Whole genome sequencing and prediction of antimicrobial susceptibilities in non-tuberculous mycobacteria

Non-tuberculous mycobacteria (NTM) are opportunistic pathogens commonly causing chronic, pulmonary disease which is notoriously hard to treat. Current treatment for NTM infections involves at least three active drugs (including one macrolide: clarithromycin or azithromycin) over 12 months or longer....

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 13; p. 1044515
Main Authors Solanki, Priya, Lipman, Marc, McHugh, Timothy D., Satta, Giovanni
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 29.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-tuberculous mycobacteria (NTM) are opportunistic pathogens commonly causing chronic, pulmonary disease which is notoriously hard to treat. Current treatment for NTM infections involves at least three active drugs (including one macrolide: clarithromycin or azithromycin) over 12 months or longer. At present there are limited phenotypic in vitro drug susceptibility testing options for NTM which are standardised globally. As seen with tuberculosis, whole genome sequencing has the potential to transform drug susceptibility testing in NTM, by utilising a genotypic approach. The Comprehensive Resistance Prediction for Tuberculosis is a database used to predict Mycobacterium tuberculosis resistance: at present there are no similar databases available to accurately predict NTM resistance. Recent studies have shown concordance between phenotypic and genotypic NTM resistance results. To benefit from the advantages of whole genome sequencing, further advances in resistance prediction need to take place, as well as there being better information on novel drug mutations and an understanding of the impact of whole genome sequencing on NTM treatment outcomes.
AbstractList Non-tuberculous mycobacteria (NTM) are opportunistic pathogens commonly causing chronic, pulmonary disease which is notoriously hard to treat. Current treatment for NTM infections involves at least three active drugs (including one macrolide: clarithromycin or azithromycin) over 12 months or longer. At present there are limited phenotypic in vitro drug susceptibility testing options for NTM which are standardised globally. As seen with tuberculosis, whole genome sequencing has the potential to transform drug susceptibility testing in NTM, by utilising a genotypic approach. The Comprehensive Resistance Prediction for Tuberculosis is a database used to predict Mycobacterium tuberculosis resistance: at present there are no similar databases available to accurately predict NTM resistance. Recent studies have shown concordance between phenotypic and genotypic NTM resistance results. To benefit from the advantages of whole genome sequencing, further advances in resistance prediction need to take place, as well as there being better information on novel drug mutations and an understanding of the impact of whole genome sequencing on NTM treatment outcomes.Non-tuberculous mycobacteria (NTM) are opportunistic pathogens commonly causing chronic, pulmonary disease which is notoriously hard to treat. Current treatment for NTM infections involves at least three active drugs (including one macrolide: clarithromycin or azithromycin) over 12 months or longer. At present there are limited phenotypic in vitro drug susceptibility testing options for NTM which are standardised globally. As seen with tuberculosis, whole genome sequencing has the potential to transform drug susceptibility testing in NTM, by utilising a genotypic approach. The Comprehensive Resistance Prediction for Tuberculosis is a database used to predict Mycobacterium tuberculosis resistance: at present there are no similar databases available to accurately predict NTM resistance. Recent studies have shown concordance between phenotypic and genotypic NTM resistance results. To benefit from the advantages of whole genome sequencing, further advances in resistance prediction need to take place, as well as there being better information on novel drug mutations and an understanding of the impact of whole genome sequencing on NTM treatment outcomes.
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens commonly causing chronic, pulmonary disease which is notoriously hard to treat. Current treatment for NTM infections involves at least three active drugs (including one macrolide: clarithromycin or azithromycin) over 12 months or longer. At present there are limited phenotypic drug susceptibility testing options for NTM which are standardised globally. As seen with tuberculosis, whole genome sequencing has the potential to transform drug susceptibility testing in NTM, by utilising a genotypic approach. The Comprehensive Resistance Prediction for Tuberculosis is a database used to predict resistance: at present there are no similar databases available to accurately predict NTM resistance. Recent studies have shown concordance between phenotypic and genotypic NTM resistance results. To benefit from the advantages of whole genome sequencing, further advances in resistance prediction need to take place, as well as there being better information on novel drug mutations and an understanding of the impact of whole genome sequencing on NTM treatment outcomes.
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens commonly causing chronic, pulmonary disease which is notoriously hard to treat. Current treatment for NTM infections involves at least three active drugs (including one macrolide: clarithromycin or azithromycin) over 12 months or longer. At present there are limited phenotypic in vitro drug susceptibility testing options for NTM which are standardised globally. As seen with tuberculosis, whole genome sequencing has the potential to transform drug susceptibility testing in NTM, by utilising a genotypic approach. The Comprehensive Resistance Prediction for Tuberculosis is a database used to predict Mycobacterium tuberculosis resistance: at present there are no similar databases available to accurately predict NTM resistance. Recent studies have shown concordance between phenotypic and genotypic NTM resistance results. To benefit from the advantages of whole genome sequencing, further advances in resistance prediction need to take place, as well as there being better information on novel drug mutations and an understanding of the impact of whole genome sequencing on NTM treatment outcomes.
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens commonly causing chronic, pulmonary disease which is notoriously hard to treat. Current treatment for NTM infections involves at least three active drugs (including one macrolide: clarithromycin or azithromycin) over 12 months or longer. At present there are limited phenotypic in vitro drug susceptibility testing options for NTM which are standardised globally. As seen with tuberculosis, whole genome sequencing has the potential to transform drug susceptibility testing in NTM, by utilising a genotypic approach. The Comprehensive Resistance Prediction for Tuberculosis is a database used to predict Mycobacterium tuberculosis resistance: at present there are no similar databases available to accurately predict NTM resistance. Recent studies have shown concordance between phenotypic and genotypic NTM resistance results. To benefit from the advantages of whole genome sequencing, further advances in resistance prediction need to take place, as well as there being better information on novel drug mutations and an understanding of the impact of whole genome sequencing on NTM treatment outcomes.
Author Solanki, Priya
Satta, Giovanni
McHugh, Timothy D.
Lipman, Marc
AuthorAffiliation 1 UCL-TB and UCL Centre for Clinical Microbiology, University College London , London , United Kingdom
2 UCL-TB and UCL Respiratory, University College London , London , United Kingdom
3 Royal Free London NHS Foundation Trust , London , United Kingdom
AuthorAffiliation_xml – name: 2 UCL-TB and UCL Respiratory, University College London , London , United Kingdom
– name: 3 Royal Free London NHS Foundation Trust , London , United Kingdom
– name: 1 UCL-TB and UCL Centre for Clinical Microbiology, University College London , London , United Kingdom
Author_xml – sequence: 1
  givenname: Priya
  surname: Solanki
  fullname: Solanki, Priya
– sequence: 2
  givenname: Marc
  surname: Lipman
  fullname: Lipman, Marc
– sequence: 3
  givenname: Timothy D.
  surname: McHugh
  fullname: McHugh, Timothy D.
– sequence: 4
  givenname: Giovanni
  surname: Satta
  fullname: Satta, Giovanni
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36523832$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vVCEUJabG1to_4MK8pZs38vGANxsT02jbpIkbje4IXHgzNDwYgWfSfy_TmZrWhSyAXO45h9xzXqOTmKJD6C3BK8bG9Ydp9mBWFFO6IngYOOEv0BkRYugZpj9PntxP0UUpd7itAdO2v0KnTHDKRkbP0PbHNgXXbVxMs-uK-7W4CD5uOh1tt8vOeqg-xS5NrVJ9E83JeB26shRwu-qND756Vzofu_bFvi7GZVhCWko330MyGqrLXr9BLycdirs4nufo-5fP3y6v-9uvVzeXn257GMRY-1FyOZo1cAlEgwBm7WQHYsnIrBETMwZLy6jDVltqqMYMyARmGtYgGKGGnaObA69N-k7tsp91vldJe_VQSHmjdK4eglMYiOXCjcRKPgjguglSMJiAdHRk68b18cC1W8zsLLhYsw7PSJ-_RL9Vm_RbrWUzhPJG8P5IkFObbKlq9m1sIejo2oAUlZxzKQkVrfXdU62_Io9WtYbx0NAcKCW7SYGvem9Ok_ZBEaz2wVAPwVD7YKhjMBqU_gN9ZP8P6A-uQMCG
CitedBy_id crossref_primary_10_1016_j_clinme_2024_100017
crossref_primary_10_1016_j_cll_2024_10_002
crossref_primary_10_1080_14737159_2024_2362165
Cites_doi 10.3389/fimmu.2020.00303
10.3390/biology10020096
10.1128/JCM.00834-19
10.1016/j.jmoldx.2021.07.023
10.1016/j.jfma.2020.05.002
10.1093/nar/gkz935
10.1128/AAC.39.12.2625
10.1093/jac/dkr209
10.1016/s0732-8893(98)00013-3
10.3390/microorganisms9112237
10.1128/AAC.38.2.381
10.1016/S2213-2600(15)00466-X
10.1093/jac/dky526
10.1093/nar/gkz943
10.3389/fmed.2017.00027
10.1074/jbc.M113.538959
10.1128/AAC.45.1.1-12.2001
10.3390/pathogens9080641
10.1128/AAC.42.5.1295
10.1128/AAC.01000-19
10.1093/jac/dkx476
10.1016/s1473-3099(21)00586-7
10.1128/AAC.02440-16
10.1038/s41598-020-57844-8
10.3389/fmicb.2019.01977
10.1007/s13318-021-00687-z
10.1093/cid/cix517
10.1016/j.ijid.2021.03.033
10.1086/515328
10.1371/journal.pone.0140166
10.1183/13993003.01483-2019
10.1186/s12879-022-07329-y
10.1093/bioinformatics/btab681
10.1586/14787210.2013.830413
10.3390/antibiotics10121515
10.1016/j.drudis.2018.04.001
10.1128/AAC.02615-15
10.3389/fcimb.2021.659997
10.4103/ijmr.IJMR_902_20
10.1371/journal.pone.0239146
10.1128/JCM.02087-16
10.1016/S2666-5247(20)30031-8
10.1038/s41579-020-0331-1
10.1128/AAC.40.7.1676
10.1136/bmjresp-2020-000591
10.1007/s10096-018-3315-6
10.1016/j.cmi.2017.10.030
10.1016/S2666-5247(21)00128-2
10.1164/rccm.200604-571ST
10.1128/AAC.01704-21
10.1093/cid/ciab796
10.1038/s41598-018-37350-8
10.1128/AAC.00943-16
10.1046/j.1365-2958.1997.5811946.x
10.1093/jac/dkt410
10.1038/s41380-021-01418-1
10.1093/cid/ciaa241
10.1016/j.jfma.2020.05.028
10.3389/fmicb.2022.775030
10.1038/sdata.2016.18
10.3390/ijms20235868
ContentType Journal Article
Copyright Copyright © 2022 Solanki, Lipman, McHugh and Satta.
Copyright © 2022 Solanki, Lipman, McHugh and Satta. 2022 Solanki, Lipman, McHugh and Satta
Copyright_xml – notice: Copyright © 2022 Solanki, Lipman, McHugh and Satta.
– notice: Copyright © 2022 Solanki, Lipman, McHugh and Satta. 2022 Solanki, Lipman, McHugh and Satta
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2022.1044515
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_0c1d56e81d7546c5aac62cb01c7e2839
PMC9745125
36523832
10_3389_fmicb_2022_1044515
Genre Journal Article
Review
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/T023686/1
– fundername: Medical Research Council
  grantid: MR/T023686/2
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c468t-87578b9c57c1ac6c3ddfd41d183db6f3bb07d32e0dad2b2a03c1fcbf49c6312b3
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:15:59 EDT 2025
Thu Aug 21 18:39:26 EDT 2025
Fri Jul 11 13:32:43 EDT 2025
Sat May 31 02:11:02 EDT 2025
Tue Jul 01 00:57:53 EDT 2025
Thu Apr 24 23:01:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mycobacterium
non-tuberculous mycobacteria
mutations
resistance
sequencing
Language English
License Copyright © 2022 Solanki, Lipman, McHugh and Satta.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-87578b9c57c1ac6c3ddfd41d183db6f3bb07d32e0dad2b2a03c1fcbf49c6312b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
This article was submitted to Infectious Agents and Disease, a section of the journal Frontiers in Microbiology
Edited by: Abdolrazagh Hashemi Shahraki, University of Florida, United States
Reviewed by: Daria Bottai, University of Pisa, Italy; Abu Sayed Chowdhury, National Marrow Donor Program, United States
OpenAccessLink https://doaj.org/article/0c1d56e81d7546c5aac62cb01c7e2839
PMID 36523832
PQID 2755577126
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0c1d56e81d7546c5aac62cb01c7e2839
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9745125
proquest_miscellaneous_2755577126
pubmed_primary_36523832
crossref_citationtrail_10_3389_fmicb_2022_1044515
crossref_primary_10_3389_fmicb_2022_1044515
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-29
PublicationDateYYYYMMDD 2022-11-29
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-29
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Nimmo (B36) 2020; 1
Dohál (B14) 2021; 9
Liu (B28) 2022; 27
Ratnatunga (B44) 2020; 11
Alexander (B3) 2017; 55
Axson (B4) 2018; 37
Satta (B51) 2018; 24
Wallace (B60) 1996; 40
Lange (B24) 2022; 22
Vester (B58) 2001; 45
(B56) 2022
de Carvalho (B12) 2018; 73
Wu (B64) 2018; 23
Chen (B8) 2019; 10
Lam (B23) 2021; 113
Gutiérrez (B18) 2019; 63
Victoria (B59) 2021; 11
Huang (B19) 2020; 119
van Ingen (B57) 2013; 11
Davis (B11) 2020; 48
Daley (B10) 2020; 71
Ren (B46) 2022; 38
Burman (B7) 1998; 31
Dookie (B15) 2022; 13
Nicklas (B35) 2022; 66
Degiacomi (B13) 2019; 20
Kekre (B21) 2021; 73
Lipman (B26) 2020; 7
Pankhurst (B39) 2016; 4
Weng (B61) 2020; 119
Wilkinson (B62) 2016; 3
Kwak (B22) 2017; 65
Saxena (B52) 2021; 10
Alangaden (B1) 1998; 42
Lipworth (B27) 2021; 2
Nessar (B34) 2011; 66
Prammananan (B41) 1998; 177
Oren (B38) 2019; 54
Radhakrishnan (B42) 2014; 289
Rampacci (B43) 2020; 9
(B9) 2011
Brown-Elliott (B6) 2019; 57
Schiff (B53) 2019; 9
Bouzinbi (B5) 2020; 15
Ruth (B49) 2019; 74
Sharma (B54) 2020; 152
Nishiuchi (B37) 2017; 4
Realegeno (B45) 2021; 23
Soroka (B55) 2014; 69
Johansen (B20) 2020; 18
Meier (B31) 1994; 38
Park (B40) 2022; 22
(B63) 2018
Mougari (B32) 2017; 61
Rubino (B47) 2021; 46
Sander (B50) 1997; 26
Alcock (B2) 2020; 48
Lopeman (B29) 2020; 27
Nash (B33) 1995; 39
Maitra (B30) 2021; 10
Lefebvre (B25) 2017; 61
Griffith (B17) 2007; 175
Rubio (B48) 2015; 10
Ferro (B16) 2016; 60
References_xml – volume: 11
  year: 2020
  ident: B44
  article-title: The rise of non-tuberculosis mycobacterial lung disease.
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00303
– volume: 10
  start-page: 1
  year: 2021
  ident: B52
  article-title: Drug resistance in nontuberculous mycobacteria: mechanisms and models.
  publication-title: Biology
  doi: 10.3390/biology10020096
– volume: 57
  year: 2019
  ident: B6
  article-title: Antimycobacterial susceptibility testing of nontuberculous mycobacteria.
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00834-19
– volume: 23
  start-page: 1460
  year: 2021
  ident: B45
  article-title: Clinical whole genome sequencing for clarithromycin and amikacin resistance prediction and subspecies identification of Mycobacterium abscessus.
  publication-title: J. Mol. Diagn.
  doi: 10.1016/j.jmoldx.2021.07.023
– volume: 119
  start-page: S32
  year: 2020
  ident: B19
  article-title: Identification and drug susceptibility testing for nontuberculous mycobacteria.
  publication-title: J. Formos. Med. Assoc.
  doi: 10.1016/j.jfma.2020.05.002
– volume: 48
  start-page: D517
  year: 2020
  ident: B2
  article-title: CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz935
– volume: 39
  start-page: 2625
  year: 1995
  ident: B33
  article-title: Genetic basis of macrolide resistance in Mycobacterium avium isolated from patients with disseminated disease.
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.39.12.2625
– volume: 66
  start-page: 1719
  year: 2011
  ident: B34
  article-title: Genetic analysis of new 16s rRNA mutations conferring aminoglycoside resistance in Mycobacterium abscessus.
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkr209
– volume: 31
  start-page: 369
  year: 1998
  ident: B7
  article-title: AIDS-related Mycobacterium kansasii infection with initial resistance to clarithromycin.
  publication-title: Diagn. Microbiol. Infect. Dis.
  doi: 10.1016/s0732-8893(98)00013-3
– volume: 9
  year: 2021
  ident: B14
  article-title: Whole genome sequencing in the management of non-tuberculous mycobacterial infections.
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9112237
– volume: 38
  start-page: 381
  year: 1994
  ident: B31
  article-title: Identification of mutations in 23S rRNA gene of clarithromycin-resistant Mycobacterium intracellulare.
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.38.2.381
– volume: 4
  start-page: 49
  year: 2016
  ident: B39
  article-title: Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study.
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(15)00466-X
– volume: 74
  start-page: 935
  year: 2019
  ident: B49
  article-title: A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria.
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dky526
– volume: 48
  start-page: D606
  year: 2020
  ident: B11
  article-title: The PATRIC bioinformatics resource center: expanding data and analysis capabilities.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz943
– volume: 4
  year: 2017
  ident: B37
  article-title: Infection sources of a common non-tuberculous mycobacterial pathogen, Mycobacterium avium complex.
  publication-title: Front. Med.
  doi: 10.3389/fmed.2017.00027
– volume: 289
  start-page: 16526
  year: 2014
  ident: B42
  article-title: Crystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosis.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.538959
– volume: 45
  start-page: 1
  year: 2001
  ident: B58
  article-title: Macrolide resistance conferred by base substitutions in 23S rRNA.
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.45.1.1-12.2001
– year: 2018
  ident: B63
  publication-title: The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex: technical guide 2018.
– volume: 9
  start-page: 1
  year: 2020
  ident: B43
  article-title: Preclinical models of nontuberculous mycobacteria infection for early drug discovery and vaccine research.
  publication-title: Pathogens
  doi: 10.3390/pathogens9080641
– year: 2022
  ident: B56
  publication-title: Comprehensive resistance prediction for tuberculosis: an international consortium (CRyPTIC).
– volume: 42
  start-page: 1295
  year: 1998
  ident: B1
  article-title: Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis.
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.42.5.1295
– volume: 63
  start-page: e1000
  year: 2019
  ident: B18
  article-title: The TetR family transcription factor MAB_2299c regulates the expression of two distinct MmpS-MmpL efflux pumps involved in cross-resistance to clofazimine and bedaquiline in Mycobacterium abscessus.
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01000-19
– volume: 73
  start-page: 862
  year: 2018
  ident: B12
  article-title: Genetic correlates of clarithromycin susceptibility among isolates of the Mycobacterium abscessus group and the potential clinical applicability of a PCR-based analysis of erm(41).
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkx476
– volume: 22
  start-page: e178
  year: 2022
  ident: B24
  article-title: Consensus management recommendations for less common non-tuberculous mycobacterial pulmonary diseases.
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/s1473-3099(21)00586-7
– volume: 61
  start-page: e2440
  year: 2017
  ident: B25
  article-title: Inhibition of the β-lactamase BlaMab by avibactam improves the in vitro and in vivo efficacy of imipenem against Mycobacterium abscessus.
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02440-16
– volume: 27
  start-page: 1469
  year: 2020
  ident: B29
  article-title: Effect of amoxicillin in combination with imipenem-relebactam against Mycobacterium abscessus.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-57844-8
– volume: 10
  year: 2019
  ident: B8
  article-title: Clinical efficacy and adverse effects of antibiotics used to treat Mycobacterium abscessus pulmonary disease.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.01977
– volume: 46
  start-page: 573
  year: 2021
  ident: B47
  article-title: Correction to: population pharmacokinetic evaluation of amikacin liposome inhalation suspension in patients with treatment-refractory nontuberculous mycobacterial lung disease.
  publication-title: Eur. J. Drug Metab. Pharmacokinet.
  doi: 10.1007/s13318-021-00687-z
– volume: 65
  start-page: 1077
  year: 2017
  ident: B22
  article-title: Treatment outcomes of mycobacterium avium complex lung disease: a systematic review and meta-analysis.
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/cix517
– volume: 113
  start-page: S48
  year: 2021
  ident: B23
  article-title: Value of routine whole genome sequencing for Mycobacterium tuberculosis drug resistance detection.
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2021.03.033
– volume: 177
  start-page: 1573
  year: 1998
  ident: B41
  article-title: A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae.
  publication-title: J. Infect. Dis.
  doi: 10.1086/515328
– volume: 10
  year: 2015
  ident: B48
  article-title: Inducible and acquired clarithromycin resistance in the Mycobacterium abscessus complex.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140166
– volume: 54
  year: 2019
  ident: B38
  article-title: On the valid publication of names of mycobacteria.
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.01483-2019
– volume: 22
  year: 2022
  ident: B40
  article-title: Evaluating the clinical impact of routine whole genome sequencing in tuberculosis treatment decisions and the issue of isoniazid mono-resistance.
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-022-07329-y
– volume: 38
  start-page: 325
  year: 2022
  ident: B46
  article-title: Prediction of antimicrobial resistance based on whole-genome sequencing and machine learning.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab681
– volume: 11
  start-page: 1065
  year: 2013
  ident: B57
  article-title: Drug treatment of pulmonary nontuberculous mycobacterial disease in HIV-negative patients: the evidence.
  publication-title: Expert Rev. Anti Infective Therapy
  doi: 10.1586/14787210.2013.830413
– volume: 10
  year: 2021
  ident: B30
  article-title: Improving the drug development pipeline for mycobacteria: modelling antibiotic exposure in the hollow fibre infection model.
  publication-title: Antibiotics
  doi: 10.3390/antibiotics10121515
– volume: 23
  start-page: 1502
  year: 2018
  ident: B64
  article-title: NTM drug discovery: status, gaps and the way forward.
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2018.04.001
– volume: 60
  start-page: 1097
  year: 2016
  ident: B16
  article-title: Clofazimine prevents the regrowth of Mycobacterium abscessus and Mycobacterium avium type strains exposed to Amikacin and clarithromycin.
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02615-15
– volume: 11
  year: 2021
  ident: B59
  article-title: Mycobacterium abscessus complex: a review of recent developments in an emerging pathogen.
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2021.659997
– volume: 152
  start-page: 185
  year: 2020
  ident: B54
  article-title: Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases.
  publication-title: Indian J. Med. Res.
  doi: 10.4103/ijmr.IJMR_902_20
– volume: 15
  year: 2020
  ident: B5
  article-title: Evaluation of the GenoType NTM-DR assay performance for the identification and molecular detection of antibiotic resistance in Mycobacterium abscessus complex.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0239146
– volume: 55
  start-page: 574
  year: 2017
  ident: B3
  article-title: Emergence of mmpT5 variants during bedaquiline treatment of mycobacterium intracellulare lung disease.
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.02087-16
– volume: 1
  start-page: e165
  year: 2020
  ident: B36
  article-title: Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: a phenotypic and phylogenetic analysis.
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(20)30031-8
– volume: 18
  start-page: 392
  year: 2020
  ident: B20
  article-title: Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus.
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-0331-1
– volume: 40
  start-page: 1676
  year: 1996
  ident: B60
  article-title: Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus.
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.40.7.1676
– volume: 7
  year: 2020
  ident: B26
  article-title: Current and future management of non-tuberculous mycobacterial pulmonary disease (NTM-PD) in the UK.
  publication-title: BMJ Open Respir. Res.
  doi: 10.1136/bmjresp-2020-000591
– volume: 37
  start-page: 1795
  year: 2018
  ident: B4
  article-title: Nontuberculous mycobacterial disease managed within UK primary care, 2006–2016.
  publication-title: Eur. J. Clin. Microbiol. Infect. Dis.
  doi: 10.1007/s10096-018-3315-6
– year: 2011
  ident: B9
  publication-title: Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes. Approved standard-second edition.
– volume: 24
  start-page: 604
  year: 2018
  ident: B51
  article-title: Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleashing its full potential?
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1016/j.cmi.2017.10.030
– volume: 2
  start-page: e498
  year: 2021
  ident: B27
  article-title: Epidemiology of Mycobacterium abscessus in England: an observational study.
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(21)00128-2
– volume: 175
  start-page: 367
  year: 2007
  ident: B17
  article-title: An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases.
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200604-571ST
– volume: 66
  year: 2022
  ident: B35
  article-title: Potency of omadacycline against Mycobacteroides abscessus clinical isolates in vitro and in a mouse model of pulmonary infection.
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01704-21
– volume: 73
  start-page: S258
  year: 2021
  ident: B21
  article-title: Integrating scalable genome sequencing into microbiology laboratories for routine antimicrobial resistance surveillance.
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciab796
– volume: 9
  year: 2019
  ident: B53
  article-title: Clinical relevance of non-tuberculous mycobacteria isolated from respiratory specimens: seven year experience in a UK hospital.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37350-8
– volume: 61
  start-page: e943
  year: 2017
  ident: B32
  article-title: Selection of resistance to clarithromycin in Mycobacterium abscessus subspecies.
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00943-16
– volume: 26
  start-page: 469
  year: 1997
  ident: B50
  article-title: The role of ribosomal RNAs in macrolide resistance.
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1997.5811946.x
– volume: 69
  start-page: 691
  year: 2014
  ident: B55
  article-title: Characterization of broad-spectrum Mycobacterium abscessus class A β-lactamase.
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkt410
– volume: 27
  start-page: 1469
  year: 2022
  ident: B28
  article-title: Application of deep learning algorithm on whole genome sequencing data uncovers structural variants associated with multiple mental disorders in African American patients.
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-021-01418-1
– volume: 71
  start-page: E1
  year: 2020
  ident: B10
  article-title: Treatment of nontuberculous mycobacterial pulmonary disease: an official ats/ers/escmid/idsa clinical practice guideline.
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciaa241
– volume: 119
  start-page: S58
  year: 2020
  ident: B61
  article-title: Treatment for Mycobacterium abscessus complex–lung disease.
  publication-title: J. Formos. Med. Assoc.
  doi: 10.1016/j.jfma.2020.05.028
– volume: 13
  year: 2022
  ident: B15
  article-title: Application of next generation sequencing for diagnosis and clinical management of drug-resistant tuberculosis: updates on recent developments in the field.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2022.775030
– volume: 3
  year: 2016
  ident: B62
  article-title: The FAIR guiding principles for scientific data management and stewardship.
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.18
– volume: 20
  year: 2019
  ident: B13
  article-title: Mycobacterium abscessus, an emerging and worrisome pathogen among cystic fibrosis patients.
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20235868
SSID ssj0000402000
Score 2.3676436
SecondaryResourceType review_article
Snippet Non-tuberculous mycobacteria (NTM) are opportunistic pathogens commonly causing chronic, pulmonary disease which is notoriously hard to treat. Current...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1044515
SubjectTerms Microbiology
mutations
Mycobacterium
non-tuberculous mycobacteria
resistance
sequencing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOgl9JGm7iOokFswtWRLso5tSQiF9tSQ3IQ1kokh6w279iH_vjOys-yWklxytWVLzGg086GZbxg70TFo42vIRVAIUKyMuY3SouEFPJEFQCuoOPnXb31xWf28Vtdbrb4oJ2yiB54E97UA_IuOGFYZVWlQTQNagi8EmIiuMZXuoc_bAlPpDCZYVBRTlQyiMItq6sAjHpSSrjUrRX1wtzxRIuz_X5T5b7Lklvc5f8UO5rCRf5uW-5q9iP0btj81krx_y26uqM0tJ8LVReRzejQ6Jd70gd-t6DKGFMCXLT4ZukWX6Jfwh-txnfJaUoosgmbe9bxf9vkw-riC8XY5rvniHtDoE6lzc8guz8_-_LjI5x4KOVS6HvLEV-8tKAMCJQdlCG2oREBLpgK80vvChFLGIjRBetkUJYgWfFtZ0KWQvnzH9nDa-J7xwhL8CnUQJRBxWAMq1B5krLUl1vqMiQd5OpgJxqnPxa1DoEE6cEkHjnTgZh1k7HTzzd1Er_Ho6O-kps1IosZOD3DDuHnDuKc2TMa-PCjZoSnR_UjTRxSnk0YpZYyQOmNHk9I3U5UaETuefhkzO9thZy27b_ruJtF1I2LDqEp9eI7Ff2QvSSBUDCntJ7Y3rMb4GaOiwR8nA_gLqt0ONw
  priority: 102
  providerName: Directory of Open Access Journals
Title Whole genome sequencing and prediction of antimicrobial susceptibilities in non-tuberculous mycobacteria
URI https://www.ncbi.nlm.nih.gov/pubmed/36523832
https://www.proquest.com/docview/2755577126
https://pubmed.ncbi.nlm.nih.gov/PMC9745125
https://doaj.org/article/0c1d56e81d7546c5aac62cb01c7e2839
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBalY7CXsd_zuhYN9jY8LNmS7Icy2rGuDLqnheXNWCd5NSRO59iw_Pe9k52wjG6wl0Acx7L16XT3WbrvGHurvdPG5hALp5CgFNLHhZcFGp7DGVkA1IKSk6--6stZ9mWu5gdsW-5o6sD1ndSO6knNusX7Xz83H9DgT4lxor9FBBqwSPWkpBXLTFHO-T30TIYM9WoK98PMTGQpZKUIrWlBQM7HPJq_XGbPVwVJ_7vi0D-3U_7mny4esYdTYMnPxpHwmB349gm7P5aa3Dxl19-pEC4nSdal59MGanRbvGodv-louYYg4qsaj_TNsgkCTXjB9bAOO1_CJlqk1bxpebtq436wvoNhsRrWfLkBnBaC7HP1jM0uPn37eBlPVRZiyHTex0HR3hagDIgKNKTO1S4TDm2dUvRSaxPjUukTVzlpZZWkIGqwdVaAToW06XN2iM36l4wnBRE0lzuRAkmLVaBcbkH6XBekax8xse3PEiYJcqqEsSiRihAGZcCgJAzKCYOIvdv952YU4Pjn2ecE0-5MEs8OB1bdj3KyxTIBHJjaY6RuVKZBVfjYEmwiwHiMtoqIvdmCXKKx0QpK1XrszlIapZQxQuqIvRhB3zWVauT0OD9GzOwNh7172f-lba6DoDdyOoy71Kv_etQj9oC-Ul6kLF6zw74b_DEGSL09CS8W8PPzXJwEC7gFb7AR3A
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Whole+genome+sequencing+and+prediction+of+antimicrobial+susceptibilities+in+non-tuberculous+mycobacteria&rft.jtitle=Frontiers+in+microbiology&rft.au=Solanki%2C+Priya&rft.au=Lipman%2C+Marc&rft.au=McHugh%2C+Timothy+D.&rft.au=Satta%2C+Giovanni&rft.date=2022-11-29&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=13&rft_id=info:doi/10.3389%2Ffmicb.2022.1044515&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmicb_2022_1044515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon