Stomatal conductance increases with rising temperature

Stomatal conductance directly modifies plant water relations and photosynthesis. Many environmental factors affecting the stomatal conductance have been intensively studied but temperature has been largely neglected, even though it is one of the fastest changing environmental variables and it is ris...

Full description

Saved in:
Bibliographic Details
Published inPlant signaling & behavior Vol. 12; no. 8; p. e1356534
Main Authors Urban, Josef, Ingwers, Miles, McGuire, Mary Anne, Teskey, Robert O.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 03.08.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stomatal conductance directly modifies plant water relations and photosynthesis. Many environmental factors affecting the stomatal conductance have been intensively studied but temperature has been largely neglected, even though it is one of the fastest changing environmental variables and it is rising due to climate change. In this study, we describe how stomata open when the temperature increases. Stomatal conductance increased by ca 40% in a broadleaf and a coniferous species, poplar (Populus deltoides x nigra) and loblolly pine (Pinus taeda) when temperature was increased by 10 °C, from 30 °C to 40 °C at a constant vapor pressure deficit of 1 kPa. The mechanism of regulating stomatal conductance by temperature was, at least partly, independent of other known mechanisms linked to water status and carbon metabolism. Stomatal conductance increased with rising temperature despite the decrease in leaf water potential, increase in transpiration, increase in intercellular CO 2 concentration and was decoupled from photosynthesis. Increase in xylem and mesophyll hydraulic conductance coming from lower water viscosity may to some degree explain temperature dependent opening of stomata. The direct stomatal response to temperature allows plants to benefit from increased evaporative cooling during the heat waves and from lower stomatal limitations to photosynthesis but they may be jeopardized by faster depletion of soil water.
AbstractList Stomatal conductance directly modifies plant water relations and photosynthesis. Many environmental factors affecting the stomatal conductance have been intensively studied but temperature has been largely neglected, even though it is one of the fastest changing environmental variables and it is rising due to climate change. In this study, we describe how stomata open when the temperature increases. Stomatal conductance increased by ca 40% in a broadleaf and a coniferous species, poplar ( Populus deltoides x nigra ) and loblolly pine ( Pinus taeda ) when temperature was increased by 10 °C, from 30 °C to 40 °C at a constant vapor pressure deficit of 1 kPa. The mechanism of regulating stomatal conductance by temperature was, at least partly, independent of other known mechanisms linked to water status and carbon metabolism. Stomatal conductance increased with rising temperature despite the decrease in leaf water potential, increase in transpiration, increase in intercellular CO 2 concentration and was decoupled from photosynthesis. Increase in xylem and mesophyll hydraulic conductance coming from lower water viscosity may to some degree explain temperature dependent opening of stomata. The direct stomatal response to temperature allows plants to benefit from increased evaporative cooling during the heat waves and from lower stomatal limitations to photosynthesis but they may be jeopardized by faster depletion of soil water.
Stomatal conductance directly modifies plant water relations and photosynthesis. Many environmental factors affecting the stomatal conductance have been intensively studied but temperature has been largely neglected, even though it is one of the fastest changing environmental variables and it is rising due to climate change. In this study, we describe how stomata open when the temperature increases. Stomatal conductance increased by ca 40% in a broadleaf and a coniferous species, poplar (Populus deltoides x nigra) and loblolly pine (Pinus taeda) when temperature was increased by 10 °C, from 30 °C to 40 °C at a constant vapor pressure deficit of 1 kPa. The mechanism of regulating stomatal conductance by temperature was, at least partly, independent of other known mechanisms linked to water status and carbon metabolism. Stomatal conductance increased with rising temperature despite the decrease in leaf water potential, increase in transpiration, increase in intercellular CO concentration and was decoupled from photosynthesis. Increase in xylem and mesophyll hydraulic conductance coming from lower water viscosity may to some degree explain temperature dependent opening of stomata. The direct stomatal response to temperature allows plants to benefit from increased evaporative cooling during the heat waves and from lower stomatal limitations to photosynthesis but they may be jeopardized by faster depletion of soil water.
Stomatal conductance directly modifies plant water relations and photosynthesis. Many environmental factors affecting the stomatal conductance have been intensively studied but temperature has been largely neglected, even though it is one of the fastest changing environmental variables and it is rising due to climate change. In this study, we describe how stomata open when the temperature increases. Stomatal conductance increased by ca 40% in a broadleaf and a coniferous species, poplar (Populus deltoides x nigra) and loblolly pine (Pinus taeda) when temperature was increased by 10 °C, from 30 °C to 40 °C at a constant vapor pressure deficit of 1 kPa. The mechanism of regulating stomatal conductance by temperature was, at least partly, independent of other known mechanisms linked to water status and carbon metabolism. Stomatal conductance increased with rising temperature despite the decrease in leaf water potential, increase in transpiration, increase in intercellular CO 2 concentration and was decoupled from photosynthesis. Increase in xylem and mesophyll hydraulic conductance coming from lower water viscosity may to some degree explain temperature dependent opening of stomata. The direct stomatal response to temperature allows plants to benefit from increased evaporative cooling during the heat waves and from lower stomatal limitations to photosynthesis but they may be jeopardized by faster depletion of soil water.
Author Ingwers, Miles
Teskey, Robert O.
Urban, Josef
McGuire, Mary Anne
Author_xml – sequence: 1
  givenname: Josef
  surname: Urban
  fullname: Urban, Josef
  email: josef.urban@email.cz
  organization: Siberian Federal University
– sequence: 2
  givenname: Miles
  surname: Ingwers
  fullname: Ingwers, Miles
  organization: Institute of Plant Breeding, Genetics and Genomics, University of Georgia
– sequence: 3
  givenname: Mary Anne
  surname: McGuire
  fullname: McGuire, Mary Anne
  organization: Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia
– sequence: 4
  givenname: Robert O.
  surname: Teskey
  fullname: Teskey, Robert O.
  organization: Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28786730$$D View this record in MEDLINE/PubMed
BookMark eNp9kNlKAzEUhoNU7KKPoMwLTM2emRtRihsUvFCvQ5rJtJGZpCSppW_vDF3QG6_O4fzLgW8MBs47A8A1glMEC3iLGCsxwXSKIRJTRBhnhJ6BUX_Pe2Fw2hEfgnGMXxBSIiC8AENciIILAkeAvyffqqSaTHtXbXRSTpvMOh2MiiZmW5tWWbDRumWWTLs2QaVNMJfgvFZNNFeHOQGfT48fs5d8_vb8OnuY55ryIuUKspoVcIEEpYqVnHBVF3VpIF-UimhBSIEERIRSXZXY1AIhjKHARVVRwbAmE3C3711vFq2ptHEpqEaug21V2EmvrPyrOLuSS_8tGUccMdoVsH2BDj7GYOpTFkHZg5RHkLIHKQ8gu9zN78en1JFcZ7jfG6yrfWjV1oemkkntGh_q0FG0UZL_f_wAXDSEmg
CitedBy_id crossref_primary_10_5194_hess_28_1827_2024
crossref_primary_10_32615_ps_2020_031
crossref_primary_10_3390_rs14081914
crossref_primary_10_3390_rs11030330
crossref_primary_10_1111_ele_13516
crossref_primary_10_3389_fpls_2019_01199
crossref_primary_10_1002_fes3_478
crossref_primary_10_1016_j_rama_2023_10_006
crossref_primary_10_3390_f12111445
crossref_primary_10_1007_s42976_021_00216_3
crossref_primary_10_1111_pce_13743
crossref_primary_10_1111_pce_14711
crossref_primary_10_3389_fpls_2024_1405343
crossref_primary_10_1016_j_jhydrol_2024_131254
crossref_primary_10_1029_2018GL077560
crossref_primary_10_1007_s42729_021_00470_8
crossref_primary_10_1016_j_foreco_2022_120545
crossref_primary_10_1111_pce_14791
crossref_primary_10_1002_ecs2_3145
crossref_primary_10_1016_j_scitotenv_2018_08_349
crossref_primary_10_1111_nph_19405
crossref_primary_10_3390_agronomy11040706
crossref_primary_10_3390_horticulturae9030348
crossref_primary_10_1016_j_fcr_2020_108036
crossref_primary_10_1016_j_scitotenv_2024_173615
crossref_primary_10_1016_j_xplc_2023_100675
crossref_primary_10_3390_agronomy11122450
crossref_primary_10_1007_s40415_021_00762_4
crossref_primary_10_1080_01431161_2020_1871102
crossref_primary_10_1016_j_pbi_2022_102310
crossref_primary_10_3390_su12208432
crossref_primary_10_3390_plants9111499
crossref_primary_10_3389_ffgc_2018_00008
crossref_primary_10_1093_treephys_tpad097
crossref_primary_10_3390_ijms242316911
crossref_primary_10_1088_1748_9326_ac1df8
crossref_primary_10_1016_j_ufug_2023_128176
crossref_primary_10_1002_tpg2_20378
crossref_primary_10_1111_gcb_15564
crossref_primary_10_1016_j_plaphy_2019_05_009
crossref_primary_10_1016_j_scienta_2024_113437
crossref_primary_10_3390_horticulturae9070774
crossref_primary_10_1080_01904167_2024_2354197
crossref_primary_10_1016_j_scitotenv_2021_147757
crossref_primary_10_3390_plants7040076
crossref_primary_10_3389_fpls_2021_787877
crossref_primary_10_1111_ppl_13578
crossref_primary_10_1007_s11676_021_01390_0
crossref_primary_10_3390_ijms22179402
crossref_primary_10_1017_qpb_2021_19
crossref_primary_10_3390_agronomy11050921
crossref_primary_10_1016_j_tfp_2021_100139
crossref_primary_10_1111_nph_18539
crossref_primary_10_1093_jxb_erz563
crossref_primary_10_1016_j_scienta_2020_109176
crossref_primary_10_1088_1748_9326_abe3bb
crossref_primary_10_1088_1755_1315_648_1_012126
crossref_primary_10_3389_fpls_2020_587264
crossref_primary_10_3390_agriculture13122211
crossref_primary_10_1016_j_scitotenv_2024_170581
crossref_primary_10_1093_jxb_erad437
crossref_primary_10_1007_s11240_022_02336_y
crossref_primary_10_1016_j_jhydrol_2023_129385
crossref_primary_10_3390_su15097584
crossref_primary_10_1093_treephys_tpaa043
crossref_primary_10_3390_plants11131650
crossref_primary_10_3390_agriculture13030545
crossref_primary_10_1111_pce_14026
crossref_primary_10_3389_fpls_2019_00609
crossref_primary_10_1111_tpj_14694
crossref_primary_10_5194_acp_20_11287_2020
crossref_primary_10_1002_joc_8098
crossref_primary_10_3390_agronomy11091825
crossref_primary_10_3390_f14091898
crossref_primary_10_1016_j_atmosenv_2022_119315
crossref_primary_10_1007_s40725_023_00207_z
crossref_primary_10_1016_j_agrformet_2021_108767
crossref_primary_10_1016_j_jaerosci_2019_03_010
crossref_primary_10_3389_fpls_2022_1079180
crossref_primary_10_1016_j_plaphy_2024_108550
crossref_primary_10_1007_s11270_021_05050_1
crossref_primary_10_3390_atmos13071152
crossref_primary_10_1016_j_scitotenv_2021_145474
crossref_primary_10_1016_j_envexpbot_2019_02_019
crossref_primary_10_1093_treephys_tpab141
crossref_primary_10_1093_treephys_tpac075
crossref_primary_10_1002_eap_1749
crossref_primary_10_1111_jac_12584
crossref_primary_10_1111_ppl_13757
crossref_primary_10_1111_pce_14472
crossref_primary_10_1038_s41598_022_25207_0
crossref_primary_10_5194_bg_18_2957_2021
crossref_primary_10_1016_j_ufug_2019_03_016
crossref_primary_10_3390_agronomy11091884
crossref_primary_10_2478_contagri_2021_0006
crossref_primary_10_1016_j_flora_2023_152397
crossref_primary_10_1002_ece3_6744
crossref_primary_10_1038_s41598_023_27798_8
crossref_primary_10_1111_pce_13830
crossref_primary_10_1016_j_stress_2024_100521
crossref_primary_10_3389_fpls_2021_644010
crossref_primary_10_3390_horticulturae9030310
crossref_primary_10_3389_fsufs_2022_938128
crossref_primary_10_32615_bp_2023_017
crossref_primary_10_3389_fevo_2021_695995
crossref_primary_10_7717_peerj_16107
crossref_primary_10_1093_treephys_tpaa118
crossref_primary_10_3390_plants12051156
crossref_primary_10_1038_s41467_022_29543_7
crossref_primary_10_3390_f13030429
crossref_primary_10_1371_journal_pone_0270674
crossref_primary_10_1007_s10584_022_03368_1
crossref_primary_10_1007_s00344_020_10174_5
crossref_primary_10_1016_j_scitotenv_2020_143505
crossref_primary_10_1007_s11676_022_01496_z
crossref_primary_10_1111_pce_14846
crossref_primary_10_1016_j_stress_2024_100450
crossref_primary_10_1093_treephys_tpab043
crossref_primary_10_3390_w14193015
crossref_primary_10_1111_pce_13644
crossref_primary_10_3390_agronomy11010109
crossref_primary_10_1007_s13580_021_00410_6
crossref_primary_10_1016_j_cpb_2023_100311
crossref_primary_10_46604_ijeti_2022_8865
crossref_primary_10_1080_15226514_2023_2282044
crossref_primary_10_1111_pce_14292
crossref_primary_10_1111_ppl_13498
crossref_primary_10_1016_j_dendro_2019_05_004
crossref_primary_10_1016_j_envres_2024_118844
crossref_primary_10_22314_2658_4859_2020_67_3_87_94
crossref_primary_10_1093_pcp_pcad121
crossref_primary_10_1038_s41612_020_0115_3
crossref_primary_10_1016_j_plantsci_2018_09_018
crossref_primary_10_1111_ajgw_12530
crossref_primary_10_1093_treephys_tpae044
crossref_primary_10_1093_plphys_kiad605
crossref_primary_10_1016_j_fcr_2022_108625
crossref_primary_10_1002_ecs2_4480
crossref_primary_10_1111_1752_1688_12811
crossref_primary_10_1093_aobpla_plad083
crossref_primary_10_3389_fpls_2021_734531
crossref_primary_10_1016_j_fcr_2023_109059
Cites_doi 10.1073/pnas.1205276109
10.1111/1365-2435.12289
10.1007/BF00346278
10.1111/pce.12026
10.1111/pce.12449
10.1071/FP15320
10.1093/jexbot/51.348.1255
10.1111/j.1365-3040.2010.02234.x
10.1126/science.1098704
10.1111/pce.12817
10.1016/j.agrformet.2014.02.009
10.1046/j.1365-3040.2003.01035.x
10.1111/gcb.13010
10.1038/282424a0
10.1111/pce.12417
10.1111/j.1469-8137.2012.04267.x
10.1093/treephys/2.1-2-3.131
10.1093/jxb/erx052
10.1111/nph.14009
10.1111/j.1365-3040.1991.tb01521.x
10.1093/treephys/27.8.1083
10.1007/s004680050220
10.1111/j.1365-3040.1995.tb00370.x
10.1029/2011JG001808
10.1093/aobpla/plu018
10.1071/PP98128
10.1093/treephys/15.6.351
10.1029/2012GL053361
10.1002/2016JG003467
10.1104/pp.84.3.658
ContentType Journal Article
Copyright 2017 Taylor & Francis Group, LLC 2017
2017 Taylor & Francis Group, LLC 2017 Taylor & Francis Group, LLC
Copyright_xml – notice: 2017 Taylor & Francis Group, LLC 2017
– notice: 2017 Taylor & Francis Group, LLC 2017 Taylor & Francis Group, LLC
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
DOI 10.1080/15592324.2017.1356534
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
DocumentTitleAlternate J. URBAN ET AL
EISSN 1559-2324
ExternalDocumentID 10_1080_15592324_2017_1356534
28786730
1356534
Genre Article Addendum
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
0YH
29O
2WC
30N
53G
AAAVI
AAJMT
ABCCY
ABFIM
ABJVF
ABPEM
ABQHQ
ABTAI
ACGFS
ACTIO
ADBBV
ADCVX
AEGYZ
AEISY
AEYOC
AFOLD
AHDLD
AIJEM
AIRXU
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AVBZW
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EJD
F5P
FUNRP
FVPDL
GTTXZ
HYE
KYCEM
M4Z
O9-
OK1
P2P
RPM
SNACF
TEI
TFL
TFT
TFW
TR2
TTHFI
V1K
~KM
AAHBH
CGR
CUY
CVF
ECM
EIF
H13
NPM
TDBHL
AAYXX
CITATION
5PM
ID FETCH-LOGICAL-c468t-a05f580b1744a59636af8f9e06b9a3c73381701344cd92ef711220728dd4752c3
IEDL.DBID RPM
ISSN 1559-2316
1559-2324
IngestDate Tue Sep 17 21:17:02 EDT 2024
Fri Aug 23 02:24:57 EDT 2024
Fri Oct 18 08:46:24 EDT 2024
Mon Apr 01 05:14:20 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Ball-Berry model
stomatal conductance
evaporative cooling
photosynthesis
global change
elevated temperature
heat waves
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-a05f580b1744a59636af8f9e06b9a3c73381701344cd92ef711220728dd4752c3
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.1080/15592324.2017.1356534?needAccess=true
PMID 28786730
ParticipantIDs pubmed_primary_28786730
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5616154
crossref_primary_10_1080_15592324_2017_1356534
informaworld_taylorfrancis_310_1080_15592324_2017_1356534
PublicationCentury 2000
PublicationDate 2017-08-03
PublicationDateYYYYMMDD 2017-08-03
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Plant signaling & behavior
PublicationTitleAlternate Plant Signal Behav
PublicationYear 2017
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
cit0012
cit0031
cit0032
cit0030
Mott KA (cit0010) 2010; 33
Raven PH (cit0018) 2005
Slot M (cit0021) 2016; 43
cit0019
cit0017
cit0015
cit0016
cit0013
cit0014
cit0022
cit0001
cit0023
cit0020
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0003
  doi: 10.1073/pnas.1205276109
– ident: cit0024
  doi: 10.1111/1365-2435.12289
– ident: cit0011
  doi: 10.1007/BF00346278
– ident: cit0008
  doi: 10.1111/pce.12026
– ident: cit0016
  doi: 10.1111/pce.12449
– volume: 43
  start-page: 468
  year: 2016
  ident: cit0021
  publication-title: Funct Plant Biol.
  doi: 10.1071/FP15320
  contributor:
    fullname: Slot M
– ident: cit0032
  doi: 10.1093/jexbot/51.348.1255
– ident: cit0007
  doi: 10.1111/j.1365-3040.2010.02234.x
– ident: cit0001
  doi: 10.1126/science.1098704
– ident: cit0031
  doi: 10.1111/pce.12817
– ident: cit0029
  doi: 10.1016/j.agrformet.2014.02.009
– ident: cit0005
  doi: 10.1046/j.1365-3040.2003.01035.x
– volume-title: Biology of plants.
  year: 2005
  ident: cit0018
  contributor:
    fullname: Raven PH
– ident: cit0019
  doi: 10.1111/gcb.13010
– ident: cit0004
  doi: 10.1038/282424a0
– ident: cit0006
  doi: 10.1111/pce.12417
– ident: cit0030
  doi: 10.1111/j.1469-8137.2012.04267.x
– volume: 33
  start-page: 1084
  year: 2010
  ident: cit0010
  publication-title: Plant Cell Environ.
  contributor:
    fullname: Mott KA
– ident: cit0014
  doi: 10.1093/treephys/2.1-2-3.131
– ident: cit0022
  doi: 10.1093/jxb/erx052
– ident: cit0027
  doi: 10.1111/nph.14009
– ident: cit0023
  doi: 10.1111/j.1365-3040.1991.tb01521.x
– ident: cit0017
  doi: 10.1093/treephys/27.8.1083
– ident: cit0012
  doi: 10.1007/s004680050220
– ident: cit0026
  doi: 10.1111/j.1365-3040.1995.tb00370.x
– ident: cit0020
  doi: 10.1029/2011JG001808
– ident: cit0015
  doi: 10.1093/aobpla/plu018
– ident: cit0009
  doi: 10.1071/PP98128
– ident: cit0025
  doi: 10.1093/treephys/15.6.351
– ident: cit0002
  doi: 10.1029/2012GL053361
– ident: cit0028
  doi: 10.1002/2016JG003467
– ident: cit0013
  doi: 10.1104/pp.84.3.658
SSID ssj0043700
Score 2.564165
Snippet Stomatal conductance directly modifies plant water relations and photosynthesis. Many environmental factors affecting the stomatal conductance have been...
SourceID pubmedcentral
crossref
pubmed
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e1356534
SubjectTerms Addendum
Ball-Berry model
elevated temperature
evaporative cooling
global change
heat waves
photosynthesis
Pinus - physiology
Plant Stomata - physiology
Populus - physiology
stomatal conductance
Temperature
Vapor Pressure
Water
Title Stomatal conductance increases with rising temperature
URI https://www.tandfonline.com/doi/abs/10.1080/15592324.2017.1356534
https://www.ncbi.nlm.nih.gov/pubmed/28786730
https://pubmed.ncbi.nlm.nih.gov/PMC5616154
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6sePAivq0vcvCaZpt9ZY8qliIoggrewmazwYJNi40H_70zeUh6ErwmWbJ8s5v5ZjPzDcBVbOPMZEaF3mQqJEHy0LiEhV6QjZHi-7oo7OFRTV_F_Zt82wDZ1cLUSfsum43Kj_monL3XuZXLuYu6PLHo6eEWfT46YhENYKA570L05vMreFN3Qr_bQiQvqivbSVhE14hBUEaXpo4PSnJqzINRQ6I0JUL3fNOacmnPP63nTvac0WQXdloWGVw3s92DDV_uw9bNApne9wGo52oxp2OZAINd0nMlywazkgjiyq8COnsNcHOj1wpImqrVVT6E18ndy-00bPsjhE6opAotk4VMWIZBhbASd5KyRVIYz1RmLHcIDanvjbkQLjexLzRyq5jpOMlzoWXs-BFslovSn0CgbOYS3OtGOyZcYaw2dpxLVjiJ8Zy1Qxh1yKTLRgYjHbfqoh2qKaGatqgOwfTxS6v6_KFomoWk_I-xxw3Gv6_qDDQEvYb-7wMkkr1-B9dOLZbdrpXTf488g22aXJ30x89hs_r88hdIRKrsEgacPV7Wy-8H9jLYKQ
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827,60239,61028
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6VhwQXljddFsiBa9I08SM-LmhReRQh8RC3yHYdUe02rSAc4Nczk0fVclnBNY6VOJ_t-caZ-QbgONKRUUYJ3ykjfBIk95VNQt8xwhgpviuTwvrXonfPLh75Ywt4kwtTBu1bMwzyf6MgHz6VsZWTke00cWKdm_4p2nw0xKyzAEu4XiPeOOnVBsziKvOEfrj5SF9Ek7iThB26RhyCYrok1XwQPKbSPOg3JEJSKPSMdZrTLp2xUPPRkzPm6OwHPDQDqaJQ_gavhQns-yeNxy-PdB3WaoLq_a6aN6Dl8k1YPhkjiXzbAnFbjEd04uOhH01SsTRpvGFO3PPFvXh0rOvhvoEG0SPVq1qyeRvuz_7cnfb8uvSCb5lICl-HPONJaNBfYZrjIhU6SzLlQmGUjq2MS2G_bsyYHajIZRJpWxTKKBkMmOSRjXdgMR_nbg88oY1NcBtR0obMZkpLpbsDHmaWo6uodRuC5pOnk0phI-3WwqUNXCnBldZwtUHNApMW5dFGVtUhSeP_9N2twJs-qkG-DXIO1ukNpL8934JglTrcNTg_v93zCFZ6d_2r9Or8-nIfVulFy9jC-BcsFs-v7gD5TmEOy9n9AfQm-Uk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB2VLUJcoOWjbGkhB6752MSx42OhXdECq5UKEuIS2Y4jVnSzKzZ7gF_PTD5QlkslromtxHmJ543z_AbgJFShllpy10rNXTIkd6VJAtcywhgpvq02hV2N-PkN-3Mb33ZKfVWifaMnXvFv6hWT-0pbOZ8av9WJ-eOrM4z5GIiZP89yfw0-4jcbijZRrydhFtW7T-inm4sUhrebd5LAp2PEI0jXJajuA48jKs-DuUPCBcmhOxFqxb-0E6VWFZSdkDTchrt2MLUS5cFbltozz298Ht812k-w1RBV50fd5DN8sMUOrJ_OkEw-7QL_W86mtPLjYD5NlrH08jiTgjjowi4cWt51cP7AwOiQ-1Vj3bwHN8Nf12fnblOCwTWMJ6WrgjiPk0Bj3sJUjB8rV3mSSxtwLVVkRFQZ_A0ixkwmQ5sLpG9hIMIky5iIQxPtQ6-YFfYAHK60SXA6kcIEzORSCakGWRzkJsaUUak-eO1jT-e100Y6aAxMW8hSgixtIOuD7IKTltUSR17XI0mj__T9UgP4eqkW_T6IFWhfG5AP9-oZBKzy424A-vrunsewMf45TC9_jy4OYZPus5IYRt-gVz4u7XekPaU-ql7wF_qY-8k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stomatal+conductance+increases+with+rising+temperature&rft.jtitle=Plant+signaling+%26+behavior&rft.au=Urban%2C+Josef&rft.au=Ingwers%2C+Miles&rft.au=McGuire%2C+Mary+Anne&rft.au=Teskey%2C+Robert+O.&rft.date=2017-08-03&rft.pub=Taylor+%26+Francis&rft.issn=1559-2316&rft.eissn=1559-2324&rft.volume=12&rft.issue=8&rft_id=info:doi/10.1080%2F15592324.2017.1356534&rft_id=info%3Apmid%2F28786730&rft.externalDBID=PMC5616154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-2316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-2316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-2316&client=summon