Surrogate optimization of deep neural networks for groundwater predictions

Sustainable management of groundwater resources under changing climatic conditions require an application of reliable and accurate predictions of groundwater levels. Mechanistic multi-scale, multi-physics simulation models are often too hard to use for this purpose, especially for groundwater manage...

Full description

Saved in:
Bibliographic Details
Published inJournal of global optimization Vol. 81; no. 1; pp. 203 - 231
Main Authors Müller, Juliane, Park, Jangho, Sahu, Reetik, Varadharajan, Charuleka, Arora, Bhavna, Faybishenko, Boris, Agarwal, Deborah
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sustainable management of groundwater resources under changing climatic conditions require an application of reliable and accurate predictions of groundwater levels. Mechanistic multi-scale, multi-physics simulation models are often too hard to use for this purpose, especially for groundwater managers who do not have access to the complex compute resources and data. Therefore, we analyzed the applicability and performance of four modern deep learning computational models for predictions of groundwater levels. We compare three methods for optimizing the models’ hyperparameters, including two surrogate model-based algorithms and a random sampling method. The models were tested using predictions of the groundwater level in Butte County, California, USA, taking into account the temporal variability of streamflow, precipitation, and ambient temperature. Our numerical study shows that the optimization of the hyperparameters can lead to reasonably accurate performance of all models (root mean squared errors of groundwater predictions of 2 meters or less), but the “simplest” network, namely a multilayer perceptron (MLP) performs overall better for learning and predicting groundwater data than the more advanced long short-term memory or convolutional neural networks in terms of prediction accuracy and time-to-solution, making the MLP a suitable candidate for groundwater prediction.
AbstractList Sustainable management of groundwater resources under changing climatic conditions require an application of reliable and accurate predictions of groundwater levels. Mechanistic multi-scale, multi-physics simulation models are often too hard to use for this purpose, especially for groundwater managers who do not have access to the complex compute resources and data. Therefore, we analyzed the applicability and performance of four modern deep learning computational models for predictions of groundwater levels. We compare three methods for optimizing the models’ hyperparameters, including two surrogate model-based algorithms and a random sampling method. The models were tested using predictions of the groundwater level in Butte County, California, USA, taking into account the temporal variability of streamflow, precipitation, and ambient temperature. Our numerical study shows that the optimization of the hyperparameters can lead to reasonably accurate performance of all models (root mean squared errors of groundwater predictions of 2 meters or less), but the “simplest” network, namely a multilayer perceptron (MLP) performs overall better for learning and predicting groundwater data than the more advanced long short-term memory or convolutional neural networks in terms of prediction accuracy and time-to-solution, making the MLP a suitable candidate for groundwater prediction.
Audience Academic
Author Varadharajan, Charuleka
Arora, Bhavna
Agarwal, Deborah
Park, Jangho
Sahu, Reetik
Müller, Juliane
Faybishenko, Boris
Author_xml – sequence: 1
  givenname: Juliane
  orcidid: 0000-0001-8627-1992
  surname: Müller
  fullname: Müller, Juliane
  email: JulianeMueller@lbl.gov
  organization: Computational Research Division, Lawrence Berkeley National Laboratory
– sequence: 2
  givenname: Jangho
  surname: Park
  fullname: Park, Jangho
  organization: Computational Research Division, Lawrence Berkeley National Laboratory
– sequence: 3
  givenname: Reetik
  surname: Sahu
  fullname: Sahu, Reetik
  organization: Computational Research Division, Lawrence Berkeley National Laboratory
– sequence: 4
  givenname: Charuleka
  surname: Varadharajan
  fullname: Varadharajan, Charuleka
  organization: Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory
– sequence: 5
  givenname: Bhavna
  surname: Arora
  fullname: Arora, Bhavna
  organization: Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory
– sequence: 6
  givenname: Boris
  surname: Faybishenko
  fullname: Faybishenko, Boris
  organization: Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory
– sequence: 7
  givenname: Deborah
  surname: Agarwal
  fullname: Agarwal, Deborah
  organization: Computational Research Division, Lawrence Berkeley National Laboratory
BookMark eNp9kE1LAzEQhoNUsFX_gKcFz1sn2Y8kx1L8pOBBPYdsPkpqu1mTXYr-emNXEDyUOQwM7zPDPDM0aX1rELrCMMcA9CZiYJzlQCAH4JjkcIKmuKJFTjiuJ2gKnFR5BYDP0CzGDaQUq8gUPb0MIfi17E3mu97t3JfsnW8zbzNtTJe1Zghym1q_9-E9ZtaHbB380Op9YkLWBaOd-kHiBTq1chvN5W8_R293t6_Lh3z1fP-4XKxyVdaszyWtS0ZBU1NqonUlCWZFLY3ipGy0Uk2NucaNskw2DCRvJLeVqgkptWUlVcU5uh73dsF_DCb2YuOH0KaTglQ1lAwYFCk1H1NruTXCtdb3QapU2uycSvasS_MFTcc5rRhNABsBFXyMwVihXH-QkUC3FRjEj2oxqhZJtTioFpBQ8g_tgtvJ8HkcKkYopnC7NuHvjSPUNy7zlEg
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_131418
crossref_primary_10_1002_cpe_7421
crossref_primary_10_2478_amns_2023_1_00308
crossref_primary_10_5194_hess_26_2405_2022
crossref_primary_10_1016_j_jhydrol_2023_130363
crossref_primary_10_1016_j_scitotenv_2024_177784
crossref_primary_10_3390_w14152377
crossref_primary_10_3390_su14073867
crossref_primary_10_1016_j_gsd_2024_101389
crossref_primary_10_1038_s41467_022_28770_2
crossref_primary_10_1016_j_jhydrol_2023_130085
crossref_primary_10_1007_s00521_022_08165_6
crossref_primary_10_1016_j_watres_2024_121249
crossref_primary_10_1109_TPS_2024_3519032
crossref_primary_10_1615_JMachLearnModelComput_2021038774
crossref_primary_10_1016_j_ejrh_2023_101442
crossref_primary_10_1155_2024_9480522
crossref_primary_10_1016_j_envsoft_2023_105766
crossref_primary_10_2166_wcc_2023_348
crossref_primary_10_1007_s42979_024_02686_8
crossref_primary_10_3389_frwa_2024_1471258
crossref_primary_10_3389_frwa_2021_740044
crossref_primary_10_1007_s00704_024_05195_z
crossref_primary_10_1038_s41597_022_01787_4
crossref_primary_10_3390_w12010005
crossref_primary_10_1038_s41370_024_00712_8
crossref_primary_10_1155_2022_6372089
crossref_primary_10_3390_hydrology7030064
crossref_primary_10_1002_hyp_14565
crossref_primary_10_3390_w15061115
crossref_primary_10_1007_s11600_022_00948_8
crossref_primary_10_3390_hydrology12030059
crossref_primary_10_1142_S0218126622502553
crossref_primary_10_1007_s00477_023_02570_6
crossref_primary_10_1109_ACCESS_2021_3130306
crossref_primary_10_1007_s11270_024_07247_6
crossref_primary_10_1016_j_envsoft_2024_106264
crossref_primary_10_3390_w16131907
crossref_primary_10_1007_s11269_022_03248_4
crossref_primary_10_1007_s00158_022_03369_9
crossref_primary_10_1007_s11081_022_09740_5
crossref_primary_10_1016_j_uclim_2023_101469
crossref_primary_10_1016_j_asoc_2024_112468
crossref_primary_10_1007_s40808_022_01650_w
crossref_primary_10_1007_s10898_021_01045_8
crossref_primary_10_1016_j_scitotenv_2025_179009
crossref_primary_10_1007_s10589_022_00381_z
crossref_primary_10_1080_10106049_2022_2025921
crossref_primary_10_3389_frwa_2020_573034
crossref_primary_10_1007_s11783_024_1814_5
Cites_doi 10.1007/BF01197708
10.1016/j.cam.2018.02.017
10.1029/2018MS001449
10.1002/2016WR019933
10.1007/s10898-013-0101-y
10.1007/s40641-018-0093-2
10.1162/089976600300015015
10.1137/120902434
10.1016/j.cageo.2010.10.007
10.1007/s10898-017-0496-y
10.1007/978-3-0348-8696-3_14
10.1214/aoms/1177729586
10.1016/j.jhydrol.2004.12.001
10.1109/TNN.2007.912306
10.1007/s11081-015-9281-2
10.1007/s11081-016-9307-4
10.1016/j.eswa.2016.03.044
10.1039/C0EM00478B
10.1007/s11590-008-0089-2
10.1038/nature14539
10.1109/HiPC.2018.00014
10.1109/ICRA.2015.7139555
10.1093/oso/9780198538493.001.0001
10.1098/rspa.2007.1900
10.1016/j.jhydrol.2018.04.065
10.1016/S1352-2310(97)00447-0
10.1609/aaai.v31i1.10647
10.21437/Interspeech.2010-343
10.5194/hess-22-6005-2018
10.1016/j.cor.2010.09.013
10.1007/s10898-007-9256-8
10.1016/j.jhydrol.2003.12.033
10.32614/RJ-2017-009
10.1287/ijoc.2017.0749
10.1007/s00521-012-0940-3
10.1155/2017/5681308
10.3133/tm6A55
10.1080/03155986.2019.1607810
10.1016/j.elspec.2018.10.006
10.7551/mitpress/3927.001.0001
10.1109/5.726791
10.1007/s00521-012-0904-7
10.2514/1.C031342
10.1145/2834892.2834896
10.1023/A:1011255519438
10.1016/j.ejor.2009.11.010
10.21437/Interspeech.2012-65
10.1287/ijoc.1060.0182
10.1145/1916461.1916468
10.1023/A:1008306431147
10.1137/040603371
10.1287/ijoc.2018.0864
10.1162/neco.1997.9.8.1735
10.1016/j.cor.2012.08.022
10.1016/j.jhydrol.2016.11.007
10.1007/978-3-319-68913-5
10.1137/18M1191944
10.1007/978-3-7908-2604-3_16
10.1007/s10898-007-9217-2
10.1109/CVPR.2016.90
10.1109/ICASSP.2013.6638947
10.1016/j.trc.2015.03.014
10.1007/s10596-014-9443-x
10.1029/2000WR900368
10.2113/gsecongeo.58.8.1246
ContentType Journal Article
Copyright This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2020
COPYRIGHT 2021 Springer
This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2020.
Copyright_xml – notice: This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2020
– notice: COPYRIGHT 2021 Springer
– notice: This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10898-020-00912-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM global
Computing Database
ProQuest research library
Science Database
Engineering Database
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 231
ExternalDocumentID A718397587
10_1007_s10898_020_00912_0
GrantInformation_xml – fundername: Office of Science
  grantid: DE-AC02-05CH11231
  funderid: http://dx.doi.org/10.13039/100006132
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c468t-a764870d7e4d2dd5a21836aec924bdccb619d1bcf8ab80a9ba9f5c6224df847c3
IEDL.DBID BENPR
ISSN 0925-5001
IngestDate Sat Aug 23 13:59:26 EDT 2025
Tue Jun 10 20:37:35 EDT 2025
Tue Jul 01 00:53:00 EDT 2025
Thu Apr 24 23:05:45 EDT 2025
Fri Feb 21 02:47:44 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hyperparameter optimization
Surrogate models
Groundwater prediction
Machine learning
Derivative-free optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-a764870d7e4d2dd5a21836aec924bdccb619d1bcf8ab80a9ba9f5c6224df847c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8627-1992
OpenAccessLink https://escholarship.org/uc/item/9371x126
PQID 2560480803
PQPubID 29930
PageCount 29
ParticipantIDs proquest_journals_2560480803
gale_infotracacademiconefile_A718397587
crossref_citationtrail_10_1007_s10898_020_00912_0
crossref_primary_10_1007_s10898_020_00912_0
springer_journals_10_1007_s10898_020_00912_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References BishopCMNeural networks for pattern recognition1995OxfordOxford University Press0868.68096
TrennSMultilayer perceptrons: approximation order and necessary number of hidden unitsIEEE Trans. Neural Netw.200819583684410.1109/TNN.2007.912306
HochreiterSSchmidhuberJLong short-term memoryNeural Comput.199791735178010.1162/neco.1997.9.8.1735
Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: Proceedings of the 2013 International Conference on Acoustics, Speech, and Signal Processing (2013)
Jin, H., Song, Q., Hu, X.: Auto-Keras: An Efficient Neural Architecture Search System (2019). arXiv:1806.10282 [cs.LG]
HolmströmKAn adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer global optimizationJ. Global Optim.2008931133924474151400.90226
ZhangJZhuYZhangXYeMYangJDeveloping a long short-term memory (LSTM) based model for predicting water table depth in agricultural areasJ. Hydrol.201856191892910.1016/j.jhydrol.2018.04.065
Langevin, C.D., Hughes, J.D., Banta, E.R., Niswonger, R.G., Panday, S., Provost, A.M.: Documentation for the MODFLOW 6 Groundwater Flow Model. Technical Report, US Geological Survey (2017)
ChiangY-MChangL-CChangF-JComparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modelingJ. Hydrol.20042903–429731110.1016/j.jhydrol.2003.12.033
Chollet, F.: keras. GitHub Repository (2015). https://github.com/fchollet/keras. Accessed 18 May 2020
Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems (2012)
PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189
NuñezLRegisRGVarelaKAccelerated random search for constrained global optimization assisted by radial basis function surrogatesJ. Comput. Appl. Math.201834027629538078011433.9012710.1016/j.cam.2018.02.017
WildSMShoemakerCAGlobal convergence of radial basis function trust-region algorithms for derivative-free optimizationSIAM Rev.20135534937130499241270.6502810.1137/120902434
KratzertFKlotzDBrennerCSchulzKHerrneggerMRainfall-runoff modelling using long short-term memory (LSTM) networksHydrol. Earth Syst. Sci.201822116005602210.5194/hess-22-6005-2018
Borovykh, A., Bohte, S., Oosterlee, C.W.: Conditional Time Series Forecasting with Convolutional Neural Networks (2017). arXiv:1703.04691
Balaprakash, P., Salim, M., Uram, T.D., Vishwanath, V., Wild, S.M.: Deephyper: asynchronous hyperparameter search for deep neural networks. In: 2018 IEEE 25th International Conference on High Performance Computing (HiPC), pp. 42–51 (2018)
GramacyRLe DigabelSThe mesh adaptive direct search algorithm with treed Gaussian process surrogatesPac. J. Optim.20151141944733845481327.90308
MüllerJSOCEMO: surrogate optimization of computationally expensive multiobjective problemsINFORMS J. Comput.201729458159637188130727160610.1287/ijoc.2017.0749
HolmströmKAn adaptive radial basis algorithm (ARBF) for expensive black-box global optimizationJ. Global Optim.20084144746424244781152.9060910.1007/s10898-007-9256-8
RudySAllaABruntonSLKutzJNData-driven identification of parametric partial differential equationsSIAM J. Appl. Dyn. Syst.201918264366039368901456.6509610.1137/18M1191944
JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ. Global Optim.19981345549216734600917.9027010.1023/A:1008306431147
MitchellMAn Introduction to Genetic Algorithms1996CambridgeMIT Press0906.68113
KarslıoğluOGehlmannMMüllerJNemšàkSSethianJKaduwelaABluhmHFadleyCAn efficient algorithm for automatic structure optimization in x-ray standing-wave experimentsJ. Electron Spectrosc. Relat. Phenom.2019230102010.1016/j.elspec.2018.10.006
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M. et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems (2016). arXiv:1603.04467
LanghansWMüllerJCollinsWOptimization of the Eddy-diffusivity/mass-flux shallow cumulus and boundary-layer parameterization using surrogate modelsJ. Adv. Model. Earth Syst.20191140241610.1029/2018MS001449
MaXTaoZWangYYuHWangYLong short-term memory neural network for traffic speed prediction using remote microwave sensor dataTransp. Res. C Emerg. Technol.20155418719710.1016/j.trc.2015.03.014
TabariHTalaeePHMultilayer perceptron for reference evapotranspiration estimation in a semiarid regionNeural Comput. Appl.201323234134810.1007/s00521-012-0904-7
DavisEIerapetritouMKriging based method for the solution of mixed-integer nonlinear programs containing black-box functionsJ. Global Optim.20094319120524718811179.9023810.1007/s10898-007-9217-2
LeeHKHGramacyRBLinkletterCGrayGAOptimization subject to hidden constraints via statistical emulationPac. J. Optim.20117467478288316005964910
RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsCognit. Model.19885311369.68284
AraujoPAstrayGFerrerio-LageJAMejutoJCRodriguez-SuarezJASotoBMultilayer perceptron neural network for flow predictionJ. Environ. Monit.2011131354110.1039/C0EM00478B
LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE199886112278232410.1109/5.726791
Hsu, D.: Multi-period Time Series Modeling with Sparsity Via Bayesian Variational Inference (2018). arXiv:1707.00666v3
MoritzSBartz-BeielsteinTimputeTS: Time Series Missing Value Imputation in RR J.2017920721810.32614/RJ-2017-009
AudetCHareWDerivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering2017BerlinSpringer1391.9000110.1007/978-3-319-68913-5
Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.A.: Efficient hyperparameter optimization of deep learning algorithms using deterministic RBF surrogates. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (2017)
GardnerMWDorlingSRArtificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciencesAtmos. Environ.19983214–152627263610.1016/S1352-2310(97)00447-0
XuTSpycherNSonnenthalEZhangGZhengLPruessKTOUGHREACT version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditionsComput. Geosci.201137676377410.1016/j.cageo.2010.10.007
Hinton, G., Srivastava, N., Swersky, K.: Neural Networks for Machine Learning. lecture 6a, Overview of Mini-batch Gradient Descent. Lecture Notes (2012). https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf. Accessed 18 May 2020
MüllerJShoemakerCAPichéRSO-MI: a surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problemsComput. Oper. Res.2013401383140030309911352.9006710.1016/j.cor.2012.08.022
ForresterAIJSóbesterAKeaneAJMulti-fidelity optimization via surrogate modellingProc. R. Soc.20074633251326923866611142.9048910.1098/rspa.2007.1900
BookerAJDennisJEJrFrankPDSerafiniDBTorczonVTrossetMWA rigorous framework for optimization of expensive functions by surrogatesStruct. Multidiscip. Optim.19991711310.1007/BF01197708
GutmannH-MA radial basis function method for global optimizationJ. Global Optim.20011920122718332170972.9005510.1023/A:1011255519438
RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951223400407426680054.0590110.1214/aoms/1177729586
Cui, Z., Chen, W., Chen, Y.: Multi-scale Convolutional Neural Networks for Time Series Classification (2016). arXiv:1603.06995
Le DigabelSAlgorithm 909: NOMAD–nonlinear optimization with the MADS algorithmACM Trans. Math. Softw.20113711527748361365.6517210.1145/1916461.1916468
MüllerJMISO: mixed integer surrogate optimization frameworkOptim. Eng.201517117720334592571364.9023010.1007/s11081-015-9281-2
MüllerJPaudelRShoemakerCAWoodburyJWangYMahowaldNCH4 parameter estimation in CLM4.5bgc using surrogate global optimizationGeosci. Model Dev. Discus.20158141207
AbramsonMAAudetCChrissisJWalstonJMesh adaptive direct search algorithms for mixed variable optimizationOptim. Lett.20093354724535031154.9055110.1007/s11590-008-0089-2
AudetCDennisJEJrMesh adaptive direct search algorithms for constrained optimizationSIAM J. Optim.20061718821722191501112.9007810.1137/040603371
AudetCKokkolarasMBlackbox and derivative-free optimization: theory, algorithms and applicationsOptim. Eng.20161711234592491364.9000810.1007/s11081-016-9307-4
DaliakopoulosINCoulibalyPTsanisIKGroundwater level forecasting using artificial neural networksJ. Hydrol.20053091–422924010.1016/j.jhydrol.2004.12.001
FortinF-ADe RainvilleF-MGardnerM-AGagnéCParizeauMDEAP: evolutionary algorithms made easyJ. Mach. Learn. Res.201213217121752973597
MüllerJDayMSurrogate optimization of computationally expensive black-box problems with hidden constraintsINFORMS J. Comput.2019403782210.1287/ijoc.2018.086407283450
MatheronGPrinciples of geostatisticsEcon. Geol.1963581246126610.2113/gsecongeo.58.8.1246
MüllerJWoodburyJGOSAC: global optimization with surrogate approximation of constraintsJ. Glob. Optim.2017368771910.1007/s10898-017-0496-y1373.90118
SteefelCIAppeloCAJAroraBJacquesDKalbacherTKolditzOLagneauVLichtnerPCMayerKUMeeussenJCLReactive transport codes for subsurface environmental simulationComput. Geosci.201519344547833607851323.8600210.1007/s10596-014-9443-x
PowellMJDAdvances in Numerical Analysis, Vol. 2: Wavelets, Subdivision Algorithms and Radial Basis Functions. Oxford University Press, Oxford, pp. 105–210, Chapter The Theory of Radial Basis Function Approximation in 19901992LondonOxford University Press
CoulibalyPAnctilFAravenaRBobéeBArtificial neural network modeling of water table depth fluctuationsWater Resour. Res.200137488589610.1029/2000WR900368
Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010)
Yo
F Pedregosa (912_CR71) 2011; 12
J Müller (912_CR60) 2015; 17
AIJ Forrester (912_CR26) 2007; 463
O Karslıoğlu (912_CR43) 2019; 230
J Müller (912_CR64) 2017
F-A Fortin (912_CR27) 2012; 13
R Gramacy (912_CR30) 2015; 11
F Kratzert (912_CR46) 2018; 22
J Zhang (912_CR91) 2018; 561
912_CR21
H-M Gutmann (912_CR32) 2001; 19
K Holmström (912_CR36) 2008; 9
H Robbins (912_CR76) 1951; 22
912_CR25
RG Regis (912_CR75) 2007; 19
P Coulibaly (912_CR20) 2001; 37
MJD Powell (912_CR72) 1992
S Moritz (912_CR59) 2017; 9
C Audet (912_CR7) 2016; 17
C Audet (912_CR8) 2010; 204
X Ma (912_CR55) 2015; 54
D Toal (912_CR86) 2011; 48
MJD Powell (912_CR73) 1999
AJ Booker (912_CR13) 1999; 17
A Najah (912_CR69) 2013; 22
SM Wild (912_CR88) 2013; 55
912_CR90
Y LeCun (912_CR52) 1998; 86
J Müller (912_CR67) 2015; 8
RH Myers (912_CR68) 2016
Y LeCun (912_CR53) 2015; 521
912_CR1
K Holmström (912_CR37) 2008; 41
912_CR3
S Rudy (912_CR77) 2019; 18
J Bergstra (912_CR10) 2012; 13
912_CR11
912_CR14
912_CR57
912_CR16
912_CR15
J Müller (912_CR61) 2017; 29
912_CR18
C Audet (912_CR5) 2006; 17
T Xu (912_CR89) 2011; 37
IN Daliakopoulos (912_CR22) 2005; 309
J Müller (912_CR62) 2019
DE Rumelhart (912_CR78) 1988; 5
MW Gardner (912_CR28) 1998; 32
J Müller (912_CR65) 2013; 40
J Müller (912_CR66) 2013; 59
912_CR9
M Mitchell (912_CR58) 1996
MA Abramson (912_CR2) 2009; 3
912_CR80
912_CR83
E Davis (912_CR24) 2009; 43
912_CR82
912_CR85
912_CR40
S Le Digabel (912_CR51) 2011; 37
912_CR45
C Audet (912_CR6) 2017
912_CR44
912_CR47
RG Regis (912_CR74) 2011; 38
912_CR49
912_CR48
DR Jones (912_CR41) 1998; 13
H Tabari (912_CR84) 2013; 23
S Hochreiter (912_CR35) 1997; 9
P Araujo (912_CR4) 2011; 13
CM Bishop (912_CR12) 1995
J Müller (912_CR63) 2019
F Karandish (912_CR42) 2016; 543
BI Cook (912_CR19) 2018; 4
FA Gers (912_CR29) 2000; 12
S Trenn (912_CR87) 2008; 19
G Matheron (912_CR56) 1963; 58
R Datta (912_CR23) 2016; 57
W Langhans (912_CR50) 2019; 11
S Sahoo (912_CR79) 2017; 53
912_CR31
912_CR34
912_CR33
CI Steefel (912_CR81) 2015; 19
Y-M Chiang (912_CR17) 2004; 290
912_CR38
HKH Lee (912_CR54) 2011; 7
912_CR39
L Nuñez (912_CR70) 2018; 340
References_xml – reference: Cui, Z., Chen, W., Chen, Y.: Multi-scale Convolutional Neural Networks for Time Series Classification (2016). arXiv:1603.06995
– reference: Ali, Z., Hussain, I., Faisal, M., Nazir, H.M., Hussain, T., Shad, M.Y., Shoukry, A.M., Gani, S.H.: Forecasting drought using multilayer perceptron artificial neural network model. Adv. Meteorol., 5681308, 9 pages (2017)
– reference: Faunt, C.C.: Groundwater Availability of the Central Valley Aquifer, California. Professional paper 1766, 225 p., U.S. Geological Survey (2009). https://pubs.usgs.gov/pp/1766/PP_1766.pdf. Accessed 18 May 2020
– reference: GutmannH-MA radial basis function method for global optimizationJ. Global Optim.20011920122718332170972.9005510.1023/A:1011255519438
– reference: LeeHKHGramacyRBLinkletterCGrayGAOptimization subject to hidden constraints via statistical emulationPac. J. Optim.20117467478288316005964910
– reference: Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th International Conference on Machine Learning (2013)
– reference: ToalDKeaneAEfficient multi-point aerodynamic design optimization via co-krigingJ. Aircr.20114851685169510.2514/1.C031342
– reference: Balaprakash, P., Salim, M., Uram, T.D., Vishwanath, V., Wild, S.M.: Deephyper: asynchronous hyperparameter search for deep neural networks. In: 2018 IEEE 25th International Conference on High Performance Computing (HiPC), pp. 42–51 (2018)
– reference: LeCunYBengioYHintonGDeep learningNature201552143644410.1038/nature14539
– reference: BookerAJDennisJEJrFrankPDSerafiniDBTorczonVTrossetMWA rigorous framework for optimization of expensive functions by surrogatesStruct. Multidiscip. Optim.19991711310.1007/BF01197708
– reference: MüllerJMISO: mixed integer surrogate optimization frameworkOptim. Eng.201517117720334592571364.9023010.1007/s11081-015-9281-2
– reference: RegisRGStochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functionsComput. Oper. Res.20113883785327352711434.9010910.1016/j.cor.2010.09.013
– reference: BergstraJBengioYRandom search for hyper-parameter optimizationJ. Mach. Learn. Res.201213128130529137011283.68282
– reference: MüllerJAn algorithmic framework for the optimization of computationally expensive bi-fidelity black-box problemsINFOR Inf. Syst. Oper. Res.201910.1080/03155986.2019.1607810
– reference: Sundermeyer, M., Schluter, R., Ney, H.: LSTM neural networks for language modeling. In: Proceedings of the 12th Annual Conference of the International Speech Communication Association, Portland, Oregon, USA, pp. 601–608 (2012)
– reference: RudySAllaABruntonSLKutzJNData-driven identification of parametric partial differential equationsSIAM J. Appl. Dyn. Syst.201918264366039368901456.6509610.1137/18M1191944
– reference: Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast Bayesian optimization of machine learning hyperparameters on large datasets. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida, USA, vol. 54 (2017)
– reference: MaXTaoZWangYYuHWangYLong short-term memory neural network for traffic speed prediction using remote microwave sensor dataTransp. Res. C Emerg. Technol.20155418719710.1016/j.trc.2015.03.014
– reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189
– reference: PowellMJDRecent Research at Cambridge on Radial Basis Functions New Developments in Approximation Theory1999BaselBirkhäuser2152320958.4150110.1007/978-3-0348-8696-3_14
– reference: GersFASchmidhuberJCumminsFLearning to forget: continual prediction with LSTMNeural Comput.2000122451247110.1162/089976600300015015
– reference: MüllerJPaudelRShoemakerCAWoodburyJWangYMahowaldNCH4 parameter estimation in CLM4.5bgc using surrogate global optimizationGeosci. Model Dev. Discus.20158141207
– reference: MüllerJWoodburyJGOSAC: global optimization with surrogate approximation of constraintsJ. Glob. Optim.2017368771910.1007/s10898-017-0496-y1373.90118
– reference: Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.-H., Patton, R.M.: Optimizing deep learning hyper-parameters through an evolutionary algorithm. In: MLHPC’15 Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, Volume Article No. 4 (2015)
– reference: TrennSMultilayer perceptrons: approximation order and necessary number of hidden unitsIEEE Trans. Neural Netw.200819583684410.1109/TNN.2007.912306
– reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M. et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems (2016). arXiv:1603.04467
– reference: Taylor, M.: Liquid Assets: Improving Management of the State’s Groundwater Resources. Legislative Analyst’s Office, Technical Report (2010)
– reference: AudetCSavardGZghalWA mesh adaptive direct search algorithm for multiobjective optimizationEur. J. Oper. Res.2010204354555625878811181.9013710.1016/j.ejor.2009.11.010
– reference: Jin, H., Song, Q., Hu, X.: Auto-Keras: An Efficient Neural Architecture Search System (2019). arXiv:1806.10282 [cs.LG]
– reference: SahooSRussoTAElliottJFosterIMachine learning algorithms for modeling groundwater level changes in agricultural regions of the USWater Resour. Res.20175353878389510.1002/2016WR019933
– reference: SteefelCIAppeloCAJAroraBJacquesDKalbacherTKolditzOLagneauVLichtnerPCMayerKUMeeussenJCLReactive transport codes for subsurface environmental simulationComput. Geosci.201519344547833607851323.8600210.1007/s10596-014-9443-x
– reference: Borovykh, A., Bohte, S., Oosterlee, C.W.: Conditional Time Series Forecasting with Convolutional Neural Networks (2017). arXiv:1703.04691
– reference: CookBIMankinJSAnchukaitisKJClimate change and drought: from past to futureCurr. Clim. Change Rep.20184216417910.1007/s40641-018-0093-2
– reference: ForresterAIJSóbesterAKeaneAJMulti-fidelity optimization via surrogate modellingProc. R. Soc.20074633251326923866611142.9048910.1098/rspa.2007.1900
– reference: KarandishFŠimunekJA comparison of numerical and machine-learning modeling of soil water content with limited input dataJ. Hydrol.201654389290910.1016/j.jhydrol.2016.11.007
– reference: KratzertFKlotzDBrennerCSchulzKHerrneggerMRainfall-runoff modelling using long short-term memory (LSTM) networksHydrol. Earth Syst. Sci.201822116005602210.5194/hess-22-6005-2018
– reference: MitchellMAn Introduction to Genetic Algorithms1996CambridgeMIT Press0906.68113
– reference: PowellMJDAdvances in Numerical Analysis, Vol. 2: Wavelets, Subdivision Algorithms and Radial Basis Functions. Oxford University Press, Oxford, pp. 105–210, Chapter The Theory of Radial Basis Function Approximation in 19901992LondonOxford University Press
– reference: AbramsonMAAudetCChrissisJWalstonJMesh adaptive direct search algorithms for mixed variable optimizationOptim. Lett.20093354724535031154.9055110.1007/s11590-008-0089-2
– reference: JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ. Global Optim.19981345549216734600917.9027010.1023/A:1008306431147
– reference: AudetCHareWDerivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering2017BerlinSpringer1391.9000110.1007/978-3-319-68913-5
– reference: Chollet, F.: keras. GitHub Repository (2015). https://github.com/fchollet/keras. Accessed 18 May 2020
– reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE199886112278232410.1109/5.726791
– reference: Hinton, G., Srivastava, N., Swersky, K.: Neural Networks for Machine Learning. lecture 6a, Overview of Mini-batch Gradient Descent. Lecture Notes (2012). https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf. Accessed 18 May 2020
– reference: Kuderer, M., Gulati, S., Burgard, W.: Learning driving styles for autonomous vehicles from demonstration. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2641–2646 (2015)
– reference: Lakhmiri, D., Digabel, S. Le, Tribes, C.: HyperNOMAD: Hyperparameter Optimization of Deep Neural Networks Using Mesh Adaptive Direct Search (2019). arXiv:1907.01698 [cs.LG]
– reference: Le DigabelSAlgorithm 909: NOMAD–nonlinear optimization with the MADS algorithmACM Trans. Math. Softw.20113711527748361365.6517210.1145/1916461.1916468
– reference: MyersRHMontgomeryDCAnderson-CookCMResponse Surface Methodology: Process and Product Optimization Using Designed Experiments20164Hoboken, NJJohn Wiley & Sons, Inc.1332.62004
– reference: Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 1017–1024 (2011)
– reference: Kingma, D.P., Ba, J.L.: ADAM: a method for stochastic optimization. In: ICLR 2015 (2015)
– reference: Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: Proceedings of the 2013 International Conference on Acoustics, Speech, and Signal Processing (2013)
– reference: ZhangJZhuYZhangXYeMYangJDeveloping a long short-term memory (LSTM) based model for predicting water table depth in agricultural areasJ. Hydrol.201856191892910.1016/j.jhydrol.2018.04.065
– reference: ChiangY-MChangL-CChangF-JComparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modelingJ. Hydrol.20042903–429731110.1016/j.jhydrol.2003.12.033
– reference: TabariHTalaeePHMultilayer perceptron for reference evapotranspiration estimation in a semiarid regionNeural Comput. Appl.201323234134810.1007/s00521-012-0904-7
– reference: FortinF-ADe RainvilleF-MGardnerM-AGagnéCParizeauMDEAP: evolutionary algorithms made easyJ. Mach. Learn. Res.201213217121752973597
– reference: He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
– reference: CoulibalyPAnctilFAravenaRBobéeBArtificial neural network modeling of water table depth fluctuationsWater Resour. Res.200137488589610.1029/2000WR900368
– reference: RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsCognit. Model.19885311369.68284
– reference: AudetCKokkolarasMBlackbox and derivative-free optimization: theory, algorithms and applicationsOptim. Eng.20161711234592491364.9000810.1007/s11081-016-9307-4
– reference: DaliakopoulosINCoulibalyPTsanisIKGroundwater level forecasting using artificial neural networksJ. Hydrol.20053091–422924010.1016/j.jhydrol.2004.12.001
– reference: Hsu, D.: Multi-period Time Series Modeling with Sparsity Via Bayesian Variational Inference (2018). arXiv:1707.00666v3
– reference: Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010)
– reference: MoritzSBartz-BeielsteinTimputeTS: Time Series Missing Value Imputation in RR J.2017920721810.32614/RJ-2017-009
– reference: GramacyRLe DigabelSThe mesh adaptive direct search algorithm with treed Gaussian process surrogatesPac. J. Optim.20151141944733845481327.90308
– reference: MüllerJShoemakerCAPichéRSO-MI: a surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problemsComput. Oper. Res.2013401383140030309911352.9006710.1016/j.cor.2012.08.022
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput.199791735178010.1162/neco.1997.9.8.1735
– reference: NajahAEl-ShafieAKarimOAEl-ShafieAHApplication of artificial neural networks for water quality predictionNeural Comput. Appl.201322118720110.1007/s00521-012-0940-3
– reference: HolmströmKAn adaptive radial basis algorithm (ARBF) for expensive black-box global optimizationJ. Global Optim.20084144746424244781152.9060910.1007/s10898-007-9256-8
– reference: Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems (2012)
– reference: AudetCDennisJEJrMesh adaptive direct search algorithms for constrained optimizationSIAM J. Optim.20061718821722191501112.9007810.1137/040603371
– reference: NuñezLRegisRGVarelaKAccelerated random search for constrained global optimization assisted by radial basis function surrogatesJ. Comput. Appl. Math.201834027629538078011433.9012710.1016/j.cam.2018.02.017
– reference: WildSMShoemakerCAGlobal convergence of radial basis function trust-region algorithms for derivative-free optimizationSIAM Rev.20135534937130499241270.6502810.1137/120902434
– reference: MatheronGPrinciples of geostatisticsEcon. Geol.1963581246126610.2113/gsecongeo.58.8.1246
– reference: DavisEIerapetritouMKriging based method for the solution of mixed-integer nonlinear programs containing black-box functionsJ. Global Optim.20094319120524718811179.9023810.1007/s10898-007-9217-2
– reference: Langevin, C.D., Hughes, J.D., Banta, E.R., Niswonger, R.G., Panday, S., Provost, A.M.: Documentation for the MODFLOW 6 Groundwater Flow Model. Technical Report, US Geological Survey (2017)
– reference: HolmströmKAn adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer global optimizationJ. Global Optim.2008931133924474151400.90226
– reference: Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.A.: Efficient hyperparameter optimization of deep learning algorithms using deterministic RBF surrogates. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (2017)
– reference: XuTSpycherNSonnenthalEZhangGZhengLPruessKTOUGHREACT version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditionsComput. Geosci.201137676377410.1016/j.cageo.2010.10.007
– reference: Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: 19th International Conference on Computational Statistics, pp. 177–186 (2010)
– reference: MüllerJShoemakerCAPichéRSO-I: a surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applicationsJ. Glob. Optim.20135986588932268341305.9030510.1007/s10898-013-0101-y
– reference: DattaRRegisRGA surrogate-assisted evolution strategy for constrained multi-objective optimizationExpert Syst. Appl.20165727028410.1016/j.eswa.2016.03.044
– reference: MüllerJDayMSurrogate optimization of computationally expensive black-box problems with hidden constraintsINFORMS J. Comput.2019403782210.1287/ijoc.2018.086407283450
– reference: RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951223400407426680054.0590110.1214/aoms/1177729586
– reference: BishopCMNeural networks for pattern recognition1995OxfordOxford University Press0868.68096
– reference: AraujoPAstrayGFerrerio-LageJAMejutoJCRodriguez-SuarezJASotoBMultilayer perceptron neural network for flow predictionJ. Environ. Monit.2011131354110.1039/C0EM00478B
– reference: GardnerMWDorlingSRArtificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciencesAtmos. Environ.19983214–152627263610.1016/S1352-2310(97)00447-0
– reference: LanghansWMüllerJCollinsWOptimization of the Eddy-diffusivity/mass-flux shallow cumulus and boundary-layer parameterization using surrogate modelsJ. Adv. Model. Earth Syst.20191140241610.1029/2018MS001449
– reference: California Department of Water Resources. SGMA groundwater management. https://www.waterboards.ca.gov/water_issues/programs/gmp/docs/sgma/sgma_20190101.pdf. Accessed 18 May 2020
– reference: RegisRGShoemakerCAA stochastic radial basis function method for the global optimization of expensive functionsINFORMS J. Comput.20071949750923640071241.9019210.1287/ijoc.1060.0182
– reference: MüllerJSOCEMO: surrogate optimization of computationally expensive multiobjective problemsINFORMS J. Comput.201729458159637188130727160610.1287/ijoc.2017.0749
– reference: KarslıoğluOGehlmannMMüllerJNemšàkSSethianJKaduwelaABluhmHFadleyCAn efficient algorithm for automatic structure optimization in x-ray standing-wave experimentsJ. Electron Spectrosc. Relat. Phenom.2019230102010.1016/j.elspec.2018.10.006
– volume: 17
  start-page: 1
  year: 1999
  ident: 912_CR13
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/BF01197708
– volume: 340
  start-page: 276
  year: 2018
  ident: 912_CR70
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.02.017
– volume: 11
  start-page: 402
  year: 2019
  ident: 912_CR50
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2018MS001449
– volume: 53
  start-page: 3878
  issue: 5
  year: 2017
  ident: 912_CR79
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019933
– volume: 59
  start-page: 865
  year: 2013
  ident: 912_CR66
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-013-0101-y
– volume: 4
  start-page: 164
  issue: 2
  year: 2018
  ident: 912_CR19
  publication-title: Curr. Clim. Change Rep.
  doi: 10.1007/s40641-018-0093-2
– volume: 12
  start-page: 2451
  year: 2000
  ident: 912_CR29
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– ident: 912_CR80
– ident: 912_CR45
– volume: 55
  start-page: 349
  year: 2013
  ident: 912_CR88
  publication-title: SIAM Rev.
  doi: 10.1137/120902434
– ident: 912_CR83
– volume: 37
  start-page: 763
  issue: 6
  year: 2011
  ident: 912_CR89
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2010.10.007
– year: 2017
  ident: 912_CR64
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-017-0496-y
– ident: 912_CR16
– start-page: 215
  volume-title: Recent Research at Cambridge on Radial Basis Functions New Developments in Approximation Theory
  year: 1999
  ident: 912_CR73
  doi: 10.1007/978-3-0348-8696-3_14
– volume: 22
  start-page: 400
  issue: 3
  year: 1951
  ident: 912_CR76
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729586
– volume: 309
  start-page: 229
  issue: 1–4
  year: 2005
  ident: 912_CR22
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.12.001
– volume: 19
  start-page: 836
  issue: 5
  year: 2008
  ident: 912_CR87
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2007.912306
– ident: 912_CR48
– volume: 17
  start-page: 177
  issue: 1
  year: 2015
  ident: 912_CR60
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-015-9281-2
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  ident: 912_CR7
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-016-9307-4
– volume: 57
  start-page: 270
  year: 2016
  ident: 912_CR23
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.03.044
– volume: 13
  start-page: 35
  issue: 1
  year: 2011
  ident: 912_CR4
  publication-title: J. Environ. Monit.
  doi: 10.1039/C0EM00478B
– ident: 912_CR40
– volume: 3
  start-page: 35
  year: 2009
  ident: 912_CR2
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-008-0089-2
– volume: 521
  start-page: 436
  year: 2015
  ident: 912_CR53
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 5
  start-page: 1
  issue: 3
  year: 1988
  ident: 912_CR78
  publication-title: Cognit. Model.
– ident: 912_CR9
  doi: 10.1109/HiPC.2018.00014
– ident: 912_CR44
– ident: 912_CR34
– ident: 912_CR47
  doi: 10.1109/ICRA.2015.7139555
– volume-title: Neural networks for pattern recognition
  year: 1995
  ident: 912_CR12
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 463
  start-page: 3251
  year: 2007
  ident: 912_CR26
  publication-title: Proc. R. Soc.
  doi: 10.1098/rspa.2007.1900
– volume: 561
  start-page: 918
  year: 2018
  ident: 912_CR91
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.04.065
– volume: 32
  start-page: 2627
  issue: 14–15
  year: 1998
  ident: 912_CR28
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(97)00447-0
– ident: 912_CR39
  doi: 10.1609/aaai.v31i1.10647
– ident: 912_CR57
  doi: 10.21437/Interspeech.2010-343
– volume: 22
  start-page: 6005
  issue: 11
  year: 2018
  ident: 912_CR46
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-6005-2018
– ident: 912_CR38
– volume: 38
  start-page: 837
  year: 2011
  ident: 912_CR74
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2010.09.013
– volume: 41
  start-page: 447
  year: 2008
  ident: 912_CR37
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9256-8
– volume: 8
  start-page: 141
  year: 2015
  ident: 912_CR67
  publication-title: Geosci. Model Dev. Discus.
– volume: 290
  start-page: 297
  issue: 3–4
  year: 2004
  ident: 912_CR17
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2003.12.033
– volume: 9
  start-page: 207
  year: 2017
  ident: 912_CR59
  publication-title: R J.
  doi: 10.32614/RJ-2017-009
– volume: 29
  start-page: 581
  issue: 4
  year: 2017
  ident: 912_CR61
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2017.0749
– volume-title: Response Surface Methodology: Process and Product Optimization Using Designed Experiments
  year: 2016
  ident: 912_CR68
– volume: 22
  start-page: 187
  issue: 1
  year: 2013
  ident: 912_CR69
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-0940-3
– ident: 912_CR3
  doi: 10.1155/2017/5681308
– volume: 13
  start-page: 2171
  year: 2012
  ident: 912_CR27
  publication-title: J. Mach. Learn. Res.
– ident: 912_CR49
  doi: 10.3133/tm6A55
– year: 2019
  ident: 912_CR62
  publication-title: INFOR Inf. Syst. Oper. Res.
  doi: 10.1080/03155986.2019.1607810
– volume: 230
  start-page: 10
  year: 2019
  ident: 912_CR43
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2018.10.006
– volume-title: An Introduction to Genetic Algorithms
  year: 1996
  ident: 912_CR58
  doi: 10.7551/mitpress/3927.001.0001
– volume: 12
  start-page: 2825
  year: 2011
  ident: 912_CR71
  publication-title: J. Mach. Learn. Res.
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 912_CR52
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 23
  start-page: 341
  issue: 2
  year: 2013
  ident: 912_CR84
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-0904-7
– volume: 48
  start-page: 1685
  issue: 5
  year: 2011
  ident: 912_CR86
  publication-title: J. Aircr.
  doi: 10.2514/1.C031342
– ident: 912_CR90
  doi: 10.1145/2834892.2834896
– volume: 19
  start-page: 201
  year: 2001
  ident: 912_CR32
  publication-title: J. Global Optim.
  doi: 10.1023/A:1011255519438
– volume: 204
  start-page: 545
  issue: 3
  year: 2010
  ident: 912_CR8
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2009.11.010
– volume: 13
  start-page: 281
  issue: 1
  year: 2012
  ident: 912_CR10
  publication-title: J. Mach. Learn. Res.
– ident: 912_CR85
– ident: 912_CR82
  doi: 10.21437/Interspeech.2012-65
– volume: 19
  start-page: 497
  year: 2007
  ident: 912_CR75
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1060.0182
– volume: 37
  start-page: 1
  year: 2011
  ident: 912_CR51
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1916461.1916468
– volume: 13
  start-page: 455
  year: 1998
  ident: 912_CR41
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– volume: 17
  start-page: 188
  year: 2006
  ident: 912_CR5
  publication-title: SIAM J. Optim.
  doi: 10.1137/040603371
– ident: 912_CR14
– volume: 11
  start-page: 419
  year: 2015
  ident: 912_CR30
  publication-title: Pac. J. Optim.
– ident: 912_CR18
– year: 2019
  ident: 912_CR63
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2018.0864
– ident: 912_CR21
– volume: 9
  start-page: 1735
  year: 1997
  ident: 912_CR35
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 9
  start-page: 311
  year: 2008
  ident: 912_CR36
  publication-title: J. Global Optim.
– ident: 912_CR1
– volume: 7
  start-page: 467
  year: 2011
  ident: 912_CR54
  publication-title: Pac. J. Optim.
– volume: 40
  start-page: 1383
  year: 2013
  ident: 912_CR65
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.08.022
– ident: 912_CR25
– volume: 543
  start-page: 892
  year: 2016
  ident: 912_CR42
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.11.007
– volume-title: Derivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering
  year: 2017
  ident: 912_CR6
  doi: 10.1007/978-3-319-68913-5
– volume: 18
  start-page: 643
  issue: 2
  year: 2019
  ident: 912_CR77
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/18M1191944
– ident: 912_CR15
  doi: 10.1007/978-3-7908-2604-3_16
– ident: 912_CR11
– volume: 43
  start-page: 191
  year: 2009
  ident: 912_CR24
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9217-2
– ident: 912_CR33
  doi: 10.1109/CVPR.2016.90
– ident: 912_CR31
  doi: 10.1109/ICASSP.2013.6638947
– volume: 54
  start-page: 187
  year: 2015
  ident: 912_CR55
  publication-title: Transp. Res. C Emerg. Technol.
  doi: 10.1016/j.trc.2015.03.014
– volume-title: Advances in Numerical Analysis, Vol. 2: Wavelets, Subdivision Algorithms and Radial Basis Functions. Oxford University Press, Oxford, pp. 105–210, Chapter The Theory of Radial Basis Function Approximation in 1990
  year: 1992
  ident: 912_CR72
– volume: 19
  start-page: 445
  issue: 3
  year: 2015
  ident: 912_CR81
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-014-9443-x
– volume: 37
  start-page: 885
  issue: 4
  year: 2001
  ident: 912_CR20
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900368
– volume: 58
  start-page: 1246
  year: 1963
  ident: 912_CR56
  publication-title: Econ. Geol.
  doi: 10.2113/gsecongeo.58.8.1246
SSID ssj0009852
Score 2.5242128
Snippet Sustainable management of groundwater resources under changing climatic conditions require an application of reliable and accurate predictions of groundwater...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 203
SubjectTerms Algorithms
Ambient temperature
Artificial neural networks
Computer Science
Deep learning
Groundwater
Groundwater levels
Machine learning
Management
Mathematics
Mathematics and Statistics
Multilayer perceptrons
Neural networks
Operations Research/Decision Theory
Optimization
Precipitation variability
Random sampling
Real Functions
Water
Water, Underground
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60XvSgtirWF3sQVDSQJtk8jkUsRdCLFrwt-8pJk5K0-PedSTfWN3gJhEyyITM7O5Od7xuAU6KUynjIPd9kgRcpGXsKj55Cg1YhT4xsupbc3cfjSXT7xJ8cKKxuq93bLcnGU38Au6UEBwsICZ1RQcEqrHHK3dGKJ8FwSbWbNn12_CzgHkcv7KAyPz_j03L01Sl_2x1tFp3RNmy6aJENF-rtwooterDVdmJgbmL2YOMDrSCe3b1zsdY96Dqpmp07jumLHbh9mFdVSb_QWIlO48WhMVmZM2PtlBHNJQ5cLIrEa4ahLSMASGFeJY08rWiDp7HZXZiMbh6vx55rq-DpKE5nnkxizFJ8k9jIBMZwSVFSLK3GVEwZrRXmVGagdJ5KlfoyUzLLuY5xrTc5rmU63INOURZ2H1ioUaEhRpC-lZHkxE7vywGK5UGS2Djrw6D9ukI7znFqffEslmzJpBGBGhGNRoTfh8v3e6YLxo0_pc9IaYKmIz5ZS4cqwPcjYisxTCgExKQo6cNRq1fh5mktKOCLiFoz7MNVq-vl5d_HPfif-CGsB1QM0xSnHUFnVs3tMUYzM3XSGO8bJJLpVQ
  priority: 102
  providerName: Springer Nature
Title Surrogate optimization of deep neural networks for groundwater predictions
URI https://link.springer.com/article/10.1007/s10898-020-00912-0
https://www.proquest.com/docview/2560480803
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB4BucABEdqKlBDtAYlWZVXH9vpxQglKQFSNqpZIcFrtyydqByeIv8-Ms2kKCC72YR-2ZnbnsTvzDcAxQUrlIhI8sHnIY60SrvHJNS5oHYnUqqZqyc9JcjmNr27EjT9wm_uwypVMbAS1rQydkX8n1RwTCGJ0NrvnVDWKbld9CY1NaKEIztD5ag1Hk1-_17C7WVNzJ8hDwQVKZJ8245PnMkovCymzOqcAhWeq6aWAfnVT2iig8R7sesuRDZasbsOGK_dh5z88wX1o-506Z188nPTXD3D156GuKzotYxXKh78-8ZJVBbPOzRghWuK85TIefM7QimWU61HaRxxTs1lNdznN8vwI0_Ho-vyS-woK3MRJtuAqTdAhCWzqYhtaKxQZRIlyBr0ubY3R6D7ZvjZFpnQWqFyrvBAmQbVuC1RbJvoEW2VVugNgkUHeRWgsBk7FShAQfaD62K0I09QleQf6K-JJ4-HFqcrFnVwDIxPBJRJcNgSXQQe-_RszW4JrvNv7hHgiaefhzEb5BAL8P8KwkoOUrD30f9IOdFdsk35LzuV6AXXgdMXKdfPb3_38_myHsB1SnEsTd9aFrUX94I7QUFnoHmxm44setAbj4XBC74vbH6OeX6PYOg0HT2U_59M
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Remh7qMpLXbqlPrSiCCyySZzHoUKIdlmeF0DiZvzKqU2W7CLUP9Xf2Jmsw_IQ3PaSS2wnmrftmW8AvhKkVC4iwQObhzzWKuEan1yjQOtIpFY1XUtOTpPBRXx4KS7n4F9bC0Npla1NbAy1rQydkW-Ta44JBDHaGV5z6hpFt6ttC42JWBy5v7e4ZRv9OPiJ_P0Whv1f53sD7rsKcBMn2ZirNMEgPbCpi21orVAUJCTKGdyJaGuMxi2F7WlTZEpngcq1ygthEnR1tkBTbiJc9xW8jqMoJ43K-vtTkN-s6fAT5KHgAu2_L9LxpXoZFbOFVMedUzrEA0f42B08uZdt3F3_A7z3cSrbnQjWAsy5chHe3UMvXIQFbxdG7LsHr95YgsOzm7qu6GyOVWiN_vgyT1YVzDo3ZISfieuWk-zzEcOYmVFlSWlvcU7NhjXdHDXKsAwXM6HsCsyXVek-AosMSkqEoWngVKwEwd4HqofDijBNXZJ3oNcSTxoPZk49NX7LKQwzEVwiwWVDcBl0YPNuznAC5fHi6HXiiSQ9x5WN8uUK-H-EmCV3U4otcbeVdqDbsk16AzCSU3HtwFbLyunr57-7-vJqX-DN4PzkWB4fnB59grchZdg0GW9dmB_XN-4zhkhjvdbIJYOrWSvCf2QhIDs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIlX0UAEtYnm0PrRqEVhkkziPQ1XRwopHu0ItSNyMXzmVZMkuQv1r_Dpmsk63FMGNSy6xnWhmPA975huA9wQplYtI8MDmIY-1SrjGJ9co0DoSqVVN15Ifg-TgLD46F-czcNvWwlBaZasTG0VtK0Nn5DtkmmMCQYx2Cp8WcbLX_zK84tRBim5a23YaExE5dn9uMHwbfT7cQ15_CMP-_um3A-47DHATJ9mYqzRBhz2wqYttaK1Q5DAkyhmMSrQ1RmN4YXvaFJnSWaByrfJCmATNni1QrZsI152FuRSjoqADc1_3Byc_p5C_WdPvJ8hDwQVaA1-y4wv3MiptC6mqO6fkiHtm8X_j8OCWtjF-_QV45b1WtjsRs0WYceUSvPwHy3AJFr2WGLFPHsp68zUc_bqu64pO6liFuunSF32yqmDWuSEjNE1ct5zkoo8YetCM6kxKe4Nzajas6R6p2Rpv4OxZaLsMnbIq3QqwyKDcROioBk7FShAIfqB6OKwI09QleRd6LfGk8dDm1GHjt5yCMhPBJRJcNgSXQRe2_s4ZToA9nhz9kXgiadfjykb54gX8P8LPkrspeZoYe6VdWG_ZJr06GMmp8HZhu2Xl9PXj3119erV38AI3gfx-ODheg_mQ0m2a9Ld16Izra7eB_tJYv_WCyeDiuffCHbKKJc0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surrogate+optimization+of+deep+neural+networks+for+groundwater+predictions&rft.jtitle=Journal+of+global+optimization&rft.au=M%C3%BCller%2C+Juliane&rft.au=Park%2C+Jangho&rft.au=Sahu%2C+Reetik&rft.au=Varadharajan%2C+Charuleka&rft.date=2021-09-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=81&rft.issue=1&rft.spage=203&rft_id=info:doi/10.1007%2Fs10898-020-00912-0&rft.externalDocID=A718397587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon