Splitting Methods for Convex Clustering

Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchi...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 24; no. 4; pp. 994 - 1013
Main Authors Chi, Eric C., Lange, Kenneth
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 02.10.2015
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1080/10618600.2014.948181

Cover

Abstract Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work, we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplementary materials available online.
AbstractList Clustering is a fundamental problem in many scientific applications. Standard methods such as -means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of -means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplemental materials available online.
Clustering is a fundamental problem in many scientific applications. Standard methods such as k -means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k -means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplemental materials available online.
Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work, we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient.
Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work, we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplementary materials available online.
Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplemental materials available online.Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplemental materials available online.
Author Chi, Eric C.
Lange, Kenneth
AuthorAffiliation Postdoctoral Research Associate, Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
Professor, Departments of Biomathematics, Human Genetics, and Statistics, University of California, Los Angeles, CA 90095-7088
AuthorAffiliation_xml – name: Professor, Departments of Biomathematics, Human Genetics, and Statistics, University of California, Los Angeles, CA 90095-7088
– name: Postdoctoral Research Associate, Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005
Author_xml – sequence: 1
  givenname: Eric C.
  surname: Chi
  fullname: Chi, Eric C.
– sequence: 2
  givenname: Kenneth
  surname: Lange
  fullname: Lange, Kenneth
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27087770$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhS1URNvAPwAUiQVsJlw_ZuywAKGIl1TEAlhbHudO68ixU9vTx7_H0bQFuoCVLd3vXJ97j4_JQYgBCXlKYUFBwWsKHVUdwIIBFYulUFTRB-SItlw2TNL2oN4r0uyZQ3Kc8wYAaLeUj8ghk6CklHBEXn7feVeKC6fzr1jO4jrPh5jmqxgu8Gq-8mMumGr1MXk4GJ_xyc05Iz8_fvix-tycfPv0ZfX-pLGiU6VR0KEA1RsmTMutoYKxfs2NVWrgAnpAi51ghhoUrO8tq-fAUPXUojDLns_I26nvbuy3uLYYSjJe75LbmnSto3H670pwZ_o0XmihOLSwrA1e3TRI8XzEXPTWZYvem4BxzJoq3nYdrYuo6It76CaOKdTxNJWtYiC4ZJV6_qejOyu3O6yAmACbYs4JhzuEgt5HpW-j0vuo9BRVlb25J7OumOLifi7n_yd-Nok3ucT025OQ1XL9AjPybqq7UOPcmsuY_FoXc-1jGpIJ1mXN__nCL0nStJY
CitedBy_id crossref_primary_10_1016_j_csda_2019_04_011
crossref_primary_10_1016_j_jmva_2017_08_001
crossref_primary_10_1214_19_EJS1652
crossref_primary_10_1214_25_EJS2359
crossref_primary_10_1016_j_jeconom_2022_12_002
crossref_primary_10_1051_wujns_2022272128
crossref_primary_10_1186_s12859_017_1970_8
crossref_primary_10_1016_j_csda_2024_107918
crossref_primary_10_1137_21M1441080
crossref_primary_10_1002_bimj_201900287
crossref_primary_10_29220_CSAM_2022_29_4_441
crossref_primary_10_1016_j_csda_2022_107634
crossref_primary_10_1016_j_jmva_2021_104874
crossref_primary_10_1109_MCSE_2021_3120039
crossref_primary_10_1016_j_jmva_2020_104691
crossref_primary_10_1007_s10589_015_9732_x
crossref_primary_10_1007_s11280_021_00945_9
crossref_primary_10_1080_10618600_2015_1114491
crossref_primary_10_1080_10618600_2017_1377081
crossref_primary_10_1111_biom_12540
crossref_primary_10_1016_j_patcog_2018_04_019
crossref_primary_10_1109_TNNLS_2023_3276393
crossref_primary_10_1080_10618600_2019_1660178
crossref_primary_10_1186_s12859_019_2743_3
crossref_primary_10_1016_j_patrec_2021_08_012
crossref_primary_10_1016_j_csda_2024_108037
crossref_primary_10_1080_24725854_2021_2004626
crossref_primary_10_1016_j_isatra_2021_07_051
crossref_primary_10_1109_TFUZZ_2020_2991306
crossref_primary_10_1002_sim_8878
crossref_primary_10_1111_exsy_12462
crossref_primary_10_1016_j_csda_2021_107217
crossref_primary_10_1111_biom_13860
crossref_primary_10_1155_2021_2996750
crossref_primary_10_3390_e26050376
crossref_primary_10_1214_15_EJS1074
crossref_primary_10_1007_s11432_016_0158_2
crossref_primary_10_1214_21_AOAS1503
crossref_primary_10_1080_01621459_2018_1527701
crossref_primary_10_1080_01621459_2016_1148039
crossref_primary_10_1093_bioinformatics_btad417
crossref_primary_10_1016_j_procs_2021_05_042
crossref_primary_10_1007_s11263_017_1026_6
crossref_primary_10_1214_17_EJS1389
crossref_primary_10_1016_j_patrec_2019_09_014
crossref_primary_10_1002_sim_9578
crossref_primary_10_1002_wics_1551
crossref_primary_10_1137_18M121099X
crossref_primary_10_1080_10618600_2018_1476249
crossref_primary_10_1016_j_eswa_2025_127049
crossref_primary_10_1080_00401706_2020_1733094
crossref_primary_10_1007_s00362_020_01203_2
crossref_primary_10_1109_TKDE_2023_3342209
crossref_primary_10_1093_bioinformatics_btab248
crossref_primary_10_1007_s00180_023_01380_2
crossref_primary_10_1177_09622802221133554
crossref_primary_10_1016_j_jspi_2023_106100
crossref_primary_10_1109_ACCESS_2020_3006584
crossref_primary_10_1016_j_ins_2021_11_048
crossref_primary_10_1093_jrsssc_qlaf015
crossref_primary_10_1007_s11634_020_00424_5
crossref_primary_10_1080_10618600_2020_1763808
crossref_primary_10_1145_3241063
crossref_primary_10_1080_00401706_2024_2321930
crossref_primary_10_1080_10618600_2022_2099405
crossref_primary_10_3934_mbe_2023705
crossref_primary_10_1155_2020_9216351
crossref_primary_10_1007_s12561_022_09356_4
crossref_primary_10_1145_3420035
crossref_primary_10_1186_s13634_022_00942_8
crossref_primary_10_1080_00949655_2019_1700986
crossref_primary_10_1016_j_apacoust_2018_04_033
crossref_primary_10_1007_s00500_019_04448_8
crossref_primary_10_1111_rssb_12492
crossref_primary_10_1016_j_csda_2022_107667
crossref_primary_10_1016_j_ejor_2020_09_010
crossref_primary_10_1093_jrsssa_qnaf007
crossref_primary_10_1109_TCYB_2016_2546965
crossref_primary_10_1007_s00500_019_04471_9
crossref_primary_10_1515_ijb_2018_0026
crossref_primary_10_1109_TSP_2019_2944758
crossref_primary_10_1111_biom_13815
crossref_primary_10_1080_10618600_2023_2197474
crossref_primary_10_1109_TNNLS_2022_3164540
crossref_primary_10_1080_26941899_2024_2376535
crossref_primary_10_1016_j_csda_2021_107414
crossref_primary_10_1002_wics_1461
crossref_primary_10_1016_j_patcog_2021_107984
crossref_primary_10_1007_s11425_022_2289_0
crossref_primary_10_1016_j_cie_2025_110974
crossref_primary_10_1007_s11222_023_10353_w
crossref_primary_10_1007_s00371_024_03679_7
crossref_primary_10_1007_s10957_025_02616_5
crossref_primary_10_1109_LSP_2023_3316023
crossref_primary_10_1088_1361_6420_aba417
crossref_primary_10_1007_s42081_022_00150_6
crossref_primary_10_1016_j_patrec_2018_12_004
crossref_primary_10_1002_bimj_202200231
crossref_primary_10_1007_s11634_018_0350_1
crossref_primary_10_1186_s12859_024_05652_6
crossref_primary_10_1111_biom_13004
crossref_primary_10_1002_sam_11621
crossref_primary_10_1137_21M1448732
crossref_primary_10_1016_j_cor_2025_106982
crossref_primary_10_1016_j_patcog_2022_108689
crossref_primary_10_1073_pnas_1700770114
crossref_primary_10_1080_10618600_2019_1629943
crossref_primary_10_3390_math9233021
Cites_doi 10.1109/TIT.2009.2021326
10.1198/jcgs.2010.09208
10.1109/MSP.2007.914237
10.1080/10618600.2000.10474879
10.1111/j.2517-6161.1996.tb02080.x
10.1002/nav.3800030109
10.1137/S1064827596311451
10.1007/978-0-387-98141-3
10.1093/comjnl/9.4.373
10.1080/01621459.1963.10500845
10.1016/0898-1221(76)90003-1
10.1109/TIT.2005.864420
10.21236/ADA567407
10.1007/s11222-007-9033-z
10.1002/0471721182
10.1201/9780367805302
10.1109/TIT.1982.1056489
10.1214/11-AOS878
10.1137/080725891
10.1007/BF02289588
10.1137/0329006
10.1111/j.1467-9868.2005.00490.x
10.1561/2200000016
10.2307/3151350
10.1093/comjnl/26.4.354
10.1007/978-1-4613-0457-9
10.1080/03081088508817681
10.1007/BF00938486
10.1214/aos/1176342360
10.1007/s10994-009-5103-0
10.1137/S1064827596304010
10.1099/00221287-17-1-201
10.1198/jasa.2010.tm09415
10.1002/9780470316801
10.1051/m2an/197509R200411
ContentType Journal Article
Copyright 2015 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2015
2015 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
Copyright American Statistical Association 2015
Copyright_xml – notice: 2015 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2015
– notice: 2015 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America
– notice: Copyright American Statistical Association 2015
DBID AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1080/10618600.2014.948181
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest Computer Science Collection


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 1013
ExternalDocumentID PMC4830509
3926504111
27087770
10_1080_10618600_2014_948181
24737215
948181
Genre Article
Journal Article
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM053275
– fundername: NHGRI NIH HHS
  grantid: R01 HG006139
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
2AX
30N
4.4
5GY
AAENE
AAJMT
AAKYL
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABQDR
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACDIW
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
ADODI
ADULT
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
ARCSS
AVBZW
AWYRJ
BHOJU
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HQ6
HZ~
H~P
IAO
IEA
IGG
IGS
IOF
IPNFZ
IPSME
J.P
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
KYCEM
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAGDL
AAHIA
AAWIL
ABAWQ
ACHJO
ADXHL
ADYSH
AFRVT
AGLNM
AIHAF
AMPGV
AMVHM
AAYXX
CITATION
07G
29K
AAIKQ
AAKBW
ACAGQ
ACGEE
AELPN
AEUMN
AGCQS
AGLEN
AGROQ
AHMOU
ALCKM
AMATQ
AMEWO
AMXXU
BCCOT
BPLKW
C06
CRFIH
D-I
DMQIW
DWIFK
FEDTE
GIFXF
HGD
HVGLF
IVXBP
LJTGL
NPM
NUSFT
QCRFL
RNS
TAQ
TFMCV
TOXWX
UB9
Z5M
JQ2
TASJS
7X8
5PM
ID FETCH-LOGICAL-c468t-806e408ba24a53ca1422bd3ac88f340b0ece642a1ae42bbc2ae4f2e8b1ce4a9b3
ISSN 1061-8600
IngestDate Thu Aug 21 14:03:34 EDT 2025
Tue Aug 05 11:19:29 EDT 2025
Wed Aug 13 06:24:28 EDT 2025
Wed Feb 19 02:02:08 EST 2025
Thu Apr 24 23:11:14 EDT 2025
Tue Jul 01 02:05:28 EDT 2025
Fri May 30 11:17:11 EDT 2025
Wed Dec 25 08:59:22 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Regularization paths
k-means
Alternating direction method of multipliers
Hierarchical clustering
Convex optimization
Alternating minimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c468t-806e408ba24a53ca1422bd3ac88f340b0ece642a1ae42bbc2ae4f2e8b1ce4a9b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 27087770
PQID 1758204372
PQPubID 29738
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4830509
pubmed_primary_27087770
jstor_primary_24737215
proquest_journals_1758204372
crossref_primary_10_1080_10618600_2014_948181
informaworld_taylorfrancis_310_1080_10618600_2014_948181
proquest_miscellaneous_1835661169
crossref_citationtrail_10_1080_10618600_2014_948181
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-02
PublicationDateYYYYMMDD 2015-10-02
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationTitleAlternate J Comput Graph Stat
PublicationYear 2015
Publisher Taylor & Francis
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
– name: Taylor & Francis Ltd
References cit0034
cit0031
cit0032
Goldstein T. (cit0019) 2012
Glowinski R. (cit0017) 1975; 2
Rasmussen C.E. (cit0039) 2000
Luxburg U. (cit0049) 2010; 2
cit0037
cit0038
cit0035
cit0036
cit0020
Arthur D. (cit0003) 2007
Gower J.C. (cit0022) 1969; 18
Deng W. (cit0009) 2012
cit0028
cit0029
Goldfarb D. (cit0018) 2012
cit0026
cit0027
cit0024
cit0012
cit0051
cit0052
cit0050
Lindsten F. (cit0030) 2011
Hocking T. (cit0025) 2011
Gordon A. (cit0021) 1999
MacQueen J. (cit0033) 1967; 1
Wu R. (cit0053) 2009
cit0015
cit0016
cit0014
cit0044
cit0001
cit0045
cit0040
Forgy E. (cit0013) 1965; 21
cit0041
Tibshirani R. (cit0043) 1996; 58
Sørensen T. (cit0042) 1948; 5
Titterington D.M. (cit0046) 1985
cit0008
cit0006
cit0004
cit0048
cit0005
cit0002
cit0047
13475686 - J Gen Microbiol. 1957 Aug;17(1):201-26
5234703 - Psychometrika. 1967 Sep;32(3):241-54
20811510 - J Am Stat Assoc. 2010 Jun 1;105(490):713-726
References_xml – ident: cit0008
  doi: 10.1109/TIT.2009.2021326
– volume: 1
  start-page: 281
  year: 1967
  ident: cit0033
  publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
– ident: cit0026
  doi: 10.1198/jcgs.2010.09208
– ident: cit0040
  doi: 10.1109/MSP.2007.914237
– start-page: 1
  year: 2012
  ident: cit0018
  publication-title: Mathematical Programming
– ident: cit0038
  doi: 10.1080/10618600.2000.10474879
– volume: 58
  start-page: 267
  year: 1996
  ident: cit0043
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: cit0015
  doi: 10.1002/nav.3800030109
– volume: 18
  start-page: 54
  year: 1969
  ident: cit0022
  publication-title: Journal of the Royal Statistical Society
– ident: cit0014
  doi: 10.1137/S1064827596311451
– ident: cit0051
  doi: 10.1007/978-0-387-98141-3
– ident: cit0029
  doi: 10.1093/comjnl/9.4.373
– volume: 21
  start-page: 768
  year: 1965
  ident: cit0013
  publication-title: Biometrics
– ident: cit0050
  doi: 10.1080/01621459.1963.10500845
– volume-title: Fast Alternating Direction Optimization Methods
  year: 2012
  ident: cit0019
– ident: cit0016
  doi: 10.1016/0898-1221(76)90003-1
– ident: cit0047
  doi: 10.1109/TIT.2005.864420
– volume: 5
  start-page: 1
  year: 1948
  ident: cit0042
  publication-title: Biologiske Skrifter
– volume-title: On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers
  year: 2012
  ident: cit0009
  doi: 10.21236/ADA567407
– ident: cit0032
  doi: 10.1007/s11222-007-9033-z
– ident: cit0034
  doi: 10.1002/0471721182
– start-page: 554
  volume-title: Advances in Neural Information Processing Systems
  year: 2000
  ident: cit0039
– volume-title: Classification
  year: 1999
  ident: cit0021
  doi: 10.1201/9780367805302
– volume: 2
  start-page: 235
  year: 2010
  ident: cit0049
  publication-title: Foundation and Trends in Machine Learning
– ident: cit0031
  doi: 10.1109/TIT.1982.1056489
– ident: cit0045
  doi: 10.1214/11-AOS878
– start-page: 745–752
  volume-title: Proceedings of the Twenty Eighth International Conference on Machine Learning
  year: 2011
  ident: cit0025
– ident: cit0020
  doi: 10.1137/080725891
– volume-title: Clustering
  year: 2009
  ident: cit0053
– ident: cit0027
  doi: 10.1007/BF02289588
– ident: cit0048
  doi: 10.1137/0329006
– ident: cit0044
  doi: 10.1111/j.1467-9868.2005.00490.x
– year: 2011
  ident: cit0030
  publication-title: Technical Report, Linköpings Universitet
– volume-title: Statistical Analysis of Finite Mixture Distributions
  year: 1985
  ident: cit0046
– start-page: 1027
  volume-title: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
  year: 2007
  ident: cit0003
– ident: cit0004
  doi: 10.1561/2200000016
– ident: cit0024
  doi: 10.2307/3151350
– ident: cit0037
  doi: 10.1093/comjnl/26.4.354
– ident: cit0036
  doi: 10.1007/978-1-4613-0457-9
– ident: cit0002
  doi: 10.1080/03081088508817681
– ident: cit0035
  doi: 10.1007/BF00938486
– ident: cit0012
  doi: 10.1214/aos/1176342360
– ident: cit0001
  doi: 10.1007/s10994-009-5103-0
– ident: cit0006
  doi: 10.1137/S1064827596304010
– ident: cit0005
– ident: cit0041
  doi: 10.1099/00221287-17-1-201
– ident: cit0052
  doi: 10.1198/jasa.2010.tm09415
– ident: cit0028
  doi: 10.1002/9780470316801
– volume: 2
  start-page: 41
  year: 1975
  ident: cit0017
  publication-title: Revue Française d'Automatique, Informatique, Recherche Opérationnelle
  doi: 10.1051/m2an/197509R200411
– reference: 5234703 - Psychometrika. 1967 Sep;32(3):241-54
– reference: 13475686 - J Gen Microbiol. 1957 Aug;17(1):201-26
– reference: 20811510 - J Am Stat Assoc. 2010 Jun 1;105(490):713-726
SSID ssj0001697
Score 2.536208
Snippet Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering,...
Clustering is a fundamental problem in many scientific applications. Standard methods such as -means, Gaussian mixture models, and hierarchical clustering,...
Clustering is a fundamental problem in many scientific applications. Standard methods such as k -means, Gaussian mixture models, and hierarchical clustering,...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 994
SubjectTerms Algorithms
Alternating direction method of multipliers
Alternating minimization algorithm
Cluster analysis
Clustering and Pattern Detection
Convex analysis
Convex optimization
Hierarchical clustering
k-means
Mathematical problems
Norms
Numerical analysis
Regularization paths
Studies
Title Splitting Methods for Convex Clustering
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2014.948181
https://www.jstor.org/stable/24737215
https://www.ncbi.nlm.nih.gov/pubmed/27087770
https://www.proquest.com/docview/1758204372
https://www.proquest.com/docview/1835661169
https://pubmed.ncbi.nlm.nih.gov/PMC4830509
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFA46X-aD6HRanVJB8GH0miZpmz7KRRnCHcI22FtJclMcbN1wvTL213tOkqa9evHHXnovaZK2-U6Sk-Sc7xDyzpaFVpzzrDX5MhOFqjNViRbWPHLJVK7o0p2YLg7LgxPx5bQ4HcKyB--SXs_M7Ua_krugCmmAK3rJ_geysVJIgP-AL1wBYbj-E8ZHoEF6u-WFCwTtuBXQie-Hvdmfn6-QBGGYmn5XQI0L6DBsBuIGumOv9n6SmO4onMfz_7Nh3Nyfz6IdD_omTPx7ppsIuSMfpZN9RVwYZrKkdDoweufmIABiMsrVPi5xmDChU_ONg7G3XsSqsWY0oxMzJIfxMVom-FxdOIBY5dgJ6Tg1RYPBr4u5kBy5au6TB6yq3Ik8p4dx0s1DHJ3hOwYvSUk_bHoB5IAOT1tTSNboagcT1U2Lj19taCdKyfFj8iiAmX70ovGE3LPdDnm4iFS81ztk-yhC-ZS8jxKTBolJ4UVSLzHpKDHPyMnnT8fzgyyEysiMKGUPekZpBZVaMaEKbhTu7OklV0bKlguqqTUWVprQ-axgWhsGvy2zUufGClVrvku2usvOviApq1tRllIaukRmIwr6a2ktgGxVJdvaJIQP7dWYwCOP4UzOmzzQzQ4N3mCDN77BE5LFUleeR-Uv-eUUiqZ3-1etDzbT8D8X3XWwxecwgbGY8iIhewOOTejF1w2ozxL9wyuWkLfxNoyxeHCmOnu5gjywTAE9FmQsIc897GPlQYwSUq0JRMyA_O3rd7qzb47HPUj0yzuXfEW2x868R7b67yv7GnTkXr9xveMnuZ-z2g
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VcCg9QEtLCdA2lSr1lK1jO4n3WK2KlsfupSD1ZtmOI6qiULFZCfHrmXEeZVEfEj3lYI8j22P7s_35G4APPs-sEUIklUvLRGZmnJhCVrjnUSU3qWFluDGdzfPpuTz-lvVswkVHq6Q9dNUKRYS5mgY3HUb3lLhPtI1RuFITM0uOSG-EHl-vZwjdyckFmw-TcdrFV0GLhEz613N_KGVldVrRLu35ir9Dog8JlfdWqMMtsH3dWmLKj9GysSN3-0D28b8q_xw2O_waf24d7gU88fU2PJsN4q-LbdggANvqP7-Ej18R5QZudTwLwaoXMdY2nhDZ_SaeXC5JqAFTX8H54ZezyTTpgjMkTuaqwZUt95Ipa7g0mXCGzpJsKYxTqhKSWeadx70NdreX3FrH8Vtxr2zqvDRjK3Zgrb6q_S7EfFzJPFfKsZK0dBgiptx7nCu8KVQ1dhGIvlO065TLKYDGpU47gdO-TTS1iW7bJIJksPrZKnf8I7-639-6CScmVRveRIu_m-4E3xj-wyVF_0mzCA56Z9Hd3LDQCNgUvUgueATvh2Qc1XRVY2p_tcQ8CIwROaH3RvC69a1fhRdBxJFFUKx43ZCBFMNXU-rvF0E5XCpBej97j6_qO3g6PZud6tOj-ck-bGBKELJl_ADWmuulf4MQrbFvwyC8A_W7K6c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD5IBakPVavV0aojCD7NmkkyM9lHWV3qZRdBC30LSSahYpmW7iyIv95zMhd3ixfQp3lIToYkJ8mX5Mt3AJ77srBGCJEFl9eZLMw0M5UMuOdRNTe5YXW8MV0sy6Nj-e6kONl4xU-0StpDh04oIs7VNLgv6jAw4l7SLkbhQk3ELDkhuRF6e329RHRCpD7BluNcnPfhVdAiI5Ph8dxvStlanLakSwe64q-A6FU-5cYCNb8FZqhax0v5Olm3duK-X1F9_J-634a9Hr2mrzp3uwPXfLMPNxej9OtqH3YJvnbqz3fhxSfEuJFZnS5iqOpVipVNZ0R1_5bOztYk04Cp9-B4_ubz7CjrQzNkTpaqxXWt9JIpa7g0hXCGTpJsLYxTKgjJLPPO484GO9tLbq3j-A3cK5s7L83UigPYac4b_wBSPg2yLJVyrCYlHYZ4qfQeZwpvKhWmLgEx9Il2vW45hc8403kvbzq0iaY20V2bJJCNVhedbsdf8qvN7tZtPC8JXXATLf5sehBdY_wPlxT7Jy8SOBx8Rfczw0ojXFP0HrniCTwbk3FM00WNafz5GvMgLEbchM6bwP3OtX4WXkUJR5ZAteV0YwbSC99Oab6cRt1wqQSp_Tz896o-hRsfX8_1h7fL949gFxOiii3jh7DTXq79Y8RnrX0Sh-APFuEqSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Splitting+Methods+for+Convex+Clustering&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Chi%2C+Eric+C.&rft.au=Lange%2C+Kenneth&rft.date=2015-10-02&rft.issn=1061-8600&rft.volume=24&rft.issue=4&rft.spage=994&rft.epage=1013&rft_id=info:doi/10.1080%2F10618600.2014.948181&rft_id=info%3Apmid%2F27087770&rft.externalDocID=PMC4830509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon