Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection

Rapid detecting damages/defeats in the large-scale civil engineering structures, assessing their conditions and timely decision making are crucial to ensure their health and ultimately enhance the level of public safety. Advanced sensor network techniques recently allow collecting large amounts of d...

Full description

Saved in:
Bibliographic Details
Published inKSCE journal of civil engineering Vol. 21; no. 2; pp. 523 - 534
Main Authors Gui, Guoqing, Pan, Hong, Lin, Zhibin, Li, Yonghua, Yuan, Zhijun
Format Journal Article
LanguageEnglish
Published Seoul Korean Society of Civil Engineers 01.02.2017
Springer Nature B.V
대한토목학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rapid detecting damages/defeats in the large-scale civil engineering structures, assessing their conditions and timely decision making are crucial to ensure their health and ultimately enhance the level of public safety. Advanced sensor network techniques recently allow collecting large amounts of data for structural health monitoring and damage detection, while how to effectively interpret these complex sensor data to technical information posts many challenges. This paper presents three optimization-algorithm based support vector machines for damage detection. The optimization algorithms, including grid-search, partial swarm optimization and genetic algorithm, are used to optimize the penalty parameters and Gaussian kernel function parameters. Two types of feature extraction methods in terms of time-series data are selected to capture effective damage characteristics. A benchmark experimental data with the 17 different scenarios in the literature were used for verifying the proposed data-driven methods. Numerical results revealed that all three optimized machine learning methods exhibited significantly improvement in sensitivity, accuracy and effectiveness over conventional methods. The genetic algorithm based SVM had a better prediction than other methods. Two different feature methods used in this study also demonstrated the appropriate features are crucial to improve the sensitivity in detecting damage and assessing structural health conditions. The findings of this study are expected to help engineers to process big data and effectively detect the damage/defects, and thus enable them to make timely decision for supporting civil infrastructure management practices.
AbstractList Rapid detecting damages/defeats in the large-scale civil engineering structures, assessing their conditions and timely decision making are crucial to ensure their health and ultimately enhance the level of public safety. Advanced sensor network techniques recently allow collecting large amounts of data for structural health monitoring and damage detection, while how to effectively interpret these complex sensor data to technical information posts many challenges. This paper presents three optimization-algorithm based support vector machines for damage detection. The optimization algorithms, including grid-search, partial swarm optimization and genetic algorithm, are used to optimize the penalty parameters and Gaussian kernel function parameters. Two types of feature extraction methods in terms of time-series data are selected to capture effective damage characteristics. A benchmark experimental data with the 17 different scenarios in the literature were used for verifying the proposed data-driven methods. Numerical results revealed that all three optimized machine learning methods exhibited significantly improvement in sensitivity, accuracy and effectiveness over conventional methods. The genetic algorithm based SVM had a better prediction than other methods. Two different feature methods used in this study also demonstrated the appropriate features are crucial to improve the sensitivity in detecting damage and assessing structural health conditions. The findings of this study are expected to help engineers to process big data and effectively detect the damage/defects, and thus enable them to make timely decision for supporting civil infrastructure management practices.
Rapid detecting damages/defeats in the large-scale civil engineering structures, assessing their conditions and timely decision making are crucial to ensure their health and ultimately enhance the level of public safety. Advanced sensor network techniques recently allow collecting large amounts of data for structural health monitoring and damage detection, while how to effectively interpret these complex sensor data to technical information posts many challenges. This paper presents three optimization-algorithm based support vector machines for damage detection. The optimization algorithms, including grid-search, partial swarm optimization and genetic algorithm, are used to optimize the penalty parameters and Gaussian kernel function parameters. Two types of feature extraction methods in terms of time-series data are selected to capture effective damage characteristics. A benchmark experimental data with the 17 different scenarios in the literature were used for verifying the proposed data-driven methods. Numerical results revealed that all three optimized machine learning methods exhibited significantly improvement in sensitivity, accuracy and effectiveness over conventional methods. The genetic algorithm based SVM had a better prediction than other methods. Two different feature methods used in this study also demonstrated the appropriate features are crucial to improve the sensitivity in detecting damage and assessing structural health conditions. The findings of this study are expected to help engineers to process big data and effectively detect the damage/defects, and thus enable them to make timely decision for supporting civil infrastructure management practices. KCI Citation Count: 129
Author Yuan, Zhijun
Li, Yonghua
Pan, Hong
Gui, Guoqing
Lin, Zhibin
Author_xml – sequence: 1
  givenname: Guoqing
  surname: Gui
  fullname: Gui, Guoqing
  organization: School of Architecture and Civil Engineering, Jinggangshan University, School of Civil Engineering, Tongji University
– sequence: 2
  givenname: Hong
  surname: Pan
  fullname: Pan, Hong
  organization: School of Architecture and Civil Engineering, Jinggangshan University, School of Civil Engineering, Tongji University, Dept. of Civil and Environmental Engineering, North Dakota State University
– sequence: 3
  givenname: Zhibin
  surname: Lin
  fullname: Lin, Zhibin
  email: zhibin.lin@ndsu.edu
  organization: Dept. of Civil and Environmental Engineering, North Dakota State University
– sequence: 4
  givenname: Yonghua
  surname: Li
  fullname: Li, Yonghua
  organization: School of Architecture and Civil Engineering Nanchang University
– sequence: 5
  givenname: Zhijun
  surname: Yuan
  fullname: Yuan, Zhijun
  organization: School of Architecture and Civil Engineering Nanchang University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002192481$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqN0ctq3TAQBmBREmh6kgfITtBNu3Cri2VJy5BeEggUSrIWsjw-R4ktuZKcQp--ck4XpatqM1p8MzDzv0EnIQZA6JKSD5QQ-TFTxohoCJUNFVQ14hU6o1p2DVdEndQ_Y10jtVKv0UXOj6Q-zqTi4gytn2yxzZD8MwSc12WJqeBncCUmPFt38AHwT18OOC7Fz_6XLT4GXMAdgv-xQsZjhbmk1ZU12QkfwE5VzzH4OsKHPbZhwIOd7R7wALVxG3COTkc7Zbj4U3fo4cvn--ub5u7b19vrq7vGtZ0qjXVCdETS1g3Wghwp66kE6K1ylEDfjy0fOiopEN31dtSCus4RTeSoJXDJ-A69P84NaTRPzpto_UvdR_OUzNX3-1tDOZW6HmOH3h3tkuK2WTGzzw6myQaIazZUSa11qzT7D9opzqWkG337D32Mawp16aqEUq1mTFTFjiov280g_aWI2TI2x4xNzdhsGRvBfwOPIJy_
CitedBy_id crossref_primary_10_1016_j_engappai_2019_08_004
crossref_primary_10_3390_buildings12122130
crossref_primary_10_1016_j_watres_2024_121499
crossref_primary_10_1080_13632469_2021_1891156
crossref_primary_10_3390_computation11110218
crossref_primary_10_1016_j_engstruct_2025_119957
crossref_primary_10_3390_s20174908
crossref_primary_10_1007_s41024_024_00543_y
crossref_primary_10_1061__ASCE_AS_1943_5525_0000978
crossref_primary_10_3390_electronics10232918
crossref_primary_10_3390_rs15081961
crossref_primary_10_3390_s19163567
crossref_primary_10_48295_ET_2021_82_2
crossref_primary_10_1016_j_engstruct_2023_115873
crossref_primary_10_1007_s42107_023_00755_6
crossref_primary_10_3390_app11125727
crossref_primary_10_3390_sym14112384
crossref_primary_10_1177_1475921718804132
crossref_primary_10_3390_en11010013
crossref_primary_10_1108_ECAM_11_2020_0984
crossref_primary_10_1177_14759217231163777
crossref_primary_10_1007_s12205_019_0437_z
crossref_primary_10_1007_s41062_022_00888_8
crossref_primary_10_1080_15732479_2020_1811991
crossref_primary_10_2139_ssrn_4127226
crossref_primary_10_3390_s20061716
crossref_primary_10_3390_s23063293
crossref_primary_10_1016_j_cma_2020_113371
crossref_primary_10_1111_mice_12523
crossref_primary_10_1016_j_engappai_2023_107226
crossref_primary_10_1002_stc_2488
crossref_primary_10_1016_j_istruc_2023_105762
crossref_primary_10_1016_j_ultras_2023_107014
crossref_primary_10_3390_buildings12111772
crossref_primary_10_3390_nano8121005
crossref_primary_10_1007_s00366_021_01584_4
crossref_primary_10_3390_s17020417
crossref_primary_10_1007_s13349_021_00509_5
crossref_primary_10_1016_j_measurement_2022_110939
crossref_primary_10_3390_s20061790
crossref_primary_10_1016_j_istruc_2023_07_021
crossref_primary_10_1007_s12205_021_1115_5
crossref_primary_10_1016_j_engstruct_2018_05_084
crossref_primary_10_3390_s22145390
crossref_primary_10_1177_13694332221073983
crossref_primary_10_1016_j_ymssp_2019_106276
crossref_primary_10_1590_1679_78254378
crossref_primary_10_1155_2024_3970794
crossref_primary_10_29130_dubited_1293075
crossref_primary_10_1016_j_aei_2020_101126
crossref_primary_10_1016_j_ress_2021_108219
crossref_primary_10_1142_S0219455424500858
crossref_primary_10_1016_j_ndteint_2023_102969
crossref_primary_10_1016_j_engappai_2023_107834
crossref_primary_10_1007_s10999_023_09692_3
crossref_primary_10_1016_j_autcon_2021_103976
crossref_primary_10_1007_s13349_024_00876_9
crossref_primary_10_35848_1347_4065_abf2d0
crossref_primary_10_3390_ma15072673
crossref_primary_10_1007_s11053_020_09710_7
crossref_primary_10_1016_j_ymssp_2023_111075
crossref_primary_10_1007_s12205_024_2467_4
crossref_primary_10_3390_s18092840
crossref_primary_10_1016_j_heliyon_2024_e38104
crossref_primary_10_1007_s11668_024_02049_8
crossref_primary_10_1016_j_kscej_2024_100042
crossref_primary_10_1007_s11831_021_09665_9
crossref_primary_10_3390_app11199345
crossref_primary_10_1016_j_autcon_2022_104440
crossref_primary_10_1007_s42107_023_00748_5
crossref_primary_10_3390_app122110999
crossref_primary_10_1016_j_ress_2021_107530
crossref_primary_10_1016_j_ymssp_2020_107572
crossref_primary_10_1061__ASCE_AS_1943_5525_0001225
crossref_primary_10_1080_1206212X_2020_1734313
crossref_primary_10_3390_s22010406
crossref_primary_10_1016_j_engstruct_2020_111582
crossref_primary_10_1016_j_engstruct_2020_111221
crossref_primary_10_3390_infrastructures8120172
crossref_primary_10_1016_j_jobe_2023_106876
crossref_primary_10_1177_10775463251315863
crossref_primary_10_3390_s17071668
crossref_primary_10_1109_TASE_2019_2950958
crossref_primary_10_3390_s20041143
crossref_primary_10_4018_JGIM_296707
crossref_primary_10_3390_app122110754
crossref_primary_10_1007_s42107_024_01006_y
crossref_primary_10_1155_2021_6658575
crossref_primary_10_1002_tee_23353
crossref_primary_10_3390_constrmater4010005
crossref_primary_10_2478_amns_2025_0483
crossref_primary_10_3390_infrastructures8030052
crossref_primary_10_3390_w14162538
crossref_primary_10_1007_s12205_018_1301_2
crossref_primary_10_1051_matecconf_201814814003
crossref_primary_10_3390_nano9101476
crossref_primary_10_1002_stc_2693
crossref_primary_10_1007_s12205_024_1994_3
crossref_primary_10_1016_j_conbuildmat_2024_137725
crossref_primary_10_1109_JIOT_2023_3272535
crossref_primary_10_54097_ajst_v5i3_7805
crossref_primary_10_1016_j_engfailanal_2020_104845
crossref_primary_10_1016_j_ssci_2019_03_001
crossref_primary_10_1016_j_istruc_2024_107971
crossref_primary_10_3390_app12157458
crossref_primary_10_3390_smartcities4020024
crossref_primary_10_3390_buildings13040918
crossref_primary_10_1109_TIM_2023_3238048
crossref_primary_10_1016_j_oceaneng_2021_109388
crossref_primary_10_1139_cjce_2019_0150
crossref_primary_10_1016_j_prostr_2023_01_110
crossref_primary_10_3390_s20041059
crossref_primary_10_1007_s42452_019_0590_5
crossref_primary_10_1007_s13296_024_00815_w
crossref_primary_10_1016_j_oceaneng_2021_110142
crossref_primary_10_1016_j_matt_2023_04_016
crossref_primary_10_1155_2022_7042014
crossref_primary_10_1007_s00366_021_01305_x
crossref_primary_10_1109_ACCESS_2020_3041178
crossref_primary_10_1016_j_engstruct_2021_111979
crossref_primary_10_1109_ACCESS_2023_3291674
crossref_primary_10_1007_s40996_023_01287_4
crossref_primary_10_1007_s41939_024_00424_4
crossref_primary_10_1007_s40996_023_01054_5
crossref_primary_10_1016_j_ymssp_2023_110535
crossref_primary_10_1007_s42493_021_00065_6
crossref_primary_10_1016_j_ymssp_2020_107077
crossref_primary_10_1061__ASCE_BE_1943_5592_0001866
crossref_primary_10_1007_s13349_020_00432_1
crossref_primary_10_1007_s12665_022_10523_5
crossref_primary_10_1007_s42417_024_01291_6
crossref_primary_10_1016_j_jsv_2020_115741
crossref_primary_10_3390_sym14020372
crossref_primary_10_1109_ACCESS_2019_2952649
crossref_primary_10_1016_j_ssci_2019_09_015
crossref_primary_10_1016_j_istruc_2025_108453
crossref_primary_10_1016_j_matpr_2021_10_088
crossref_primary_10_1007_s13296_024_00931_7
crossref_primary_10_3390_ma15134645
crossref_primary_10_1016_j_asr_2023_01_009
crossref_primary_10_1016_j_engstruct_2022_114323
crossref_primary_10_1016_j_eswa_2023_121739
crossref_primary_10_1061__ASCE_BE_1943_5592_0001199
crossref_primary_10_1177_1475921720948206
crossref_primary_10_1016_j_ress_2022_109025
crossref_primary_10_3390_s22010153
crossref_primary_10_1109_JSEN_2022_3186885
crossref_primary_10_1016_j_iintel_2024_100086
crossref_primary_10_1016_j_measurement_2025_116678
crossref_primary_10_1002_stc_2825
crossref_primary_10_1016_j_jsv_2018_01_036
crossref_primary_10_1515_nanoph_2023_0759
crossref_primary_10_1002_stc_2262
crossref_primary_10_1177_1475921718798622
crossref_primary_10_1061__ASCE_ST_1943_541X_0003320
crossref_primary_10_1016_j_jobe_2021_103524
crossref_primary_10_1007_s42107_025_01293_z
crossref_primary_10_1016_j_compstruct_2023_116731
crossref_primary_10_1016_j_ymssp_2020_107374
crossref_primary_10_1007_s12205_017_2129_x
crossref_primary_10_1016_j_engstruct_2020_111662
crossref_primary_10_1007_s11042_023_14911_2
crossref_primary_10_3390_sym13111998
crossref_primary_10_1007_s13349_022_00616_x
crossref_primary_10_1155_2018_4892428
crossref_primary_10_3390_s23167059
crossref_primary_10_1080_24705314_2024_2440830
crossref_primary_10_1177_14759217231216694
Cites_doi 10.1016/j.jsv.2009.03.014
10.1016/j.eswa.2006.04.020
10.1115/1.1410933
10.1023/A:1018628609742
10.1061/(ASCE)CP.1943-5487.0000258
10.1016/j.ijnonlinmec.2011.07.011
10.1061/(ASCE)0733-9399(2000)126:7(677)
10.1177/1077546314528021
10.1016/j.ultras.2014.12.005
10.1111/j.1467-8667.2010.00685.x
10.1088/0964-1726/22/1/015003
10.1016/j.asoc.2007.10.007
10.1016/j.measurement.2015.01.021
10.1109/ICNN.1995.488968
10.1098/rspa.2007.1834
10.1177/1475921716639587
10.1098/rsta.2006.1928
10.1177/1045389X15574937
10.1016/j.jsv.2015.11.008
10.1177/1045389X14566520
10.1177/1475921704041866
10.1016/j.compositesb.2016.02.008
10.1061/(ASCE)0733-9399(2000)126:7(666)
10.1006/jsvi.2000.3390
10.1006/jsvi.1999.2624
10.1177/1475921710388971
10.1093/bioinformatics/16.10.906
10.1016/j.compositesb.2012.09.003
10.1111/mice.12122
10.1007/s00339-016-9753-z
10.1177/1045389X13507343
10.1177/1045389X15575084
10.1088/0964-1726/10/3/317
10.1016/j.ymssp.2012.02.014
10.1109/TAC.1970.1099560
10.1002/tal.1162
10.1109/TITB.2008.923147
10.4236/jbise.2011.44036
10.1016/j.sna.2016.06.027
10.1016/j.ymssp.2011.06.011
ContentType Journal Article
Copyright Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017
Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017.
Copyright_xml – notice: Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017
– notice: Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2017.
DBID 7QH
7UA
8FD
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
KR7
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ACYCR
DOI 10.1007/s12205-017-1518-5
DatabaseName Aqualine
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Korean Citation Index
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database


Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1976-3808
EndPage 534
ExternalDocumentID oai_kci_go_kr_ARTI_1317978
4302662121
10_1007_s12205_017_1518_5
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADVLN
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CCPQU
COF
CS3
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GW5
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KVFHK
L6V
LK5
LLZTM
M41
M4Y
M7R
M7S
MA-
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
P9P
PCBAR
PF0
PT4
PT5
PTHSS
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TDB
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
ZMTXR
ZY4
ZZE
~A9
7QH
7UA
8FD
AAPKM
AAYWO
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIXLP
AKBMS
AKYEP
ATHPR
C1K
DWQXO
F1W
FR3
H96
KR7
L.G
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ACMFV
ACDTI
ACYCR
ID FETCH-LOGICAL-c468t-ac5560714cdaae7f12b17eeba8c10ebbf43d6171e096baf951c6c0907f97e3723
IEDL.DBID U2A
ISSN 1226-7988
IngestDate Sun Jan 19 03:36:34 EST 2025
Thu Jul 10 18:56:11 EDT 2025
Thu Jul 10 17:14:02 EDT 2025
Fri Jul 25 11:17:52 EDT 2025
Fri Feb 21 02:33:44 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords structural health monitoring and damage detection
support vector machine learning
optimization
data-driven modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-ac5560714cdaae7f12b17eeba8c10ebbf43d6171e096baf951c6c0907f97e3723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
G704-000839.2017.21.2.002
OpenAccessLink https://dx.doi.org/10.1007/s12205-017-1518-5
PQID 1858849225
PQPubID 1496355
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_1317978
proquest_miscellaneous_1879994892
proquest_miscellaneous_1868337712
proquest_journals_1858849225
springer_journals_10_1007_s12205_017_1518_5
PublicationCentury 2000
PublicationDate 20170200
20170201
2017-02
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 2
  year: 2017
  text: 20170200
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle KSCE journal of civil engineering
PublicationTitleAbbrev KSCE J Civ Eng
PublicationYear 2017
Publisher Korean Society of Civil Engineers
Springer Nature B.V
대한토목학회
Publisher_xml – name: Korean Society of Civil Engineers
– name: Springer Nature B.V
– name: 대한토목학회
References Yao, Pakzad (CR50) 2012; 31
Magalhães, Cunha, Caetano (CR30) 2012; 28
(CR3) 2009; 131
Liu, Harley, Bergés, Greve, Oppenheim (CR29) 2015; 58
Li, Zhang (CR25) 2009
Figueiredo, Park, Figueiras, Farrar, Worden (CR12) 2009
Boldt, Rauber, Ao (CR2) 2013
Yan, Lin (CR48) 2016; 92
Suykens, Vandewalle (CR41) 1999; 9
Yeesock, Jo Woon, Ki, JungMi (CR51) 2013; 22
Oh, Sohn (CR34) 2009; 325
Widodo, Yang (CR44) 2007; 33
Zou, Tong, Steven (CR54) 2000; 230
Figueiredo, Figueiras, Park, Farrar, Worden (CR10) 2011; 26
Hsu, Chang, Lin (CR20) 2010
Figueiredo, Park, Farrar, Worden, Figueiras (CR11) 2011; 10
Huang, Dun (CR21) 2008; 8
Lin, Fakhairfar, Wu, Chen (CR26) 2013
Pavlopoulou, Worden, Soutis (CR36) 2016; 27
Farrar, Worden (CR9) 2013
Kaveh, Bakhshpoori, Azimi (CR23) 2015; 24
CR43
Worden, Lane (CR46) 2001; 10
Cha, Buyukozturk (CR4) 2015; 30
Ying, Oppenheim, Soibelman, Harley, Shi, Jin (CR52) 2013; 27
Fahim, Gallego, Bochud, Rus (CR7) 2013; 45
Dushyanth, Suma, Latte (CR6) 2016; 122
Lin, Zhao, Habib (CR28) 2012
Pan, Ge, Wang, Gong, Lin (CR35) 2016
Bisgin, Kilinc, Ugur, Xu, Tuzcu (CR1) 2011; 4
Zang, Imregun (CR53) 2001; 242
Farrar, Worden (CR8) 2007; 365
Chong, Kim, Chon (CR5) 2014; 25
Herrasti, Val, Gabilondo, Berganzo, Arriola, Martínez (CR17) 2016; 237
Tibaduiza, Mujica, Rodellar, Güemes (CR42) 2015; 27
Melgani, Bazi (CR32) 2008; 12
Worden, Farrar, Manson, Park (CR47) 2007; 463
Seyedpoor (CR38) 2012; 47
Furey, Cristianini, Duffy, Bednarski, Schummer, Haussler (CR13) 2000; 16
Worden, Dulieu-Barton (CR45) 2004; 3
Lin, Fakharifar, Huang, Chen, Wang (CR27) 2014
Santos, Figueiredo, Silva, Sales, Costa (CR37) 2016; 363
Sohn, Farrar, Hunter, Worden (CR40) 2001; 123
Gersch (CR15) 1970; 15
Huang, Tang, Deng (CR22) 2015; 66
Hou, Noori, Amand (CR19) 2000; 126
Sharma, Amarnath, Kankar (CR39) 2016; 22
Masri, Smyth, Chassiakos, Caughey, Hunter (CR31) 2000; 126
Neerukatti, Hensberry, Kovvali, Chattopadhyay (CR33) 2016; 27
Kennedy, Eberhart (CR24) 1995
Yan, Lin, Wang, Azarmi, Sobolev (CR49) 2016
Holland, ARbor (CR18) 1975
Ghiasi, Torkzadeh, Noori (CR16) 2016; 15
Ge, Pan, Lin, Gong, Wang (CR14) 2016
References_xml – year: 2009
  ident: CR25
  article-title: An algorithm of soft fault diagnosis for analog circuit based on the optimized SVM by GA.
  publication-title: Proc., Electronic Measurement & Instruments
– volume: 325
  start-page: 224
  issue: 1
  year: 2009
  end-page: 239
  ident: CR34
  article-title: Damage diagnosis under environmental and operational variations using unsupervised support vector machine.
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2009.03.014
– volume: 33
  start-page: 241
  issue: 1
  year: 2007
  end-page: 250
  ident: CR44
  article-title: Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors.
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.04.020
– year: 2016
  ident: CR35
  article-title: integrated wireless sensor networks with UAS for damage detection and monitoring of bridges and other large-scale critical civil infrastructures.
  publication-title: NDE/NDT for Highway and Bridges: Structural Materials Technology Portland
– volume: 123
  start-page: 706
  issue: 4
  year: 2001
  end-page: 711
  ident: CR40
  article-title: Structural health monitoring using statistical pattern recognition techniques.
  publication-title: Journal of Dynamic Systems, Measurement, and Control
  doi: 10.1115/1.1410933
– year: 2010
  ident: CR20
  publication-title: A practical guide to support vector classification.
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  ident: CR41
  article-title: Least squares support vector machine classifiers.
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1018628609742
– volume: 27
  start-page: 667
  issue: 6
  year: 2013
  end-page: 680
  ident: CR52
  article-title: Toward data-driven structural health monitoring: Application of machine learning and signal processing to damage detection.
  publication-title: Journal of Computing in Civil Engineering
  doi: 10.1061/(ASCE)CP.1943-5487.0000258
– volume: 47
  start-page: 1
  issue: 1
  year: 2012
  end-page: 8
  ident: CR38
  article-title: A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization.
  publication-title: International Journal of Non-Linear Mechanics
  doi: 10.1016/j.ijnonlinmec.2011.07.011
– volume: 126
  start-page: 677
  issue: 7
  year: 2000
  end-page: 683
  ident: CR19
  article-title: Wavelet-based approach for structural damage detection.
  publication-title: Journal of Engineering Mechanics
  doi: 10.1061/(ASCE)0733-9399(2000)126:7(677)
– volume: 22
  start-page: 176
  issue: 1
  year: 2016
  end-page: 192
  ident: CR39
  article-title: Feature extraction and fault severity classification in ball bearings.
  publication-title: Journal of Vibration and Control
  doi: 10.1177/1077546314528021
– volume: 58
  start-page: 75
  year: 2015
  end-page: 86
  ident: CR29
  article-title: Robust ultrasonic damage detection under complex environmental conditions using singular value decomposition.
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2014.12.005
– volume: 26
  start-page: 225
  issue: 3
  year: 2011
  end-page: 238
  ident: CR10
  article-title: Influence of the autoregressive model order on damage detection.
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/j.1467-8667.2010.00685.x
– volume: 22
  start-page: 015003
  issue: 1
  year: 2013
  ident: CR51
  article-title: Waveletbased AR–SVM for health monitoring of smart structures.
  publication-title: Smart Materials and Structures
  doi: 10.1088/0964-1726/22/1/015003
– volume: 8
  start-page: 1381
  issue: 4
  year: 2008
  end-page: 1391
  ident: CR21
  article-title: A distributed PSO–SVM hybrid system with feature selection and parameter optimization.
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.10.007
– volume: 66
  start-page: 35
  year: 2015
  end-page: 44
  ident: CR22
  article-title: Development of high synchronous acquisition accuracy wireless sensor network for machine vibration monitoring.
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.01.021
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: CR24
  article-title: Particle swarm optimization.
  publication-title: In Proceedings of the IEEE international conference on neural networks IV
  doi: 10.1109/ICNN.1995.488968
– volume: 131
  issue: 2
  year: 2009
  ident: CR3
  publication-title: Journal of Vibration and Acoustics
– volume: 463
  start-page: 1639
  issue: 2082
  year: 2007
  end-page: 1664
  ident: CR47
  article-title: The fundamental axioms of structural health monitoring.
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science
  doi: 10.1098/rspa.2007.1834
– volume: 15
  start-page: 302
  issue: 3
  year: 2016
  end-page: 316
  ident: CR16
  article-title: A machine-learning approach for structural damage detection using least square support vector machine based on a new combinational kernel function.
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921716639587
– year: 1975
  ident: CR18
  publication-title: Adaptation in natural and artificial systems
– volume: 365
  start-page: 303
  issue: 1851
  year: 2007
  end-page: 315
  ident: CR8
  article-title: An introduction to structural health monitoring.
  publication-title: Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rsta.2006.1928
– start-page: 32
  year: 2016
  end-page: 33
  ident: CR14
  article-title: RF-Powered Batteryless Wireless Sensor Network.
  publication-title: The 5th International Symposium on Next-Generation Electronics Hsinchu, Taiwan
– volume: 27
  start-page: 549
  issue: 4
  year: 2016
  end-page: 566
  ident: CR36
  article-title: Novelty detection and dimension reduction via guided ultrasonic waves: Damage monitoring of scarf repairs in composite laminates.
  publication-title: Journal of Intelligent Material Systems and Structures
  doi: 10.1177/1045389X15574937
– volume: 363
  start-page: 584
  year: 2016
  end-page: 599
  ident: CR37
  article-title: Machine learning algorithms for damage detection: Kernel-based approaches.
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2015.11.008
– volume: 27
  start-page: 233
  issue: 2
  year: 2015
  end-page: 248
  ident: CR42
  article-title: Structural damage detection using principal component analysis and damage indices.
  publication-title: Journal of Intelligent Material Systems and Structures
  doi: 10.1177/1045389X14566520
– volume: 3
  start-page: 85
  issue: 1
  year: 2004
  end-page: 98
  ident: CR45
  article-title: An overview of intelligent fault detection in systems and structures.
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921704041866
– volume: 92
  start-page: 420
  issue: 42
  year: 2016
  end-page: 433
  ident: CR48
  article-title: New strategy for anchorage reliability assessment of GFRP bars to concrete using hybrid artificial neural network with genetic algorithm.
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2016.02.008
– year: 2012
  ident: CR28
  article-title: Impact of overweight vehicles (with Heavy Axle Loads) on bridge deck deterioration.
  publication-title: Final Report CFIRE 04-06
– ident: CR43
– volume: 126
  start-page: 666
  issue: 7
  year: 2000
  end-page: 676
  ident: CR31
  article-title: Application of neural networks for detection of changes in nonlinear systems.
  publication-title: Journal of Engineering Mechanics
  doi: 10.1061/(ASCE)0733-9399(2000)126:7(666)
– volume: 242
  start-page: 813
  issue: 5
  year: 2001
  end-page: 827
  ident: CR53
  article-title: STRUCTURAL DAMAGE DETECTION USING ARTIFICIAL NEURAL NETWORKS AND MEASURED FRF DATA REDUCED VIA PRINCIPAL COMPONENT PROJECTION.
  publication-title: Journal of Sound and Vibration
  doi: 10.1006/jsvi.2000.3390
– volume: 230
  start-page: 357
  issue: 2
  year: 2000
  end-page: 378
  ident: CR54
  article-title: VIBRATION-BASED MODEL-DEPENDENT DAMAGE (DELAMINATION) IDENTIFICATION AND HEALTH MONITORING FOR COMPOSITE STRUCTURES — A REVIEW.
  publication-title: Journal of Sound and Vibration
  doi: 10.1006/jsvi.1999.2624
– volume: 10
  start-page: 559
  issue: 6
  year: 2011
  end-page: 572
  ident: CR11
  article-title: Machine learning algorithms for damage detection under operational and environmental variability.
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921710388971
– volume: 16
  start-page: 906
  issue: 10
  year: 2000
  end-page: 914
  ident: CR13
  article-title: Support vector machine classification and validation of cancer tissue samples using microarray expression data.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.10.906
– volume: 45
  start-page: 50
  issue: 1
  year: 2013
  end-page: 62
  ident: CR7
  article-title: Model-based damage reconstruction in composites from ultrasound transmission.
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2012.09.003
– year: 2016
  ident: CR49
  article-title: Evaluation and prediction of bond strength of GFRP-bar reinforced concrete using artificial neural network optimized with genetic algorithm.
  publication-title: Composite Structures
– volume: 30
  start-page: 347
  issue: 5
  year: 2015
  end-page: 358
  ident: CR4
  article-title: Structural damage detection using modal strain energy and hybrid multiobjective optimization.
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/mice.12122
– volume: 122
  start-page: 1
  issue: 3
  year: 2016
  end-page: 9
  ident: CR6
  article-title: Detection and localization of damage using empirical mode decomposition and multilevel support vector machine.
  publication-title: Applied Physics A
  doi: 10.1007/s00339-016-9753-z
– volume: 25
  start-page: 1456
  issue: 12
  year: 2014
  end-page: 1468
  ident: CR5
  article-title: Nonlinear multiclass support vector machine–based health monitoring system for buildings employing magnetorheological dampers.
  publication-title: Journal of Intelligent Material Systems and Structures
  doi: 10.1177/1045389X13507343
– year: 2009
  ident: CR12
  article-title: Structural health monitoring algorithm comparisons using standard data sets.
  publication-title: Technical ReportLA-14393
– volume: 27
  start-page: 592
  issue: 5
  year: 2016
  end-page: 607
  ident: CR33
  article-title: A novel probabilistic approach for damage localization and prognosis including temperature compensation.
  publication-title: Journal of Intelligent Material Systems and Structures
  doi: 10.1177/1045389X15575084
– volume: 10
  start-page: 540
  issue: 3
  year: 2001
  ident: CR46
  article-title: Damage identification using support vector machines.
  publication-title: Smart Materials and Structures
  doi: 10.1088/0964-1726/10/3/317
– volume: 31
  start-page: 355
  year: 2012
  end-page: 368
  ident: CR50
  article-title: Autoregressive statistical pattern recognition algorithms for damage detection in civil structures.
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2012.02.014
– year: 2013
  ident: CR26
  article-title: Design, construction and load testing of the pat daly road bridge in washington county, mo, with internal glass fiber reinforced polymers reinforcement, washington county, missouri.
  publication-title: Final Report NUTC R275
– year: 2014
  ident: CR27
  article-title: Damage detection of a full-size concrete box girder bridge with the moving-window least-square fitting method.
  publication-title: NDE/NDT for Structural Materials Technology for Highway & Bridges
– volume: 15
  start-page: 583
  issue: 5
  year: 1970
  end-page: 588
  ident: CR15
  article-title: Estimation of the autoregressive parameters of a mixed autoregressive moving-average time series.
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1970.1099560
– volume: 24
  start-page: 210
  issue: 3
  year: 2015
  end-page: 227
  ident: CR23
  article-title: Seismic optimal design of 3D steel frames using cuckoo search algorithm.
  publication-title: The Structural Design of Tall and Special Buildings
  doi: 10.1002/tal.1162
– volume: 12
  start-page: 667
  issue: 5
  year: 2008
  end-page: 677
  ident: CR32
  article-title: Classification of electrocardiogram signals with support vector machines and particle swarm optimization.
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2008.923147
– year: 2013
  ident: CR2
  publication-title: Feature extraction and selection for automatic fault diagnosis of rotating machinery.
– volume: 4
  start-page: 4
  issue: 4
  year: 2011
  ident: CR1
  article-title: Diagnosis of long QT syndrome via support vector machines classification.
  publication-title: Journal of Biomedical Science and Engineering
  doi: 10.4236/jbise.2011.44036
– year: 2013
  ident: CR9
  publication-title: Structural Health Monitoring: A Machine Learning Perspective
– volume: 237
  start-page: 604
  year: 2016
  end-page: 613
  ident: CR17
  article-title: Wireless sensor nodes for generic signal conditioning: Application to Structural Health Monitoring of wind turbines.
  publication-title: Sensors and Actuators A: Physical
  doi: 10.1016/j.sna.2016.06.027
– volume: 28
  start-page: 212
  year: 2012
  end-page: 228
  ident: CR30
  article-title: Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection.
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2011.06.011
SSID ssj0000327835
Score 2.5040662
Snippet Rapid detecting damages/defeats in the large-scale civil engineering structures, assessing their conditions and timely decision making are crucial to ensure...
SourceID nrf
proquest
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 523
SubjectTerms Algorithms
Big Data
Civil Engineering
Damage
Damage assessment
Damage detection
Decision making
Defects
Design Optimization and Applications in Civil Engineering
Detection
Diagnostic systems
Engineering
Feature extraction
Genetic algorithms
Geotechnical Engineering & Applied Earth Sciences
Industrial Pollution Prevention
Kernel functions
Machine learning
Mathematical models
Numerical methods
Optimization
Optimization techniques
Parameters
Public safety
Sensors
Structural health monitoring
Support vector machines
Technical information
토목공학
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8QwFA46XvQgrjhuRPEmwUmTNulJ3IZRUEQUvIVsFZFpdRZ_v-91OuNy8FRIAyl9L-99ecsXQo5gPBQAq5kISc5kEBnLHdLd2dQWnRABUmBA__Yu6z3Jm-f0uQm4DZuyyqlNrA11qDzGyE_Ar2gtc1C_0_cPhrdGYXa1uUJjniyACda6RRbOr-7uH2ZRlo7AmySwjpEDzmBIzjVNbdb9c9hmytBQg-PTDB1MOSh-gc0_-dHa7XRXyHKDF-nZRMCrZC6Wa2TpB4vgOhlf2pFlYYB2iw7H74io6Wcdjaf9ulYyUgy30grMQ7_pu6Qz8tYhBdxKJzyyyMFBJ62RtF_vdlyC2jLQYPtgemiIo7p4q9wgT92rx4sea25TYF5mesSsT1Mkk5M-WBtVwRPHVYzOas870blCigBwhkc41DhbAPLyme_A2bnIVRQqEZukVVZl3CJUp0pmRdQwbqUV2uUAUqL2ivM8JN61ySH8RvPmXw2yV-PzpTJvAwMY_dpwgCxwdm2T3elfNs2-GZpvKbfJwew1aDymMWwZqzHOybQQSvHkvzkKkK_UOcw5nkrwxzIzrmZUAAMKYFABTLr9_0ftkMUEtaWu2t4lLRBN3ANQMnL7jeZ9AY4h4f0
  priority: 102
  providerName: ProQuest
Title Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection
URI https://link.springer.com/article/10.1007/s12205-017-1518-5
https://www.proquest.com/docview/1858849225
https://www.proquest.com/docview/1868337712
https://www.proquest.com/docview/1879994892
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002192481
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX KSCE Journal of Civil Engineering, 2017, 21(2), , pp.523-534
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NeNkeEIxNK7DKm3ibLDWxEzuPLbTAplXTtErsyfJXEEJNUT_4-7lLkw7QhMSTJeeSSPb5_PN9_Axwgv2hRFjNRUgLLoPIeeGI7s5mtuyFiJCCHPo_x_nFRH6_yq6aOu5Fm-3ehiRrS_2v2I1qQjlZVdylNM-2YCfDozvlcU3S_sax0hN0eQSlLuILOSc-rjaa-b-v4J5Szcsn-PJZSLTeaUZ7sNtARNZfz-k-vInVe3j3iDjwAFZndml5mJOpYovVHYFodl874Nm0To-MjDysbIYWYdqUWrINX-uCIVRla-pYot1g62pINq0XOP2C2SqwYKdobViIyzpfq_oAk9Hwz-kFby5Q4F7mesmtzzLij5M-WBtVmaQuUTE6q33Si86VUgREMEnEc4yzJYItn_seHpfLQkWhUvERtqtZFT8B05mSeRk19ltphXYF4pKovUqSIqTedeArDqO59TeGCKupvZ6Z27lBWH5pEkQpeFztwHE7yqZZKguDgEFrWaBd6cCXzWNUcopc2CrOViSTayGUStKXZBSCXakLlPnWzuCj32zomUkBDCqAIQUw2eGrpI_gbUrKU-dtH8M2zlT8jLBk6bqwpUfnXdjpjwaDMbXnf38MsR0Mx79-d2slfQBaB-KO
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE-xtIBBcEIW69iJnQNCiLLs0seplXozfgWhapN2HyD-FL-RGe9mKRx66ylSYsmR_Xnm83jmM8ArfB8bpNVcxqLmKsqK157k7lzpmmFMSCkooH94VI1P1JfT8nQLfve1MJRW2dvEbKhjFyhG_hb9ijGqRvi9P7_gdGsUna72V2isYLGffv3ELdv83WQP5_d1UYw-HX8c8_WtAjyoyiy4C2VJomoqROeSbkThhU7JOxPEMHnfKBnRrYuE5N67BhlIqMIQ95BNrZPUJHSAJv-GkujJqTJ99HkT0xlKureCsiYFshpOUmD9QWqu1qOiVk5uAd2s4eTO2lnzD7X97zQ2O7nRXbizZqfswwpO92Artffh9iXNwgew3HMLx-OMrCSbL8-Jv7MfOfbPpjkzMzEK7rIOjdF0XeXJNlKxc4Ysma1Ua0nxg60KMdk02xbqgrk2suimaOhYTIucKtY-hJNrGeVHsN12bXoMzJRaVU0y-N4pJ42vkRIlE7QQdSyCH8BLHEZ7Fr5b0sqm57fOns0s7ggmViBBwp3yAHb7UbbrVTq3fzE1gBebz7i-6NDEtalbUpvKSKm1KK5qo5FnK1Njmzf9DF7qZqMMTQCwCABLALDlk6t_6jncHB8fHtiDydH-DtwqCDk5X3wXtnGa0lOkQwv_LGOQwdfrBv0fu5keZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1FRUL0gICCGlrAreCErGZ3vWvvgUNEiBpaqh6I1JvxZ1VF2VTJpohfxV9kZpMNLUJIHHpayWvJlj0zfuOZeQZ4i-0-IqzmmU9LLnxW8NIS3Z3JTez5gJCCLvS_nBXHY_H5Ir_owM-2FqbJdm9DkquaBmJpquqjax-Pfhe-UX0oJwuLJ5bibVblSfjxHX22xYfRADf4XZoOP339eMzXzwpwJwpVc-PynFjVhPPGBBmT1CYyBGuUS3rB2igyj-d6EhDdWxMRgrjC9dCJjKUMmSSmA7T5DwQVH6MCjdP-5lKnl9HDFZQ2iRMsOHGBtZHUv80az7NqHu9g2z_Csc0pN3wCj9fwlPVX8vQUOqF6Btu3SAt3YDkwteF-TmaSLZbXBODZTXP5z6ZNamZgdLvLZmiNpusyT7bhil0whMlsRVtLlB9sVYnJpo1xoSGYqTzzZoqWjvlQN7li1XMY38sqv4CtalaFXWAql6KIQWG7ESZTtkRMFJSTSVL61NkuHOIy6om70kSWTd_LmZ7MNboEI50gQkJXuQv77SrrtZouNIIVpUSJNq0LB5vfqGAUNTFVmC2pT6GyTMok_VcfiUBbqBL7vG938NYwG2poEgCNAqBJAHT-8r96v4GH54OhPh2dnezBo5TkqEkf34ct3LTwCtFRbV83Esng232rwC_E1B8f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Support+Vector+Machine+with+Optimization+Techniques+for+Structural+Health+Monitoring+and+Damage+Detection&rft.jtitle=KSCE+journal+of+civil+engineering&rft.au=Guoqing+Gui&rft.au=Hong+Pan&rft.au=Zhibin+Lin&rft.au=Yonghua+Li&rft.date=2017-02-01&rft.pub=%EB%8C%80%ED%95%9C%ED%86%A0%EB%AA%A9%ED%95%99%ED%9A%8C&rft.issn=1226-7988&rft.eissn=1976-3808&rft.spage=523&rft.epage=534&rft_id=info:doi/10.1007%2Fs12205-017-1518-5&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_1317978
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1226-7988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1226-7988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1226-7988&client=summon