Surrogate optimization of deep neural networks for groundwater predictions
Sustainable management of groundwater resources under changing climatic conditions require an application of reliable and accurate predictions of groundwater levels. Mechanistic multi-scale, multi-physics simulation models are often too hard to use for this purpose, especially for groundwater manage...
Saved in:
Published in | Journal of global optimization Vol. 81; no. 1; pp. 203 - 231 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sustainable management of groundwater resources under changing climatic conditions require an application of reliable and accurate predictions of groundwater levels. Mechanistic multi-scale, multi-physics simulation models are often too hard to use for this purpose, especially for groundwater managers who do not have access to the complex compute resources and data. Therefore, we analyzed the applicability and performance of four modern deep learning computational models for predictions of groundwater levels. We compare three methods for optimizing the models’ hyperparameters, including two surrogate model-based algorithms and a random sampling method. The models were tested using predictions of the groundwater level in Butte County, California, USA, taking into account the temporal variability of streamflow, precipitation, and ambient temperature. Our numerical study shows that the optimization of the hyperparameters can lead to reasonably accurate performance of all models (root mean squared errors of groundwater predictions of 2 meters or less), but the “simplest” network, namely a multilayer perceptron (MLP) performs overall better for learning and predicting groundwater data than the more advanced long short-term memory or convolutional neural networks in terms of prediction accuracy and time-to-solution, making the MLP a suitable candidate for groundwater prediction. |
---|---|
AbstractList | Sustainable management of groundwater resources under changing climatic conditions require an application of reliable and accurate predictions of groundwater levels. Mechanistic multi-scale, multi-physics simulation models are often too hard to use for this purpose, especially for groundwater managers who do not have access to the complex compute resources and data. Therefore, we analyzed the applicability and performance of four modern deep learning computational models for predictions of groundwater levels. We compare three methods for optimizing the models’ hyperparameters, including two surrogate model-based algorithms and a random sampling method. The models were tested using predictions of the groundwater level in Butte County, California, USA, taking into account the temporal variability of streamflow, precipitation, and ambient temperature. Our numerical study shows that the optimization of the hyperparameters can lead to reasonably accurate performance of all models (root mean squared errors of groundwater predictions of 2 meters or less), but the “simplest” network, namely a multilayer perceptron (MLP) performs overall better for learning and predicting groundwater data than the more advanced long short-term memory or convolutional neural networks in terms of prediction accuracy and time-to-solution, making the MLP a suitable candidate for groundwater prediction. |
Audience | Academic |
Author | Varadharajan, Charuleka Arora, Bhavna Agarwal, Deborah Park, Jangho Sahu, Reetik Müller, Juliane Faybishenko, Boris |
Author_xml | – sequence: 1 givenname: Juliane orcidid: 0000-0001-8627-1992 surname: Müller fullname: Müller, Juliane email: JulianeMueller@lbl.gov organization: Computational Research Division, Lawrence Berkeley National Laboratory – sequence: 2 givenname: Jangho surname: Park fullname: Park, Jangho organization: Computational Research Division, Lawrence Berkeley National Laboratory – sequence: 3 givenname: Reetik surname: Sahu fullname: Sahu, Reetik organization: Computational Research Division, Lawrence Berkeley National Laboratory – sequence: 4 givenname: Charuleka surname: Varadharajan fullname: Varadharajan, Charuleka organization: Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory – sequence: 5 givenname: Bhavna surname: Arora fullname: Arora, Bhavna organization: Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory – sequence: 6 givenname: Boris surname: Faybishenko fullname: Faybishenko, Boris organization: Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory – sequence: 7 givenname: Deborah surname: Agarwal fullname: Agarwal, Deborah organization: Computational Research Division, Lawrence Berkeley National Laboratory |
BookMark | eNp9kE1LAzEQhoNUsFX_gKcFz1sn2Y8kx1L8pOBBPYdsPkpqu1mTXYr-emNXEDyUOQwM7zPDPDM0aX1rELrCMMcA9CZiYJzlQCAH4JjkcIKmuKJFTjiuJ2gKnFR5BYDP0CzGDaQUq8gUPb0MIfi17E3mu97t3JfsnW8zbzNtTJe1Zghym1q_9-E9ZtaHbB380Op9YkLWBaOd-kHiBTq1chvN5W8_R293t6_Lh3z1fP-4XKxyVdaszyWtS0ZBU1NqonUlCWZFLY3ipGy0Uk2NucaNskw2DCRvJLeVqgkptWUlVcU5uh73dsF_DCb2YuOH0KaTglQ1lAwYFCk1H1NruTXCtdb3QapU2uycSvasS_MFTcc5rRhNABsBFXyMwVihXH-QkUC3FRjEj2oxqhZJtTioFpBQ8g_tgtvJ8HkcKkYopnC7NuHvjSPUNy7zlEg |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_131418 crossref_primary_10_1002_cpe_7421 crossref_primary_10_2478_amns_2023_1_00308 crossref_primary_10_5194_hess_26_2405_2022 crossref_primary_10_1016_j_jhydrol_2023_130363 crossref_primary_10_1016_j_scitotenv_2024_177784 crossref_primary_10_3390_w14152377 crossref_primary_10_3390_su14073867 crossref_primary_10_1016_j_gsd_2024_101389 crossref_primary_10_1038_s41467_022_28770_2 crossref_primary_10_1016_j_jhydrol_2023_130085 crossref_primary_10_1007_s00521_022_08165_6 crossref_primary_10_1016_j_watres_2024_121249 crossref_primary_10_1109_TPS_2024_3519032 crossref_primary_10_1615_JMachLearnModelComput_2021038774 crossref_primary_10_1016_j_ejrh_2023_101442 crossref_primary_10_1155_2024_9480522 crossref_primary_10_1016_j_envsoft_2023_105766 crossref_primary_10_2166_wcc_2023_348 crossref_primary_10_1007_s42979_024_02686_8 crossref_primary_10_3389_frwa_2024_1471258 crossref_primary_10_3389_frwa_2021_740044 crossref_primary_10_1007_s00704_024_05195_z crossref_primary_10_1038_s41597_022_01787_4 crossref_primary_10_3390_w12010005 crossref_primary_10_1038_s41370_024_00712_8 crossref_primary_10_1155_2022_6372089 crossref_primary_10_3390_hydrology7030064 crossref_primary_10_1002_hyp_14565 crossref_primary_10_3390_w15061115 crossref_primary_10_1007_s11600_022_00948_8 crossref_primary_10_3390_hydrology12030059 crossref_primary_10_1142_S0218126622502553 crossref_primary_10_1007_s00477_023_02570_6 crossref_primary_10_1109_ACCESS_2021_3130306 crossref_primary_10_1007_s11270_024_07247_6 crossref_primary_10_1016_j_envsoft_2024_106264 crossref_primary_10_3390_w16131907 crossref_primary_10_1007_s11269_022_03248_4 crossref_primary_10_1007_s00158_022_03369_9 crossref_primary_10_1007_s11081_022_09740_5 crossref_primary_10_1016_j_uclim_2023_101469 crossref_primary_10_1016_j_asoc_2024_112468 crossref_primary_10_1007_s40808_022_01650_w crossref_primary_10_1007_s10898_021_01045_8 crossref_primary_10_1016_j_scitotenv_2025_179009 crossref_primary_10_1007_s10589_022_00381_z crossref_primary_10_1080_10106049_2022_2025921 crossref_primary_10_3389_frwa_2020_573034 crossref_primary_10_1007_s11783_024_1814_5 |
Cites_doi | 10.1007/BF01197708 10.1016/j.cam.2018.02.017 10.1029/2018MS001449 10.1002/2016WR019933 10.1007/s10898-013-0101-y 10.1007/s40641-018-0093-2 10.1162/089976600300015015 10.1137/120902434 10.1016/j.cageo.2010.10.007 10.1007/s10898-017-0496-y 10.1007/978-3-0348-8696-3_14 10.1214/aoms/1177729586 10.1016/j.jhydrol.2004.12.001 10.1109/TNN.2007.912306 10.1007/s11081-015-9281-2 10.1007/s11081-016-9307-4 10.1016/j.eswa.2016.03.044 10.1039/C0EM00478B 10.1007/s11590-008-0089-2 10.1038/nature14539 10.1109/HiPC.2018.00014 10.1109/ICRA.2015.7139555 10.1093/oso/9780198538493.001.0001 10.1098/rspa.2007.1900 10.1016/j.jhydrol.2018.04.065 10.1016/S1352-2310(97)00447-0 10.1609/aaai.v31i1.10647 10.21437/Interspeech.2010-343 10.5194/hess-22-6005-2018 10.1016/j.cor.2010.09.013 10.1007/s10898-007-9256-8 10.1016/j.jhydrol.2003.12.033 10.32614/RJ-2017-009 10.1287/ijoc.2017.0749 10.1007/s00521-012-0940-3 10.1155/2017/5681308 10.3133/tm6A55 10.1080/03155986.2019.1607810 10.1016/j.elspec.2018.10.006 10.7551/mitpress/3927.001.0001 10.1109/5.726791 10.1007/s00521-012-0904-7 10.2514/1.C031342 10.1145/2834892.2834896 10.1023/A:1011255519438 10.1016/j.ejor.2009.11.010 10.21437/Interspeech.2012-65 10.1287/ijoc.1060.0182 10.1145/1916461.1916468 10.1023/A:1008306431147 10.1137/040603371 10.1287/ijoc.2018.0864 10.1162/neco.1997.9.8.1735 10.1016/j.cor.2012.08.022 10.1016/j.jhydrol.2016.11.007 10.1007/978-3-319-68913-5 10.1137/18M1191944 10.1007/978-3-7908-2604-3_16 10.1007/s10898-007-9217-2 10.1109/CVPR.2016.90 10.1109/ICASSP.2013.6638947 10.1016/j.trc.2015.03.014 10.1007/s10596-014-9443-x 10.1029/2000WR900368 10.2113/gsecongeo.58.8.1246 |
ContentType | Journal Article |
Copyright | This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2020 COPYRIGHT 2021 Springer This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2020. |
Copyright_xml | – notice: This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2020 – notice: COPYRIGHT 2021 Springer – notice: This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2020. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10898-020-00912-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM global Computing Database ProQuest research library Science Database Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Sciences (General) Computer Science |
EISSN | 1573-2916 |
EndPage | 231 |
ExternalDocumentID | A718397587 10_1007_s10898_020_00912_0 |
GrantInformation_xml | – fundername: Office of Science grantid: DE-AC02-05CH11231 funderid: http://dx.doi.org/10.13039/100006132 |
GroupedDBID | -52 -57 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9M PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SBE SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8T Z8U Z8W Z92 ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT AEIIB PMFND 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c468t-a764870d7e4d2dd5a21836aec924bdccb619d1bcf8ab80a9ba9f5c6224df847c3 |
IEDL.DBID | BENPR |
ISSN | 0925-5001 |
IngestDate | Sat Aug 23 13:59:26 EDT 2025 Tue Jun 10 20:37:35 EDT 2025 Tue Jul 01 00:53:00 EDT 2025 Thu Apr 24 23:05:45 EDT 2025 Fri Feb 21 02:47:44 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hyperparameter optimization Surrogate models Groundwater prediction Machine learning Derivative-free optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-a764870d7e4d2dd5a21836aec924bdccb619d1bcf8ab80a9ba9f5c6224df847c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8627-1992 |
OpenAccessLink | https://escholarship.org/uc/item/9371x126 |
PQID | 2560480803 |
PQPubID | 29930 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2560480803 gale_infotracacademiconefile_A718397587 crossref_citationtrail_10_1007_s10898_020_00912_0 crossref_primary_10_1007_s10898_020_00912_0 springer_journals_10_1007_s10898_020_00912_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering |
PublicationTitle | Journal of global optimization |
PublicationTitleAbbrev | J Glob Optim |
PublicationYear | 2021 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | BishopCMNeural networks for pattern recognition1995OxfordOxford University Press0868.68096 TrennSMultilayer perceptrons: approximation order and necessary number of hidden unitsIEEE Trans. Neural Netw.200819583684410.1109/TNN.2007.912306 HochreiterSSchmidhuberJLong short-term memoryNeural Comput.199791735178010.1162/neco.1997.9.8.1735 Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: Proceedings of the 2013 International Conference on Acoustics, Speech, and Signal Processing (2013) Jin, H., Song, Q., Hu, X.: Auto-Keras: An Efficient Neural Architecture Search System (2019). arXiv:1806.10282 [cs.LG] HolmströmKAn adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer global optimizationJ. Global Optim.2008931133924474151400.90226 ZhangJZhuYZhangXYeMYangJDeveloping a long short-term memory (LSTM) based model for predicting water table depth in agricultural areasJ. Hydrol.201856191892910.1016/j.jhydrol.2018.04.065 Langevin, C.D., Hughes, J.D., Banta, E.R., Niswonger, R.G., Panday, S., Provost, A.M.: Documentation for the MODFLOW 6 Groundwater Flow Model. Technical Report, US Geological Survey (2017) ChiangY-MChangL-CChangF-JComparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modelingJ. Hydrol.20042903–429731110.1016/j.jhydrol.2003.12.033 Chollet, F.: keras. GitHub Repository (2015). https://github.com/fchollet/keras. Accessed 18 May 2020 Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems (2012) PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189 NuñezLRegisRGVarelaKAccelerated random search for constrained global optimization assisted by radial basis function surrogatesJ. Comput. Appl. Math.201834027629538078011433.9012710.1016/j.cam.2018.02.017 WildSMShoemakerCAGlobal convergence of radial basis function trust-region algorithms for derivative-free optimizationSIAM Rev.20135534937130499241270.6502810.1137/120902434 KratzertFKlotzDBrennerCSchulzKHerrneggerMRainfall-runoff modelling using long short-term memory (LSTM) networksHydrol. Earth Syst. Sci.201822116005602210.5194/hess-22-6005-2018 Borovykh, A., Bohte, S., Oosterlee, C.W.: Conditional Time Series Forecasting with Convolutional Neural Networks (2017). arXiv:1703.04691 Balaprakash, P., Salim, M., Uram, T.D., Vishwanath, V., Wild, S.M.: Deephyper: asynchronous hyperparameter search for deep neural networks. In: 2018 IEEE 25th International Conference on High Performance Computing (HiPC), pp. 42–51 (2018) GramacyRLe DigabelSThe mesh adaptive direct search algorithm with treed Gaussian process surrogatesPac. J. Optim.20151141944733845481327.90308 MüllerJSOCEMO: surrogate optimization of computationally expensive multiobjective problemsINFORMS J. Comput.201729458159637188130727160610.1287/ijoc.2017.0749 HolmströmKAn adaptive radial basis algorithm (ARBF) for expensive black-box global optimizationJ. Global Optim.20084144746424244781152.9060910.1007/s10898-007-9256-8 RudySAllaABruntonSLKutzJNData-driven identification of parametric partial differential equationsSIAM J. Appl. Dyn. Syst.201918264366039368901456.6509610.1137/18M1191944 JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ. Global Optim.19981345549216734600917.9027010.1023/A:1008306431147 MitchellMAn Introduction to Genetic Algorithms1996CambridgeMIT Press0906.68113 KarslıoğluOGehlmannMMüllerJNemšàkSSethianJKaduwelaABluhmHFadleyCAn efficient algorithm for automatic structure optimization in x-ray standing-wave experimentsJ. Electron Spectrosc. Relat. Phenom.2019230102010.1016/j.elspec.2018.10.006 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M. et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems (2016). arXiv:1603.04467 LanghansWMüllerJCollinsWOptimization of the Eddy-diffusivity/mass-flux shallow cumulus and boundary-layer parameterization using surrogate modelsJ. Adv. Model. Earth Syst.20191140241610.1029/2018MS001449 MaXTaoZWangYYuHWangYLong short-term memory neural network for traffic speed prediction using remote microwave sensor dataTransp. Res. C Emerg. Technol.20155418719710.1016/j.trc.2015.03.014 TabariHTalaeePHMultilayer perceptron for reference evapotranspiration estimation in a semiarid regionNeural Comput. Appl.201323234134810.1007/s00521-012-0904-7 DavisEIerapetritouMKriging based method for the solution of mixed-integer nonlinear programs containing black-box functionsJ. Global Optim.20094319120524718811179.9023810.1007/s10898-007-9217-2 LeeHKHGramacyRBLinkletterCGrayGAOptimization subject to hidden constraints via statistical emulationPac. J. Optim.20117467478288316005964910 RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsCognit. Model.19885311369.68284 AraujoPAstrayGFerrerio-LageJAMejutoJCRodriguez-SuarezJASotoBMultilayer perceptron neural network for flow predictionJ. Environ. Monit.2011131354110.1039/C0EM00478B LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE199886112278232410.1109/5.726791 Hsu, D.: Multi-period Time Series Modeling with Sparsity Via Bayesian Variational Inference (2018). arXiv:1707.00666v3 MoritzSBartz-BeielsteinTimputeTS: Time Series Missing Value Imputation in RR J.2017920721810.32614/RJ-2017-009 AudetCHareWDerivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering2017BerlinSpringer1391.9000110.1007/978-3-319-68913-5 Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.A.: Efficient hyperparameter optimization of deep learning algorithms using deterministic RBF surrogates. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (2017) GardnerMWDorlingSRArtificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciencesAtmos. Environ.19983214–152627263610.1016/S1352-2310(97)00447-0 XuTSpycherNSonnenthalEZhangGZhengLPruessKTOUGHREACT version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditionsComput. Geosci.201137676377410.1016/j.cageo.2010.10.007 Hinton, G., Srivastava, N., Swersky, K.: Neural Networks for Machine Learning. lecture 6a, Overview of Mini-batch Gradient Descent. Lecture Notes (2012). https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf. Accessed 18 May 2020 MüllerJShoemakerCAPichéRSO-MI: a surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problemsComput. Oper. Res.2013401383140030309911352.9006710.1016/j.cor.2012.08.022 ForresterAIJSóbesterAKeaneAJMulti-fidelity optimization via surrogate modellingProc. R. Soc.20074633251326923866611142.9048910.1098/rspa.2007.1900 BookerAJDennisJEJrFrankPDSerafiniDBTorczonVTrossetMWA rigorous framework for optimization of expensive functions by surrogatesStruct. Multidiscip. Optim.19991711310.1007/BF01197708 GutmannH-MA radial basis function method for global optimizationJ. Global Optim.20011920122718332170972.9005510.1023/A:1011255519438 RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951223400407426680054.0590110.1214/aoms/1177729586 Cui, Z., Chen, W., Chen, Y.: Multi-scale Convolutional Neural Networks for Time Series Classification (2016). arXiv:1603.06995 Le DigabelSAlgorithm 909: NOMAD–nonlinear optimization with the MADS algorithmACM Trans. Math. Softw.20113711527748361365.6517210.1145/1916461.1916468 MüllerJMISO: mixed integer surrogate optimization frameworkOptim. Eng.201517117720334592571364.9023010.1007/s11081-015-9281-2 MüllerJPaudelRShoemakerCAWoodburyJWangYMahowaldNCH4 parameter estimation in CLM4.5bgc using surrogate global optimizationGeosci. Model Dev. Discus.20158141207 AbramsonMAAudetCChrissisJWalstonJMesh adaptive direct search algorithms for mixed variable optimizationOptim. Lett.20093354724535031154.9055110.1007/s11590-008-0089-2 AudetCDennisJEJrMesh adaptive direct search algorithms for constrained optimizationSIAM J. Optim.20061718821722191501112.9007810.1137/040603371 AudetCKokkolarasMBlackbox and derivative-free optimization: theory, algorithms and applicationsOptim. Eng.20161711234592491364.9000810.1007/s11081-016-9307-4 DaliakopoulosINCoulibalyPTsanisIKGroundwater level forecasting using artificial neural networksJ. Hydrol.20053091–422924010.1016/j.jhydrol.2004.12.001 FortinF-ADe RainvilleF-MGardnerM-AGagnéCParizeauMDEAP: evolutionary algorithms made easyJ. Mach. Learn. Res.201213217121752973597 MüllerJDayMSurrogate optimization of computationally expensive black-box problems with hidden constraintsINFORMS J. Comput.2019403782210.1287/ijoc.2018.086407283450 MatheronGPrinciples of geostatisticsEcon. Geol.1963581246126610.2113/gsecongeo.58.8.1246 MüllerJWoodburyJGOSAC: global optimization with surrogate approximation of constraintsJ. Glob. Optim.2017368771910.1007/s10898-017-0496-y1373.90118 SteefelCIAppeloCAJAroraBJacquesDKalbacherTKolditzOLagneauVLichtnerPCMayerKUMeeussenJCLReactive transport codes for subsurface environmental simulationComput. Geosci.201519344547833607851323.8600210.1007/s10596-014-9443-x PowellMJDAdvances in Numerical Analysis, Vol. 2: Wavelets, Subdivision Algorithms and Radial Basis Functions. Oxford University Press, Oxford, pp. 105–210, Chapter The Theory of Radial Basis Function Approximation in 19901992LondonOxford University Press CoulibalyPAnctilFAravenaRBobéeBArtificial neural network modeling of water table depth fluctuationsWater Resour. Res.200137488589610.1029/2000WR900368 Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010) Yo F Pedregosa (912_CR71) 2011; 12 J Müller (912_CR60) 2015; 17 AIJ Forrester (912_CR26) 2007; 463 O Karslıoğlu (912_CR43) 2019; 230 J Müller (912_CR64) 2017 F-A Fortin (912_CR27) 2012; 13 R Gramacy (912_CR30) 2015; 11 F Kratzert (912_CR46) 2018; 22 J Zhang (912_CR91) 2018; 561 912_CR21 H-M Gutmann (912_CR32) 2001; 19 K Holmström (912_CR36) 2008; 9 H Robbins (912_CR76) 1951; 22 912_CR25 RG Regis (912_CR75) 2007; 19 P Coulibaly (912_CR20) 2001; 37 MJD Powell (912_CR72) 1992 S Moritz (912_CR59) 2017; 9 C Audet (912_CR7) 2016; 17 C Audet (912_CR8) 2010; 204 X Ma (912_CR55) 2015; 54 D Toal (912_CR86) 2011; 48 MJD Powell (912_CR73) 1999 AJ Booker (912_CR13) 1999; 17 A Najah (912_CR69) 2013; 22 SM Wild (912_CR88) 2013; 55 912_CR90 Y LeCun (912_CR52) 1998; 86 J Müller (912_CR67) 2015; 8 RH Myers (912_CR68) 2016 Y LeCun (912_CR53) 2015; 521 912_CR1 K Holmström (912_CR37) 2008; 41 912_CR3 S Rudy (912_CR77) 2019; 18 J Bergstra (912_CR10) 2012; 13 912_CR11 912_CR14 912_CR57 912_CR16 912_CR15 J Müller (912_CR61) 2017; 29 912_CR18 C Audet (912_CR5) 2006; 17 T Xu (912_CR89) 2011; 37 IN Daliakopoulos (912_CR22) 2005; 309 J Müller (912_CR62) 2019 DE Rumelhart (912_CR78) 1988; 5 MW Gardner (912_CR28) 1998; 32 J Müller (912_CR65) 2013; 40 J Müller (912_CR66) 2013; 59 912_CR9 M Mitchell (912_CR58) 1996 MA Abramson (912_CR2) 2009; 3 912_CR80 912_CR83 E Davis (912_CR24) 2009; 43 912_CR82 912_CR85 912_CR40 S Le Digabel (912_CR51) 2011; 37 912_CR45 C Audet (912_CR6) 2017 912_CR44 912_CR47 RG Regis (912_CR74) 2011; 38 912_CR49 912_CR48 DR Jones (912_CR41) 1998; 13 H Tabari (912_CR84) 2013; 23 S Hochreiter (912_CR35) 1997; 9 P Araujo (912_CR4) 2011; 13 CM Bishop (912_CR12) 1995 J Müller (912_CR63) 2019 F Karandish (912_CR42) 2016; 543 BI Cook (912_CR19) 2018; 4 FA Gers (912_CR29) 2000; 12 S Trenn (912_CR87) 2008; 19 G Matheron (912_CR56) 1963; 58 R Datta (912_CR23) 2016; 57 W Langhans (912_CR50) 2019; 11 S Sahoo (912_CR79) 2017; 53 912_CR31 912_CR34 912_CR33 CI Steefel (912_CR81) 2015; 19 Y-M Chiang (912_CR17) 2004; 290 912_CR38 HKH Lee (912_CR54) 2011; 7 912_CR39 L Nuñez (912_CR70) 2018; 340 |
References_xml | – reference: Cui, Z., Chen, W., Chen, Y.: Multi-scale Convolutional Neural Networks for Time Series Classification (2016). arXiv:1603.06995 – reference: Ali, Z., Hussain, I., Faisal, M., Nazir, H.M., Hussain, T., Shad, M.Y., Shoukry, A.M., Gani, S.H.: Forecasting drought using multilayer perceptron artificial neural network model. Adv. Meteorol., 5681308, 9 pages (2017) – reference: Faunt, C.C.: Groundwater Availability of the Central Valley Aquifer, California. Professional paper 1766, 225 p., U.S. Geological Survey (2009). https://pubs.usgs.gov/pp/1766/PP_1766.pdf. Accessed 18 May 2020 – reference: GutmannH-MA radial basis function method for global optimizationJ. Global Optim.20011920122718332170972.9005510.1023/A:1011255519438 – reference: LeeHKHGramacyRBLinkletterCGrayGAOptimization subject to hidden constraints via statistical emulationPac. J. Optim.20117467478288316005964910 – reference: Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th International Conference on Machine Learning (2013) – reference: ToalDKeaneAEfficient multi-point aerodynamic design optimization via co-krigingJ. Aircr.20114851685169510.2514/1.C031342 – reference: Balaprakash, P., Salim, M., Uram, T.D., Vishwanath, V., Wild, S.M.: Deephyper: asynchronous hyperparameter search for deep neural networks. In: 2018 IEEE 25th International Conference on High Performance Computing (HiPC), pp. 42–51 (2018) – reference: LeCunYBengioYHintonGDeep learningNature201552143644410.1038/nature14539 – reference: BookerAJDennisJEJrFrankPDSerafiniDBTorczonVTrossetMWA rigorous framework for optimization of expensive functions by surrogatesStruct. Multidiscip. Optim.19991711310.1007/BF01197708 – reference: MüllerJMISO: mixed integer surrogate optimization frameworkOptim. Eng.201517117720334592571364.9023010.1007/s11081-015-9281-2 – reference: RegisRGStochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functionsComput. Oper. Res.20113883785327352711434.9010910.1016/j.cor.2010.09.013 – reference: BergstraJBengioYRandom search for hyper-parameter optimizationJ. Mach. Learn. Res.201213128130529137011283.68282 – reference: MüllerJAn algorithmic framework for the optimization of computationally expensive bi-fidelity black-box problemsINFOR Inf. Syst. Oper. Res.201910.1080/03155986.2019.1607810 – reference: Sundermeyer, M., Schluter, R., Ney, H.: LSTM neural networks for language modeling. In: Proceedings of the 12th Annual Conference of the International Speech Communication Association, Portland, Oregon, USA, pp. 601–608 (2012) – reference: RudySAllaABruntonSLKutzJNData-driven identification of parametric partial differential equationsSIAM J. Appl. Dyn. Syst.201918264366039368901456.6509610.1137/18M1191944 – reference: Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast Bayesian optimization of machine learning hyperparameters on large datasets. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida, USA, vol. 54 (2017) – reference: MaXTaoZWangYYuHWangYLong short-term memory neural network for traffic speed prediction using remote microwave sensor dataTransp. Res. C Emerg. Technol.20155418719710.1016/j.trc.2015.03.014 – reference: PedregosaFVaroquauxGGramfortAMichelVThirionBGriselOBlondelMPrettenhoferPWeissRDubourgVVanderplasJPassosACournapeauDBrucherMPerrotMDuchesnayEScikit-learn: machine learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189 – reference: PowellMJDRecent Research at Cambridge on Radial Basis Functions New Developments in Approximation Theory1999BaselBirkhäuser2152320958.4150110.1007/978-3-0348-8696-3_14 – reference: GersFASchmidhuberJCumminsFLearning to forget: continual prediction with LSTMNeural Comput.2000122451247110.1162/089976600300015015 – reference: MüllerJPaudelRShoemakerCAWoodburyJWangYMahowaldNCH4 parameter estimation in CLM4.5bgc using surrogate global optimizationGeosci. Model Dev. Discus.20158141207 – reference: MüllerJWoodburyJGOSAC: global optimization with surrogate approximation of constraintsJ. Glob. Optim.2017368771910.1007/s10898-017-0496-y1373.90118 – reference: Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.-H., Patton, R.M.: Optimizing deep learning hyper-parameters through an evolutionary algorithm. In: MLHPC’15 Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, Volume Article No. 4 (2015) – reference: TrennSMultilayer perceptrons: approximation order and necessary number of hidden unitsIEEE Trans. Neural Netw.200819583684410.1109/TNN.2007.912306 – reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M. et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems (2016). arXiv:1603.04467 – reference: Taylor, M.: Liquid Assets: Improving Management of the State’s Groundwater Resources. Legislative Analyst’s Office, Technical Report (2010) – reference: AudetCSavardGZghalWA mesh adaptive direct search algorithm for multiobjective optimizationEur. J. Oper. Res.2010204354555625878811181.9013710.1016/j.ejor.2009.11.010 – reference: Jin, H., Song, Q., Hu, X.: Auto-Keras: An Efficient Neural Architecture Search System (2019). arXiv:1806.10282 [cs.LG] – reference: SahooSRussoTAElliottJFosterIMachine learning algorithms for modeling groundwater level changes in agricultural regions of the USWater Resour. Res.20175353878389510.1002/2016WR019933 – reference: SteefelCIAppeloCAJAroraBJacquesDKalbacherTKolditzOLagneauVLichtnerPCMayerKUMeeussenJCLReactive transport codes for subsurface environmental simulationComput. Geosci.201519344547833607851323.8600210.1007/s10596-014-9443-x – reference: Borovykh, A., Bohte, S., Oosterlee, C.W.: Conditional Time Series Forecasting with Convolutional Neural Networks (2017). arXiv:1703.04691 – reference: CookBIMankinJSAnchukaitisKJClimate change and drought: from past to futureCurr. Clim. Change Rep.20184216417910.1007/s40641-018-0093-2 – reference: ForresterAIJSóbesterAKeaneAJMulti-fidelity optimization via surrogate modellingProc. R. Soc.20074633251326923866611142.9048910.1098/rspa.2007.1900 – reference: KarandishFŠimunekJA comparison of numerical and machine-learning modeling of soil water content with limited input dataJ. Hydrol.201654389290910.1016/j.jhydrol.2016.11.007 – reference: KratzertFKlotzDBrennerCSchulzKHerrneggerMRainfall-runoff modelling using long short-term memory (LSTM) networksHydrol. Earth Syst. Sci.201822116005602210.5194/hess-22-6005-2018 – reference: MitchellMAn Introduction to Genetic Algorithms1996CambridgeMIT Press0906.68113 – reference: PowellMJDAdvances in Numerical Analysis, Vol. 2: Wavelets, Subdivision Algorithms and Radial Basis Functions. Oxford University Press, Oxford, pp. 105–210, Chapter The Theory of Radial Basis Function Approximation in 19901992LondonOxford University Press – reference: AbramsonMAAudetCChrissisJWalstonJMesh adaptive direct search algorithms for mixed variable optimizationOptim. Lett.20093354724535031154.9055110.1007/s11590-008-0089-2 – reference: JonesDRSchonlauMWelchWJEfficient global optimization of expensive black-box functionsJ. Global Optim.19981345549216734600917.9027010.1023/A:1008306431147 – reference: AudetCHareWDerivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering2017BerlinSpringer1391.9000110.1007/978-3-319-68913-5 – reference: Chollet, F.: keras. GitHub Repository (2015). https://github.com/fchollet/keras. Accessed 18 May 2020 – reference: LeCunYBottouLBengioYHaffnerPGradient-based learning applied to document recognitionProc. IEEE199886112278232410.1109/5.726791 – reference: Hinton, G., Srivastava, N., Swersky, K.: Neural Networks for Machine Learning. lecture 6a, Overview of Mini-batch Gradient Descent. Lecture Notes (2012). https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf. Accessed 18 May 2020 – reference: Kuderer, M., Gulati, S., Burgard, W.: Learning driving styles for autonomous vehicles from demonstration. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2641–2646 (2015) – reference: Lakhmiri, D., Digabel, S. Le, Tribes, C.: HyperNOMAD: Hyperparameter Optimization of Deep Neural Networks Using Mesh Adaptive Direct Search (2019). arXiv:1907.01698 [cs.LG] – reference: Le DigabelSAlgorithm 909: NOMAD–nonlinear optimization with the MADS algorithmACM Trans. Math. Softw.20113711527748361365.6517210.1145/1916461.1916468 – reference: MyersRHMontgomeryDCAnderson-CookCMResponse Surface Methodology: Process and Product Optimization Using Designed Experiments20164Hoboken, NJJohn Wiley & Sons, Inc.1332.62004 – reference: Sutskever, I., Martens, J., Hinton, G.E.: Generating text with recurrent neural networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 1017–1024 (2011) – reference: Kingma, D.P., Ba, J.L.: ADAM: a method for stochastic optimization. In: ICLR 2015 (2015) – reference: Graves, A., Mohamed, A., Hinton, G.: Speech recognition with deep recurrent neural networks. In: Proceedings of the 2013 International Conference on Acoustics, Speech, and Signal Processing (2013) – reference: ZhangJZhuYZhangXYeMYangJDeveloping a long short-term memory (LSTM) based model for predicting water table depth in agricultural areasJ. Hydrol.201856191892910.1016/j.jhydrol.2018.04.065 – reference: ChiangY-MChangL-CChangF-JComparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modelingJ. Hydrol.20042903–429731110.1016/j.jhydrol.2003.12.033 – reference: TabariHTalaeePHMultilayer perceptron for reference evapotranspiration estimation in a semiarid regionNeural Comput. Appl.201323234134810.1007/s00521-012-0904-7 – reference: FortinF-ADe RainvilleF-MGardnerM-AGagnéCParizeauMDEAP: evolutionary algorithms made easyJ. Mach. Learn. Res.201213217121752973597 – reference: He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) – reference: CoulibalyPAnctilFAravenaRBobéeBArtificial neural network modeling of water table depth fluctuationsWater Resour. Res.200137488589610.1029/2000WR900368 – reference: RumelhartDEHintonGEWilliamsRJLearning representations by back-propagating errorsCognit. Model.19885311369.68284 – reference: AudetCKokkolarasMBlackbox and derivative-free optimization: theory, algorithms and applicationsOptim. Eng.20161711234592491364.9000810.1007/s11081-016-9307-4 – reference: DaliakopoulosINCoulibalyPTsanisIKGroundwater level forecasting using artificial neural networksJ. Hydrol.20053091–422924010.1016/j.jhydrol.2004.12.001 – reference: Hsu, D.: Multi-period Time Series Modeling with Sparsity Via Bayesian Variational Inference (2018). arXiv:1707.00666v3 – reference: Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010) – reference: MoritzSBartz-BeielsteinTimputeTS: Time Series Missing Value Imputation in RR J.2017920721810.32614/RJ-2017-009 – reference: GramacyRLe DigabelSThe mesh adaptive direct search algorithm with treed Gaussian process surrogatesPac. J. Optim.20151141944733845481327.90308 – reference: MüllerJShoemakerCAPichéRSO-MI: a surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problemsComput. Oper. Res.2013401383140030309911352.9006710.1016/j.cor.2012.08.022 – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput.199791735178010.1162/neco.1997.9.8.1735 – reference: NajahAEl-ShafieAKarimOAEl-ShafieAHApplication of artificial neural networks for water quality predictionNeural Comput. Appl.201322118720110.1007/s00521-012-0940-3 – reference: HolmströmKAn adaptive radial basis algorithm (ARBF) for expensive black-box global optimizationJ. Global Optim.20084144746424244781152.9060910.1007/s10898-007-9256-8 – reference: Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems (2012) – reference: AudetCDennisJEJrMesh adaptive direct search algorithms for constrained optimizationSIAM J. Optim.20061718821722191501112.9007810.1137/040603371 – reference: NuñezLRegisRGVarelaKAccelerated random search for constrained global optimization assisted by radial basis function surrogatesJ. Comput. Appl. Math.201834027629538078011433.9012710.1016/j.cam.2018.02.017 – reference: WildSMShoemakerCAGlobal convergence of radial basis function trust-region algorithms for derivative-free optimizationSIAM Rev.20135534937130499241270.6502810.1137/120902434 – reference: MatheronGPrinciples of geostatisticsEcon. Geol.1963581246126610.2113/gsecongeo.58.8.1246 – reference: DavisEIerapetritouMKriging based method for the solution of mixed-integer nonlinear programs containing black-box functionsJ. Global Optim.20094319120524718811179.9023810.1007/s10898-007-9217-2 – reference: Langevin, C.D., Hughes, J.D., Banta, E.R., Niswonger, R.G., Panday, S., Provost, A.M.: Documentation for the MODFLOW 6 Groundwater Flow Model. Technical Report, US Geological Survey (2017) – reference: HolmströmKAn adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer global optimizationJ. Global Optim.2008931133924474151400.90226 – reference: Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.A.: Efficient hyperparameter optimization of deep learning algorithms using deterministic RBF surrogates. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (2017) – reference: XuTSpycherNSonnenthalEZhangGZhengLPruessKTOUGHREACT version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditionsComput. Geosci.201137676377410.1016/j.cageo.2010.10.007 – reference: Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: 19th International Conference on Computational Statistics, pp. 177–186 (2010) – reference: MüllerJShoemakerCAPichéRSO-I: a surrogate model algorithm for expensive nonlinear integer programming problems including global optimization applicationsJ. Glob. Optim.20135986588932268341305.9030510.1007/s10898-013-0101-y – reference: DattaRRegisRGA surrogate-assisted evolution strategy for constrained multi-objective optimizationExpert Syst. Appl.20165727028410.1016/j.eswa.2016.03.044 – reference: MüllerJDayMSurrogate optimization of computationally expensive black-box problems with hidden constraintsINFORMS J. Comput.2019403782210.1287/ijoc.2018.086407283450 – reference: RobbinsHMonroSA stochastic approximation methodAnn. Math. Stat.1951223400407426680054.0590110.1214/aoms/1177729586 – reference: BishopCMNeural networks for pattern recognition1995OxfordOxford University Press0868.68096 – reference: AraujoPAstrayGFerrerio-LageJAMejutoJCRodriguez-SuarezJASotoBMultilayer perceptron neural network for flow predictionJ. Environ. Monit.2011131354110.1039/C0EM00478B – reference: GardnerMWDorlingSRArtificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciencesAtmos. Environ.19983214–152627263610.1016/S1352-2310(97)00447-0 – reference: LanghansWMüllerJCollinsWOptimization of the Eddy-diffusivity/mass-flux shallow cumulus and boundary-layer parameterization using surrogate modelsJ. Adv. Model. Earth Syst.20191140241610.1029/2018MS001449 – reference: California Department of Water Resources. SGMA groundwater management. https://www.waterboards.ca.gov/water_issues/programs/gmp/docs/sgma/sgma_20190101.pdf. Accessed 18 May 2020 – reference: RegisRGShoemakerCAA stochastic radial basis function method for the global optimization of expensive functionsINFORMS J. Comput.20071949750923640071241.9019210.1287/ijoc.1060.0182 – reference: MüllerJSOCEMO: surrogate optimization of computationally expensive multiobjective problemsINFORMS J. Comput.201729458159637188130727160610.1287/ijoc.2017.0749 – reference: KarslıoğluOGehlmannMMüllerJNemšàkSSethianJKaduwelaABluhmHFadleyCAn efficient algorithm for automatic structure optimization in x-ray standing-wave experimentsJ. Electron Spectrosc. Relat. Phenom.2019230102010.1016/j.elspec.2018.10.006 – volume: 17 start-page: 1 year: 1999 ident: 912_CR13 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/BF01197708 – volume: 340 start-page: 276 year: 2018 ident: 912_CR70 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.02.017 – volume: 11 start-page: 402 year: 2019 ident: 912_CR50 publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2018MS001449 – volume: 53 start-page: 3878 issue: 5 year: 2017 ident: 912_CR79 publication-title: Water Resour. Res. doi: 10.1002/2016WR019933 – volume: 59 start-page: 865 year: 2013 ident: 912_CR66 publication-title: J. Glob. Optim. doi: 10.1007/s10898-013-0101-y – volume: 4 start-page: 164 issue: 2 year: 2018 ident: 912_CR19 publication-title: Curr. Clim. Change Rep. doi: 10.1007/s40641-018-0093-2 – volume: 12 start-page: 2451 year: 2000 ident: 912_CR29 publication-title: Neural Comput. doi: 10.1162/089976600300015015 – ident: 912_CR80 – ident: 912_CR45 – volume: 55 start-page: 349 year: 2013 ident: 912_CR88 publication-title: SIAM Rev. doi: 10.1137/120902434 – ident: 912_CR83 – volume: 37 start-page: 763 issue: 6 year: 2011 ident: 912_CR89 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2010.10.007 – year: 2017 ident: 912_CR64 publication-title: J. Glob. Optim. doi: 10.1007/s10898-017-0496-y – ident: 912_CR16 – start-page: 215 volume-title: Recent Research at Cambridge on Radial Basis Functions New Developments in Approximation Theory year: 1999 ident: 912_CR73 doi: 10.1007/978-3-0348-8696-3_14 – volume: 22 start-page: 400 issue: 3 year: 1951 ident: 912_CR76 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729586 – volume: 309 start-page: 229 issue: 1–4 year: 2005 ident: 912_CR22 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.12.001 – volume: 19 start-page: 836 issue: 5 year: 2008 ident: 912_CR87 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2007.912306 – ident: 912_CR48 – volume: 17 start-page: 177 issue: 1 year: 2015 ident: 912_CR60 publication-title: Optim. Eng. doi: 10.1007/s11081-015-9281-2 – volume: 17 start-page: 1 issue: 1 year: 2016 ident: 912_CR7 publication-title: Optim. Eng. doi: 10.1007/s11081-016-9307-4 – volume: 57 start-page: 270 year: 2016 ident: 912_CR23 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.03.044 – volume: 13 start-page: 35 issue: 1 year: 2011 ident: 912_CR4 publication-title: J. Environ. Monit. doi: 10.1039/C0EM00478B – ident: 912_CR40 – volume: 3 start-page: 35 year: 2009 ident: 912_CR2 publication-title: Optim. Lett. doi: 10.1007/s11590-008-0089-2 – volume: 521 start-page: 436 year: 2015 ident: 912_CR53 publication-title: Nature doi: 10.1038/nature14539 – volume: 5 start-page: 1 issue: 3 year: 1988 ident: 912_CR78 publication-title: Cognit. Model. – ident: 912_CR9 doi: 10.1109/HiPC.2018.00014 – ident: 912_CR44 – ident: 912_CR34 – ident: 912_CR47 doi: 10.1109/ICRA.2015.7139555 – volume-title: Neural networks for pattern recognition year: 1995 ident: 912_CR12 doi: 10.1093/oso/9780198538493.001.0001 – volume: 463 start-page: 3251 year: 2007 ident: 912_CR26 publication-title: Proc. R. Soc. doi: 10.1098/rspa.2007.1900 – volume: 561 start-page: 918 year: 2018 ident: 912_CR91 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.04.065 – volume: 32 start-page: 2627 issue: 14–15 year: 1998 ident: 912_CR28 publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(97)00447-0 – ident: 912_CR39 doi: 10.1609/aaai.v31i1.10647 – ident: 912_CR57 doi: 10.21437/Interspeech.2010-343 – volume: 22 start-page: 6005 issue: 11 year: 2018 ident: 912_CR46 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-6005-2018 – ident: 912_CR38 – volume: 38 start-page: 837 year: 2011 ident: 912_CR74 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2010.09.013 – volume: 41 start-page: 447 year: 2008 ident: 912_CR37 publication-title: J. Global Optim. doi: 10.1007/s10898-007-9256-8 – volume: 8 start-page: 141 year: 2015 ident: 912_CR67 publication-title: Geosci. Model Dev. Discus. – volume: 290 start-page: 297 issue: 3–4 year: 2004 ident: 912_CR17 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2003.12.033 – volume: 9 start-page: 207 year: 2017 ident: 912_CR59 publication-title: R J. doi: 10.32614/RJ-2017-009 – volume: 29 start-page: 581 issue: 4 year: 2017 ident: 912_CR61 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2017.0749 – volume-title: Response Surface Methodology: Process and Product Optimization Using Designed Experiments year: 2016 ident: 912_CR68 – volume: 22 start-page: 187 issue: 1 year: 2013 ident: 912_CR69 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-0940-3 – ident: 912_CR3 doi: 10.1155/2017/5681308 – volume: 13 start-page: 2171 year: 2012 ident: 912_CR27 publication-title: J. Mach. Learn. Res. – ident: 912_CR49 doi: 10.3133/tm6A55 – year: 2019 ident: 912_CR62 publication-title: INFOR Inf. Syst. Oper. Res. doi: 10.1080/03155986.2019.1607810 – volume: 230 start-page: 10 year: 2019 ident: 912_CR43 publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2018.10.006 – volume-title: An Introduction to Genetic Algorithms year: 1996 ident: 912_CR58 doi: 10.7551/mitpress/3927.001.0001 – volume: 12 start-page: 2825 year: 2011 ident: 912_CR71 publication-title: J. Mach. Learn. Res. – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 912_CR52 publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 23 start-page: 341 issue: 2 year: 2013 ident: 912_CR84 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-0904-7 – volume: 48 start-page: 1685 issue: 5 year: 2011 ident: 912_CR86 publication-title: J. Aircr. doi: 10.2514/1.C031342 – ident: 912_CR90 doi: 10.1145/2834892.2834896 – volume: 19 start-page: 201 year: 2001 ident: 912_CR32 publication-title: J. Global Optim. doi: 10.1023/A:1011255519438 – volume: 204 start-page: 545 issue: 3 year: 2010 ident: 912_CR8 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2009.11.010 – volume: 13 start-page: 281 issue: 1 year: 2012 ident: 912_CR10 publication-title: J. Mach. Learn. Res. – ident: 912_CR85 – ident: 912_CR82 doi: 10.21437/Interspeech.2012-65 – volume: 19 start-page: 497 year: 2007 ident: 912_CR75 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.1060.0182 – volume: 37 start-page: 1 year: 2011 ident: 912_CR51 publication-title: ACM Trans. Math. Softw. doi: 10.1145/1916461.1916468 – volume: 13 start-page: 455 year: 1998 ident: 912_CR41 publication-title: J. Global Optim. doi: 10.1023/A:1008306431147 – volume: 17 start-page: 188 year: 2006 ident: 912_CR5 publication-title: SIAM J. Optim. doi: 10.1137/040603371 – ident: 912_CR14 – volume: 11 start-page: 419 year: 2015 ident: 912_CR30 publication-title: Pac. J. Optim. – ident: 912_CR18 – year: 2019 ident: 912_CR63 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2018.0864 – ident: 912_CR21 – volume: 9 start-page: 1735 year: 1997 ident: 912_CR35 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 9 start-page: 311 year: 2008 ident: 912_CR36 publication-title: J. Global Optim. – ident: 912_CR1 – volume: 7 start-page: 467 year: 2011 ident: 912_CR54 publication-title: Pac. J. Optim. – volume: 40 start-page: 1383 year: 2013 ident: 912_CR65 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2012.08.022 – ident: 912_CR25 – volume: 543 start-page: 892 year: 2016 ident: 912_CR42 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.11.007 – volume-title: Derivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering year: 2017 ident: 912_CR6 doi: 10.1007/978-3-319-68913-5 – volume: 18 start-page: 643 issue: 2 year: 2019 ident: 912_CR77 publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/18M1191944 – ident: 912_CR15 doi: 10.1007/978-3-7908-2604-3_16 – ident: 912_CR11 – volume: 43 start-page: 191 year: 2009 ident: 912_CR24 publication-title: J. Global Optim. doi: 10.1007/s10898-007-9217-2 – ident: 912_CR33 doi: 10.1109/CVPR.2016.90 – ident: 912_CR31 doi: 10.1109/ICASSP.2013.6638947 – volume: 54 start-page: 187 year: 2015 ident: 912_CR55 publication-title: Transp. Res. C Emerg. Technol. doi: 10.1016/j.trc.2015.03.014 – volume-title: Advances in Numerical Analysis, Vol. 2: Wavelets, Subdivision Algorithms and Radial Basis Functions. Oxford University Press, Oxford, pp. 105–210, Chapter The Theory of Radial Basis Function Approximation in 1990 year: 1992 ident: 912_CR72 – volume: 19 start-page: 445 issue: 3 year: 2015 ident: 912_CR81 publication-title: Comput. Geosci. doi: 10.1007/s10596-014-9443-x – volume: 37 start-page: 885 issue: 4 year: 2001 ident: 912_CR20 publication-title: Water Resour. Res. doi: 10.1029/2000WR900368 – volume: 58 start-page: 1246 year: 1963 ident: 912_CR56 publication-title: Econ. Geol. doi: 10.2113/gsecongeo.58.8.1246 |
SSID | ssj0009852 |
Score | 2.5242128 |
Snippet | Sustainable management of groundwater resources under changing climatic conditions require an application of reliable and accurate predictions of groundwater... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 203 |
SubjectTerms | Algorithms Ambient temperature Artificial neural networks Computer Science Deep learning Groundwater Groundwater levels Machine learning Management Mathematics Mathematics and Statistics Multilayer perceptrons Neural networks Operations Research/Decision Theory Optimization Precipitation variability Random sampling Real Functions Water Water, Underground |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60XvSgtirWF3sQVDSQJtk8jkUsRdCLFrwt-8pJk5K0-PedSTfWN3gJhEyyITM7O5Od7xuAU6KUynjIPd9kgRcpGXsKj55Cg1YhT4xsupbc3cfjSXT7xJ8cKKxuq93bLcnGU38Au6UEBwsICZ1RQcEqrHHK3dGKJ8FwSbWbNn12_CzgHkcv7KAyPz_j03L01Sl_2x1tFp3RNmy6aJENF-rtwooterDVdmJgbmL2YOMDrSCe3b1zsdY96Dqpmp07jumLHbh9mFdVSb_QWIlO48WhMVmZM2PtlBHNJQ5cLIrEa4ahLSMASGFeJY08rWiDp7HZXZiMbh6vx55rq-DpKE5nnkxizFJ8k9jIBMZwSVFSLK3GVEwZrRXmVGagdJ5KlfoyUzLLuY5xrTc5rmU63INOURZ2H1ioUaEhRpC-lZHkxE7vywGK5UGS2Djrw6D9ukI7znFqffEslmzJpBGBGhGNRoTfh8v3e6YLxo0_pc9IaYKmIz5ZS4cqwPcjYisxTCgExKQo6cNRq1fh5mktKOCLiFoz7MNVq-vl5d_HPfif-CGsB1QM0xSnHUFnVs3tMUYzM3XSGO8bJJLpVQ priority: 102 providerName: Springer Nature |
Title | Surrogate optimization of deep neural networks for groundwater predictions |
URI | https://link.springer.com/article/10.1007/s10898-020-00912-0 https://www.proquest.com/docview/2560480803 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB4BucABEdqKlBDtAYlWZVXH9vpxQglKQFSNqpZIcFrtyydqByeIv8-Ms2kKCC72YR-2ZnbnsTvzDcAxQUrlIhI8sHnIY60SrvHJNS5oHYnUqqZqyc9JcjmNr27EjT9wm_uwypVMbAS1rQydkX8n1RwTCGJ0NrvnVDWKbld9CY1NaKEIztD5ag1Hk1-_17C7WVNzJ8hDwQVKZJ8245PnMkovCymzOqcAhWeq6aWAfnVT2iig8R7sesuRDZasbsOGK_dh5z88wX1o-506Z188nPTXD3D156GuKzotYxXKh78-8ZJVBbPOzRghWuK85TIefM7QimWU61HaRxxTs1lNdznN8vwI0_Ho-vyS-woK3MRJtuAqTdAhCWzqYhtaKxQZRIlyBr0ubY3R6D7ZvjZFpnQWqFyrvBAmQbVuC1RbJvoEW2VVugNgkUHeRWgsBk7FShAQfaD62K0I09QleQf6K-JJ4-HFqcrFnVwDIxPBJRJcNgSXQQe-_RszW4JrvNv7hHgiaefhzEb5BAL8P8KwkoOUrD30f9IOdFdsk35LzuV6AXXgdMXKdfPb3_38_myHsB1SnEsTd9aFrUX94I7QUFnoHmxm44setAbj4XBC74vbH6OeX6PYOg0HT2U_59M |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5Remh7qMpLXbqlPrSiCCyySZzHoUKIdlmeF0DiZvzKqU2W7CLUP9Xf2Jmsw_IQ3PaSS2wnmrftmW8AvhKkVC4iwQObhzzWKuEan1yjQOtIpFY1XUtOTpPBRXx4KS7n4F9bC0Npla1NbAy1rQydkW-Ta44JBDHaGV5z6hpFt6ttC42JWBy5v7e4ZRv9OPiJ_P0Whv1f53sD7rsKcBMn2ZirNMEgPbCpi21orVAUJCTKGdyJaGuMxi2F7WlTZEpngcq1ygthEnR1tkBTbiJc9xW8jqMoJ43K-vtTkN-s6fAT5KHgAu2_L9LxpXoZFbOFVMedUzrEA0f42B08uZdt3F3_A7z3cSrbnQjWAsy5chHe3UMvXIQFbxdG7LsHr95YgsOzm7qu6GyOVWiN_vgyT1YVzDo3ZISfieuWk-zzEcOYmVFlSWlvcU7NhjXdHDXKsAwXM6HsCsyXVek-AosMSkqEoWngVKwEwd4HqofDijBNXZJ3oNcSTxoPZk49NX7LKQwzEVwiwWVDcBl0YPNuznAC5fHi6HXiiSQ9x5WN8uUK-H-EmCV3U4otcbeVdqDbsk16AzCSU3HtwFbLyunr57-7-vJqX-DN4PzkWB4fnB59grchZdg0GW9dmB_XN-4zhkhjvdbIJYOrWSvCf2QhIDs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIlX0UAEtYnm0PrRqEVhkkziPQ1XRwopHu0ItSNyMXzmVZMkuQv1r_Dpmsk63FMGNSy6xnWhmPA975huA9wQplYtI8MDmIY-1SrjGJ9co0DoSqVVN15Ifg-TgLD46F-czcNvWwlBaZasTG0VtK0Nn5DtkmmMCQYx2Cp8WcbLX_zK84tRBim5a23YaExE5dn9uMHwbfT7cQ15_CMP-_um3A-47DHATJ9mYqzRBhz2wqYttaK1Q5DAkyhmMSrQ1RmN4YXvaFJnSWaByrfJCmATNni1QrZsI152FuRSjoqADc1_3Byc_p5C_WdPvJ8hDwQVaA1-y4wv3MiptC6mqO6fkiHtm8X_j8OCWtjF-_QV45b1WtjsRs0WYceUSvPwHy3AJFr2WGLFPHsp68zUc_bqu64pO6liFuunSF32yqmDWuSEjNE1ct5zkoo8YetCM6kxKe4Nzajas6R6p2Rpv4OxZaLsMnbIq3QqwyKDcROioBk7FShAIfqB6OKwI09QleRd6LfGk8dDm1GHjt5yCMhPBJRJcNgSXQRe2_s4ZToA9nhz9kXgiadfjykb54gX8P8LPkrspeZoYe6VdWG_ZJr06GMmp8HZhu2Xl9PXj3119erV38AI3gfx-ODheg_mQ0m2a9Ld16Izra7eB_tJYv_WCyeDiuffCHbKKJc0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surrogate+optimization+of+deep+neural+networks+for+groundwater+predictions&rft.jtitle=Journal+of+global+optimization&rft.au=M%C3%BCller%2C+Juliane&rft.au=Park%2C+Jangho&rft.au=Sahu%2C+Reetik&rft.au=Varadharajan%2C+Charuleka&rft.date=2021-09-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=81&rft.issue=1&rft.spage=203&rft_id=info:doi/10.1007%2Fs10898-020-00912-0&rft.externalDocID=A718397587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon |