Structural investigation of cellobiose dehydrogenase IIA: Insights from small angle scattering into intra- and intermolecular electron transfer mechanisms
Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two fl...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1862; no. 4; pp. 1031 - 1039 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized.
Small-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa.
The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca2+. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation.
These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D.
The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO.
•Interface electrostatics regulate the conformational landscape of Neurospora crassa and Myriococcum thermophilum CDHIIAs.•Neurospora crassa CDHIIA undergoes conformational changes upon pH variation.•Myriococcum thermophilum CDHIIA undergoes conformational changes in the presence of Ca2+.•Neurospora crassa CDHIIA adopts a compact conformation in the presence of Neurospora crassa LPMO9D. |
---|---|
AbstractList | Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized.BACKGROUNDCellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized.Small-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa.METHODSSmall-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa.The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca2+. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation.RESULTSThe scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca2+. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation.These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D.CONCLUSIONSThese results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D.The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO.GENERAL SIGNIFICANCEThe present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO. Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized. Small-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa. The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca . Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation. These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D. The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO. Background: Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized.Methods: Small-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa.Results: The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca2+. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation.Conclusions: These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D.General significance: The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO. Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized.Small-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa.The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca²⁺. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation.These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D.The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO. Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant is comprised of a cytochrome domain (CYT), a dehydrogenase domain (DH), and a carbohydrate-binding module (CBM) that are connected by two flexible linkers. Upon cellobiose oxidation at the DH, intramolecular electron transfer (IaET) occurs from the DH to the CYT. In vivo, CDHIIA CYT subsequently performs intermolecular electron transfer (IeET) to a lytic polysaccharide monooxygenase (LPMO). The relevant solution-state CDH domain conformations for IaET and IeET have not been fully characterized. Small-angle X-ray and neutron scattering measurements of oxidized CDHIIA from Myriococcum thermophilum and Neurospora crassa were performed to investigate the structural landscape explored in solution by MtCDHIIA and NcCDHIIA in response to cations, pH, and the presence of an electron acceptor, LPMO9D from N. crassa. The scattering data complemented by modeling show that, under oxidizing conditions, MtCDHIIA undergoes global conformational rearrangement in the presence of Ca2+. Oxidized NcCDHIIA exhibits conformational changes upon pH variation and, in the presence of NcLPMO9D, primarily adopts a compact conformation. These results demonstrate different conformational responses of oxidized MtCDHIIA and NcCDHIIA to changes in environment. The results also reveal a shift in the oxidized NcCDHIIA conformational landscape toward interdomain compaction upon co-incubation with NcLPMO9D. The present study is the first report on the structural landscapes explored in solution by oxidized cellobiose dehydrogenases under various cation concentrations, pH conditions and in the presence of an electron-accepting LPMO. •Interface electrostatics regulate the conformational landscape of Neurospora crassa and Myriococcum thermophilum CDHIIAs.•Neurospora crassa CDHIIA undergoes conformational changes upon pH variation.•Myriococcum thermophilum CDHIIA undergoes conformational changes in the presence of Ca2+.•Neurospora crassa CDHIIA adopts a compact conformation in the presence of Neurospora crassa LPMO9D. |
Author | Meilleur, Flora Qian, Shuo Oliver, Ryan C. O'Dell, William B. Stanley, Christopher B. Bodenheimer, Annette M. |
Author_xml | – sequence: 1 givenname: Annette M. surname: Bodenheimer fullname: Bodenheimer, Annette M. organization: Molecular and Structural Biochemistry Department, North Carolina State University, Raleigh, NC, USA – sequence: 2 givenname: William B. surname: O'Dell fullname: O'Dell, William B. organization: Molecular and Structural Biochemistry Department, North Carolina State University, Raleigh, NC, USA – sequence: 3 givenname: Ryan C. surname: Oliver fullname: Oliver, Ryan C. organization: Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA – sequence: 4 givenname: Shuo surname: Qian fullname: Qian, Shuo organization: Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA – sequence: 5 givenname: Christopher B. surname: Stanley fullname: Stanley, Christopher B. email: stanleycb@ornl.gov organization: Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA – sequence: 6 givenname: Flora surname: Meilleur fullname: Meilleur, Flora email: fmeille@ncsu.edu organization: Molecular and Structural Biochemistry Department, North Carolina State University, Raleigh, NC, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29374564$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1424446$$D View this record in Osti.gov |
BookMark | eNqFUk1v3CAQRVWqZpP2H1QV6qkXb8HGH-RQKYraZqVIPbQ9I4yHXVY2pIAj5a_k13ZcJ5ccGjSCQbyZebyZM3LigwdC3nO25Yw3n4_bvtd78NuS8W7LOFrzimx415ZFx1hzQjasYqIQvKlPyVlKR4arlvUbclrKqhV1Izbk4WeOs8lz1CN1_g5SdnudXfA0WGpgHEPvQgI6wOF-iAHrabztdpcXdOeT2x9yojaGiaZJjyPVfj8CTUbnDNH5PebMYdmiLvBxWFyIUxjBzKOOFNDJEashwCcLkU5gDtq7NKW35LXVY4J3j-c5-f3t66-r6-Lmx_fd1eVNYUTT5aIzUjDGSy4t61mnZcsqabhtJWhTm6qxZdeJ3rDatv3Q97LTNQD0LbeVLi2rzsnHNW_Az6tkXEYKJniP1BQXpRCiQdCnFXQbw58ZZVKTS4s-2kOYkyqZqLuqQkYvQrmUFbZMihqhHx6hcz_BoG6jm3S8V0_9QcDFCjAxpBTBKqT3rz8omBsVZ2oZBnVU6zCoZRgU42gLZ_Es-Cn_C2Ff1jBA0e8cxEUT8AYGFxdJhuD-n-AvaH3S6w |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_4c03661 crossref_primary_10_1021_acsomega_3c02168 crossref_primary_10_1002_celc_201801256 crossref_primary_10_1007_s11244_021_01444_x crossref_primary_10_1016_j_bios_2020_112911 crossref_primary_10_1016_j_rser_2023_113958 crossref_primary_10_1021_acscatal_0c00754 crossref_primary_10_1021_acs_langmuir_3c00343 crossref_primary_10_1002_bbb_2564 crossref_primary_10_1002_anie_202011408 crossref_primary_10_1021_acs_analchem_9b04490 crossref_primary_10_1107_S2059798318017503 crossref_primary_10_1002_pro_4702 crossref_primary_10_1021_acscatal_9b02014 crossref_primary_10_1016_j_bioelechem_2019_107345 crossref_primary_10_1021_acs_biochem_8b01178 crossref_primary_10_3390_ijms242417202 crossref_primary_10_1039_D4SC04544K crossref_primary_10_1002_celc_202300679 crossref_primary_10_1111_febs_16885 crossref_primary_10_1002_ange_202011408 crossref_primary_10_1107_S2059798321009025 crossref_primary_10_1080_01614940_2022_2074359 crossref_primary_10_1021_acscatal_0c05294 crossref_primary_10_1002_cbic_202300431 crossref_primary_10_1016_j_biortech_2024_130763 |
Cites_doi | 10.1016/j.str.2012.04.002 10.1016/S0969-2126(00)00082-4 10.1073/pnas.1602566113 10.1093/nar/gkw389 10.1016/j.jsb.2011.09.006 10.1107/S0021889803012779 10.1021/acsami.5b10801 10.1038/ncomms8542 10.1016/0076-6879(88)60155-8 10.1107/S0021889892001663 10.1128/AEM.01503-12 10.1016/j.bios.2015.12.069 10.1016/0167-4838(95)00245-6 10.1016/j.febslet.2015.03.029 10.1007/BF00171963 10.1016/j.str.2013.06.022 10.1016/j.bbagen.2016.11.016 10.1021/cr500351c 10.1107/S1600576714011285 10.1002/jcc.20945 10.1074/jbc.M109.054304 10.1107/S002188981002217X 10.1038/46972 10.1021/la3005486 10.3891/acta.chem.scand.28b-0204 10.3891/acta.chem.scand.29b-0419 10.1074/jbc.M210961200 10.1039/C7SC01672G 10.1002/elan.200603688 10.1002/anie.201610502 10.1006/jmbi.2001.5246 10.1111/j.1470-8744.1999.tb00770.x 10.1021/pr200329b 10.1016/j.elecom.2012.01.031 10.2174/138920306777452367 10.1016/j.carres.2017.03.001 10.1111/febs.13310 10.1038/nature12070 10.1002/jcc.21886 10.1002/cphc.201500112 10.1016/j.cpc.2011.09.010 10.1128/AEM.02052-10 10.1016/j.nima.2014.07.029 10.3891/acta.chem.scand.28b-0209 10.1021/j100834a026 10.1016/j.ijantimicag.2014.06.016 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
CorporateAuthor | Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 OIOZB OTOTI |
DOI | 10.1016/j.bbagen.2018.01.016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 1039 |
ExternalDocumentID | 1424446 29374564 10_1016_j_bbagen_2018_01_016 S0304416518300308 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 AALMO ABPIF ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c468t-8c94001219f0b08a97039c1f79eac5c36f2884bc05f7bdbb98a5eeeb71f3a2f03 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 |
IngestDate | Thu May 18 22:51:00 EDT 2023 Thu Jul 10 22:32:39 EDT 2025 Fri Jul 11 14:04:07 EDT 2025 Wed Feb 19 02:40:48 EST 2025 Tue Jul 01 00:22:10 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Fri Feb 23 02:34:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Intermolecular electron transfer (IeET) Small-angle scattering Oxidative cellulose degradation Intramolecular electron transfer (IaET) Modeling Redox complex |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-8c94001219f0b08a97039c1f79eac5c36f2884bc05f7bdbb98a5eeeb71f3a2f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC05-00OR22725 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1424446 |
PMID | 29374564 |
PQID | 1993018945 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1424446 proquest_miscellaneous_2045833468 proquest_miscellaneous_1993018945 pubmed_primary_29374564 crossref_citationtrail_10_1016_j_bbagen_2018_01_016 crossref_primary_10_1016_j_bbagen_2018_01_016 elsevier_sciencedirect_doi_10_1016_j_bbagen_2018_01_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: United States |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Harreither, Coman, Ludwig, Haltrich, Gorton (bb0100) 2007; 19 Courtade, Wimmer, Rohr, Preims, Felice, Dimarogona, Vaaje-Kolstad, Sorlie, Sandgren, Ludwig (bb0125) 2016; 113 Hallberg, Henriksson, Pettersson, Vasella, Divne (bb0055) 2003; 278 Zamocky, Ludwig, Peterbauer, Hallberg, Divne, Nicholls, Haltrich (bb0070) 2016; 7 Harreither, Nicholls, Sygmund, Gorton, Ludwig (bb0160) 2012; 28 Huang, Ellis, Moody, Raven, Roberts (bb0140) 2013; 21 Zhao, Gao, Liu (bb5015) 2010; 43 Henriksson, Ander, Pettersson, Pettersson (bb0010) 1995; 42 O'Dell, Agarwal, Meilleur (bb0185) 2017; 56 Jo, Kim, Iyer, Im (bb0210) 2008; 29 Tegl, Thallinger, Beer, Sygmund, Ludwig, Rollett, Nyanhongo, Guebitz (bb0085) 2016; 8 Curtis, Raghunandan, Nanda, Krueger (bb0220) 2012; 183 Tan, Kracher, Gandini, Sygmund, Kittl, Haltrich, Hallberg, Ludwig, Divne (bb0065) 2015; 6 Arnold, Bilheux, Borreguero, Buts, Campbell, Chapon, Doucet, Draper, Ferraz Leal, Gigg (bb0195) 2014; 764 Westermark, Eriksson (bb0035) 1975; B29 Hallberg, Henriksson, Pettersson, Divne (bb0050) 2002; 315 Wang, Lu (bb0095) 2016; 7 Heller, Urban, Lynn, Weiss, O'Neill, Pingali, Qian, Littrell, Melnichenko, Buchanan (bb0190) 2014; 47 Phillips, Iavarone, Marletta (bb0020) 2011; 10 Zipper, Durchschlag (bb5010) 2005; T118 Svergun (bb0155) 1992; 25 Hallberg, Bergfors, Bäckbro, Pettersson, Henriksson, Divne (bb5000) 2000; 8 Bretthauer, Castellino (bb5030) 1999; 30 Westermark, Eriksson (bb0040) 1988; 160 Bodenheimer, O'Dell, Stanley, Meilleur (bb0130) 2017; 448 Woods Group (bb5025) 2005-2018 Harada, Onoda, Uchihashi, Watanabe, Sunagawa, Samejima, Igarashi, Hayashi (bb0060) 2017; 8 Hallberg, Bergfors, Bäckbro, Pettersson, Henriksson, Divne (bb0045) 2000; 8 Westermark, Eriksson (bb0025) 1974; B28 Kadek, Kavan, Felice, Ludwig, Halada, Man (bb0165) 2015; 589 Li, Beeson, Phillips, Marletta, Cate (bb0120) 2012; 20 Westermark, Eriksson (bb0030) 1974; B28 Mikkelsen, Nielsen (bb0145) 1960; 64 O'Dell, Swartz, Weiss, Meilleur (bb0180) 2017; F73 Page, Moser, Chen, Dutton (bb0075) 1999; 402 Sygmund, Kracher, Scheiblbrandner, Zahma, Felice, Harreither, Kittl, Ludwig (bb0175) 2012; 78 Thallinger, Argirova, Lesseva, Ludwig, Sygmund, Schlick, Nyanhongo, Guebitz (bb0090) 2014; 44 Ellis, Gutierrez, Barsukov, Huang, Grossmann, Roberts (bb0135) 2009; 284 Konarev, Volkov, Sokolova, Koch, Svergun (bb0200) 2003; 36 Schneidman-Duhovny, Hammel, Tainer, Sali (bb0205) 2016; 44 Kielb, Sezer, Katz, Lopez, Schulz, Gorton, Ludwig, Wollenberger, Zebger, Weidinger (bb0105) 2015; 16 Kadek, Kavan, Marcoux, Stojko, Felice, Cianferani, Ludwig, Halada, Man (bb0170) 2017; 1861 Schulz, Ludwig, Micheelsen, Silow, Toscano, Gorton (bb0115) 2012; 17 Lehner, Zipper, Henriksson, Pettersson (bb5005) 1996; 1293 Kracher, Zahma, Schulz, Sygmund, Gorton, Ludwig (bb0110) 2015; 282 Cipri, Schulz, Ludwig, Gorton, Del Valle (bb0080) 2016; 79 Harreither, Sygmund, Augustin, Narciso, Rabinovich, Gorton, Haltrich, Ludwig (bb0015) 2011; 77 Rambo, Tainer (bb0150) 2013; 496 Yang, Lasker, Schneidman-Duhovny, Webb, Huang, Pettersen, Goddard, Meng, Sali, Ferrin (bb5020) 2012; 179 Payne, Knott, Mayes, Hansson, Himmel, Sandgren, Stahlberg, Beckham (bb0005) 2015; 115 Jo, Song, Desaire, MacKerell, Im (bb0215) 2011; 32 Schneidman-Duhovny (10.1016/j.bbagen.2018.01.016_bb0205) 2016; 44 Hallberg (10.1016/j.bbagen.2018.01.016_bb0045) 2000; 8 Jo (10.1016/j.bbagen.2018.01.016_bb0210) 2008; 29 Zhao (10.1016/j.bbagen.2018.01.016_bb5015) 2010; 43 Mikkelsen (10.1016/j.bbagen.2018.01.016_bb0145) 1960; 64 Page (10.1016/j.bbagen.2018.01.016_bb0075) 1999; 402 Harreither (10.1016/j.bbagen.2018.01.016_bb0015) 2011; 77 Svergun (10.1016/j.bbagen.2018.01.016_bb0155) 1992; 25 Payne (10.1016/j.bbagen.2018.01.016_bb0005) 2015; 115 Westermark (10.1016/j.bbagen.2018.01.016_bb0030) 1974; B28 Harreither (10.1016/j.bbagen.2018.01.016_bb0100) 2007; 19 Schulz (10.1016/j.bbagen.2018.01.016_bb0115) 2012; 17 Zipper (10.1016/j.bbagen.2018.01.016_bb5010) 2005; T118 Arnold (10.1016/j.bbagen.2018.01.016_bb0195) 2014; 764 Harreither (10.1016/j.bbagen.2018.01.016_bb0160) 2012; 28 Courtade (10.1016/j.bbagen.2018.01.016_bb0125) 2016; 113 Henriksson (10.1016/j.bbagen.2018.01.016_bb0010) 1995; 42 Bodenheimer (10.1016/j.bbagen.2018.01.016_bb0130) 2017; 448 Sygmund (10.1016/j.bbagen.2018.01.016_bb0175) 2012; 78 Wang (10.1016/j.bbagen.2018.01.016_bb0095) 2016; 7 Jo (10.1016/j.bbagen.2018.01.016_bb0215) 2011; 32 Harada (10.1016/j.bbagen.2018.01.016_bb0060) 2017; 8 Li (10.1016/j.bbagen.2018.01.016_bb0120) 2012; 20 Thallinger (10.1016/j.bbagen.2018.01.016_bb0090) 2014; 44 Hallberg (10.1016/j.bbagen.2018.01.016_bb0055) 2003; 278 Hallberg (10.1016/j.bbagen.2018.01.016_bb5000) 2000; 8 Kielb (10.1016/j.bbagen.2018.01.016_bb0105) 2015; 16 Yang (10.1016/j.bbagen.2018.01.016_bb5020) 2012; 179 Westermark (10.1016/j.bbagen.2018.01.016_bb0025) 1974; B28 Tan (10.1016/j.bbagen.2018.01.016_bb0065) 2015; 6 Westermark (10.1016/j.bbagen.2018.01.016_bb0035) 1975; B29 O'Dell (10.1016/j.bbagen.2018.01.016_bb0185) 2017; 56 Lehner (10.1016/j.bbagen.2018.01.016_bb5005) 1996; 1293 Kadek (10.1016/j.bbagen.2018.01.016_bb0170) 2017; 1861 Huang (10.1016/j.bbagen.2018.01.016_bb0140) 2013; 21 Konarev (10.1016/j.bbagen.2018.01.016_bb0200) 2003; 36 Hallberg (10.1016/j.bbagen.2018.01.016_bb0050) 2002; 315 Rambo (10.1016/j.bbagen.2018.01.016_bb0150) 2013; 496 O'Dell (10.1016/j.bbagen.2018.01.016_bb0180) 2017; F73 Tegl (10.1016/j.bbagen.2018.01.016_bb0085) 2016; 8 Phillips (10.1016/j.bbagen.2018.01.016_bb0020) 2011; 10 Woods Group (10.1016/j.bbagen.2018.01.016_bb5025) 2005 Bretthauer (10.1016/j.bbagen.2018.01.016_bb5030) 1999; 30 Kadek (10.1016/j.bbagen.2018.01.016_bb0165) 2015; 589 Kracher (10.1016/j.bbagen.2018.01.016_bb0110) 2015; 282 Ellis (10.1016/j.bbagen.2018.01.016_bb0135) 2009; 284 Cipri (10.1016/j.bbagen.2018.01.016_bb0080) 2016; 79 Westermark (10.1016/j.bbagen.2018.01.016_bb0040) 1988; 160 Zamocky (10.1016/j.bbagen.2018.01.016_bb0070) 2016; 7 Heller (10.1016/j.bbagen.2018.01.016_bb0190) 2014; 47 Curtis (10.1016/j.bbagen.2018.01.016_bb0220) 2012; 183 |
References_xml | – volume: 1861 start-page: 157 year: 2017 end-page: 167 ident: bb0170 article-title: Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics publication-title: Biochim. Biophys. Acta – volume: 282 start-page: 3136 year: 2015 end-page: 3148 ident: bb0110 article-title: Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations publication-title: FEBS J. – volume: 6 start-page: 7542 year: 2015 ident: bb0065 article-title: Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation publication-title: Nat. Commun. – volume: 284 start-page: 36628 year: 2009 end-page: 36637 ident: bb0135 article-title: Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle x-ray scattering publication-title: J. Biol. Chem. – volume: B28 start-page: 204 year: 1974 end-page: 208 ident: bb0025 article-title: Carbohydrate-dependent enzymic quinone reduction during lignin degradation publication-title: Acta Chem. Scand. – volume: 21 start-page: 1581 year: 2013 end-page: 1589 ident: bb0140 article-title: Redox-linked domain movements in the catalytic cycle of cytochrome p450 reductase publication-title: Structure – volume: 29 start-page: 1859 year: 2008 end-page: 1865 ident: bb0210 article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM publication-title: J. Comput. Chem. – volume: 36 start-page: 1277 year: 2003 end-page: 1282 ident: bb0200 article-title: PRIMUS: a windows PC-based system for small-angle scattering data analysis publication-title: J. Appl. Crystallogr. – volume: 16 start-page: 1960 year: 2015 end-page: 1968 ident: bb0105 article-title: Spectroscopic observation of calcium-induced reorientation of Cellobiose dehydrogenase immobilized on electrodes and its effect on electrocatalytic activity publication-title: ChemPhysChem – volume: 8 start-page: 79 year: 2000 end-page: 88 ident: bb0045 article-title: A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase publication-title: Structure – volume: 42 start-page: 790 year: 1995 end-page: 796 ident: bb0010 article-title: Cellobiose dehydrogenase (cellobiose oxidase) from publication-title: Appl. Microbiol. Biotechnol. – volume: 496 start-page: 477 year: 2013 end-page: 481 ident: bb0150 article-title: Accurate assessment of mass, models and resolution by small-angle scattering publication-title: Nature – volume: 19 start-page: 172 year: 2007 end-page: 180 ident: bb0100 article-title: Investigation of graphite electrodes modified with Cellobiose dehydrogenase from the ascomycete publication-title: Electroanalysis – volume: 448 start-page: 200 year: 2017 end-page: 204 ident: bb0130 article-title: Structural studies of publication-title: Carbohydr. Res. – volume: 78 start-page: 6161 year: 2012 end-page: 6171 ident: bb0175 article-title: Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation publication-title: Appl Environ Microbiol – volume: 315 start-page: 421 year: 2002 end-page: 434 ident: bb0050 article-title: Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase publication-title: J. Mol. Biol. – volume: 56 start-page: 767 year: 2017 end-page: 770 ident: bb0185 article-title: Oxygen activation at the active site of a fungal lytic polysaccharide monooxygenase publication-title: Angew. Chem. Int. Ed. Engl. – year: 2005-2018 ident: bb5025 article-title: GLYCAM Web – volume: 7 start-page: 620 year: 2016 ident: bb0095 article-title: Exploring the synergy between cellobiose dehydrogenase from publication-title: Front. Microbiol. – volume: 764 start-page: 156 year: 2014 end-page: 166 ident: bb0195 article-title: Mantid—data analysis and visualization package for neutron scattering and μSR experiments publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – volume: 278 start-page: 7160 year: 2003 end-page: 7166 ident: bb0055 article-title: Mechanism of the reductive half-reaction in cellobiose dehydrogenase publication-title: J. Biol. Chem. – volume: 20 start-page: 1051 year: 2012 end-page: 1061 ident: bb0120 article-title: Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases publication-title: Structure – volume: 25 start-page: 495 year: 1992 end-page: 503 ident: bb0155 article-title: Determination of the regularization parameter in indirect-transform methods using perceptual criteria publication-title: J. Appl. Crystallogr. – volume: 10 start-page: 4177 year: 2011 end-page: 4185 ident: bb0020 article-title: Quantitative proteomic approach for cellulose degradation by publication-title: J Proteome Res – volume: 183 start-page: 382 year: 2012 end-page: 389 ident: bb0220 article-title: SASSIE: a program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints publication-title: Comput. Phys. Commun. – volume: 160 start-page: 463 year: 1988 end-page: 468 ident: bb0040 article-title: Cellobiose dehydrogenase (quinone) publication-title: Methods Enzymol. – volume: 44 start-page: W424 year: 2016 end-page: 429 ident: bb0205 article-title: FoXS, FoXSDock and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles publication-title: Nucleic Acids Res. – volume: 8 start-page: 967 year: 2016 end-page: 973 ident: bb0085 article-title: Antimicrobial cellobiose dehydrogenase-chitosan particles publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 6561 year: 2017 end-page: 6565 ident: bb0060 article-title: Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis publication-title: Chem. Sci. – volume: 47 start-page: 1238 year: 2014 end-page: 1246 ident: bb0190 article-title: The Bio-SANS instrument at the high flux isotope reactor of Oak Ridge National Laboratory publication-title: J. Appl. Crystallogr. – volume: 1293 start-page: 161 year: 1996 end-page: 169 ident: bb5005 article-title: Small-angle X-ray scattering studies on cellobiose dehydrogenase from Phanerochaete chrysosporium publication-title: Biochim. Biophys. Acta – volume: 113 start-page: 5922 year: 2016 end-page: 5927 ident: bb0125 article-title: Interactions of a fungal lytic polysaccharide monooxygenase with beta-glucan substrates and cellobiose dehydrogenase publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 28 start-page: 6714 year: 2012 end-page: 6723 ident: bb0160 article-title: Investigation of the pH-dependent electron transfer mechanism of ascomycetous class II cellobiose dehydrogenases on electrodes publication-title: Langmuir – volume: 8 start-page: 79 year: 2000 end-page: 88 ident: bb5000 article-title: A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase publication-title: Structure – volume: B29 start-page: 419 year: 1975 end-page: 424 ident: bb0035 article-title: Purification and properties of cellobiose: quinone oxidoreductase Sporotrichum pulverilentum publication-title: Acta Chem. Scand. – volume: 77 start-page: 1804 year: 2011 end-page: 1815 ident: bb0015 article-title: Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes publication-title: Appl. Environ. Microbiol. – volume: F73 start-page: 70 year: 2017 end-page: 78 ident: bb0180 article-title: Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered publication-title: Acta Cryst – volume: 7 start-page: 255 year: 2016 end-page: 280 ident: bb0070 article-title: Cellobiose dehydrogenase–a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi publication-title: Curr. Protein Pept. Sci. – volume: 44 start-page: 402 year: 2014 end-page: 408 ident: bb0090 article-title: Preventing microbial colonisation of catheters: antimicrobial and antibiofilm activities of cellobiose dehydrogenase publication-title: Int. J. Antimicrob. Agents – volume: 79 start-page: 515 year: 2016 end-page: 521 ident: bb0080 article-title: A novel bio-electronic tongue using different cellobiose dehydrogenases to resolve mixtures of various sugars and interfering analytes publication-title: Biosens. Bioelectron. – volume: 30 start-page: 193 year: 1999 end-page: 200 ident: bb5030 article-title: Glycosylation of Pichia pastoris-derived proteins publication-title: Biotechnol. Appl. Biochem. – volume: 179 start-page: 269-78 year: 2012 ident: bb5020 publication-title: J. Struct. Biol. – volume: T118 start-page: 228 year: 2005 end-page: 232 ident: bb5010 publication-title: Ab initio Reconstructions of the Shape of Cellobiose Dehydrogenase and its Domains in Solution Physica Scripta – volume: 32 start-page: 3135 year: 2011 end-page: 3141 ident: bb0215 article-title: Glycan reader: automated sugar identification and simulation preparation for carbohydrates and glycoproteins publication-title: J. Comput. Chem. – volume: 17 start-page: 71 year: 2012 end-page: 74 ident: bb0115 article-title: Enhancement of enzymatic activity and catalytic current of cellobiose dehydrogenase by calcium ions publication-title: Electr. Commun. – volume: B28 start-page: 209 year: 1974 end-page: 214 ident: bb0030 article-title: Cellobiose: quinone oxidoreductase, a new wood degrading enzyme from white rot fungi publication-title: Acta Chem. Scand. – volume: 43 start-page: 1068 year: 2010 end-page: 1077 ident: bb5015 article-title: The extended Q-range small-angle neutron scattering diffractometer at the SNS publication-title: J. Appl. Crystallogr. – volume: 402 start-page: 47 year: 1999 end-page: 52 ident: bb0075 article-title: Natural engineering principles of electron tunnelling in biological oxidation-reduction publication-title: Nature – volume: 64 start-page: 632 year: 1960 end-page: 637 ident: bb0145 article-title: Acidity measurements with the glass electrode in H2O-D2O mixtures publication-title: J. Phys. Chem. – volume: 589 start-page: 1194 year: 2015 end-page: 1199 ident: bb0165 article-title: Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase publication-title: FEBS Lett. – volume: 115 start-page: 1308 year: 2015 end-page: 1448 ident: bb0005 article-title: Fungal cellulases publication-title: Chem Rev. – volume: 20 start-page: 1051 year: 2012 ident: 10.1016/j.bbagen.2018.01.016_bb0120 article-title: Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases publication-title: Structure doi: 10.1016/j.str.2012.04.002 – volume: 8 start-page: 79 year: 2000 ident: 10.1016/j.bbagen.2018.01.016_bb0045 article-title: A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase publication-title: Structure doi: 10.1016/S0969-2126(00)00082-4 – volume: 113 start-page: 5922 year: 2016 ident: 10.1016/j.bbagen.2018.01.016_bb0125 article-title: Interactions of a fungal lytic polysaccharide monooxygenase with beta-glucan substrates and cellobiose dehydrogenase publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1602566113 – volume: 44 start-page: W424 year: 2016 ident: 10.1016/j.bbagen.2018.01.016_bb0205 article-title: FoXS, FoXSDock and MultiFoXS: single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw389 – volume: 179 start-page: 269-78 issue: 3 year: 2012 ident: 10.1016/j.bbagen.2018.01.016_bb5020 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2011.09.006 – volume: 36 start-page: 1277 year: 2003 ident: 10.1016/j.bbagen.2018.01.016_bb0200 article-title: PRIMUS: a windows PC-based system for small-angle scattering data analysis publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889803012779 – volume: 8 start-page: 967 year: 2016 ident: 10.1016/j.bbagen.2018.01.016_bb0085 article-title: Antimicrobial cellobiose dehydrogenase-chitosan particles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10801 – volume: 6 start-page: 7542 year: 2015 ident: 10.1016/j.bbagen.2018.01.016_bb0065 article-title: Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation publication-title: Nat. Commun. doi: 10.1038/ncomms8542 – volume: 8 start-page: 79 year: 2000 ident: 10.1016/j.bbagen.2018.01.016_bb5000 article-title: A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase publication-title: Structure doi: 10.1016/S0969-2126(00)00082-4 – volume: 160 start-page: 463 year: 1988 ident: 10.1016/j.bbagen.2018.01.016_bb0040 article-title: Cellobiose dehydrogenase (quinone) publication-title: Methods Enzymol. doi: 10.1016/0076-6879(88)60155-8 – volume: 25 start-page: 495 year: 1992 ident: 10.1016/j.bbagen.2018.01.016_bb0155 article-title: Determination of the regularization parameter in indirect-transform methods using perceptual criteria publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889892001663 – volume: 78 start-page: 6161 year: 2012 ident: 10.1016/j.bbagen.2018.01.016_bb0175 article-title: Characterization of the two Neurospora crassa cellobiose dehydrogenases and their connection to oxidative cellulose degradation publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01503-12 – volume: 79 start-page: 515 year: 2016 ident: 10.1016/j.bbagen.2018.01.016_bb0080 article-title: A novel bio-electronic tongue using different cellobiose dehydrogenases to resolve mixtures of various sugars and interfering analytes publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.12.069 – volume: 1293 start-page: 161 year: 1996 ident: 10.1016/j.bbagen.2018.01.016_bb5005 article-title: Small-angle X-ray scattering studies on cellobiose dehydrogenase from Phanerochaete chrysosporium publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4838(95)00245-6 – volume: 589 start-page: 1194 year: 2015 ident: 10.1016/j.bbagen.2018.01.016_bb0165 article-title: Structural insight into the calcium ion modulated interdomain electron transfer in cellobiose dehydrogenase publication-title: FEBS Lett. doi: 10.1016/j.febslet.2015.03.029 – volume: 42 start-page: 790 year: 1995 ident: 10.1016/j.bbagen.2018.01.016_bb0010 article-title: Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and lignin publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00171963 – volume: 21 start-page: 1581 year: 2013 ident: 10.1016/j.bbagen.2018.01.016_bb0140 article-title: Redox-linked domain movements in the catalytic cycle of cytochrome p450 reductase publication-title: Structure doi: 10.1016/j.str.2013.06.022 – volume: 1861 start-page: 157 year: 2017 ident: 10.1016/j.bbagen.2018.01.016_bb0170 article-title: Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2016.11.016 – volume: 115 start-page: 1308 year: 2015 ident: 10.1016/j.bbagen.2018.01.016_bb0005 article-title: Fungal cellulases publication-title: Chem Rev. doi: 10.1021/cr500351c – volume: 47 start-page: 1238 year: 2014 ident: 10.1016/j.bbagen.2018.01.016_bb0190 article-title: The Bio-SANS instrument at the high flux isotope reactor of Oak Ridge National Laboratory publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576714011285 – year: 2005 ident: 10.1016/j.bbagen.2018.01.016_bb5025 – volume: 29 start-page: 1859 year: 2008 ident: 10.1016/j.bbagen.2018.01.016_bb0210 article-title: CHARMM-GUI: a web-based graphical user interface for CHARMM publication-title: J. Comput. Chem. doi: 10.1002/jcc.20945 – volume: 284 start-page: 36628 year: 2009 ident: 10.1016/j.bbagen.2018.01.016_bb0135 article-title: Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle x-ray scattering publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.054304 – volume: 43 start-page: 1068 year: 2010 ident: 10.1016/j.bbagen.2018.01.016_bb5015 article-title: The extended Q-range small-angle neutron scattering diffractometer at the SNS publication-title: J. Appl. Crystallogr. doi: 10.1107/S002188981002217X – volume: 402 start-page: 47 year: 1999 ident: 10.1016/j.bbagen.2018.01.016_bb0075 article-title: Natural engineering principles of electron tunnelling in biological oxidation-reduction publication-title: Nature doi: 10.1038/46972 – volume: 28 start-page: 6714 year: 2012 ident: 10.1016/j.bbagen.2018.01.016_bb0160 article-title: Investigation of the pH-dependent electron transfer mechanism of ascomycetous class II cellobiose dehydrogenases on electrodes publication-title: Langmuir doi: 10.1021/la3005486 – volume: B28 start-page: 204 year: 1974 ident: 10.1016/j.bbagen.2018.01.016_bb0025 article-title: Carbohydrate-dependent enzymic quinone reduction during lignin degradation publication-title: Acta Chem. Scand. doi: 10.3891/acta.chem.scand.28b-0204 – volume: B29 start-page: 419 year: 1975 ident: 10.1016/j.bbagen.2018.01.016_bb0035 article-title: Purification and properties of cellobiose: quinone oxidoreductase Sporotrichum pulverilentum publication-title: Acta Chem. Scand. doi: 10.3891/acta.chem.scand.29b-0419 – volume: 278 start-page: 7160 year: 2003 ident: 10.1016/j.bbagen.2018.01.016_bb0055 article-title: Mechanism of the reductive half-reaction in cellobiose dehydrogenase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210961200 – volume: 8 start-page: 6561 year: 2017 ident: 10.1016/j.bbagen.2018.01.016_bb0060 article-title: Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis publication-title: Chem. Sci. doi: 10.1039/C7SC01672G – volume: 7 start-page: 620 year: 2016 ident: 10.1016/j.bbagen.2018.01.016_bb0095 article-title: Exploring the synergy between cellobiose dehydrogenase from Phanerochaete chrysosporium and cellulase from Trichoderma reesei publication-title: Front. Microbiol. – volume: 19 start-page: 172 year: 2007 ident: 10.1016/j.bbagen.2018.01.016_bb0100 article-title: Investigation of graphite electrodes modified with Cellobiose dehydrogenase from the ascomycete Myriococcum thermophilum publication-title: Electroanalysis doi: 10.1002/elan.200603688 – volume: 56 start-page: 767 year: 2017 ident: 10.1016/j.bbagen.2018.01.016_bb0185 article-title: Oxygen activation at the active site of a fungal lytic polysaccharide monooxygenase publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201610502 – volume: 315 start-page: 421 year: 2002 ident: 10.1016/j.bbagen.2018.01.016_bb0050 article-title: Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.5246 – volume: 30 start-page: 193 year: 1999 ident: 10.1016/j.bbagen.2018.01.016_bb5030 article-title: Glycosylation of Pichia pastoris-derived proteins publication-title: Biotechnol. Appl. Biochem. doi: 10.1111/j.1470-8744.1999.tb00770.x – volume: 10 start-page: 4177 year: 2011 ident: 10.1016/j.bbagen.2018.01.016_bb0020 article-title: Quantitative proteomic approach for cellulose degradation by Neurospora crassa publication-title: J Proteome Res doi: 10.1021/pr200329b – volume: 17 start-page: 71 year: 2012 ident: 10.1016/j.bbagen.2018.01.016_bb0115 article-title: Enhancement of enzymatic activity and catalytic current of cellobiose dehydrogenase by calcium ions publication-title: Electr. Commun. doi: 10.1016/j.elecom.2012.01.031 – volume: 7 start-page: 255 year: 2016 ident: 10.1016/j.bbagen.2018.01.016_bb0070 article-title: Cellobiose dehydrogenase–a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi publication-title: Curr. Protein Pept. Sci. doi: 10.2174/138920306777452367 – volume: 448 start-page: 200 year: 2017 ident: 10.1016/j.bbagen.2018.01.016_bb0130 article-title: Structural studies of Neurospora crassa LPMO9D and redox partner CDHIIA using neutron crystallography and small-angle scattering publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2017.03.001 – volume: 282 start-page: 3136 year: 2015 ident: 10.1016/j.bbagen.2018.01.016_bb0110 article-title: Inter-domain electron transfer in cellobiose dehydrogenase: modulation by pH and divalent cations publication-title: FEBS J. doi: 10.1111/febs.13310 – volume: 496 start-page: 477 year: 2013 ident: 10.1016/j.bbagen.2018.01.016_bb0150 article-title: Accurate assessment of mass, models and resolution by small-angle scattering publication-title: Nature doi: 10.1038/nature12070 – volume: 32 start-page: 3135 year: 2011 ident: 10.1016/j.bbagen.2018.01.016_bb0215 article-title: Glycan reader: automated sugar identification and simulation preparation for carbohydrates and glycoproteins publication-title: J. Comput. Chem. doi: 10.1002/jcc.21886 – volume: F73 start-page: 70 year: 2017 ident: 10.1016/j.bbagen.2018.01.016_bb0180 article-title: Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction publication-title: Acta Cryst – volume: 16 start-page: 1960 year: 2015 ident: 10.1016/j.bbagen.2018.01.016_bb0105 article-title: Spectroscopic observation of calcium-induced reorientation of Cellobiose dehydrogenase immobilized on electrodes and its effect on electrocatalytic activity publication-title: ChemPhysChem doi: 10.1002/cphc.201500112 – volume: 183 start-page: 382 year: 2012 ident: 10.1016/j.bbagen.2018.01.016_bb0220 article-title: SASSIE: a program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2011.09.010 – volume: T118 start-page: 228 year: 2005 ident: 10.1016/j.bbagen.2018.01.016_bb5010 publication-title: Ab initio Reconstructions of the Shape of Cellobiose Dehydrogenase and its Domains in Solution Physica Scripta – volume: 77 start-page: 1804 year: 2011 ident: 10.1016/j.bbagen.2018.01.016_bb0015 article-title: Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02052-10 – volume: 764 start-page: 156 year: 2014 ident: 10.1016/j.bbagen.2018.01.016_bb0195 article-title: Mantid—data analysis and visualization package for neutron scattering and μSR experiments publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/j.nima.2014.07.029 – volume: B28 start-page: 209 year: 1974 ident: 10.1016/j.bbagen.2018.01.016_bb0030 article-title: Cellobiose: quinone oxidoreductase, a new wood degrading enzyme from white rot fungi publication-title: Acta Chem. Scand. doi: 10.3891/acta.chem.scand.28b-0209 – volume: 64 start-page: 632 year: 1960 ident: 10.1016/j.bbagen.2018.01.016_bb0145 article-title: Acidity measurements with the glass electrode in H2O-D2O mixtures publication-title: J. Phys. Chem. doi: 10.1021/j100834a026 – volume: 44 start-page: 402 year: 2014 ident: 10.1016/j.bbagen.2018.01.016_bb0090 article-title: Preventing microbial colonisation of catheters: antimicrobial and antibiofilm activities of cellobiose dehydrogenase publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2014.06.016 |
SSID | ssj0000595 |
Score | 2.3784451 |
Snippet | Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The CDHIIA variant... Background: Cellobiose dehydrogenases have gained interest due to their potential applications in sectors from biofuel production to biomedical devices. The... |
SourceID | osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1031 |
SubjectTerms | Ascomycota - enzymology Ascomycota - genetics BASIC BIOLOGICAL SCIENCES calcium Calcium - chemistry Calcium - metabolism carbohydrate binding Carbohydrate Dehydrogenases - chemistry Carbohydrate Dehydrogenases - genetics Carbohydrate Dehydrogenases - metabolism cations cellobiose cellobiose dehydrogenase Cellulose - chemistry Cellulose - metabolism electron transfer Electron Transport fuel production Fungal Proteins - chemistry Fungal Proteins - genetics Fungal Proteins - metabolism Hydrogen-Ion Concentration Intermolecular electron transfer (IeET) Intramolecular electron transfer (IaET) medical equipment Modeling Models, Molecular Neurospora crassa Neurospora crassa - enzymology Neurospora crassa - genetics neutrons oxidation Oxidation-Reduction Oxidative cellulose degradation PHYSICS OF ELEMENTARY PARTICLES AND FIELDS polysaccharides Protein Binding Protein Conformation Redox complex Scattering, Small Angle Small-angle scattering X-radiation X-Ray Diffraction |
Title | Structural investigation of cellobiose dehydrogenase IIA: Insights from small angle scattering into intra- and intermolecular electron transfer mechanisms |
URI | https://dx.doi.org/10.1016/j.bbagen.2018.01.016 https://www.ncbi.nlm.nih.gov/pubmed/29374564 https://www.proquest.com/docview/1993018945 https://www.proquest.com/docview/2045833468 https://www.osti.gov/servlets/purl/1424446 |
Volume | 1862 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HiuiL6Pm1nh4RfI2bNmnT-LYsHruK93Ie3FtI0kRXdttjuz7ci3-If60zaXuH4HEglNKPJKSZycykmfkNIe84dzoEbZm0lYAFiqiZtc4yMK3zKAvhyxKjkb-clstz-emiuDggizEWBt0qB9nfy_QkrYcns2E0Z5fr9ewMN_XAnCiAKRPqCkawS4Vc_v7XjZsHmA9Fv5MgGZYew-eSj5dzMGkRBTWrEngnZj3_t3qatDDjbrdCkzY6eUweDWYknfc9fUIOQnNI7veJJa8OyYPFmMftKfl9liBiEV6Drm9QNdqGtpHif3sEYuoCrcP3q3rXQk9BsdHVav6BrpoO1-4dxSAU2m3tZkNt820TaOcTLifoPWhz3-JpZxm8rPESpP2YdZeOeXboPpnIYUe3AaON1922e0bOTz5-XSzZkJGBeVlWe1Z5zKOegZSL3PHKapAX2mdRaZDfhRdlzKtKOs-LqFztnK5sEUJwKovC5pGL52TStE14SagSOY_WRVVYIbl1LvfRlVrpGINSMU6JGAlh_ABXjlkzNmb0S_thevIZJJ_hGRzllLDrWpc9XMcd5dVIY_MX2xnQKHfUPEKWwFqItuvRLQmqpcBBCW_fjpxigNxITNuE9mdn0GESWtGyuL1MnnazBQz5lLzo2ez6a8A8UwgB9Oq_e35EHuJd7370mkyACcMbsKz27jhNnWNyb776vDz9A5yiJjc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6lNG9jK37yroPDfZq4liWZe8thJV4bfPSFvomJFnaMhK7xNlD_5X9tbuT7ZbBSmEQTIh0Rvad7s7x3e8H8DmOTeFcoaNU5xwfUHgVaW10hKl14lPBbZZRN_LZMltcpt-uxNUezIdeGCqr7H1_59ODt-5_mfR3c3K9Wk3O6aUephMCjTKgrjyCfUKnEiPYn5Uni-WdQxaBfIXmRyQwdNCFMi9jcN8SEOo0D_idRHz-7wg1anDT3Z-IhoB0_Aye9pkkm3WLfQ57rj6Exx235M0hHMwHKrcX8Ps8oMQSwgZb3QFrNDVrPKO_7gmLqXWscj9uqm2DK8XYxspy9oWVdUuP7y2jPhTWbvR6zXT9fe1YawM0J4Y-POeuocNWRzhY0Vd0-APxLhuodtguZMluyzaOGo5X7aZ9CZfHXy_mi6gnZYhsmuW7KLdEpT5FR-djE-e6QJdR2KmXBbpwYXnmkzxPjY2Fl6Yypsi1cM4ZOfVcJz7mr2BUN7V7A0zyJPbaeCk0T2NtTGK9yQpZeO-k9H4MfFCEsj1iORFnrNVQmvZTdepTpD4VT_GTjSG6lbruEDsemC8HHau_LE9hUHlA8ohMgqQIcNdSZRKKhd7BFEc_DZaiUN2kTF275lerqGYSz1Kk4v45SXihzfGWj-F1Z2a3V4MZmiQUoLf_vfKPcLC4ODtVp-Xy5Aie0EhXjfQORmiQ7j0mWjvzod9IfwCS8Cjo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+investigation+of+cellobiose+dehydrogenase+IIA%3A+Insights+from+small+angle+scattering+into+intra-+and+intermolecular+electron+transfer+mechanisms&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Bodenheimer%2C+Annette+M.&rft.au=O%27Dell%2C+William+B.&rft.au=Oliver%2C+Ryan+C.&rft.au=Qian%2C+Shuo&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1862&rft.issue=4&rft.spage=1031&rft.epage=1039&rft_id=info:doi/10.1016%2Fj.bbagen.2018.01.016&rft.externalDocID=S0304416518300308 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |