Structural investigation of cellobiose dehydrogenase IIA: Insights from small angle scattering into intra- and intermolecular electron transfer mechanisms

Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two fl...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1862; no. 4; pp. 1031 - 1039
Main Authors Bodenheimer, Annette M., O'Dell, William B., Oliver, Ryan C., Qian, Shuo, Stanley, Christopher B., Meilleur, Flora
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2018
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized. Small-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa. The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca2+. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation. These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D. The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO. •Interface electrostatics regulate the conformational landscape of Neurospora crassa and Myriococcum thermophilum CDHIIAs.•Neurospora crassa CDHIIA undergoes conformational changes upon pH variation.•Myriococcum thermophilum CDHIIA undergoes conformational changes in the presence of Ca2+.•Neurospora crassa CDHIIA adopts a compact conformation in the presence of Neurospora crassa LPMO9D.
AbstractList Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized.BACKGROUNDCellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized.Small-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa.METHODSSmall-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa.The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca2+. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation.RESULTSThe scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca2+. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation.These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D.CONCLUSIONSThese results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D.The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO.GENERAL SIGNIFICANCEThe present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO.
Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized. Small-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa. The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca . Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation. These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D. The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO.
Background: Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized.Methods: Small-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa.Results: The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca2+. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation.Conclusions: These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D.General significance: The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO.
Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized.Small-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa.The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca²⁺. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation.These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D.The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO.
Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized. Small-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa. The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca2+. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation. These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D. The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO. •Interface electrostatics regulate the conformational landscape of Neurospora crassa and Myriococcum thermophilum CDHIIAs.•Neurospora crassa CDHIIA undergoes conformational changes upon pH variation.•Myriococcum thermophilum CDHIIA undergoes conformational changes in the presence of Ca2+.•Neurospora crassa CDHIIA adopts a compact conformation in the presence of Neurospora crassa LPMO9D.
Author Meilleur, Flora
Qian, Shuo
Oliver, Ryan C.
O'Dell, William B.
Stanley, Christopher B.
Bodenheimer, Annette M.
Author_xml – sequence: 1
  givenname: Annette M.
  surname: Bodenheimer
  fullname: Bodenheimer, Annette M.
  organization: Molecular and Structural Biochemistry Department, North Carolina State University, Raleigh, NC, USA
– sequence: 2
  givenname: William B.
  surname: O'Dell
  fullname: O'Dell, William B.
  organization: Molecular and Structural Biochemistry Department, North Carolina State University, Raleigh, NC, USA
– sequence: 3
  givenname: Ryan C.
  surname: Oliver
  fullname: Oliver, Ryan C.
  organization: Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
– sequence: 4
  givenname: Shuo
  surname: Qian
  fullname: Qian, Shuo
  organization: Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
– sequence: 5
  givenname: Christopher B.
  surname: Stanley
  fullname: Stanley, Christopher B.
  email: stanleycb@ornl.gov
  organization: Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
– sequence: 6
  givenname: Flora
  surname: Meilleur
  fullname: Meilleur, Flora
  email: fmeille@ncsu.edu
  organization: Molecular and Structural Biochemistry Department, North Carolina State University, Raleigh, NC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29374564$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1424446$$D View this record in Osti.gov
BookMark eNqFUk1v3CAQRVWqZpP2H1QV6qkXb8HGH-RQKYraZqVIPbQ9I4yHXVY2pIAj5a_k13ZcJ5ccGjSCQbyZebyZM3LigwdC3nO25Yw3n4_bvtd78NuS8W7LOFrzimx415ZFx1hzQjasYqIQvKlPyVlKR4arlvUbclrKqhV1Izbk4WeOs8lz1CN1_g5SdnudXfA0WGpgHEPvQgI6wOF-iAHrabztdpcXdOeT2x9yojaGiaZJjyPVfj8CTUbnDNH5PebMYdmiLvBxWFyIUxjBzKOOFNDJEashwCcLkU5gDtq7NKW35LXVY4J3j-c5-f3t66-r6-Lmx_fd1eVNYUTT5aIzUjDGSy4t61mnZcsqabhtJWhTm6qxZdeJ3rDatv3Q97LTNQD0LbeVLi2rzsnHNW_Az6tkXEYKJniP1BQXpRCiQdCnFXQbw58ZZVKTS4s-2kOYkyqZqLuqQkYvQrmUFbZMihqhHx6hcz_BoG6jm3S8V0_9QcDFCjAxpBTBKqT3rz8omBsVZ2oZBnVU6zCoZRgU42gLZ_Es-Cn_C2Ff1jBA0e8cxEUT8AYGFxdJhuD-n-AvaH3S6w
CitedBy_id crossref_primary_10_1021_acs_langmuir_4c03661
crossref_primary_10_1021_acsomega_3c02168
crossref_primary_10_1002_celc_201801256
crossref_primary_10_1007_s11244_021_01444_x
crossref_primary_10_1016_j_bios_2020_112911
crossref_primary_10_1016_j_rser_2023_113958
crossref_primary_10_1021_acscatal_0c00754
crossref_primary_10_1021_acs_langmuir_3c00343
crossref_primary_10_1002_bbb_2564
crossref_primary_10_1002_anie_202011408
crossref_primary_10_1021_acs_analchem_9b04490
crossref_primary_10_1107_S2059798318017503
crossref_primary_10_1002_pro_4702
crossref_primary_10_1021_acscatal_9b02014
crossref_primary_10_1016_j_bioelechem_2019_107345
crossref_primary_10_1021_acs_biochem_8b01178
crossref_primary_10_3390_ijms242417202
crossref_primary_10_1039_D4SC04544K
crossref_primary_10_1002_celc_202300679
crossref_primary_10_1111_febs_16885
crossref_primary_10_1002_ange_202011408
crossref_primary_10_1107_S2059798321009025
crossref_primary_10_1080_01614940_2022_2074359
crossref_primary_10_1021_acscatal_0c05294
crossref_primary_10_1002_cbic_202300431
crossref_primary_10_1016_j_biortech_2024_130763
Cites_doi 10.1016/j.str.2012.04.002
10.1016/S0969-2126(00)00082-4
10.1073/pnas.1602566113
10.1093/nar/gkw389
10.1016/j.jsb.2011.09.006
10.1107/S0021889803012779
10.1021/acsami.5b10801
10.1038/ncomms8542
10.1016/0076-6879(88)60155-8
10.1107/S0021889892001663
10.1128/AEM.01503-12
10.1016/j.bios.2015.12.069
10.1016/0167-4838(95)00245-6
10.1016/j.febslet.2015.03.029
10.1007/BF00171963
10.1016/j.str.2013.06.022
10.1016/j.bbagen.2016.11.016
10.1021/cr500351c
10.1107/S1600576714011285
10.1002/jcc.20945
10.1074/jbc.M109.054304
10.1107/S002188981002217X
10.1038/46972
10.1021/la3005486
10.3891/acta.chem.scand.28b-0204
10.3891/acta.chem.scand.29b-0419
10.1074/jbc.M210961200
10.1039/C7SC01672G
10.1002/elan.200603688
10.1002/anie.201610502
10.1006/jmbi.2001.5246
10.1111/j.1470-8744.1999.tb00770.x
10.1021/pr200329b
10.1016/j.elecom.2012.01.031
10.2174/138920306777452367
10.1016/j.carres.2017.03.001
10.1111/febs.13310
10.1038/nature12070
10.1002/jcc.21886
10.1002/cphc.201500112
10.1016/j.cpc.2011.09.010
10.1128/AEM.02052-10
10.1016/j.nima.2014.07.029
10.3891/acta.chem.scand.28b-0209
10.1021/j100834a026
10.1016/j.ijantimicag.2014.06.016
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
CorporateAuthor Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
OIOZB
OTOTI
DOI 10.1016/j.bbagen.2018.01.016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 1039
ExternalDocumentID 1424446
29374564
10_1016_j_bbagen_2018_01_016
S0304416518300308
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
AALMO
ABPIF
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c468t-8c94001219f0b08a97039c1f79eac5c36f2884bc05f7bdbb98a5eeeb71f3a2f03
IEDL.DBID .~1
ISSN 0304-4165
IngestDate Thu May 18 22:51:00 EDT 2023
Thu Jul 10 22:32:39 EDT 2025
Fri Jul 11 14:04:07 EDT 2025
Wed Feb 19 02:40:48 EST 2025
Tue Jul 01 00:22:10 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Fri Feb 23 02:34:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Intermolecular electron transfer (IeET)
Small-angle scattering
Oxidative cellulose degradation
Intramolecular electron transfer (IaET)
Modeling
Redox complex
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-8c94001219f0b08a97039c1f79eac5c36f2884bc05f7bdbb98a5eeeb71f3a2f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-00OR22725
OpenAccessLink https://www.osti.gov/servlets/purl/1424446
PMID 29374564
PQID 1993018945
PQPubID 23479
PageCount 9
ParticipantIDs osti_scitechconnect_1424446
proquest_miscellaneous_2045833468
proquest_miscellaneous_1993018945
pubmed_primary_29374564
crossref_citationtrail_10_1016_j_bbagen_2018_01_016
crossref_primary_10_1016_j_bbagen_2018_01_016
elsevier_sciencedirect_doi_10_1016_j_bbagen_2018_01_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: United States
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Harreither, Coman, Ludwig, Haltrich, Gorton (bb0100) 2007; 19
Courtade, Wimmer, Rohr, Preims, Felice, Dimarogona, Vaaje-Kolstad, Sorlie, Sandgren, Ludwig (bb0125) 2016; 113
Hallberg, Henriksson, Pettersson, Vasella, Divne (bb0055) 2003; 278
Zamocky, Ludwig, Peterbauer, Hallberg, Divne, Nicholls, Haltrich (bb0070) 2016; 7
Harreither, Nicholls, Sygmund, Gorton, Ludwig (bb0160) 2012; 28
Huang, Ellis, Moody, Raven, Roberts (bb0140) 2013; 21
Zhao, Gao, Liu (bb5015) 2010; 43
Henriksson, Ander, Pettersson, Pettersson (bb0010) 1995; 42
O'Dell, Agarwal, Meilleur (bb0185) 2017; 56
Jo, Kim, Iyer, Im (bb0210) 2008; 29
Tegl, Thallinger, Beer, Sygmund, Ludwig, Rollett, Nyanhongo, Guebitz (bb0085) 2016; 8
Curtis, Raghunandan, Nanda, Krueger (bb0220) 2012; 183
Tan, Kracher, Gandini, Sygmund, Kittl, Haltrich, Hallberg, Ludwig, Divne (bb0065) 2015; 6
Arnold, Bilheux, Borreguero, Buts, Campbell, Chapon, Doucet, Draper, Ferraz Leal, Gigg (bb0195) 2014; 764
Westermark, Eriksson (bb0035) 1975; B29
Hallberg, Henriksson, Pettersson, Divne (bb0050) 2002; 315
Wang, Lu (bb0095) 2016; 7
Heller, Urban, Lynn, Weiss, O'Neill, Pingali, Qian, Littrell, Melnichenko, Buchanan (bb0190) 2014; 47
Phillips, Iavarone, Marletta (bb0020) 2011; 10
Zipper, Durchschlag (bb5010) 2005; T118
Svergun (bb0155) 1992; 25
Hallberg, Bergfors, Bäckbro, Pettersson, Henriksson, Divne (bb5000) 2000; 8
Bretthauer, Castellino (bb5030) 1999; 30
Westermark, Eriksson (bb0040) 1988; 160
Bodenheimer, O'Dell, Stanley, Meilleur (bb0130) 2017; 448
Woods Group (bb5025) 2005-2018
Harada, Onoda, Uchihashi, Watanabe, Sunagawa, Samejima, Igarashi, Hayashi (bb0060) 2017; 8
Hallberg, Bergfors, Bäckbro, Pettersson, Henriksson, Divne (bb0045) 2000; 8
Westermark, Eriksson (bb0025) 1974; B28
Kadek, Kavan, Felice, Ludwig, Halada, Man (bb0165) 2015; 589
Li, Beeson, Phillips, Marletta, Cate (bb0120) 2012; 20
Westermark, Eriksson (bb0030) 1974; B28
Mikkelsen, Nielsen (bb0145) 1960; 64
O'Dell, Swartz, Weiss, Meilleur (bb0180) 2017; F73
Page, Moser, Chen, Dutton (bb0075) 1999; 402
Sygmund, Kracher, Scheiblbrandner, Zahma, Felice, Harreither, Kittl, Ludwig (bb0175) 2012; 78
Thallinger, Argirova, Lesseva, Ludwig, Sygmund, Schlick, Nyanhongo, Guebitz (bb0090) 2014; 44
Ellis, Gutierrez, Barsukov, Huang, Grossmann, Roberts (bb0135) 2009; 284
Konarev, Volkov, Sokolova, Koch, Svergun (bb0200) 2003; 36
Schneidman-Duhovny, Hammel, Tainer, Sali (bb0205) 2016; 44
Kielb, Sezer, Katz, Lopez, Schulz, Gorton, Ludwig, Wollenberger, Zebger, Weidinger (bb0105) 2015; 16
Kadek, Kavan, Marcoux, Stojko, Felice, Cianferani, Ludwig, Halada, Man (bb0170) 2017; 1861
Schulz, Ludwig, Micheelsen, Silow, Toscano, Gorton (bb0115) 2012; 17
Lehner, Zipper, Henriksson, Pettersson (bb5005) 1996; 1293
Kracher, Zahma, Schulz, Sygmund, Gorton, Ludwig (bb0110) 2015; 282
Cipri, Schulz, Ludwig, Gorton, Del Valle (bb0080) 2016; 79
Harreither, Sygmund, Augustin, Narciso, Rabinovich, Gorton, Haltrich, Ludwig (bb0015) 2011; 77
Rambo, Tainer (bb0150) 2013; 496
Yang, Lasker, Schneidman-Duhovny, Webb, Huang, Pettersen, Goddard, Meng, Sali, Ferrin (bb5020) 2012; 179
Payne, Knott, Mayes, Hansson, Himmel, Sandgren, Stahlberg, Beckham (bb0005) 2015; 115
Jo, Song, Desaire, MacKerell, Im (bb0215) 2011; 32
Schneidman-Duhovny (10.1016/j.bbagen.2018.01.016_bb0205) 2016; 44
Hallberg (10.1016/j.bbagen.2018.01.016_bb0045) 2000; 8
Jo (10.1016/j.bbagen.2018.01.016_bb0210) 2008; 29
Zhao (10.1016/j.bbagen.2018.01.016_bb5015) 2010; 43
Mikkelsen (10.1016/j.bbagen.2018.01.016_bb0145) 1960; 64
Page (10.1016/j.bbagen.2018.01.016_bb0075) 1999; 402
Harreither (10.1016/j.bbagen.2018.01.016_bb0015) 2011; 77
Svergun (10.1016/j.bbagen.2018.01.016_bb0155) 1992; 25
Payne (10.1016/j.bbagen.2018.01.016_bb0005) 2015; 115
Westermark (10.1016/j.bbagen.2018.01.016_bb0030) 1974; B28
Harreither (10.1016/j.bbagen.2018.01.016_bb0100) 2007; 19
Schulz (10.1016/j.bbagen.2018.01.016_bb0115) 2012; 17
Zipper (10.1016/j.bbagen.2018.01.016_bb5010) 2005; T118
Arnold (10.1016/j.bbagen.2018.01.016_bb0195) 2014; 764
Harreither (10.1016/j.bbagen.2018.01.016_bb0160) 2012; 28
Courtade (10.1016/j.bbagen.2018.01.016_bb0125) 2016; 113
Henriksson (10.1016/j.bbagen.2018.01.016_bb0010) 1995; 42
Bodenheimer (10.1016/j.bbagen.2018.01.016_bb0130) 2017; 448
Sygmund (10.1016/j.bbagen.2018.01.016_bb0175) 2012; 78
Wang (10.1016/j.bbagen.2018.01.016_bb0095) 2016; 7
Jo (10.1016/j.bbagen.2018.01.016_bb0215) 2011; 32
Harada (10.1016/j.bbagen.2018.01.016_bb0060) 2017; 8
Li (10.1016/j.bbagen.2018.01.016_bb0120) 2012; 20
Thallinger (10.1016/j.bbagen.2018.01.016_bb0090) 2014; 44
Hallberg (10.1016/j.bbagen.2018.01.016_bb0055) 2003; 278
Hallberg (10.1016/j.bbagen.2018.01.016_bb5000) 2000; 8
Kielb (10.1016/j.bbagen.2018.01.016_bb0105) 2015; 16
Yang (10.1016/j.bbagen.2018.01.016_bb5020) 2012; 179
Westermark (10.1016/j.bbagen.2018.01.016_bb0025) 1974; B28
Tan (10.1016/j.bbagen.2018.01.016_bb0065) 2015; 6
Westermark (10.1016/j.bbagen.2018.01.016_bb0035) 1975; B29
O'Dell (10.1016/j.bbagen.2018.01.016_bb0185) 2017; 56
Lehner (10.1016/j.bbagen.2018.01.016_bb5005) 1996; 1293
Kadek (10.1016/j.bbagen.2018.01.016_bb0170) 2017; 1861
Huang (10.1016/j.bbagen.2018.01.016_bb0140) 2013; 21
Konarev (10.1016/j.bbagen.2018.01.016_bb0200) 2003; 36
Hallberg (10.1016/j.bbagen.2018.01.016_bb0050) 2002; 315
Rambo (10.1016/j.bbagen.2018.01.016_bb0150) 2013; 496
O'Dell (10.1016/j.bbagen.2018.01.016_bb0180) 2017; F73
Tegl (10.1016/j.bbagen.2018.01.016_bb0085) 2016; 8
Phillips (10.1016/j.bbagen.2018.01.016_bb0020) 2011; 10
Woods Group (10.1016/j.bbagen.2018.01.016_bb5025) 2005
Bretthauer (10.1016/j.bbagen.2018.01.016_bb5030) 1999; 30
Kadek (10.1016/j.bbagen.2018.01.016_bb0165) 2015; 589
Kracher (10.1016/j.bbagen.2018.01.016_bb0110) 2015; 282
Ellis (10.1016/j.bbagen.2018.01.016_bb0135) 2009; 284
Cipri (10.1016/j.bbagen.2018.01.016_bb0080) 2016; 79
Westermark (10.1016/j.bbagen.2018.01.016_bb0040) 1988; 160
Zamocky (10.1016/j.bbagen.2018.01.016_bb0070) 2016; 7
Heller (10.1016/j.bbagen.2018.01.016_bb0190) 2014; 47
Curtis (10.1016/j.bbagen.2018.01.016_bb0220) 2012; 183
References_xml – volume: 1861
  start-page: 157
  year: 2017
  end-page: 167
  ident: bb0170
  article-title: Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics
  publication-title: Biochim. Biophys. Acta
– volume: 282
  start-page: 3136
  year: 2015
  end-page: 3148
  ident: bb0110
  article-title: Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations
  publication-title: FEBS J.
– volume: 6
  start-page: 7542
  year: 2015
  ident: bb0065
  article-title: Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation
  publication-title: Nat. Commun.
– volume: 284
  start-page: 36628
  year: 2009
  end-page: 36637
  ident: bb0135
  article-title: Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle x-ray scattering
  publication-title: J. Biol. Chem.
– volume: B28
  start-page: 204
  year: 1974
  end-page: 208
  ident: bb0025
  article-title: Carbohydrate-dependent enzymic quinone reduction during lignin degradation
  publication-title: Acta Chem. Scand.
– volume: 21
  start-page: 1581
  year: 2013
  end-page: 1589
  ident: bb0140
  article-title: Redox-linked domain movements in the catalytic cycle of cytochrome p450 reductase
  publication-title: Structure
– volume: 29
  start-page: 1859
  year: 2008
  end-page: 1865
  ident: bb0210
  article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM
  publication-title: J. Comput. Chem.
– volume: 36
  start-page: 1277
  year: 2003
  end-page: 1282
  ident: bb0200
  article-title: PRIMUS: a windows PC-based system for small-angle scattering data analysis
  publication-title: J. Appl. Crystallogr.
– volume: 16
  start-page: 1960
  year: 2015
  end-page: 1968
  ident: bb0105
  article-title: Spectroscopic observation of calcium-induced reorientation of Cellobiose dehydrogenase immobilized on electrodes and its effect on electrocatalytic activity
  publication-title: ChemPhysChem
– volume: 8
  start-page: 79
  year: 2000
  end-page: 88
  ident: bb0045
  article-title: A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase
  publication-title: Structure
– volume: 42
  start-page: 790
  year: 1995
  end-page: 796
  ident: bb0010
  article-title: Cellobiose dehydrogenase (cellobiose oxidase) from
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 496
  start-page: 477
  year: 2013
  end-page: 481
  ident: bb0150
  article-title: Accurate assessment of mass, models and resolution by small-angle scattering
  publication-title: Nature
– volume: 19
  start-page: 172
  year: 2007
  end-page: 180
  ident: bb0100
  article-title: Investigation of graphite electrodes modified with Cellobiose dehydrogenase from the ascomycete
  publication-title: Electroanalysis
– volume: 448
  start-page: 200
  year: 2017
  end-page: 204
  ident: bb0130
  article-title: Structural studies of
  publication-title: Carbohydr. Res.
– volume: 78
  start-page: 6161
  year: 2012
  end-page: 6171
  ident: bb0175
  article-title: Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation
  publication-title: Appl Environ Microbiol
– volume: 315
  start-page: 421
  year: 2002
  end-page: 434
  ident: bb0050
  article-title: Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase
  publication-title: J. Mol. Biol.
– volume: 56
  start-page: 767
  year: 2017
  end-page: 770
  ident: bb0185
  article-title: Oxygen activation at the active site of a fungal lytic polysaccharide monooxygenase
  publication-title: Angew. Chem. Int. Ed. Engl.
– year: 2005-2018
  ident: bb5025
  article-title: GLYCAM Web
– volume: 7
  start-page: 620
  year: 2016
  ident: bb0095
  article-title: Exploring the synergy between cellobiose dehydrogenase from
  publication-title: Front. Microbiol.
– volume: 764
  start-page: 156
  year: 2014
  end-page: 166
  ident: bb0195
  article-title: Mantid—data analysis and visualization package for neutron scattering and μSR experiments
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
– volume: 278
  start-page: 7160
  year: 2003
  end-page: 7166
  ident: bb0055
  article-title: Mechanism of the reductive half-reaction in cellobiose dehydrogenase
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 1051
  year: 2012
  end-page: 1061
  ident: bb0120
  article-title: Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases
  publication-title: Structure
– volume: 25
  start-page: 495
  year: 1992
  end-page: 503
  ident: bb0155
  article-title: Determination of the regularization parameter in indirect-transform methods using perceptual criteria
  publication-title: J. Appl. Crystallogr.
– volume: 10
  start-page: 4177
  year: 2011
  end-page: 4185
  ident: bb0020
  article-title: Quantitative proteomic approach for cellulose degradation by
  publication-title: J Proteome Res
– volume: 183
  start-page: 382
  year: 2012
  end-page: 389
  ident: bb0220
  article-title: SASSIE: a program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints
  publication-title: Comput. Phys. Commun.
– volume: 160
  start-page: 463
  year: 1988
  end-page: 468
  ident: bb0040
  article-title: Cellobiose dehydrogenase (quinone)
  publication-title: Methods Enzymol.
– volume: 44
  start-page: W424
  year: 2016
  end-page: 429
  ident: bb0205
  article-title: FoXS, FoXSDock and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: 967
  year: 2016
  end-page: 973
  ident: bb0085
  article-title: Antimicrobial cellobiose dehydrogenase-chitosan particles
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 6561
  year: 2017
  end-page: 6565
  ident: bb0060
  article-title: Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis
  publication-title: Chem. Sci.
– volume: 47
  start-page: 1238
  year: 2014
  end-page: 1246
  ident: bb0190
  article-title: The Bio-SANS instrument at the high flux isotope reactor of Oak Ridge National Laboratory
  publication-title: J. Appl. Crystallogr.
– volume: 1293
  start-page: 161
  year: 1996
  end-page: 169
  ident: bb5005
  article-title: Small-angle X-ray scattering studies on cellobiose dehydrogenase from Phanerochaete chrysosporium
  publication-title: Biochim. Biophys. Acta
– volume: 113
  start-page: 5922
  year: 2016
  end-page: 5927
  ident: bb0125
  article-title: Interactions of a fungal lytic polysaccharide monooxygenase with beta-glucan substrates and cellobiose dehydrogenase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 28
  start-page: 6714
  year: 2012
  end-page: 6723
  ident: bb0160
  article-title: Investigation of the pH-dependent electron transfer mechanism of ascomycetous class II cellobiose dehydrogenases on electrodes
  publication-title: Langmuir
– volume: 8
  start-page: 79
  year: 2000
  end-page: 88
  ident: bb5000
  article-title: A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase
  publication-title: Structure
– volume: B29
  start-page: 419
  year: 1975
  end-page: 424
  ident: bb0035
  article-title: Purification and properties of cellobiose: quinone oxidoreductase Sporotrichum pulverilentum
  publication-title: Acta Chem. Scand.
– volume: 77
  start-page: 1804
  year: 2011
  end-page: 1815
  ident: bb0015
  article-title: Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes
  publication-title: Appl. Environ. Microbiol.
– volume: F73
  start-page: 70
  year: 2017
  end-page: 78
  ident: bb0180
  article-title: Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered
  publication-title: Acta Cryst
– volume: 7
  start-page: 255
  year: 2016
  end-page: 280
  ident: bb0070
  article-title: Cellobiose dehydrogenase–a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi
  publication-title: Curr. Protein Pept. Sci.
– volume: 44
  start-page: 402
  year: 2014
  end-page: 408
  ident: bb0090
  article-title: Preventing microbial colonisation of catheters: antimicrobial and antibiofilm activities of cellobiose dehydrogenase
  publication-title: Int. J. Antimicrob. Agents
– volume: 79
  start-page: 515
  year: 2016
  end-page: 521
  ident: bb0080
  article-title: A novel bio-electronic tongue using different cellobiose dehydrogenases to resolve mixtures of various sugars and interfering analytes
  publication-title: Biosens. Bioelectron.
– volume: 30
  start-page: 193
  year: 1999
  end-page: 200
  ident: bb5030
  article-title: Glycosylation of Pichia pastoris-derived proteins
  publication-title: Biotechnol. Appl. Biochem.
– volume: 179
  start-page: 269-78
  year: 2012
  ident: bb5020
  publication-title: J. Struct. Biol.
– volume: T118
  start-page: 228
  year: 2005
  end-page: 232
  ident: bb5010
  publication-title: Ab initio Reconstructions of the Shape of Cellobiose Dehydrogenase and its Domains in Solution Physica Scripta
– volume: 32
  start-page: 3135
  year: 2011
  end-page: 3141
  ident: bb0215
  article-title: Glycan reader: automated sugar identification and simulation preparation for carbohydrates and glycoproteins
  publication-title: J. Comput. Chem.
– volume: 17
  start-page: 71
  year: 2012
  end-page: 74
  ident: bb0115
  article-title: Enhancement of enzymatic activity and catalytic current of cellobiose dehydrogenase by calcium ions
  publication-title: Electr. Commun.
– volume: B28
  start-page: 209
  year: 1974
  end-page: 214
  ident: bb0030
  article-title: Cellobiose: quinone oxidoreductase, a new wood degrading enzyme from white rot fungi
  publication-title: Acta Chem. Scand.
– volume: 43
  start-page: 1068
  year: 2010
  end-page: 1077
  ident: bb5015
  article-title: The extended Q-range small-angle neutron scattering diffractometer at the SNS
  publication-title: J. Appl. Crystallogr.
– volume: 402
  start-page: 47
  year: 1999
  end-page: 52
  ident: bb0075
  article-title: Natural engineering principles of electron tunnelling in biological oxidation-reduction
  publication-title: Nature
– volume: 64
  start-page: 632
  year: 1960
  end-page: 637
  ident: bb0145
  article-title: Acidity measurements with the glass electrode in H2O-D2O mixtures
  publication-title: J. Phys. Chem.
– volume: 589
  start-page: 1194
  year: 2015
  end-page: 1199
  ident: bb0165
  article-title: Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase
  publication-title: FEBS Lett.
– volume: 115
  start-page: 1308
  year: 2015
  end-page: 1448
  ident: bb0005
  article-title: Fungal cellulases
  publication-title: Chem Rev.
– volume: 20
  start-page: 1051
  year: 2012
  ident: 10.1016/j.bbagen.2018.01.016_bb0120
  article-title: Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases
  publication-title: Structure
  doi: 10.1016/j.str.2012.04.002
– volume: 8
  start-page: 79
  year: 2000
  ident: 10.1016/j.bbagen.2018.01.016_bb0045
  article-title: A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase
  publication-title: Structure
  doi: 10.1016/S0969-2126(00)00082-4
– volume: 113
  start-page: 5922
  year: 2016
  ident: 10.1016/j.bbagen.2018.01.016_bb0125
  article-title: Interactions of a fungal lytic polysaccharide monooxygenase with beta-glucan substrates and cellobiose dehydrogenase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1602566113
– volume: 44
  start-page: W424
  year: 2016
  ident: 10.1016/j.bbagen.2018.01.016_bb0205
  article-title: FoXS, FoXSDock and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw389
– volume: 179
  start-page: 269-78
  issue: 3
  year: 2012
  ident: 10.1016/j.bbagen.2018.01.016_bb5020
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2011.09.006
– volume: 36
  start-page: 1277
  year: 2003
  ident: 10.1016/j.bbagen.2018.01.016_bb0200
  article-title: PRIMUS: a windows PC-based system for small-angle scattering data analysis
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889803012779
– volume: 8
  start-page: 967
  year: 2016
  ident: 10.1016/j.bbagen.2018.01.016_bb0085
  article-title: Antimicrobial cellobiose dehydrogenase-chitosan particles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10801
– volume: 6
  start-page: 7542
  year: 2015
  ident: 10.1016/j.bbagen.2018.01.016_bb0065
  article-title: Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8542
– volume: 8
  start-page: 79
  year: 2000
  ident: 10.1016/j.bbagen.2018.01.016_bb5000
  article-title: A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase
  publication-title: Structure
  doi: 10.1016/S0969-2126(00)00082-4
– volume: 160
  start-page: 463
  year: 1988
  ident: 10.1016/j.bbagen.2018.01.016_bb0040
  article-title: Cellobiose dehydrogenase (quinone)
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(88)60155-8
– volume: 25
  start-page: 495
  year: 1992
  ident: 10.1016/j.bbagen.2018.01.016_bb0155
  article-title: Determination of the regularization parameter in indirect-transform methods using perceptual criteria
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889892001663
– volume: 78
  start-page: 6161
  year: 2012
  ident: 10.1016/j.bbagen.2018.01.016_bb0175
  article-title: Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01503-12
– volume: 79
  start-page: 515
  year: 2016
  ident: 10.1016/j.bbagen.2018.01.016_bb0080
  article-title: A novel bio-electronic tongue using different cellobiose dehydrogenases to resolve mixtures of various sugars and interfering analytes
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.12.069
– volume: 1293
  start-page: 161
  year: 1996
  ident: 10.1016/j.bbagen.2018.01.016_bb5005
  article-title: Small-angle X-ray scattering studies on cellobiose dehydrogenase from Phanerochaete chrysosporium
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0167-4838(95)00245-6
– volume: 589
  start-page: 1194
  year: 2015
  ident: 10.1016/j.bbagen.2018.01.016_bb0165
  article-title: Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2015.03.029
– volume: 42
  start-page: 790
  year: 1995
  ident: 10.1016/j.bbagen.2018.01.016_bb0010
  article-title: Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and lignin
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00171963
– volume: 21
  start-page: 1581
  year: 2013
  ident: 10.1016/j.bbagen.2018.01.016_bb0140
  article-title: Redox-linked domain movements in the catalytic cycle of cytochrome p450 reductase
  publication-title: Structure
  doi: 10.1016/j.str.2013.06.022
– volume: 1861
  start-page: 157
  year: 2017
  ident: 10.1016/j.bbagen.2018.01.016_bb0170
  article-title: Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2016.11.016
– volume: 115
  start-page: 1308
  year: 2015
  ident: 10.1016/j.bbagen.2018.01.016_bb0005
  article-title: Fungal cellulases
  publication-title: Chem Rev.
  doi: 10.1021/cr500351c
– volume: 47
  start-page: 1238
  year: 2014
  ident: 10.1016/j.bbagen.2018.01.016_bb0190
  article-title: The Bio-SANS instrument at the high flux isotope reactor of Oak Ridge National Laboratory
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576714011285
– year: 2005
  ident: 10.1016/j.bbagen.2018.01.016_bb5025
– volume: 29
  start-page: 1859
  year: 2008
  ident: 10.1016/j.bbagen.2018.01.016_bb0210
  article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20945
– volume: 284
  start-page: 36628
  year: 2009
  ident: 10.1016/j.bbagen.2018.01.016_bb0135
  article-title: Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle x-ray scattering
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.054304
– volume: 43
  start-page: 1068
  year: 2010
  ident: 10.1016/j.bbagen.2018.01.016_bb5015
  article-title: The extended Q-range small-angle neutron scattering diffractometer at the SNS
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S002188981002217X
– volume: 402
  start-page: 47
  year: 1999
  ident: 10.1016/j.bbagen.2018.01.016_bb0075
  article-title: Natural engineering principles of electron tunnelling in biological oxidation-reduction
  publication-title: Nature
  doi: 10.1038/46972
– volume: 28
  start-page: 6714
  year: 2012
  ident: 10.1016/j.bbagen.2018.01.016_bb0160
  article-title: Investigation of the pH-dependent electron transfer mechanism of ascomycetous class II cellobiose dehydrogenases on electrodes
  publication-title: Langmuir
  doi: 10.1021/la3005486
– volume: B28
  start-page: 204
  year: 1974
  ident: 10.1016/j.bbagen.2018.01.016_bb0025
  article-title: Carbohydrate-dependent enzymic quinone reduction during lignin degradation
  publication-title: Acta Chem. Scand.
  doi: 10.3891/acta.chem.scand.28b-0204
– volume: B29
  start-page: 419
  year: 1975
  ident: 10.1016/j.bbagen.2018.01.016_bb0035
  article-title: Purification and properties of cellobiose: quinone oxidoreductase Sporotrichum pulverilentum
  publication-title: Acta Chem. Scand.
  doi: 10.3891/acta.chem.scand.29b-0419
– volume: 278
  start-page: 7160
  year: 2003
  ident: 10.1016/j.bbagen.2018.01.016_bb0055
  article-title: Mechanism of the reductive half-reaction in cellobiose dehydrogenase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210961200
– volume: 8
  start-page: 6561
  year: 2017
  ident: 10.1016/j.bbagen.2018.01.016_bb0060
  article-title: Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC01672G
– volume: 7
  start-page: 620
  year: 2016
  ident: 10.1016/j.bbagen.2018.01.016_bb0095
  article-title: Exploring the synergy between cellobiose dehydrogenase from Phanerochaete chrysosporium and cellulase from Trichoderma reesei
  publication-title: Front. Microbiol.
– volume: 19
  start-page: 172
  year: 2007
  ident: 10.1016/j.bbagen.2018.01.016_bb0100
  article-title: Investigation of graphite electrodes modified with Cellobiose dehydrogenase from the ascomycete Myriococcum thermophilum
  publication-title: Electroanalysis
  doi: 10.1002/elan.200603688
– volume: 56
  start-page: 767
  year: 2017
  ident: 10.1016/j.bbagen.2018.01.016_bb0185
  article-title: Oxygen activation at the active site of a fungal lytic polysaccharide monooxygenase
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201610502
– volume: 315
  start-page: 421
  year: 2002
  ident: 10.1016/j.bbagen.2018.01.016_bb0050
  article-title: Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.5246
– volume: 30
  start-page: 193
  year: 1999
  ident: 10.1016/j.bbagen.2018.01.016_bb5030
  article-title: Glycosylation of Pichia pastoris-derived proteins
  publication-title: Biotechnol. Appl. Biochem.
  doi: 10.1111/j.1470-8744.1999.tb00770.x
– volume: 10
  start-page: 4177
  year: 2011
  ident: 10.1016/j.bbagen.2018.01.016_bb0020
  article-title: Quantitative proteomic approach for cellulose degradation by Neurospora crassa
  publication-title: J Proteome Res
  doi: 10.1021/pr200329b
– volume: 17
  start-page: 71
  year: 2012
  ident: 10.1016/j.bbagen.2018.01.016_bb0115
  article-title: Enhancement of enzymatic activity and catalytic current of cellobiose dehydrogenase by calcium ions
  publication-title: Electr. Commun.
  doi: 10.1016/j.elecom.2012.01.031
– volume: 7
  start-page: 255
  year: 2016
  ident: 10.1016/j.bbagen.2018.01.016_bb0070
  article-title: Cellobiose dehydrogenase–a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi
  publication-title: Curr. Protein Pept. Sci.
  doi: 10.2174/138920306777452367
– volume: 448
  start-page: 200
  year: 2017
  ident: 10.1016/j.bbagen.2018.01.016_bb0130
  article-title: Structural studies of Neurospora crassa LPMO9D and redox partner CDHIIA using neutron crystallography and small-angle scattering
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2017.03.001
– volume: 282
  start-page: 3136
  year: 2015
  ident: 10.1016/j.bbagen.2018.01.016_bb0110
  article-title: Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations
  publication-title: FEBS J.
  doi: 10.1111/febs.13310
– volume: 496
  start-page: 477
  year: 2013
  ident: 10.1016/j.bbagen.2018.01.016_bb0150
  article-title: Accurate assessment of mass, models and resolution by small-angle scattering
  publication-title: Nature
  doi: 10.1038/nature12070
– volume: 32
  start-page: 3135
  year: 2011
  ident: 10.1016/j.bbagen.2018.01.016_bb0215
  article-title: Glycan reader: automated sugar identification and simulation preparation for carbohydrates and glycoproteins
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21886
– volume: F73
  start-page: 70
  year: 2017
  ident: 10.1016/j.bbagen.2018.01.016_bb0180
  article-title: Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction
  publication-title: Acta Cryst
– volume: 16
  start-page: 1960
  year: 2015
  ident: 10.1016/j.bbagen.2018.01.016_bb0105
  article-title: Spectroscopic observation of calcium-induced reorientation of Cellobiose dehydrogenase immobilized on electrodes and its effect on electrocatalytic activity
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201500112
– volume: 183
  start-page: 382
  year: 2012
  ident: 10.1016/j.bbagen.2018.01.016_bb0220
  article-title: SASSIE: a program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2011.09.010
– volume: T118
  start-page: 228
  year: 2005
  ident: 10.1016/j.bbagen.2018.01.016_bb5010
  publication-title: Ab initio Reconstructions of the Shape of Cellobiose Dehydrogenase and its Domains in Solution Physica Scripta
– volume: 77
  start-page: 1804
  year: 2011
  ident: 10.1016/j.bbagen.2018.01.016_bb0015
  article-title: Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02052-10
– volume: 764
  start-page: 156
  year: 2014
  ident: 10.1016/j.bbagen.2018.01.016_bb0195
  article-title: Mantid—data analysis and visualization package for neutron scattering and μSR experiments
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2014.07.029
– volume: B28
  start-page: 209
  year: 1974
  ident: 10.1016/j.bbagen.2018.01.016_bb0030
  article-title: Cellobiose: quinone oxidoreductase, a new wood degrading enzyme from white rot fungi
  publication-title: Acta Chem. Scand.
  doi: 10.3891/acta.chem.scand.28b-0209
– volume: 64
  start-page: 632
  year: 1960
  ident: 10.1016/j.bbagen.2018.01.016_bb0145
  article-title: Acidity measurements with the glass electrode in H2O-D2O mixtures
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100834a026
– volume: 44
  start-page: 402
  year: 2014
  ident: 10.1016/j.bbagen.2018.01.016_bb0090
  article-title: Preventing microbial colonisation of catheters: antimicrobial and antibiofilm activities of cellobiose dehydrogenase
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2014.06.016
SSID ssj0000595
Score 2.3784451
Snippet Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant...
Background: Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The...
SourceID osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1031
SubjectTerms Ascomycota - enzymology
Ascomycota - genetics
BASIC BIOLOGICAL SCIENCES
calcium
Calcium - chemistry
Calcium - metabolism
carbohydrate binding
Carbohydrate Dehydrogenases - chemistry
Carbohydrate Dehydrogenases - genetics
Carbohydrate Dehydrogenases - metabolism
cations
cellobiose
cellobiose dehydrogenase
Cellulose - chemistry
Cellulose - metabolism
electron transfer
Electron Transport
fuel production
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - metabolism
Hydrogen-Ion Concentration
Intermolecular electron transfer (IeET)
Intramolecular electron transfer (IaET)
medical equipment
Modeling
Models, Molecular
Neurospora crassa
Neurospora crassa - enzymology
Neurospora crassa - genetics
neutrons
oxidation
Oxidation-Reduction
Oxidative cellulose degradation
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
polysaccharides
Protein Binding
Protein Conformation
Redox complex
Scattering, Small Angle
Small-angle scattering
X-radiation
X-Ray Diffraction
Title Structural investigation of cellobiose dehydrogenase IIA: Insights from small angle scattering into intra- and intermolecular electron transfer mechanisms
URI https://dx.doi.org/10.1016/j.bbagen.2018.01.016
https://www.ncbi.nlm.nih.gov/pubmed/29374564
https://www.proquest.com/docview/1993018945
https://www.proquest.com/docview/2045833468
https://www.osti.gov/servlets/purl/1424446
Volume 1862
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HiuiL6Pm1nh4RfI2bNmnT-LYsHruK93Ie3FtI0kRXdttjuz7ci3-If60zaXuH4HEglNKPJKSZycykmfkNIe84dzoEbZm0lYAFiqiZtc4yMK3zKAvhyxKjkb-clstz-emiuDggizEWBt0qB9nfy_QkrYcns2E0Z5fr9ewMN_XAnCiAKRPqCkawS4Vc_v7XjZsHmA9Fv5MgGZYew-eSj5dzMGkRBTWrEngnZj3_t3qatDDjbrdCkzY6eUweDWYknfc9fUIOQnNI7veJJa8OyYPFmMftKfl9liBiEV6Drm9QNdqGtpHif3sEYuoCrcP3q3rXQk9BsdHVav6BrpoO1-4dxSAU2m3tZkNt820TaOcTLifoPWhz3-JpZxm8rPESpP2YdZeOeXboPpnIYUe3AaON1922e0bOTz5-XSzZkJGBeVlWe1Z5zKOegZSL3PHKapAX2mdRaZDfhRdlzKtKOs-LqFztnK5sEUJwKovC5pGL52TStE14SagSOY_WRVVYIbl1LvfRlVrpGINSMU6JGAlh_ABXjlkzNmb0S_thevIZJJ_hGRzllLDrWpc9XMcd5dVIY_MX2xnQKHfUPEKWwFqItuvRLQmqpcBBCW_fjpxigNxITNuE9mdn0GESWtGyuL1MnnazBQz5lLzo2ez6a8A8UwgB9Oq_e35EHuJd7370mkyACcMbsKz27jhNnWNyb776vDz9A5yiJjc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lNG9jK37yroPDfZq4liWZe8thJV4bfPSFvomJFnaMhK7xNlD_5X9tbuT7ZbBSmEQTIh0Rvad7s7x3e8H8DmOTeFcoaNU5xwfUHgVaW10hKl14lPBbZZRN_LZMltcpt-uxNUezIdeGCqr7H1_59ODt-5_mfR3c3K9Wk3O6aUephMCjTKgrjyCfUKnEiPYn5Uni-WdQxaBfIXmRyQwdNCFMi9jcN8SEOo0D_idRHz-7wg1anDT3Z-IhoB0_Aye9pkkm3WLfQ57rj6Exx235M0hHMwHKrcX8Ps8oMQSwgZb3QFrNDVrPKO_7gmLqXWscj9uqm2DK8XYxspy9oWVdUuP7y2jPhTWbvR6zXT9fe1YawM0J4Y-POeuocNWRzhY0Vd0-APxLhuodtguZMluyzaOGo5X7aZ9CZfHXy_mi6gnZYhsmuW7KLdEpT5FR-djE-e6QJdR2KmXBbpwYXnmkzxPjY2Fl6Yypsi1cM4ZOfVcJz7mr2BUN7V7A0zyJPbaeCk0T2NtTGK9yQpZeO-k9H4MfFCEsj1iORFnrNVQmvZTdepTpD4VT_GTjSG6lbruEDsemC8HHau_LE9hUHlA8ohMgqQIcNdSZRKKhd7BFEc_DZaiUN2kTF275lerqGYSz1Kk4v45SXihzfGWj-F1Z2a3V4MZmiQUoLf_vfKPcLC4ODtVp-Xy5Aie0EhXjfQORmiQ7j0mWjvzod9IfwCS8Cjo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+investigation+of+cellobiose+dehydrogenase+IIA%3A+Insights+from+small+angle+scattering+into+intra-+and+intermolecular+electron+transfer+mechanisms&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Bodenheimer%2C+Annette+M.&rft.au=O%27Dell%2C+William+B.&rft.au=Oliver%2C+Ryan+C.&rft.au=Qian%2C+Shuo&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1862&rft.issue=4&rft.spage=1031&rft.epage=1039&rft_id=info:doi/10.1016%2Fj.bbagen.2018.01.016&rft.externalDocID=S0304416518300308
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon