Nonneutral Weibel model plasma in the non-minimal CPT-odd coupling
Inspired by the extension of the Standard Model, we investigate the effects of the space-time anisotropy caused by Lorentz symmetry violation (LSV) on a plasma column confinement configuration. The model of Plasma taken into account is the z-pinch model that was in the earliest efforts in fusion pow...
Saved in:
Published in | The European physical journal. C, Particles and fields Vol. 84; no. 3; pp. 232 - 8 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2024
Springer Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inspired by the extension of the Standard Model, we investigate the effects of the space-time anisotropy caused by Lorentz symmetry violation (LSV) on a plasma column confinement configuration. The model of Plasma taken into account is the z-pinch model that was in the earliest efforts in fusion power research. This model comprises particles in a nonequilibrium cylindrical distribution, which remains stationary in the absence of collisions. We propose a disturbance in the distribution by a Lorentz violation environment. As proposed by Carroll, Field, and Jackiw, in a scenario of (LSV), a background field vector could couple with the electromagnetic field, modifying the classical behavior of the electromagnetic field. As reported here, considering the presence of a background field vector, the intensities of the fields and particle densities would be disturbed by the influence of the LSV. For different values of the background field vector coupling constant, the contribution of the background vector field could modify the intensity of the electromagnetic fields, and concentrate even more the electrons densities in the edge of the plasma column, evidencing a behavior similar to a skin effect in this plasma column. |
---|---|
AbstractList | Inspired by the extension of the Standard Model, we investigate the effects of the space-time anisotropy caused by Lorentz symmetry violation (LSV) on a plasma column confinement configuration. The model of Plasma taken into account is the z-pinch model that was in the earliest efforts in fusion power research. This model comprises particles in a nonequilibrium cylindrical distribution, which remains stationary in the absence of collisions. We propose a disturbance in the distribution by a Lorentz violation environment. As proposed by Carroll, Field, and Jackiw, in a scenario of (LSV), a background field vector could couple with the electromagnetic field, modifying the classical behavior of the electromagnetic field. As reported here, considering the presence of a background field vector, the intensities of the fields and particle densities would be disturbed by the influence of the LSV. For different values of the background field vector coupling constant, the contribution of the background vector field could modify the intensity of the electromagnetic fields, and concentrate even more the electrons densities in the edge of the plasma column, evidencing a behavior similar to a skin effect in this plasma column. Abstract Inspired by the extension of the Standard Model, we investigate the effects of the space-time anisotropy caused by Lorentz symmetry violation (LSV) on a plasma column confinement configuration. The model of Plasma taken into account is the z-pinch model that was in the earliest efforts in fusion power research. This model comprises particles in a nonequilibrium cylindrical distribution, which remains stationary in the absence of collisions. We propose a disturbance in the distribution by a Lorentz violation environment. As proposed by Carroll, Field, and Jackiw, in a scenario of (LSV), a background field vector could couple with the electromagnetic field, modifying the classical behavior of the electromagnetic field. As reported here, considering the presence of a background field vector, the intensities of the fields and particle densities would be disturbed by the influence of the LSV. For different values of the background field vector coupling constant, the contribution of the background vector field could modify the intensity of the electromagnetic fields, and concentrate even more the electrons densities in the edge of the plasma column, evidencing a behavior similar to a skin effect in this plasma column. |
ArticleNumber | 232 |
Audience | Academic |
Author | Soares, D. N. Spalenza, W. Braga, F. L. Belich, H. |
Author_xml | – sequence: 1 givenname: D. N. surname: Soares fullname: Soares, D. N. email: diego.n.soares@edu.ufes.br organization: Universidade Federal do Espírito Santo – sequence: 2 givenname: H. surname: Belich fullname: Belich, H. organization: Universidade Federal do Espírito Santo – sequence: 3 givenname: W. surname: Spalenza fullname: Spalenza, W. organization: Instituto Federal do Espírito Santo – sequence: 4 givenname: F. L. surname: Braga fullname: Braga, F. L. organization: Instituto Federal do Espírito Santo |
BookMark | eNqFkd1r1jAYxYNMcJv-DRa88qJb0iRtcjlf_HhhTNGJlyFfrXlpk5q0TP97n3eV6a6kkIaH3zk5yTlDJzFFj9BLgi8IYfjSzwd7WQjGvKlxw2rScCHruyfolDDK6hbmJ__sn6GzUg4YA4rFKXpzk2L065L1WH3zwfixmpKDdR51mXQVYrV89xWcWU8hhgmw3afbOjlX2bTOY4jDc_S012PxL_78z9HXd29vdx_q64_v97ur69qyViy1ZNgbLBqLvaREi4Y4bTjnWkisedd5J611mBmr29Z4IrnhjLmGdBbLzvX0HO03X5f0Qc0ZwuRfKumg7gcpD0rnJdjRK9DRlrdCUO2YMEZYy3rsObHEOOwoeL3avOacfqy-LOqQ1hwhvmok7ZgUtMNAXWzUoME0xD7BO1n4nJ-ChRr6APOrTkBQRvnR9vUjATCL_7kMei1F7b98fsx2G2tzKiX7_uFKBKtjs-rYrNqaVVCXum9W3YFSbMoCijj4_Df8_6S_Acneqg4 |
Cites_doi | 10.1103/PhysRevLett.87.251304 10.1016/0003-4916(60)90023-3 10.1142/S0217751X22500993 10.1016/j.physletb.2006.07.003 10.1103/PhysRevD.86.125037 10.1155/2017/6893084 10.1088/1475-7516/2023/05/027 10.14311/ppt.2019.3.217 10.1103/PhysRevD.96.045019 10.1088/0034-4885/77/8/087001 10.1103/PhysRevD.55.6760 10.1103/PhysRevD.41.1231 10.1142/S0217751X17501408 10.1103/PhysRevD.58.116002 10.1103/PhysRevD.39.683 10.1155/2019/6740360 10.1140/epjd/e2014-50168-5 10.1016/j.aop.2015.05.025 10.1088/0741-3335/54/12/124009 10.1088/0954-3899/42/9/095001 10.1016/0031-8914(71)90113-3 10.1140/epjp/i2017-11305-4 10.1002/0471743984.vse9673 10.1103/PhysRevD.69.109903 10.48550/arXiv.2209.05630 10.1063/1.4977468 10.48550/arXiv.2311.12896 10.1016/j.aop.2018.10.004 10.1063/1.4944670 10.1063/1.1705884 10.1140/epjc/s10052-014-3064-3 10.1088/0954-3899/39/10/105004 10.1016/j.aop.2016.06.009 10.1140/epjc/s10052-018-6479-4 10.1103/PhysRevLett.115.095001 10.1103/PhysRevE.97.013202 10.1063/1.1724391 10.1142/S0217732322501139 10.1103/PhysRevLett.115.072001 10.1103/PhysRevD.66.056005 10.1002/andp.201300186 10.1142/S0217732318501158 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 COPYRIGHT 2024 Springer The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: COPYRIGHT 2024 Springer – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1140/epjc/s10052-024-12589-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea Solid State and Superconductivity Abstracts ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6052 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_44d3656883ad48bb8cc4f0e51c1bd0d3 A785444353 10_1140_epjc_s10052_024_12589_w |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: http://dx.doi.org/10.13039/501100003593 |
GroupedDBID | -5F -5G -A0 -BR -~X .86 0R~ 199 29G 2JY 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN ABDBF ABEEZ ABMNI ACACY ACGFS ACNCT ACUHS ACULB ADBBV ADINQ ADMLS AENEX AFBBN AFGXO AFKRA AFPKN AFWTZ AGWIL AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ BGNMA C24 C6C CCPQU CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EMK EPL ER. ESX FEDTE GQ6 GQ8 GROUPED_DOAJ GXS HCIFZ HF~ HG5 HG6 HMJXF HVGLF HZ~ I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS M4Y MA- NB0 O9- O93 OK1 P62 P9T PIMPY QOS R89 R9I RED RID RNS ROL RPX RSV S27 S3B SDH SOJ SPH SZN T13 TN5 TSK TSV TUC TUS U2A VC2 WK8 Z45 Z7Y ~8M AAYXX CITATION PHGZM PHGZT PMFND 7U5 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c468t-940eb082c0e931a821dab555a890a577ed9ccd04bca66be195b544d217c097df3 |
IEDL.DBID | BENPR |
ISSN | 1434-6052 1434-6044 |
IngestDate | Wed Aug 27 01:23:37 EDT 2025 Sat Jul 26 00:39:28 EDT 2025 Tue Jun 10 21:02:17 EDT 2025 Fri Jun 27 05:15:24 EDT 2025 Tue Jul 01 01:30:40 EDT 2025 Fri Feb 21 02:39:11 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-940eb082c0e931a821dab555a890a577ed9ccd04bca66be195b544d217c097df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2937498370?pq-origsite=%requestingapplication% |
PQID | 2937498370 |
PQPubID | 2034659 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_44d3656883ad48bb8cc4f0e51c1bd0d3 proquest_journals_2937498370 gale_infotracacademiconefile_A785444353 gale_incontextgauss_ISR_A785444353 crossref_primary_10_1140_epjc_s10052_024_12589_w springer_journals_10_1140_epjc_s10052_024_12589_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | Particles and Fields |
PublicationTitle | The European physical journal. C, Particles and fields |
PublicationTitleAbbrev | Eur. Phys. J. C |
PublicationYear | 2024 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
References | NewcombWAHydromagnetic stability of a diffuse linear pinchAnn. Phys.19601022322671960AnPhy..10..232N10.1016/0003-4916(60)90023-3 Magnetohydrodynamics of Laboratory and Astrophysical Plasmas, 1st edn. Cambridge University Press (2019) AaijRPhys. Rev. Let.201511570720012015PhRvL.115g2001A10.1103/PhysRevLett.115.072001 RibeiroLRPassosEFurtadoCJ. Phys. G Nucl. Part. Phys.2012391050042012JPhG...39j5004R10.1088/0954-3899/39/10/105004 CasanaRFerreiraMMJrda HoraENevesABFEur. Phys. J. C20147430642014EPJC...74.3064C10.1140/epjc/s10052-014-3064-3 VitóriaRLLBakkeKBelichHAnn. Phys.20183991172018AnPhy.399..117V10.1016/j.aop.2018.10.004 ChenFFSmithMDPlasma2005New YorkWiley10.1002/0471743984.vse9673 ColladayDKosteleckýVAPhys. Rev. D19975567601997PhRvD..55.6760C10.1103/PhysRevD.55.6760 BelichHPhys. Lett. B20066396756782006PhLB..639..675B10.1016/j.physletb.2006.07.003 BakkeKBelichHAnnalen Phys.20145261871942014AnP...526..187B10.1002/andp.201300186 CruzMBBezerra de MelloERPetrovAYMod. Phys. Lett. A20183318501152018MPLA...3350115C10.1142/S0217732318501158 KosteleckýVAMewesMPhys. Rev. Lett.2001872513042001PhRvL..87y1304K10.1103/PhysRevLett.87.251304 CapozzielloSJCAP2023050272023JCAP...05..027C10.1088/1475-7516/2023/05/027 MascaliDTorrisiGNeriLSorbelloGCastroGCelonaLGamminoS3D-full wave and kinetics numerical modelling of electron cyclotron resonance ion sources plasma: steps towards self-consistencyEur. Phys. J. D201510.1140/epjd/e2014-50168-5 S. Capozziello , S. Zare, H. Hassanabadi. https://doi.org/10.48550/arXiv.2311.12896 SmietCBCandelaresiSThompsonASwearnginJDalhuisenJWBouwmeesterDSelf-organizing knotted magnetic structures in plasmaPhys. Rev. Lett.20151150950012015PhRvL.115i5001S10.1103/PhysRevLett.115.095001 VitóriaRLLBelichHEur. Phys. J. C2018789992018EPJC...78..999V10.1140/epjc/s10052-018-6479-4 J. Koliner, M. Cianciosa, J. Boguski, J. Anderson, J. Hanson, B. Chapman, D. Brower, D. Den Hartog, W. Ding, J. Duff et al., Three dimensional equilibrium solutions for a current-carrying reversed-field pinch plasma with a close-fitting conducting shell. Phys. Plasmas 23(3), 032508 (2016) GriffithsDIntroduction to Electrodynamics1999HobokenPrentice Hall VitóriaRLLBelichHBakkeKAdv. High Energy Phys.20172017689308410.1155/2017/6893084 ColladayDKosteleckýVAPhys. Rev. D1998581160021998PhRvD..58k6002C10.1103/PhysRevD.58.116002 HelanderPTheory of plasma confinement in non-axisymmetric magnetic fieldsRep. Prog. Phys.20147780870012014RPPh...77h7001H10.1088/0034-4885/77/8/087001 KruskalMDKulsrudRMEquilibrium of a magnetically confined plasma in a toroidPhys. Fluids1958142652741958PhFl....1..265K11254910.1063/1.1705884 KosteleckýVAMewesMPhys. Rev. D2002660560052002PhRvD..66e6005K10.1103/PhysRevD.66.056005 WeibelESOn the confinement of a plasma by magnetostatic fieldsPhys. Fluids19592152561959PhFl....2...52W10.1063/1.1724391 BittencourtJAFundamentals of Plasma Physics2013BerlinSpringer Science Business Media BragaFLSoaresDNPlasma Phys. Technol.20196321722210.14311/ppt.2019.3.217 S. Zare, M. de Montigny, H. Chen, H. Hassanabadi, Lorentz violation in a family of (1+2)-dimensional wormhole. https://doi.org/10.48550/arXiv.2209.05630 GoedbloedJStabilization of magnetohydrodynamic instabilities by force-free magnetic fieldsPhysica19715345015341971Phy....53..501G10.1016/0031-8914(71)90113-3 CruzMBBezerra de MelloERPetrovAYPhys. Rev. D2017960450192017PhRvD..96d5019C385295310.1103/PhysRevD.96.045019 MotaHFBelichHBakkeKInt. J. Mod. Phys. A20173217501402017IJMPA..3250140M10.1142/S0217751X17501408 BelichHLealFJLLouzadaHLCOrlandoMTDPhys. Rev. D2012861250372012PhRvD..86l5037B10.1103/PhysRevD.86.125037 CarrollSMFieldGBJackiwRPhys. Rev. D19904112311990PhRvD..41.1231C10.1103/PhysRevD.41.1231 ZareSHassanabadiHde MontignyMIJMPA2022371522500992022IJMPA..3750099Z10.1142/S0217751X22500993 KrouppEStambulchikEStarobinetsAOsinDFisherVAlumotDMaronYDavidovitsSFischNFruchtmanATurbulent stagnation in a z-pinch plasmaPhys. Rev. E20189710132022018PhRvE..97a3202K10.1103/PhysRevE.97.013202 VitóriaRLLBelichHAdv. High Energy Phys.201920191248393 HelanderPStellarator and tokamak plasmas: a comparisonPlasma Phys. Control. Fusion201254121240092012PPCF...54l4009H10.1088/0741-3335/54/12/124009 ZareSHassanabadiHJunkerGMod. Phys. Lett. A2022371822501132022MPLA...3750113Z10.1142/S0217732322501139 BakkeKBelichHAnn. Phys.201536059610.1016/j.aop.2015.05.025 KosteleckýVASamuelSPhys. Rev. D1989396831989PhRvD..39..683K10.1103/PhysRevD.39.683 BelichHFerreiraMMHelayel-NetoJAOrlandoMTDPhys. Rev. D2003691099032004PhRvD..69j9903B10.1103/PhysRevD.69.109903 BakkeKBelichHAnn. Phys.20163731152016AnPhy.373..115B10.1016/j.aop.2016.06.009 K. Bakke, H. Belich, J. Phys. G: Nucl. Part. Phys. 42, 095001 (2015) LeiteEVBBelichHVitóriaRLLAdv. High Energy Phys.20192019674036010.1155/2019/6740360 VitóriaRLLBelichHBakkeKEur. Phys. J. Plus20171322510.1140/epjp/i2017-11305-4 ZareSHassanabadiHJunkerGGen. Relat. Gravit.2022754 U. Shumlak, B. Nelson, E. Claveau, E. Forbes, R. Golingo, M. Hughes, R. Oberto, M. Ross, T. Weber, Increasing plasma parameters using sheared flow stabilization of a z-pinch. Phys. Plasmas 24(5), 055702 (2017) H Belich (12589_CR24) 2003; 69 FF Chen (12589_CR15) 2005 H Belich (12589_CR33) 2012; 86 12589_CR1 RLL Vitória (12589_CR46) 2019; 2019 RLL Vitória (12589_CR44) 2018; 399 K Bakke (12589_CR40) 2015; 360 VA Kostelecký (12589_CR36) 2001; 87 P Helander (12589_CR6) 2014; 77 RLL Vitória (12589_CR45) 2018; 78 D Griffiths (12589_CR47) 1999 S Zare (12589_CR19) 2022; 7 D Colladay (12589_CR22) 1998; 58 S Zare (12589_CR28) 2022; 37 K Bakke (12589_CR31) 2014; 526 RLL Vitória (12589_CR42) 2017; 132 12589_CR30 R Aaij (12589_CR16) 2015; 115 K Bakke (12589_CR41) 2016; 373 J Goedbloed (12589_CR14) 1971; 53 EVB Leite (12589_CR29) 2019; 2019 MB Cruz (12589_CR35) 2018; 33 D Mascali (12589_CR8) 2015 S Zare (12589_CR27) 2022; 37 D Colladay (12589_CR21) 1997; 55 CB Smiet (12589_CR9) 2015; 115 S Capozziello (12589_CR17) 2023; 05 R Casana (12589_CR32) 2014; 74 12589_CR12 SM Carroll (12589_CR23) 1990; 41 12589_CR11 MB Cruz (12589_CR34) 2017; 96 E Kroupp (12589_CR13) 2018; 97 12589_CR18 FL Braga (12589_CR5) 2019; 6 VA Kostelecký (12589_CR37) 2002; 66 HF Mota (12589_CR39) 2017; 32 LR Ribeiro (12589_CR38) 2012; 39 JA Bittencourt (12589_CR2) 2013 RLL Vitória (12589_CR43) 2017; 2017 MD Kruskal (12589_CR7) 1958; 1 H Belich (12589_CR26) 2006; 639 WA Newcomb (12589_CR10) 1960; 10 12589_CR25 ES Weibel (12589_CR4) 1959; 2 P Helander (12589_CR3) 2012; 54 VA Kostelecký (12589_CR20) 1989; 39 |
References_xml | – reference: VitóriaRLLBelichHBakkeKAdv. High Energy Phys.20172017689308410.1155/2017/6893084 – reference: BelichHLealFJLLouzadaHLCOrlandoMTDPhys. Rev. D2012861250372012PhRvD..86l5037B10.1103/PhysRevD.86.125037 – reference: CruzMBBezerra de MelloERPetrovAYPhys. Rev. D2017960450192017PhRvD..96d5019C385295310.1103/PhysRevD.96.045019 – reference: BelichHPhys. Lett. B20066396756782006PhLB..639..675B10.1016/j.physletb.2006.07.003 – reference: ZareSHassanabadiHJunkerGMod. Phys. Lett. A2022371822501132022MPLA...3750113Z10.1142/S0217732322501139 – reference: NewcombWAHydromagnetic stability of a diffuse linear pinchAnn. Phys.19601022322671960AnPhy..10..232N10.1016/0003-4916(60)90023-3 – reference: SmietCBCandelaresiSThompsonASwearnginJDalhuisenJWBouwmeesterDSelf-organizing knotted magnetic structures in plasmaPhys. Rev. Lett.20151150950012015PhRvL.115i5001S10.1103/PhysRevLett.115.095001 – reference: BragaFLSoaresDNPlasma Phys. Technol.20196321722210.14311/ppt.2019.3.217 – reference: AaijRPhys. Rev. Let.201511570720012015PhRvL.115g2001A10.1103/PhysRevLett.115.072001 – reference: K. Bakke, H. Belich, J. Phys. G: Nucl. Part. Phys. 42, 095001 (2015) – reference: CapozzielloSJCAP2023050272023JCAP...05..027C10.1088/1475-7516/2023/05/027 – reference: BakkeKBelichHAnn. Phys.201536059610.1016/j.aop.2015.05.025 – reference: HelanderPStellarator and tokamak plasmas: a comparisonPlasma Phys. Control. Fusion201254121240092012PPCF...54l4009H10.1088/0741-3335/54/12/124009 – reference: S. Zare, M. de Montigny, H. Chen, H. Hassanabadi, Lorentz violation in a family of (1+2)-dimensional wormhole. https://doi.org/10.48550/arXiv.2209.05630 – reference: MascaliDTorrisiGNeriLSorbelloGCastroGCelonaLGamminoS3D-full wave and kinetics numerical modelling of electron cyclotron resonance ion sources plasma: steps towards self-consistencyEur. Phys. J. D201510.1140/epjd/e2014-50168-5 – reference: VitóriaRLLBelichHEur. Phys. J. C2018789992018EPJC...78..999V10.1140/epjc/s10052-018-6479-4 – reference: HelanderPTheory of plasma confinement in non-axisymmetric magnetic fieldsRep. Prog. Phys.20147780870012014RPPh...77h7001H10.1088/0034-4885/77/8/087001 – reference: KosteleckýVASamuelSPhys. Rev. D1989396831989PhRvD..39..683K10.1103/PhysRevD.39.683 – reference: CruzMBBezerra de MelloERPetrovAYMod. Phys. Lett. A20183318501152018MPLA...3350115C10.1142/S0217732318501158 – reference: CarrollSMFieldGBJackiwRPhys. Rev. D19904112311990PhRvD..41.1231C10.1103/PhysRevD.41.1231 – reference: KosteleckýVAMewesMPhys. Rev. D2002660560052002PhRvD..66e6005K10.1103/PhysRevD.66.056005 – reference: WeibelESOn the confinement of a plasma by magnetostatic fieldsPhys. Fluids19592152561959PhFl....2...52W10.1063/1.1724391 – reference: ChenFFSmithMDPlasma2005New YorkWiley10.1002/0471743984.vse9673 – reference: ZareSHassanabadiHde MontignyMIJMPA2022371522500992022IJMPA..3750099Z10.1142/S0217751X22500993 – reference: KrouppEStambulchikEStarobinetsAOsinDFisherVAlumotDMaronYDavidovitsSFischNFruchtmanATurbulent stagnation in a z-pinch plasmaPhys. Rev. E20189710132022018PhRvE..97a3202K10.1103/PhysRevE.97.013202 – reference: GriffithsDIntroduction to Electrodynamics1999HobokenPrentice Hall – reference: MotaHFBelichHBakkeKInt. J. Mod. Phys. A20173217501402017IJMPA..3250140M10.1142/S0217751X17501408 – reference: BittencourtJAFundamentals of Plasma Physics2013BerlinSpringer Science Business Media – reference: ZareSHassanabadiHJunkerGGen. Relat. Gravit.2022754 – reference: ColladayDKosteleckýVAPhys. Rev. D19975567601997PhRvD..55.6760C10.1103/PhysRevD.55.6760 – reference: GoedbloedJStabilization of magnetohydrodynamic instabilities by force-free magnetic fieldsPhysica19715345015341971Phy....53..501G10.1016/0031-8914(71)90113-3 – reference: RibeiroLRPassosEFurtadoCJ. Phys. G Nucl. Part. Phys.2012391050042012JPhG...39j5004R10.1088/0954-3899/39/10/105004 – reference: BakkeKBelichHAnnalen Phys.20145261871942014AnP...526..187B10.1002/andp.201300186 – reference: VitóriaRLLBelichHBakkeKEur. Phys. J. Plus20171322510.1140/epjp/i2017-11305-4 – reference: Magnetohydrodynamics of Laboratory and Astrophysical Plasmas, 1st edn. Cambridge University Press (2019) – reference: J. Koliner, M. Cianciosa, J. Boguski, J. Anderson, J. Hanson, B. Chapman, D. Brower, D. Den Hartog, W. Ding, J. Duff et al., Three dimensional equilibrium solutions for a current-carrying reversed-field pinch plasma with a close-fitting conducting shell. Phys. Plasmas 23(3), 032508 (2016) – reference: KosteleckýVAMewesMPhys. Rev. Lett.2001872513042001PhRvL..87y1304K10.1103/PhysRevLett.87.251304 – reference: U. Shumlak, B. Nelson, E. Claveau, E. Forbes, R. Golingo, M. Hughes, R. Oberto, M. Ross, T. Weber, Increasing plasma parameters using sheared flow stabilization of a z-pinch. Phys. Plasmas 24(5), 055702 (2017) – reference: BakkeKBelichHAnn. Phys.20163731152016AnPhy.373..115B10.1016/j.aop.2016.06.009 – reference: KruskalMDKulsrudRMEquilibrium of a magnetically confined plasma in a toroidPhys. Fluids1958142652741958PhFl....1..265K11254910.1063/1.1705884 – reference: S. Capozziello , S. Zare, H. Hassanabadi. https://doi.org/10.48550/arXiv.2311.12896 – reference: BelichHFerreiraMMHelayel-NetoJAOrlandoMTDPhys. Rev. D2003691099032004PhRvD..69j9903B10.1103/PhysRevD.69.109903 – reference: CasanaRFerreiraMMJrda HoraENevesABFEur. Phys. J. C20147430642014EPJC...74.3064C10.1140/epjc/s10052-014-3064-3 – reference: ColladayDKosteleckýVAPhys. Rev. D1998581160021998PhRvD..58k6002C10.1103/PhysRevD.58.116002 – reference: LeiteEVBBelichHVitóriaRLLAdv. High Energy Phys.20192019674036010.1155/2019/6740360 – reference: VitóriaRLLBakkeKBelichHAnn. Phys.20183991172018AnPhy.399..117V10.1016/j.aop.2018.10.004 – reference: VitóriaRLLBelichHAdv. High Energy Phys.201920191248393 – volume: 87 start-page: 251304 year: 2001 ident: 12589_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.251304 – volume: 10 start-page: 232 issue: 2 year: 1960 ident: 12589_CR10 publication-title: Ann. Phys. doi: 10.1016/0003-4916(60)90023-3 – ident: 12589_CR1 – volume: 37 start-page: 2250099 issue: 15 year: 2022 ident: 12589_CR28 publication-title: IJMPA doi: 10.1142/S0217751X22500993 – volume: 639 start-page: 675 year: 2006 ident: 12589_CR26 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2006.07.003 – volume: 86 start-page: 125037 year: 2012 ident: 12589_CR33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.125037 – volume: 2017 start-page: 6893084 year: 2017 ident: 12589_CR43 publication-title: Adv. High Energy Phys. doi: 10.1155/2017/6893084 – volume: 05 start-page: 027 year: 2023 ident: 12589_CR17 publication-title: JCAP doi: 10.1088/1475-7516/2023/05/027 – volume: 6 start-page: 217 issue: 3 year: 2019 ident: 12589_CR5 publication-title: Plasma Phys. Technol. doi: 10.14311/ppt.2019.3.217 – volume: 96 start-page: 045019 year: 2017 ident: 12589_CR34 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.045019 – volume: 77 start-page: 087001 issue: 8 year: 2014 ident: 12589_CR6 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/77/8/087001 – volume: 55 start-page: 6760 year: 1997 ident: 12589_CR21 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.55.6760 – volume: 41 start-page: 1231 year: 1990 ident: 12589_CR23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.41.1231 – volume: 32 start-page: 1750140 year: 2017 ident: 12589_CR39 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X17501408 – volume: 58 start-page: 116002 year: 1998 ident: 12589_CR22 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.58.116002 – volume: 2019 start-page: 1248393 year: 2019 ident: 12589_CR46 publication-title: Adv. High Energy Phys. – volume: 39 start-page: 683 year: 1989 ident: 12589_CR20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.39.683 – volume: 2019 start-page: 6740360 year: 2019 ident: 12589_CR29 publication-title: Adv. High Energy Phys. doi: 10.1155/2019/6740360 – year: 2015 ident: 12589_CR8 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2014-50168-5 – volume: 7 start-page: 54 year: 2022 ident: 12589_CR19 publication-title: Gen. Relat. Gravit. – volume: 360 start-page: 596 year: 2015 ident: 12589_CR40 publication-title: Ann. Phys. doi: 10.1016/j.aop.2015.05.025 – volume: 54 start-page: 124009 issue: 12 year: 2012 ident: 12589_CR3 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/54/12/124009 – ident: 12589_CR30 doi: 10.1088/0954-3899/42/9/095001 – volume: 53 start-page: 501 issue: 4 year: 1971 ident: 12589_CR14 publication-title: Physica doi: 10.1016/0031-8914(71)90113-3 – volume: 132 start-page: 25 year: 2017 ident: 12589_CR42 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11305-4 – volume-title: Plasma year: 2005 ident: 12589_CR15 doi: 10.1002/0471743984.vse9673 – volume: 69 start-page: 109903 year: 2003 ident: 12589_CR24 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.69.109903 – ident: 12589_CR25 doi: 10.48550/arXiv.2209.05630 – ident: 12589_CR12 doi: 10.1063/1.4977468 – volume-title: Fundamentals of Plasma Physics year: 2013 ident: 12589_CR2 – ident: 12589_CR18 doi: 10.48550/arXiv.2311.12896 – volume: 399 start-page: 117 year: 2018 ident: 12589_CR44 publication-title: Ann. Phys. doi: 10.1016/j.aop.2018.10.004 – ident: 12589_CR11 doi: 10.1063/1.4944670 – volume: 1 start-page: 265 issue: 4 year: 1958 ident: 12589_CR7 publication-title: Phys. Fluids doi: 10.1063/1.1705884 – volume: 74 start-page: 3064 year: 2014 ident: 12589_CR32 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-014-3064-3 – volume: 39 start-page: 105004 year: 2012 ident: 12589_CR38 publication-title: J. Phys. G Nucl. Part. Phys. doi: 10.1088/0954-3899/39/10/105004 – volume: 373 start-page: 115 year: 2016 ident: 12589_CR41 publication-title: Ann. Phys. doi: 10.1016/j.aop.2016.06.009 – volume: 78 start-page: 999 year: 2018 ident: 12589_CR45 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-6479-4 – volume: 115 start-page: 095001 year: 2015 ident: 12589_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.095001 – volume: 97 start-page: 013202 issue: 1 year: 2018 ident: 12589_CR13 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.013202 – volume: 2 start-page: 52 issue: 1 year: 1959 ident: 12589_CR4 publication-title: Phys. Fluids doi: 10.1063/1.1724391 – volume: 37 start-page: 2250113 issue: 18 year: 2022 ident: 12589_CR27 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732322501139 – volume: 115 start-page: 072001 issue: 7 year: 2015 ident: 12589_CR16 publication-title: Phys. Rev. Let. doi: 10.1103/PhysRevLett.115.072001 – volume: 66 start-page: 056005 year: 2002 ident: 12589_CR37 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.66.056005 – volume: 526 start-page: 187 year: 2014 ident: 12589_CR31 publication-title: Annalen Phys. doi: 10.1002/andp.201300186 – volume: 33 start-page: 1850115 year: 2018 ident: 12589_CR35 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732318501158 – volume-title: Introduction to Electrodynamics year: 1999 ident: 12589_CR47 |
SSID | ssj0002408 |
Score | 2.4317286 |
Snippet | Inspired by the extension of the Standard Model, we investigate the effects of the space-time anisotropy caused by Lorentz symmetry violation (LSV) on a plasma... Abstract Inspired by the extension of the Standard Model, we investigate the effects of the space-time anisotropy caused by Lorentz symmetry violation (LSV) on... |
SourceID | doaj proquest gale crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 232 |
SubjectTerms | Anisotropy Astronomy Astrophysics and Cosmology Coupling Electromagnetic fields Electromagnetism Elementary Particles Environmental law Fields (mathematics) Hadrons Heavy Ions Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Physics Physics and Astronomy Plasma Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics Skin effect String Theory Tokamaks Zeta pinch |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSyQxEA0iLHgR3VUcvwiL4CmY7kk6yVFFUQ8iu4reQlLJiKIzgzODf9-qdI-74sGL105Bd71Kp166q14Y26vAYB6DJBLmHqGq2Ag3SIGEIAPkWmeTSoHsZXN2oy7u9N1_R31RTVgrD9wCd6BU6iPnsLYfkrIxWgA1kFlXUMUkU9H5xJw330x1azAJd3XVXLiDOMjjR6BuOalrgWMCs7p14vVDLiqS_Z8X5k9_SEviOV1hyx1j5Iftk66yhTz8yX6Uyk2Y_GJHl1SqMqMPFvw2P8T8xMvpNnyMvPg58IchR47HcZcvSEbkGc2Or67FKCUOoxn1496vsZvTk-vjM9EdjCBANXYqnJI5Yu4GmV2_CrauUoha62CdDNqYnBxAkipCaJqYK6ejRhxx9wHSmTTor7NFvG3eYFzJYFysk0VepJra2NjoZMFKCET2co_JOUR-3Opf-LaXWXpC1beoekTVF1T9a48dEZTv5iRgXS5gWH0XVv9VWHvsNwXCk0TFkGpg7sNsMvHnf__4Q2PRG6R5aLTfGQ1GCDOErqUAXSNVqw-W2_OA-u4lnXhkOkY5Uv_psWoe5H_DX7i5-R1ubrGlmiZkKWrbZovTl1neQZYzjbtlQr8BvDT2xg priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RSxwxEA7WIvRFalvptbaEUvApmOwmm-RRj4r6INIq9S0kk5xY9O7o3eHfdya3pxWhhb7uTtjNN0nm283MF8a-KrAYxyCLjLFHaJU64Uc5khBkhNKYYnNNkD3tji70yaW5XGN7q1qYP_fvkfvvlekvoDo3aRqB4URgPHZe3L1gL41qLZ3VMOyGD0sv6XX1SVx_afwkBFWl_ufr8bON0RpvDl-zzZ4o8v2lZ7fYWhm_YRs1YRNmb9nBKWWoLOg_Bf9ZrlO54fVQGz5FOnwb-fWYI7Xj-HEvSD3kFs2GZ-dikjOHyYLKcK_esYvDb-fDI9GfhyBAd24uvJYlYcgGWXyromtUjskYE52X0VhbsgfIUieIXZeK8iYZrTN-dID0No_abbaOjy3vGdcyWp-a7JAO6a6xLnUmO3ASInG8MmByBVGYLmUvwrKEWQZCNSxRDYhqqKiGuwE7ICgfzEm3ul5Ad4Z-GgR8nRYZpHNtzNql5AD0SBajQKUscztgX8gRgZQpxpT6chUXs1k4_vE97FuHvUF2h0a7vdFogjBD7CsJsGskZvXEcmfl0NDPzVlAgmO1J9GfAVMrJz_e_kc3P_xHm4_sVUPjr6au7bD1-e9F-YRcZp4-1_F7D9jz6vs priority: 102 providerName: Springer Nature |
Title | Nonneutral Weibel model plasma in the non-minimal CPT-odd coupling |
URI | https://link.springer.com/article/10.1140/epjc/s10052-024-12589-w https://www.proquest.com/docview/2937498370 https://doaj.org/article/44d3656883ad48bb8cc4f0e51c1bd0d3 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swEBdrymAvY58saxfEGOxJVLYlW3oaSWjW7SGUrmF9E_pKaFnjrE7ov987RWkphe1FYPuwrZN0dzrd_Y6QL4VvQI_5wALoHiYKVzM9DxaBIK2PpYxNSAGy0_pkJn5eyIvscOtyWOVOJiZBHVqPPvIjUEuN0AjV8m31l2HVKDxdzSU09sg-iGClemR_dDw9PbuXxQjglfKLKsFqLkSO8IJdxVFcXXnMoOOyZEDHQNMrzW4f6acE4_9UWD85NU3KaPKKvMxWJB1uh_01eRaXb8jzFM3pu7dkNMXwlQ06MejveOniH5oq3tAV2MrXll4uKdh9FHb-DKFFroFsfHrO2hCobzeYo7t4R2aT4_PxCcvFEpgXtVozLXh0oM89j7oqrCqLYJ2U0irNrWyaGLT3gQvnbV27WGjppBABdiSe6ybMq_ekB5-NHwgV3DbalUGBrSTqslGulkF5xb1FAzD2Cd-xyKy2mBhmm9_MDXLVbLlqgKsmcdXc9skIWXlPjqDW6UZ7szB5jRj4nQrMS6UqG4RyTnkv5jzKwhcu8FD1yWccCIOwFUuMi1nYTdeZH7_OzLBR0Bsw_YDoayaat8Bmb3OaAXQNka4eUR7uBtTkhduZh2nWJ8VukB8e_6ebH__9ygPyosSplkLYDklvfbOJn8CmWbsB2VOT74M8feFqXAps6_EgeQmgnZXDO12D9ZU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4ikWClgIxMmqk9iJc0CoLSy7tKwQbEVvxq9dFdFkaXa14k_xG5lxklZVJTj1moyceGY889meByEvE1eAH3OeefA9TCQ2Z-XMGywEaVxIZSh8DJCd5KND8fFIHm2QP30uDIZV9jYxGmpfOzwj3wa3VIgSS7W8Xfxi2DUKb1f7FhqtWuyH32vYsjVvxu9Avq_SdPh-ujdiXVcB5kSulqwUPFhwfI6HMkuMShNvrJTSqJIbWRTBl855LqwzeW5DUkorhfAA3R0vCz_LYNxr5LrIwJNjZvrww5nlx3JhMZspEyznQnTxZLCH2Q6LHw7z9bhMGdAxwBWqZOsL3jA2DbjsGi7d0UbXN7xDbneYle60SnaXbITqHrkRY0ddc5_sTjBYZoVHJvRbOLbhJ439degCkPmJoccVBZRJq7piWMjkBMj2Pk9Z7T119QozgucPyOGVMPEh2YTPhkeECm6K0qZeATITeVoom0uvnOLOINwMA8J7FulFW4FDt9nUXCNXdctVDVzVkat6PSC7yMozciyhHR_Up3PdrUgNv5MBmFUqM14oa5VzYsaDTFxiPffZgLxAQWgsklFhFM7crJpGj79-0TuFgtkA0ASi1x3RrAY2O9MlNcDUsK7WBcqtXqC6MxONPlfqAUl6IZ-__s80H_97yOfk5mj66UAfjCf7T8itFNUuBs9tkc3l6So8BTS1tM-iClPy_arXzF_qWCzb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviKvoGBAhEE9WncSOnQeE1m3VylBVjU3szfiWaogl3dqq4q_x6zgnl03TJHjaa3LkxJ-PfT7b50LI-9hJsGPOUw-2h_LYZjQvvMFEkMaFRATpawfZSXZwwr-citMN8qeLhUG3ym5NrBdqXzk8Ix-AWZI8x1Qtg6J1i5jujT7PLyhWkMKb1q6cRqMih-H3GrZvi0_jPRjrD0ky2j_ePaBthQHqeKaWNOcsWDCCjoU8jY1KYm-sEMKonBkhZfC5c55x60yW2RDnwgrOPdB4x3LpixTavUc2Je6KemRzuD-ZHl3ZAUweVsc2pZxmjPPWuwx2NIMw_-kweo-JhIIcBZahcrq-YRvrEgK3DcWtG9vaEI4ek0ctg412GpV7QjZC-ZTcrz1J3eIZGU7QdWaFByjR93Bmw6-orrYTzYGnn5vorIyAc0ZlVVJMa3IOYrvTY1p5H7lqhfHBs-fk5E5gfEF68NnwkkScGZnbxCvgaTxLpLKZ8Mop5gySz9AnrINIz5t8HLqJrWYaUdUNqhpQ1TWqet0nQ4TyShwTatcPqsuZbuenht9JgdoqlRrPlbXKOV6wIGIXW8982ifvcCA0pswoUflmZrVY6PG3I70jFfQGaCcIfWyFigpgdqYNcYCuYZatG5Lb3YDqdtFY6GsV75O4G-Tr1__p5ta_m3xLHsB80V_Hk8NX5GGCWld70m2T3vJyFV4DtVraN60OR-THXU-bvy7ZMm0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonneutral+Weibel+model+plasma+in+the+non-minimal+CPT-odd+coupling&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Soares%2C+D.+N&rft.au=Belich%2C+H&rft.au=Spalenza%2C+W&rft.au=Braga%2C+F.+L&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1434-6044&rft.eissn=1434-6052&rft.volume=84&rft.issue=3&rft.spage=232&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-024-12589-w&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon |