big data and effectively detect the damage/defects, and thus enable them to make timely decision for supporting civil infrastructure management practices. KCI Citation Count: 129 |
Author | Yuan, Zhijun Li, Yonghua Pan, Hong Gui, Guoqing Lin, Zhibin |
Author_xml | – sequence: 1 givenname: Guoqing surname: Gui fullname: Gui, Guoqing organization: School of Architecture and Civil Engineering, Jinggangshan University, School of Civil Engineering, Tongji University – sequence: 2 givenname: Hong surname: Pan fullname: Pan, Hong organization: School of Architecture and Civil Engineering, Jinggangshan University, School of Civil Engineering, Tongji University, Dept. of Civil and Environmental Engineering, North Dakota State University – sequence: 3 givenname: Zhibin surname: Lin fullname: Lin, Zhibin email: zhibin.lin@ndsu.edu organization: Dept. of Civil and Environmental Engineering, North Dakota State University – sequence: 4 givenname: Yonghua surname: Li fullname: Li, Yonghua organization: School of Architecture and Civil Engineering Nanchang University – sequence: 5 givenname: Zhijun surname: Yuan fullname: Yuan, Zhijun organization: School of Architecture and Civil Engineering Nanchang University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002192481$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNqN0ctq3TAQBmBREmh6kgfITtBNu3Cri2VJy5BeEggUSrIWsjw-R4ktuZKcQp--ck4XpatqM1p8MzDzv0EnIQZA6JKSD5QQ-TFTxohoCJUNFVQ14hU6o1p2DVdEndQ_Y10jtVKv0UXOj6Q-zqTi4gytn2yxzZD8MwSc12WJqeBncCUmPFt38AHwT18OOC7Fz_6XLT4GXMAdgv-xQsZjhbmk1ZU12QkfwE5VzzH4OsKHPbZhwIOd7R7wALVxG3COTkc7Zbj4U3fo4cvn--ub5u7b19vrq7vGtZ0qjXVCdETS1g3Wghwp66kE6K1ylEDfjy0fOiopEN31dtSCus4RTeSoJXDJ-A69P84NaTRPzpto_UvdR_OUzNX3-1tDOZW6HmOH3h3tkuK2WTGzzw6myQaIazZUSa11qzT7D9opzqWkG337D32Mawp16aqEUq1mTFTFjiov280g_aWI2TI2x4xNzdhsGRvBfwOPIJy_ |
CitedBy_id | crossref_primary_10_1016_j_engappai_2019_08_004 crossref_primary_10_3390_buildings12122130 crossref_primary_10_1016_j_watres_2024_121499 crossref_primary_10_1080_13632469_2021_1891156 crossref_primary_10_3390_computation11110218 crossref_primary_10_1016_j_engstruct_2025_119957 crossref_primary_10_3390_s20174908 crossref_primary_10_1007_s41024_024_00543_y crossref_primary_10_1061__ASCE_AS_1943_5525_0000978 crossref_primary_10_3390_electronics10232918 crossref_primary_10_3390_rs15081961 crossref_primary_10_3390_s19163567 crossref_primary_10_48295_ET_2021_82_2 crossref_primary_10_1016_j_engstruct_2023_115873 crossref_primary_10_1007_s42107_023_00755_6 crossref_primary_10_3390_app11125727 crossref_primary_10_3390_sym14112384 crossref_primary_10_1177_1475921718804132 crossref_primary_10_3390_en11010013 crossref_primary_10_1108_ECAM_11_2020_0984 crossref_primary_10_1177_14759217231163777 crossref_primary_10_1007_s12205_019_0437_z crossref_primary_10_1007_s41062_022_00888_8 crossref_primary_10_1080_15732479_2020_1811991 crossref_primary_10_2139_ssrn_4127226 crossref_primary_10_3390_s20061716 crossref_primary_10_3390_s23063293 crossref_primary_10_1016_j_cma_2020_113371 crossref_primary_10_1111_mice_12523 crossref_primary_10_1016_j_engappai_2023_107226 crossref_primary_10_1002_stc_2488 crossref_primary_10_1016_j_istruc_2023_105762 crossref_primary_10_1016_j_ultras_2023_107014 crossref_primary_10_3390_buildings12111772 crossref_primary_10_3390_nano8121005 crossref_primary_10_1007_s00366_021_01584_4 crossref_primary_10_3390_s17020417 crossref_primary_10_1007_s13349_021_00509_5 crossref_primary_10_1016_j_measurement_2022_110939 crossref_primary_10_3390_s20061790 crossref_primary_10_1016_j_istruc_2023_07_021 crossref_primary_10_1007_s12205_021_1115_5 crossref_primary_10_1016_j_engstruct_2018_05_084 crossref_primary_10_3390_s22145390 crossref_primary_10_1177_13694332221073983 crossref_primary_10_1016_j_ymssp_2019_106276 crossref_primary_10_1590_1679_78254378 crossref_primary_10_1155_2024_3970794 crossref_primary_10_29130_dubited_1293075 crossref_primary_10_1016_j_aei_2020_101126 crossref_primary_10_1016_j_ress_2021_108219 crossref_primary_10_1142_S0219455424500858 crossref_primary_10_1016_j_ndteint_2023_102969 crossref_primary_10_1016_j_engappai_2023_107834 crossref_primary_10_1007_s10999_023_09692_3 crossref_primary_10_1016_j_autcon_2021_103976 crossref_primary_10_1007_s13349_024_00876_9 crossref_primary_10_35848_1347_4065_abf2d0 crossref_primary_10_3390_ma15072673 crossref_primary_10_1007_s11053_020_09710_7 crossref_primary_10_1016_j_ymssp_2023_111075 crossref_primary_10_1007_s12205_024_2467_4 crossref_primary_10_3390_s18092840 crossref_primary_10_1016_j_heliyon_2024_e38104 crossref_primary_10_1007_s11668_024_02049_8 crossref_primary_10_1016_j_kscej_2024_100042 crossref_primary_10_1007_s11831_021_09665_9 crossref_primary_10_3390_app11199345 crossref_primary_10_1016_j_autcon_2022_104440 crossref_primary_10_1007_s42107_023_00748_5 crossref_primary_10_3390_app122110999 crossref_primary_10_1016_j_ress_2021_107530 crossref_primary_10_1016_j_ymssp_2020_107572 crossref_primary_10_1061__ASCE_AS_1943_5525_0001225 crossref_primary_10_1080_1206212X_2020_1734313 crossref_primary_10_3390_s22010406 crossref_primary_10_1016_j_engstruct_2020_111582 crossref_primary_10_1016_j_engstruct_2020_111221 crossref_primary_10_3390_infrastructures8120172 crossref_primary_10_1016_j_jobe_2023_106876 crossref_primary_10_1177_10775463251315863 crossref_primary_10_3390_s17071668 crossref_primary_10_1109_TASE_2019_2950958 crossref_primary_10_3390_s20041143 crossref_primary_10_4018_JGIM_296707 crossref_primary_10_3390_app122110754 crossref_primary_10_1007_s42107_024_01006_y crossref_primary_10_1155_2021_6658575 crossref_primary_10_1002_tee_23353 crossref_primary_10_3390_constrmater4010005 crossref_primary_10_2478_amns_2025_0483 crossref_primary_10_3390_infrastructures8030052 crossref_primary_10_3390_w14162538 crossref_primary_10_1007_s12205_018_1301_2 crossref_primary_10_1051_matecconf_201814814003 crossref_primary_10_3390_nano9101476 crossref_primary_10_1002_stc_2693 crossref_primary_10_1007_s12205_024_1994_3 crossref_primary_10_1016_j_conbuildmat_2024_137725 crossref_primary_10_1109_JIOT_2023_3272535 crossref_primary_10_54097_ajst_v5i3_7805 crossref_primary_10_1016_j_engfailanal_2020_104845 crossref_primary_10_1016_j_ssci_2019_03_001 crossref_primary_10_1016_j_istruc_2024_107971 crossref_primary_10_3390_app12157458 crossref_primary_10_3390_smartcities4020024 crossref_primary_10_3390_buildings13040918 crossref_primary_10_1109_TIM_2023_3238048 crossref_primary_10_1016_j_oceaneng_2021_109388 crossref_primary_10_1139_cjce_2019_0150 crossref_primary_10_1016_j_prostr_2023_01_110 crossref_primary_10_3390_s20041059 crossref_primary_10_1007_s42452_019_0590_5 crossref_primary_10_1007_s13296_024_00815_w crossref_primary_10_1016_j_oceaneng_2021_110142 crossref_primary_10_1016_j_matt_2023_04_016 crossref_primary_10_1155_2022_7042014 crossref_primary_10_1007_s00366_021_01305_x crossref_primary_10_1109_ACCESS_2020_3041178 crossref_primary_10_1016_j_engstruct_2021_111979 crossref_primary_10_1109_ACCESS_2023_3291674 crossref_primary_10_1007_s40996_023_01287_4 crossref_primary_10_1007_s41939_024_00424_4 crossref_primary_10_1007_s40996_023_01054_5 crossref_primary_10_1016_j_ymssp_2023_110535 crossref_primary_10_1007_s42493_021_00065_6 crossref_primary_10_1016_j_ymssp_2020_107077 crossref_primary_10_1061__ASCE_BE_1943_5592_0001866 crossref_primary_10_1007_s13349_020_00432_1 crossref_primary_10_1007_s12665_022_10523_5 crossref_primary_10_1007_s42417_024_01291_6 crossref_primary_10_1016_j_jsv_2020_115741 crossref_primary_10_3390_sym14020372 crossref_primary_10_1109_ACCESS_2019_2952649 crossref_primary_10_1016_j_ssci_2019_09_015 crossref_primary_10_1016_j_istruc_2025_108453 crossref_primary_10_1016_j_matpr_2021_10_088 crossref_primary_10_1007_s13296_024_00931_7 crossref_primary_10_3390_ma15134645 crossref_primary_10_1016_j_asr_2023_01_009 crossref_primary_10_1016_j_engstruct_2022_114323 crossref_primary_10_1016_j_eswa_2023_121739 crossref_primary_10_1061__ASCE_BE_1943_5592_0001199 crossref_primary_10_1177_1475921720948206 crossref_primary_10_1016_j_ress_2022_109025 crossref_primary_10_3390_s22010153 crossref_primary_10_1109_JSEN_2022_3186885 crossref_primary_10_1016_j_iintel_2024_100086 crossref_primary_10_1016_j_measurement_2025_116678 crossref_primary_10_1002_stc_2825 crossref_primary_10_1016_j_jsv_2018_01_036 crossref_primary_10_1515_nanoph_2023_0759 crossref_primary_10_1002_stc_2262 crossref_primary_10_1177_1475921718798622 crossref_primary_10_1061__ASCE_ST_1943_541X_0003320 crossref_primary_10_1016_j_jobe_2021_103524 crossref_primary_10_1007_s42107_025_01293_z crossref_primary_10_1016_j_compstruct_2023_116731 crossref_primary_10_1016_j_ymssp_2020_107374 crossref_primary_10_1007_s12205_017_2129_x crossref_primary_10_1016_j_engstruct_2020_111662 crossref_primary_10_1007_s11042_023_14911_2 crossref_primary_10_3390_sym13111998 crossref_primary_10_1007_s13349_022_00616_x crossref_primary_10_1155_2018_4892428 crossref_primary_10_3390_s23167059 crossref_primary_10_1080_24705314_2024_2440830 crossref_primary_10_1177_14759217231216694 |
Cites_doi | 10.1016/j.jsv.2009.03.014 10.1016/j.eswa.2006.04.020 10.1115/1.1410933 10.1023/A:1018628609742 10.1061/(ASCE)CP.1943-5487.0000258 10.1016/j.ijnonlinmec.2011.07.011 10.1061/(ASCE)0733-9399(2000)126:7(677) 10.1177/1077546314528021 10.1016/j.ultras.2014.12.005 10.1111/j.1467-8667.2010.00685.x 10.1088/0964-1726/22/1/015003 10.1016/j.asoc.2007.10.007 10.1016/j.measurement.2015.01.021 10.1109/ICNN.1995.488968 10.1098/rspa.2007.1834 10.1177/1475921716639587 10.1098/rsta.2006.1928 10.1177/1045389X15574937 10.1016/j.jsv.2015.11.008 10.1177/1045389X14566520 10.1177/1475921704041866 10.1016/j.compositesb.2016.02.008 10.1061/(ASCE)0733-9399(2000)126:7(666) 10.1006/jsvi.2000.3390 10.1006/jsvi.1999.2624 10.1177/1475921710388971 10.1093/bioinformatics/16.10.906 10.1016/j.compositesb.2012.09.003 10.1111/mice.12122 10.1007/s00339-016-9753-z 10.1177/1045389X13507343 10.1177/1045389X15575084 10.1088/0964-1726/10/3/317 10.1016/j.ymssp.2012.02.014 10.1109/TAC.1970.1099560 10.1002/tal.1162 10.1109/TITB.2008.923147 10.4236/jbise.2011.44036 10.1016/j.sna.2016.06.027 10.1016/j.ymssp.2011.06.011 |
ContentType | Journal Article |
Copyright | Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017 Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017. |
Copyright_xml | – notice: Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017 – notice: Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017. |
DBID | 7QH 7UA 8FD 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ KR7 L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ACYCR |
DOI | 10.1007/s12205-017-1518-5 |
DatabaseName | Aqualine Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Korean Citation Index |
DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1976-3808 |
EndPage | 534 |
ExternalDocumentID | oai_kci_go_kr_ARTI_1317978 4302662121 10_1007_s12205_017_1518_5 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADVLN ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LK5 LLZTM M41 M4Y M7R M7S MA- MZR NPVJJ NQJWS NU0 O9- O9J P2P P9P PCBAR PF0 PT4 PT5 PTHSS QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TDB TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z83 ZMTXR ZY4 ZZE ~A9 7QH 7UA 8FD AAPKM AAYWO ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIXLP AKBMS AKYEP ATHPR C1K DWQXO F1W FR3 H96 KR7 L.G PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI ACMFV ACDTI ACYCR |
ID | FETCH-LOGICAL-c468t-ac5560714cdaae7f12b17eeba8c10ebbf43d6171e096baf951c6c0907f97e3723 |
IEDL.DBID | U2A |
ISSN | 1226-7988 |
IngestDate | Sun Jan 19 03:36:34 EST 2025 Thu Jul 10 18:56:11 EDT 2025 Thu Jul 10 17:14:02 EDT 2025 Fri Jul 25 11:17:52 EDT 2025 Fri Feb 21 02:33:44 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | structural health monitoring and damage detection support vector machine learning optimization data-driven modeling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-ac5560714cdaae7f12b17eeba8c10ebbf43d6171e096baf951c6c0907f97e3723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 G704-000839.2017.21.2.002 |
OpenAccessLink | https://dx.doi.org/10.1007/s12205-017-1518-5 |
PQID | 1858849225 |
PQPubID | 1496355 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_1317978 proquest_miscellaneous_1879994892 proquest_miscellaneous_1868337712 proquest_journals_1858849225 springer_journals_10_1007_s12205_017_1518_5 |
PublicationCentury | 2000 |
PublicationDate | 20170200 20170201 2017-02 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 2 year: 2017 text: 20170200 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | KSCE journal of civil engineering |
PublicationTitleAbbrev | KSCE J Civ Eng |
PublicationYear | 2017 |
Publisher | Korean Society of Civil Engineers Springer Nature B.V 대한토목학회 |
Publisher_xml | – name: Korean Society of Civil Engineers – name: Springer Nature B.V – name: 대한토목학회 |
References | Yao, Pakzad (CR50) 2012; 31 Magalhães, Cunha, Caetano (CR30) 2012; 28 (CR3) 2009; 131 Liu, Harley, Bergés, Greve, Oppenheim (CR29) 2015; 58 Li, Zhang (CR25) 2009 Figueiredo, Park, Figueiras, Farrar, Worden (CR12) 2009 Boldt, Rauber, Ao (CR2) 2013 Yan, Lin (CR48) 2016; 92 Suykens, Vandewalle (CR41) 1999; 9 Yeesock, Jo Woon, Ki, JungMi (CR51) 2013; 22 Oh, Sohn (CR34) 2009; 325 Widodo, Yang (CR44) 2007; 33 Zou, Tong, Steven (CR54) 2000; 230 Figueiredo, Figueiras, Park, Farrar, Worden (CR10) 2011; 26 Hsu, Chang, Lin (CR20) 2010 Figueiredo, Park, Farrar, Worden, Figueiras (CR11) 2011; 10 Huang, Dun (CR21) 2008; 8 Lin, Fakhairfar, Wu, Chen (CR26) 2013 Pavlopoulou, Worden, Soutis (CR36) 2016; 27 Farrar, Worden (CR9) 2013 Kaveh, Bakhshpoori, Azimi (CR23) 2015; 24 CR43 Worden, Lane (CR46) 2001; 10 Cha, Buyukozturk (CR4) 2015; 30 Ying, Oppenheim, Soibelman, Harley, Shi, Jin (CR52) 2013; 27 Fahim, Gallego, Bochud, Rus (CR7) 2013; 45 Dushyanth, Suma, Latte (CR6) 2016; 122 Lin, Zhao, Habib (CR28) 2012 Pan, Ge, Wang, Gong, Lin (CR35) 2016 Bisgin, Kilinc, Ugur, Xu, Tuzcu (CR1) 2011; 4 Zang, Imregun (CR53) 2001; 242 Farrar, Worden (CR8) 2007; 365 Chong, Kim, Chon (CR5) 2014; 25 Herrasti, Val, Gabilondo, Berganzo, Arriola, Martínez (CR17) 2016; 237 Tibaduiza, Mujica, Rodellar, Güemes (CR42) 2015; 27 Melgani, Bazi (CR32) 2008; 12 Worden, Farrar, Manson, Park (CR47) 2007; 463 Seyedpoor (CR38) 2012; 47 Furey, Cristianini, Duffy, Bednarski, Schummer, Haussler (CR13) 2000; 16 Worden, Dulieu-Barton (CR45) 2004; 3 Lin, Fakharifar, Huang, Chen, Wang (CR27) 2014 Santos, Figueiredo, Silva, Sales, Costa (CR37) 2016; 363 Sohn, Farrar, Hunter, Worden (CR40) 2001; 123 Gersch (CR15) 1970; 15 Huang, Tang, Deng (CR22) 2015; 66 Hou, Noori, Amand (CR19) 2000; 126 Sharma, Amarnath, Kankar (CR39) 2016; 22 Masri, Smyth, Chassiakos, Caughey, Hunter (CR31) 2000; 126 Neerukatti, Hensberry, Kovvali, Chattopadhyay (CR33) 2016; 27 Kennedy, Eberhart (CR24) 1995 Yan, Lin, Wang, Azarmi, Sobolev (CR49) 2016 Holland, ARbor (CR18) 1975 Ghiasi, Torkzadeh, Noori (CR16) 2016; 15 Ge, Pan, Lin, Gong, Wang (CR14) 2016 |
References_xml | – year: 2009 ident: CR25 article-title: An algorithm of soft fault diagnosis for analog circuit based on the optimized SVM by GA. publication-title: Proc., Electronic Measurement & Instruments – volume: 325 start-page: 224 issue: 1 year: 2009 end-page: 239 ident: CR34 article-title: Damage diagnosis under environmental and operational variations using unsupervised support vector machine. publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2009.03.014 – volume: 33 start-page: 241 issue: 1 year: 2007 end-page: 250 ident: CR44 article-title: Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2006.04.020 – year: 2016 ident: CR35 article-title: integrated wireless sensor networks with UAS for damage detection and monitoring of bridges and other large-scale critical civil infrastructures. publication-title: NDE/NDT for Highway and Bridges: Structural Materials Technology Portland – volume: 123 start-page: 706 issue: 4 year: 2001 end-page: 711 ident: CR40 article-title: Structural health monitoring using statistical pattern recognition techniques. publication-title: Journal of Dynamic Systems, Measurement, and Control doi: 10.1115/1.1410933 – year: 2010 ident: CR20 publication-title: A practical guide to support vector classification. – volume: 9 start-page: 293 issue: 3 year: 1999 end-page: 300 ident: CR41 article-title: Least squares support vector machine classifiers. publication-title: Neural Processing Letters doi: 10.1023/A:1018628609742 – volume: 27 start-page: 667 issue: 6 year: 2013 end-page: 680 ident: CR52 article-title: Toward data-driven structural health monitoring: Application of machine learning and signal processing to damage detection. publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)CP.1943-5487.0000258 – volume: 47 start-page: 1 issue: 1 year: 2012 end-page: 8 ident: CR38 article-title: A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization. publication-title: International Journal of Non-Linear Mechanics doi: 10.1016/j.ijnonlinmec.2011.07.011 – volume: 126 start-page: 677 issue: 7 year: 2000 end-page: 683 ident: CR19 article-title: Wavelet-based approach for structural damage detection. publication-title: Journal of Engineering Mechanics doi: 10.1061/(ASCE)0733-9399(2000)126:7(677) – volume: 22 start-page: 176 issue: 1 year: 2016 end-page: 192 ident: CR39 article-title: Feature extraction and fault severity classification in ball bearings. publication-title: Journal of Vibration and Control doi: 10.1177/1077546314528021 – volume: 58 start-page: 75 year: 2015 end-page: 86 ident: CR29 article-title: Robust ultrasonic damage detection under complex environmental conditions using singular value decomposition. publication-title: Ultrasonics doi: 10.1016/j.ultras.2014.12.005 – volume: 26 start-page: 225 issue: 3 year: 2011 end-page: 238 ident: CR10 article-title: Influence of the autoregressive model order on damage detection. publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/j.1467-8667.2010.00685.x – volume: 22 start-page: 015003 issue: 1 year: 2013 ident: CR51 article-title: Waveletbased AR–SVM for health monitoring of smart structures. publication-title: Smart Materials and Structures doi: 10.1088/0964-1726/22/1/015003 – volume: 8 start-page: 1381 issue: 4 year: 2008 end-page: 1391 ident: CR21 article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization. publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.10.007 – volume: 66 start-page: 35 year: 2015 end-page: 44 ident: CR22 article-title: Development of high synchronous acquisition accuracy wireless sensor network for machine vibration monitoring. publication-title: Measurement doi: 10.1016/j.measurement.2015.01.021 – start-page: 1942 year: 1995 end-page: 1948 ident: CR24 article-title: Particle swarm optimization. publication-title: In Proceedings of the IEEE international conference on neural networks IV doi: 10.1109/ICNN.1995.488968 – volume: 131 issue: 2 year: 2009 ident: CR3 publication-title: Journal of Vibration and Acoustics – volume: 463 start-page: 1639 issue: 2082 year: 2007 end-page: 1664 ident: CR47 article-title: The fundamental axioms of structural health monitoring. publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science doi: 10.1098/rspa.2007.1834 – volume: 15 start-page: 302 issue: 3 year: 2016 end-page: 316 ident: CR16 article-title: A machine-learning approach for structural damage detection using least square support vector machine based on a new combinational kernel function. publication-title: Structural Health Monitoring doi: 10.1177/1475921716639587 – year: 1975 ident: CR18 publication-title: Adaptation in natural and artificial systems – volume: 365 start-page: 303 issue: 1851 year: 2007 end-page: 315 ident: CR8 article-title: An introduction to structural health monitoring. publication-title: Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rsta.2006.1928 – start-page: 32 year: 2016 end-page: 33 ident: CR14 article-title: RF-Powered Batteryless Wireless Sensor Network. publication-title: The 5th International Symposium on Next-Generation Electronics Hsinchu, Taiwan – volume: 27 start-page: 549 issue: 4 year: 2016 end-page: 566 ident: CR36 article-title: Novelty detection and dimension reduction via guided ultrasonic waves: Damage monitoring of scarf repairs in composite laminates. publication-title: Journal of Intelligent Material Systems and Structures doi: 10.1177/1045389X15574937 – volume: 363 start-page: 584 year: 2016 end-page: 599 ident: CR37 article-title: Machine learning algorithms for damage detection: Kernel-based approaches. publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2015.11.008 – volume: 27 start-page: 233 issue: 2 year: 2015 end-page: 248 ident: CR42 article-title: Structural damage detection using principal component analysis and damage indices. publication-title: Journal of Intelligent Material Systems and Structures doi: 10.1177/1045389X14566520 – volume: 3 start-page: 85 issue: 1 year: 2004 end-page: 98 ident: CR45 article-title: An overview of intelligent fault detection in systems and structures. publication-title: Structural Health Monitoring doi: 10.1177/1475921704041866 – volume: 92 start-page: 420 issue: 42 year: 2016 end-page: 433 ident: CR48 article-title: New strategy for anchorage reliability assessment of GFRP bars to concrete using hybrid artificial neural network with genetic algorithm. publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2016.02.008 – year: 2012 ident: CR28 article-title: Impact of overweight vehicles (with Heavy Axle Loads) on bridge deck deterioration. publication-title: Final Report CFIRE 04-06 – ident: CR43 – volume: 126 start-page: 666 issue: 7 year: 2000 end-page: 676 ident: CR31 article-title: Application of neural networks for detection of changes in nonlinear systems. publication-title: Journal of Engineering Mechanics doi: 10.1061/(ASCE)0733-9399(2000)126:7(666) – volume: 242 start-page: 813 issue: 5 year: 2001 end-page: 827 ident: CR53 article-title: STRUCTURAL DAMAGE DETECTION USING ARTIFICIAL NEURAL NETWORKS AND MEASURED FRF DATA REDUCED VIA PRINCIPAL COMPONENT PROJECTION. publication-title: Journal of Sound and Vibration doi: 10.1006/jsvi.2000.3390 – volume: 230 start-page: 357 issue: 2 year: 2000 end-page: 378 ident: CR54 article-title: VIBRATION-BASED MODEL-DEPENDENT DAMAGE (DELAMINATION) IDENTIFICATION AND HEALTH MONITORING FOR COMPOSITE STRUCTURES — A REVIEW. publication-title: Journal of Sound and Vibration doi: 10.1006/jsvi.1999.2624 – volume: 10 start-page: 559 issue: 6 year: 2011 end-page: 572 ident: CR11 article-title: Machine learning algorithms for damage detection under operational and environmental variability. publication-title: Structural Health Monitoring doi: 10.1177/1475921710388971 – volume: 16 start-page: 906 issue: 10 year: 2000 end-page: 914 ident: CR13 article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data. publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.10.906 – volume: 45 start-page: 50 issue: 1 year: 2013 end-page: 62 ident: CR7 article-title: Model-based damage reconstruction in composites from ultrasound transmission. publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2012.09.003 – year: 2016 ident: CR49 article-title: Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm. publication-title: Composite Structures – volume: 30 start-page: 347 issue: 5 year: 2015 end-page: 358 ident: CR4 article-title: Structural damage detection using modal strain energy and hybrid multiobjective optimization. publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/mice.12122 – volume: 122 start-page: 1 issue: 3 year: 2016 end-page: 9 ident: CR6 article-title: Detection and localization of damage using empirical mode decomposition and multilevel support vector machine. publication-title: Applied Physics A doi: 10.1007/s00339-016-9753-z – volume: 25 start-page: 1456 issue: 12 year: 2014 end-page: 1468 ident: CR5 article-title: Nonlinear multiclass support vector machine–based health monitoring system for buildings employing magnetorheological dampers. publication-title: Journal of Intelligent Material Systems and Structures doi: 10.1177/1045389X13507343 – year: 2009 ident: CR12 article-title: Structural health monitoring algorithm comparisons using standard data sets. publication-title: Technical ReportLA-14393 – volume: 27 start-page: 592 issue: 5 year: 2016 end-page: 607 ident: CR33 article-title: A novel probabilistic approach for damage localization and prognosis including temperature compensation. publication-title: Journal of Intelligent Material Systems and Structures doi: 10.1177/1045389X15575084 – volume: 10 start-page: 540 issue: 3 year: 2001 ident: CR46 article-title: Damage identification using support vector machines. publication-title: Smart Materials and Structures doi: 10.1088/0964-1726/10/3/317 – volume: 31 start-page: 355 year: 2012 end-page: 368 ident: CR50 article-title: Autoregressive statistical pattern recognition algorithms for damage detection in civil structures. publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2012.02.014 – year: 2013 ident: CR26 article-title: Design, construction and load testing of the pat daly road bridge in washington county, mo, with internal glass fiber reinforced polymers reinforcement, washington county, missouri. publication-title: Final Report NUTC R275 – year: 2014 ident: CR27 article-title: Damage detection of a full-size concrete box girder bridge with the moving-window least-square fitting method. publication-title: NDE/NDT for Structural Materials Technology for Highway & Bridges – volume: 15 start-page: 583 issue: 5 year: 1970 end-page: 588 ident: CR15 article-title: Estimation of the autoregressive parameters of a mixed autoregressive moving-average time series. publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1970.1099560 – volume: 24 start-page: 210 issue: 3 year: 2015 end-page: 227 ident: CR23 article-title: Seismic optimal design of 3D steel frames using cuckoo search algorithm. publication-title: The Structural Design of Tall and Special Buildings doi: 10.1002/tal.1162 – volume: 12 start-page: 667 issue: 5 year: 2008 end-page: 677 ident: CR32 article-title: Classification of electrocardiogram signals with support vector machines and particle swarm optimization. publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2008.923147 – year: 2013 ident: CR2 publication-title: Feature extraction and selection for automatic fault diagnosis of rotating machinery. – volume: 4 start-page: 4 issue: 4 year: 2011 ident: CR1 article-title: Diagnosis of long QT syndrome via support vector machines classification. publication-title: Journal of Biomedical Science and Engineering doi: 10.4236/jbise.2011.44036 – year: 2013 ident: CR9 publication-title: Structural Health Monitoring: A Machine Learning Perspective – volume: 237 start-page: 604 year: 2016 end-page: 613 ident: CR17 article-title: Wireless sensor nodes for generic signal conditioning: Application to Structural Health Monitoring of wind turbines. publication-title: Sensors and Actuators A: Physical doi: 10.1016/j.sna.2016.06.027 – volume: 28 start-page: 212 year: 2012 end-page: 228 ident: CR30 article-title: Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection. publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2011.06.011 |
SSID | ssj0000327835 |
Score | 2.5040662 |
Snippet | Rapid detecting damages/defeats in the large-scale civil engineering structures, assessing their conditions and timely decision making are crucial to ensure... |
SourceID | nrf proquest springer |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 523 |
SubjectTerms | Algorithms Big Data Civil Engineering Damage Damage assessment Damage detection Decision making Defects Design Optimization and Applications in Civil Engineering Detection Diagnostic systems Engineering Feature extraction Genetic algorithms Geotechnical Engineering & Applied Earth Sciences Industrial Pollution Prevention Kernel functions Machine learning Mathematical models Numerical methods Optimization Optimization techniques Parameters Public safety Sensors Structural health monitoring Support vector machines Technical information 토목공학 |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8QwFA46XvQgrjhuRPEmwUmTNulJ3IZRUEQUvIVsFZFpdRZ_v-91OuNy8FRIAyl9L-99ecsXQo5gPBQAq5kISc5kEBnLHdLd2dQWnRABUmBA__Yu6z3Jm-f0uQm4DZuyyqlNrA11qDzGyE_Ar2gtc1C_0_cPhrdGYXa1uUJjniyACda6RRbOr-7uH2ZRlo7AmySwjpEDzmBIzjVNbdb9c9hmytBQg-PTDB1MOSh-gc0_-dHa7XRXyHKDF-nZRMCrZC6Wa2TpB4vgOhlf2pFlYYB2iw7H74io6Wcdjaf9ulYyUgy30grMQ7_pu6Qz8tYhBdxKJzyyyMFBJ62RtF_vdlyC2jLQYPtgemiIo7p4q9wgT92rx4sea25TYF5mesSsT1Mkk5M-WBtVwRPHVYzOas870blCigBwhkc41DhbAPLyme_A2bnIVRQqEZukVVZl3CJUp0pmRdQwbqUV2uUAUqL2ivM8JN61ySH8RvPmXw2yV-PzpTJvAwMY_dpwgCxwdm2T3elfNs2-GZpvKbfJwew1aDymMWwZqzHOybQQSvHkvzkKkK_UOcw5nkrwxzIzrmZUAAMKYFABTLr9_0ftkMUEtaWu2t4lLRBN3ANQMnL7jeZ9AY4h4f0 priority: 102 providerName: ProQuest |
Title | Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection |
URI | https://link.springer.com/article/10.1007/s12205-017-1518-5 https://www.proquest.com/docview/1858849225 https://www.proquest.com/docview/1868337712 https://www.proquest.com/docview/1879994892 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002192481 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | KSCE Journal of Civil Engineering, 2017, 21(2), , pp.523-534 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NeNkeEIxNK7DKm3ibLDWxEzuPLbTAplXTtErsyfJXEEJNUT_4-7lLkw7QhMSTJeeSSPb5_PN9_Axwgv2hRFjNRUgLLoPIeeGI7s5mtuyFiJCCHPo_x_nFRH6_yq6aOu5Fm-3ehiRrS_2v2I1qQjlZVdylNM-2YCfDozvlcU3S_sax0hN0eQSlLuILOSc-rjaa-b-v4J5Szcsn-PJZSLTeaUZ7sNtARNZfz-k-vInVe3j3iDjwAFZndml5mJOpYovVHYFodl874Nm0To-MjDysbIYWYdqUWrINX-uCIVRla-pYot1g62pINq0XOP2C2SqwYKdobViIyzpfq_oAk9Hwz-kFby5Q4F7mesmtzzLij5M-WBtVmaQuUTE6q33Si86VUgREMEnEc4yzJYItn_seHpfLQkWhUvERtqtZFT8B05mSeRk19ltphXYF4pKovUqSIqTedeArDqO59TeGCKupvZ6Z27lBWH5pEkQpeFztwHE7yqZZKguDgEFrWaBd6cCXzWNUcopc2CrOViSTayGUStKXZBSCXakLlPnWzuCj32zomUkBDCqAIQUw2eGrpI_gbUrKU-dtH8M2zlT8jLBk6bqwpUfnXdjpjwaDMbXnf38MsR0Mx79-d2slfQBaB-KO |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE-xtIBBcEIW69iJnQNCiLLs0seplXozfgWhapN2HyD-FL-RGe9mKRx66ylSYsmR_Xnm83jmM8ArfB8bpNVcxqLmKsqK157k7lzpmmFMSCkooH94VI1P1JfT8nQLfve1MJRW2dvEbKhjFyhG_hb9ijGqRvi9P7_gdGsUna72V2isYLGffv3ELdv83WQP5_d1UYw-HX8c8_WtAjyoyiy4C2VJomoqROeSbkThhU7JOxPEMHnfKBnRrYuE5N67BhlIqMIQ95BNrZPUJHSAJv-GkujJqTJ99HkT0xlKureCsiYFshpOUmD9QWqu1qOiVk5uAd2s4eTO2lnzD7X97zQ2O7nRXbizZqfswwpO92Artffh9iXNwgew3HMLx-OMrCSbL8-Jv7MfOfbPpjkzMzEK7rIOjdF0XeXJNlKxc4Ysma1Ua0nxg60KMdk02xbqgrk2suimaOhYTIucKtY-hJNrGeVHsN12bXoMzJRaVU0y-N4pJ42vkRIlE7QQdSyCH8BLHEZ7Fr5b0sqm57fOns0s7ggmViBBwp3yAHb7UbbrVTq3fzE1gBebz7i-6NDEtalbUpvKSKm1KK5qo5FnK1Njmzf9DF7qZqMMTQCwCABLALDlk6t_6jncHB8fHtiDydH-DtwqCDk5X3wXtnGa0lOkQwv_LGOQwdfrBv0fu5keZg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1FRUL0gICCGlrAreCErGZ3vWvvgUNEiBpaqh6I1JvxZ1VF2VTJpohfxV9kZpMNLUJIHHpayWvJlj0zfuOZeQZ4i-0-IqzmmU9LLnxW8NIS3Z3JTez5gJCCLvS_nBXHY_H5Ir_owM-2FqbJdm9DkquaBmJpquqjax-Pfhe-UX0oJwuLJ5bibVblSfjxHX22xYfRADf4XZoOP339eMzXzwpwJwpVc-PynFjVhPPGBBmT1CYyBGuUS3rB2igyj-d6EhDdWxMRgrjC9dCJjKUMmSSmA7T5DwQVH6MCjdP-5lKnl9HDFZQ2iRMsOHGBtZHUv80az7NqHu9g2z_Csc0pN3wCj9fwlPVX8vQUOqF6Btu3SAt3YDkwteF-TmaSLZbXBODZTXP5z6ZNamZgdLvLZmiNpusyT7bhil0whMlsRVtLlB9sVYnJpo1xoSGYqTzzZoqWjvlQN7li1XMY38sqv4CtalaFXWAql6KIQWG7ESZTtkRMFJSTSVL61NkuHOIy6om70kSWTd_LmZ7MNboEI50gQkJXuQv77SrrtZouNIIVpUSJNq0LB5vfqGAUNTFVmC2pT6GyTMok_VcfiUBbqBL7vG938NYwG2poEgCNAqBJAHT-8r96v4GH54OhPh2dnezBo5TkqEkf34ct3LTwCtFRbV83Esng232rwC_E1B8f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Support+Vector+Machine+with+Optimization+Techniques+for+Structural+Health+Monitoring+and+Damage+Detection&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Guoqing+Gui&rft.au=Hong+Pan&rft.au=Zhibin+Lin&rft.au=Yonghua+Li&rft.date=2017-02-01&rft.pub=%EB%8C%80%ED%95%9C%ED%86%A0%EB%AA%A9%ED%95%99%ED%9A%8C&rft.issn=1226-7988&rft.eissn=1976-3808&rft.spage=523&rft.epage=534&rft_id=info:doi/10.1007%2Fs12205-017-1518-5&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_1317978 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon |