Splitting Methods for Convex Clustering
Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchi...
Saved in:
Published in | Journal of computational and graphical statistics Vol. 24; no. 4; pp. 994 - 1013 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
02.10.2015
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1061-8600 1537-2715 |
DOI | 10.1080/10618600.2014.948181 |
Cover
Abstract | Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work, we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplementary materials available online. |
---|---|
AbstractList | Clustering is a fundamental problem in many scientific applications. Standard methods such as
-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of
-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplemental materials available online. Clustering is a fundamental problem in many scientific applications. Standard methods such as k -means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k -means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplemental materials available online. Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work, we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work, we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplementary materials available online. Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplemental materials available online.Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering, however, are beset by local minima, which are sometimes drastically suboptimal. Recently introduced convex relaxations of k-means and hierarchical clustering shrink cluster centroids toward one another and ensure a unique global minimizer. In this work we present two splitting methods for solving the convex clustering problem. The first is an instance of the alternating direction method of multipliers (ADMM); the second is an instance of the alternating minimization algorithm (AMA). In contrast to previously considered algorithms, our ADMM and AMA formulations provide simple and unified frameworks for solving the convex clustering problem under the previously studied norms and open the door to potentially novel norms. We demonstrate the performance of our algorithm on both simulated and real data examples. While the differences between the two algorithms appear to be minor on the surface, complexity analysis and numerical experiments show AMA to be significantly more efficient. This article has supplemental materials available online. |
Author | Chi, Eric C. Lange, Kenneth |
AuthorAffiliation | Postdoctoral Research Associate, Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005 Professor, Departments of Biomathematics, Human Genetics, and Statistics, University of California, Los Angeles, CA 90095-7088 |
AuthorAffiliation_xml | – name: Professor, Departments of Biomathematics, Human Genetics, and Statistics, University of California, Los Angeles, CA 90095-7088 – name: Postdoctoral Research Associate, Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005 |
Author_xml | – sequence: 1 givenname: Eric C. surname: Chi fullname: Chi, Eric C. – sequence: 2 givenname: Kenneth surname: Lange fullname: Lange, Kenneth |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27087770$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhS1URNvAPwAUiQVsJlw_ZuywAKGIl1TEAlhbHudO68ixU9vTx7_H0bQFuoCVLd3vXJ97j4_JQYgBCXlKYUFBwWsKHVUdwIIBFYulUFTRB-SItlw2TNL2oN4r0uyZQ3Kc8wYAaLeUj8ghk6CklHBEXn7feVeKC6fzr1jO4jrPh5jmqxgu8Gq-8mMumGr1MXk4GJ_xyc05Iz8_fvix-tycfPv0ZfX-pLGiU6VR0KEA1RsmTMutoYKxfs2NVWrgAnpAi51ghhoUrO8tq-fAUPXUojDLns_I26nvbuy3uLYYSjJe75LbmnSto3H670pwZ_o0XmihOLSwrA1e3TRI8XzEXPTWZYvem4BxzJoq3nYdrYuo6It76CaOKdTxNJWtYiC4ZJV6_qejOyu3O6yAmACbYs4JhzuEgt5HpW-j0vuo9BRVlb25J7OumOLifi7n_yd-Nok3ucT025OQ1XL9AjPybqq7UOPcmsuY_FoXc-1jGpIJ1mXN__nCL0nStJY |
CitedBy_id | crossref_primary_10_1016_j_csda_2019_04_011 crossref_primary_10_1016_j_jmva_2017_08_001 crossref_primary_10_1214_19_EJS1652 crossref_primary_10_1214_25_EJS2359 crossref_primary_10_1016_j_jeconom_2022_12_002 crossref_primary_10_1051_wujns_2022272128 crossref_primary_10_1186_s12859_017_1970_8 crossref_primary_10_1016_j_csda_2024_107918 crossref_primary_10_1137_21M1441080 crossref_primary_10_1002_bimj_201900287 crossref_primary_10_29220_CSAM_2022_29_4_441 crossref_primary_10_1016_j_csda_2022_107634 crossref_primary_10_1016_j_jmva_2021_104874 crossref_primary_10_1109_MCSE_2021_3120039 crossref_primary_10_1016_j_jmva_2020_104691 crossref_primary_10_1007_s10589_015_9732_x crossref_primary_10_1007_s11280_021_00945_9 crossref_primary_10_1080_10618600_2015_1114491 crossref_primary_10_1080_10618600_2017_1377081 crossref_primary_10_1111_biom_12540 crossref_primary_10_1016_j_patcog_2018_04_019 crossref_primary_10_1109_TNNLS_2023_3276393 crossref_primary_10_1080_10618600_2019_1660178 crossref_primary_10_1186_s12859_019_2743_3 crossref_primary_10_1016_j_patrec_2021_08_012 crossref_primary_10_1016_j_csda_2024_108037 crossref_primary_10_1080_24725854_2021_2004626 crossref_primary_10_1016_j_isatra_2021_07_051 crossref_primary_10_1109_TFUZZ_2020_2991306 crossref_primary_10_1002_sim_8878 crossref_primary_10_1111_exsy_12462 crossref_primary_10_1016_j_csda_2021_107217 crossref_primary_10_1111_biom_13860 crossref_primary_10_1155_2021_2996750 crossref_primary_10_3390_e26050376 crossref_primary_10_1214_15_EJS1074 crossref_primary_10_1007_s11432_016_0158_2 crossref_primary_10_1214_21_AOAS1503 crossref_primary_10_1080_01621459_2018_1527701 crossref_primary_10_1080_01621459_2016_1148039 crossref_primary_10_1093_bioinformatics_btad417 crossref_primary_10_1016_j_procs_2021_05_042 crossref_primary_10_1007_s11263_017_1026_6 crossref_primary_10_1214_17_EJS1389 crossref_primary_10_1016_j_patrec_2019_09_014 crossref_primary_10_1002_sim_9578 crossref_primary_10_1002_wics_1551 crossref_primary_10_1137_18M121099X crossref_primary_10_1080_10618600_2018_1476249 crossref_primary_10_1016_j_eswa_2025_127049 crossref_primary_10_1080_00401706_2020_1733094 crossref_primary_10_1007_s00362_020_01203_2 crossref_primary_10_1109_TKDE_2023_3342209 crossref_primary_10_1093_bioinformatics_btab248 crossref_primary_10_1007_s00180_023_01380_2 crossref_primary_10_1177_09622802221133554 crossref_primary_10_1016_j_jspi_2023_106100 crossref_primary_10_1109_ACCESS_2020_3006584 crossref_primary_10_1016_j_ins_2021_11_048 crossref_primary_10_1093_jrsssc_qlaf015 crossref_primary_10_1007_s11634_020_00424_5 crossref_primary_10_1080_10618600_2020_1763808 crossref_primary_10_1145_3241063 crossref_primary_10_1080_00401706_2024_2321930 crossref_primary_10_1080_10618600_2022_2099405 crossref_primary_10_3934_mbe_2023705 crossref_primary_10_1155_2020_9216351 crossref_primary_10_1007_s12561_022_09356_4 crossref_primary_10_1145_3420035 crossref_primary_10_1186_s13634_022_00942_8 crossref_primary_10_1080_00949655_2019_1700986 crossref_primary_10_1016_j_apacoust_2018_04_033 crossref_primary_10_1007_s00500_019_04448_8 crossref_primary_10_1111_rssb_12492 crossref_primary_10_1016_j_csda_2022_107667 crossref_primary_10_1016_j_ejor_2020_09_010 crossref_primary_10_1093_jrsssa_qnaf007 crossref_primary_10_1109_TCYB_2016_2546965 crossref_primary_10_1007_s00500_019_04471_9 crossref_primary_10_1515_ijb_2018_0026 crossref_primary_10_1109_TSP_2019_2944758 crossref_primary_10_1111_biom_13815 crossref_primary_10_1080_10618600_2023_2197474 crossref_primary_10_1109_TNNLS_2022_3164540 crossref_primary_10_1080_26941899_2024_2376535 crossref_primary_10_1016_j_csda_2021_107414 crossref_primary_10_1002_wics_1461 crossref_primary_10_1016_j_patcog_2021_107984 crossref_primary_10_1007_s11425_022_2289_0 crossref_primary_10_1016_j_cie_2025_110974 crossref_primary_10_1007_s11222_023_10353_w crossref_primary_10_1007_s00371_024_03679_7 crossref_primary_10_1007_s10957_025_02616_5 crossref_primary_10_1109_LSP_2023_3316023 crossref_primary_10_1088_1361_6420_aba417 crossref_primary_10_1007_s42081_022_00150_6 crossref_primary_10_1016_j_patrec_2018_12_004 crossref_primary_10_1002_bimj_202200231 crossref_primary_10_1007_s11634_018_0350_1 crossref_primary_10_1186_s12859_024_05652_6 crossref_primary_10_1111_biom_13004 crossref_primary_10_1002_sam_11621 crossref_primary_10_1137_21M1448732 crossref_primary_10_1016_j_cor_2025_106982 crossref_primary_10_1016_j_patcog_2022_108689 crossref_primary_10_1073_pnas_1700770114 crossref_primary_10_1080_10618600_2019_1629943 crossref_primary_10_3390_math9233021 |
Cites_doi | 10.1109/TIT.2009.2021326 10.1198/jcgs.2010.09208 10.1109/MSP.2007.914237 10.1080/10618600.2000.10474879 10.1111/j.2517-6161.1996.tb02080.x 10.1002/nav.3800030109 10.1137/S1064827596311451 10.1007/978-0-387-98141-3 10.1093/comjnl/9.4.373 10.1080/01621459.1963.10500845 10.1016/0898-1221(76)90003-1 10.1109/TIT.2005.864420 10.21236/ADA567407 10.1007/s11222-007-9033-z 10.1002/0471721182 10.1201/9780367805302 10.1109/TIT.1982.1056489 10.1214/11-AOS878 10.1137/080725891 10.1007/BF02289588 10.1137/0329006 10.1111/j.1467-9868.2005.00490.x 10.1561/2200000016 10.2307/3151350 10.1093/comjnl/26.4.354 10.1007/978-1-4613-0457-9 10.1080/03081088508817681 10.1007/BF00938486 10.1214/aos/1176342360 10.1007/s10994-009-5103-0 10.1137/S1064827596304010 10.1099/00221287-17-1-201 10.1198/jasa.2010.tm09415 10.1002/9780470316801 10.1051/m2an/197509R200411 |
ContentType | Journal Article |
Copyright | 2015 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2015 2015 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America Copyright American Statistical Association 2015 |
Copyright_xml | – notice: 2015 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2015 – notice: 2015 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundation of North America – notice: Copyright American Statistical Association 2015 |
DBID | AAYXX CITATION NPM JQ2 7X8 5PM |
DOI | 10.1080/10618600.2014.948181 |
DatabaseName | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Computer Science Collection MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-2715 |
EndPage | 1013 |
ExternalDocumentID | PMC4830509 3926504111 27087770 10_1080_10618600_2014_948181 24737215 948181 |
Genre | Article Journal Article Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM053275 – fundername: NHGRI NIH HHS grantid: R01 HG006139 |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 2AX 30N 4.4 5GY AAENE AAJMT AAKYL AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABQDR ABTAI ABXSQ ABXUL ABXYU ABYWD ACDIW ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB ADODI ADULT AEGXH AELLO AENEX AEOZL AEPSL AEUPB AEYOC AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AQRUH ARCSS AVBZW AWYRJ BHOJU BLEHA CCCUG CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P GTTXZ H13 HF~ HQ6 HZ~ H~P IAO IEA IGG IGS IOF IPNFZ IPSME J.P JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST KYCEM M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAGDL AAHIA AAWIL ABAWQ ACHJO ADXHL ADYSH AFRVT AGLNM AIHAF AMPGV AMVHM AAYXX CITATION 07G 29K AAIKQ AAKBW ACAGQ ACGEE AELPN AEUMN AGCQS AGLEN AGROQ AHMOU ALCKM AMATQ AMEWO AMXXU BCCOT BPLKW C06 CRFIH D-I DMQIW DWIFK FEDTE GIFXF HGD HVGLF IVXBP LJTGL NPM NUSFT QCRFL RNS TAQ TFMCV TOXWX UB9 Z5M JQ2 TASJS 7X8 5PM |
ID | FETCH-LOGICAL-c468t-806e408ba24a53ca1422bd3ac88f340b0ece642a1ae42bbc2ae4f2e8b1ce4a9b3 |
ISSN | 1061-8600 |
IngestDate | Thu Aug 21 14:03:34 EDT 2025 Tue Aug 05 11:19:29 EDT 2025 Wed Aug 13 06:24:28 EDT 2025 Wed Feb 19 02:02:08 EST 2025 Thu Apr 24 23:11:14 EDT 2025 Tue Jul 01 02:05:28 EDT 2025 Fri May 30 11:17:11 EDT 2025 Wed Dec 25 08:59:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Regularization paths k-means Alternating direction method of multipliers Hierarchical clustering Convex optimization Alternating minimization algorithm |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c468t-806e408ba24a53ca1422bd3ac88f340b0ece642a1ae42bbc2ae4f2e8b1ce4a9b3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 27087770 |
PQID | 1758204372 |
PQPubID | 29738 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4830509 pubmed_primary_27087770 jstor_primary_24737215 proquest_journals_1758204372 crossref_primary_10_1080_10618600_2014_948181 informaworld_taylorfrancis_310_1080_10618600_2014_948181 proquest_miscellaneous_1835661169 crossref_citationtrail_10_1080_10618600_2014_948181 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-10-02 |
PublicationDateYYYYMMDD | 2015-10-02 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Alexandria |
PublicationTitle | Journal of computational and graphical statistics |
PublicationTitleAlternate | J Comput Graph Stat |
PublicationYear | 2015 |
Publisher | Taylor & Francis American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America – name: Taylor & Francis Ltd |
References | cit0034 cit0031 cit0032 Goldstein T. (cit0019) 2012 Glowinski R. (cit0017) 1975; 2 Rasmussen C.E. (cit0039) 2000 Luxburg U. (cit0049) 2010; 2 cit0037 cit0038 cit0035 cit0036 cit0020 Arthur D. (cit0003) 2007 Gower J.C. (cit0022) 1969; 18 Deng W. (cit0009) 2012 cit0028 cit0029 Goldfarb D. (cit0018) 2012 cit0026 cit0027 cit0024 cit0012 cit0051 cit0052 cit0050 Lindsten F. (cit0030) 2011 Hocking T. (cit0025) 2011 Gordon A. (cit0021) 1999 MacQueen J. (cit0033) 1967; 1 Wu R. (cit0053) 2009 cit0015 cit0016 cit0014 cit0044 cit0001 cit0045 cit0040 Forgy E. (cit0013) 1965; 21 cit0041 Tibshirani R. (cit0043) 1996; 58 Sørensen T. (cit0042) 1948; 5 Titterington D.M. (cit0046) 1985 cit0008 cit0006 cit0004 cit0048 cit0005 cit0002 cit0047 13475686 - J Gen Microbiol. 1957 Aug;17(1):201-26 5234703 - Psychometrika. 1967 Sep;32(3):241-54 20811510 - J Am Stat Assoc. 2010 Jun 1;105(490):713-726 |
References_xml | – ident: cit0008 doi: 10.1109/TIT.2009.2021326 – volume: 1 start-page: 281 year: 1967 ident: cit0033 publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability – ident: cit0026 doi: 10.1198/jcgs.2010.09208 – ident: cit0040 doi: 10.1109/MSP.2007.914237 – start-page: 1 year: 2012 ident: cit0018 publication-title: Mathematical Programming – ident: cit0038 doi: 10.1080/10618600.2000.10474879 – volume: 58 start-page: 267 year: 1996 ident: cit0043 publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: cit0015 doi: 10.1002/nav.3800030109 – volume: 18 start-page: 54 year: 1969 ident: cit0022 publication-title: Journal of the Royal Statistical Society – ident: cit0014 doi: 10.1137/S1064827596311451 – ident: cit0051 doi: 10.1007/978-0-387-98141-3 – ident: cit0029 doi: 10.1093/comjnl/9.4.373 – volume: 21 start-page: 768 year: 1965 ident: cit0013 publication-title: Biometrics – ident: cit0050 doi: 10.1080/01621459.1963.10500845 – volume-title: Fast Alternating Direction Optimization Methods year: 2012 ident: cit0019 – ident: cit0016 doi: 10.1016/0898-1221(76)90003-1 – ident: cit0047 doi: 10.1109/TIT.2005.864420 – volume: 5 start-page: 1 year: 1948 ident: cit0042 publication-title: Biologiske Skrifter – volume-title: On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers year: 2012 ident: cit0009 doi: 10.21236/ADA567407 – ident: cit0032 doi: 10.1007/s11222-007-9033-z – ident: cit0034 doi: 10.1002/0471721182 – start-page: 554 volume-title: Advances in Neural Information Processing Systems year: 2000 ident: cit0039 – volume-title: Classification year: 1999 ident: cit0021 doi: 10.1201/9780367805302 – volume: 2 start-page: 235 year: 2010 ident: cit0049 publication-title: Foundation and Trends in Machine Learning – ident: cit0031 doi: 10.1109/TIT.1982.1056489 – ident: cit0045 doi: 10.1214/11-AOS878 – start-page: 745–752 volume-title: Proceedings of the Twenty Eighth International Conference on Machine Learning year: 2011 ident: cit0025 – ident: cit0020 doi: 10.1137/080725891 – volume-title: Clustering year: 2009 ident: cit0053 – ident: cit0027 doi: 10.1007/BF02289588 – ident: cit0048 doi: 10.1137/0329006 – ident: cit0044 doi: 10.1111/j.1467-9868.2005.00490.x – year: 2011 ident: cit0030 publication-title: Technical Report, Linköpings Universitet – volume-title: Statistical Analysis of Finite Mixture Distributions year: 1985 ident: cit0046 – start-page: 1027 volume-title: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms year: 2007 ident: cit0003 – ident: cit0004 doi: 10.1561/2200000016 – ident: cit0024 doi: 10.2307/3151350 – ident: cit0037 doi: 10.1093/comjnl/26.4.354 – ident: cit0036 doi: 10.1007/978-1-4613-0457-9 – ident: cit0002 doi: 10.1080/03081088508817681 – ident: cit0035 doi: 10.1007/BF00938486 – ident: cit0012 doi: 10.1214/aos/1176342360 – ident: cit0001 doi: 10.1007/s10994-009-5103-0 – ident: cit0006 doi: 10.1137/S1064827596304010 – ident: cit0005 – ident: cit0041 doi: 10.1099/00221287-17-1-201 – ident: cit0052 doi: 10.1198/jasa.2010.tm09415 – ident: cit0028 doi: 10.1002/9780470316801 – volume: 2 start-page: 41 year: 1975 ident: cit0017 publication-title: Revue Française d'Automatique, Informatique, Recherche Opérationnelle doi: 10.1051/m2an/197509R200411 – reference: 5234703 - Psychometrika. 1967 Sep;32(3):241-54 – reference: 13475686 - J Gen Microbiol. 1957 Aug;17(1):201-26 – reference: 20811510 - J Am Stat Assoc. 2010 Jun 1;105(490):713-726 |
SSID | ssj0001697 |
Score | 2.536208 |
Snippet | Clustering is a fundamental problem in many scientific applications. Standard methods such as k-means, Gaussian mixture models, and hierarchical clustering,... Clustering is a fundamental problem in many scientific applications. Standard methods such as -means, Gaussian mixture models, and hierarchical clustering,... Clustering is a fundamental problem in many scientific applications. Standard methods such as k -means, Gaussian mixture models, and hierarchical clustering,... |
SourceID | pubmedcentral proquest pubmed crossref jstor informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 994 |
SubjectTerms | Algorithms Alternating direction method of multipliers Alternating minimization algorithm Cluster analysis Clustering and Pattern Detection Convex analysis Convex optimization Hierarchical clustering k-means Mathematical problems Norms Numerical analysis Regularization paths Studies |
Title | Splitting Methods for Convex Clustering |
URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2014.948181 https://www.jstor.org/stable/24737215 https://www.ncbi.nlm.nih.gov/pubmed/27087770 https://www.proquest.com/docview/1758204372 https://www.proquest.com/docview/1835661169 https://pubmed.ncbi.nlm.nih.gov/PMC4830509 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFA46X-aD6HRanVJB8GH0miZpmz7KRRnCHcI22FtJclMcbN1wvTL213tOkqa9evHHXnovaZK2-U6Sk-Sc7xDyzpaFVpzzrDX5MhOFqjNViRbWPHLJVK7o0p2YLg7LgxPx5bQ4HcKyB--SXs_M7Ua_krugCmmAK3rJ_geysVJIgP-AL1wBYbj-E8ZHoEF6u-WFCwTtuBXQie-Hvdmfn6-QBGGYmn5XQI0L6DBsBuIGumOv9n6SmO4onMfz_7Nh3Nyfz6IdD_omTPx7ppsIuSMfpZN9RVwYZrKkdDoweufmIABiMsrVPi5xmDChU_ONg7G3XsSqsWY0oxMzJIfxMVom-FxdOIBY5dgJ6Tg1RYPBr4u5kBy5au6TB6yq3Ik8p4dx0s1DHJ3hOwYvSUk_bHoB5IAOT1tTSNboagcT1U2Lj19taCdKyfFj8iiAmX70ovGE3LPdDnm4iFS81ztk-yhC-ZS8jxKTBolJ4UVSLzHpKDHPyMnnT8fzgyyEysiMKGUPekZpBZVaMaEKbhTu7OklV0bKlguqqTUWVprQ-axgWhsGvy2zUufGClVrvku2usvOviApq1tRllIaukRmIwr6a2ktgGxVJdvaJIQP7dWYwCOP4UzOmzzQzQ4N3mCDN77BE5LFUleeR-Uv-eUUiqZ3-1etDzbT8D8X3XWwxecwgbGY8iIhewOOTejF1w2ozxL9wyuWkLfxNoyxeHCmOnu5gjywTAE9FmQsIc897GPlQYwSUq0JRMyA_O3rd7qzb47HPUj0yzuXfEW2x868R7b67yv7GnTkXr9xveMnuZ-z2g |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VcCg9QEtLCdA2lSr1lK1jO4n3WK2KlsfupSD1ZtmOI6qiULFZCfHrmXEeZVEfEj3lYI8j22P7s_35G4APPs-sEUIklUvLRGZmnJhCVrjnUSU3qWFluDGdzfPpuTz-lvVswkVHq6Q9dNUKRYS5mgY3HUb3lLhPtI1RuFITM0uOSG-EHl-vZwjdyckFmw-TcdrFV0GLhEz613N_KGVldVrRLu35ir9Dog8JlfdWqMMtsH3dWmLKj9GysSN3-0D28b8q_xw2O_waf24d7gU88fU2PJsN4q-LbdggANvqP7-Ej18R5QZudTwLwaoXMdY2nhDZ_SaeXC5JqAFTX8H54ZezyTTpgjMkTuaqwZUt95Ipa7g0mXCGzpJsKYxTqhKSWeadx70NdreX3FrH8Vtxr2zqvDRjK3Zgrb6q_S7EfFzJPFfKsZK0dBgiptx7nCu8KVQ1dhGIvlO065TLKYDGpU47gdO-TTS1iW7bJIJksPrZKnf8I7-639-6CScmVRveRIu_m-4E3xj-wyVF_0mzCA56Z9Hd3LDQCNgUvUgueATvh2Qc1XRVY2p_tcQ8CIwROaH3RvC69a1fhRdBxJFFUKx43ZCBFMNXU-rvF0E5XCpBej97j6_qO3g6PZud6tOj-ck-bGBKELJl_ADWmuulf4MQrbFvwyC8A_W7K6c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD5IBakPVavV0aojCD7NmkkyM9lHWV3qZRdBC30LSSahYpmW7iyIv95zMhd3ixfQp3lIToYkJ8mX5Mt3AJ77srBGCJEFl9eZLMw0M5UMuOdRNTe5YXW8MV0sy6Nj-e6kONl4xU-0StpDh04oIs7VNLgv6jAw4l7SLkbhQk3ELDkhuRF6e329RHRCpD7BluNcnPfhVdAiI5Ph8dxvStlanLakSwe64q-A6FU-5cYCNb8FZqhax0v5Olm3duK-X1F9_J-634a9Hr2mrzp3uwPXfLMPNxej9OtqH3YJvnbqz3fhxSfEuJFZnS5iqOpVipVNZ0R1_5bOztYk04Cp9-B4_ubz7CjrQzNkTpaqxXWt9JIpa7g0hXCGTpJsLYxTKgjJLPPO484GO9tLbq3j-A3cK5s7L83UigPYac4b_wBSPg2yLJVyrCYlHYZ4qfQeZwpvKhWmLgEx9Il2vW45hc8403kvbzq0iaY20V2bJJCNVhedbsdf8qvN7tZtPC8JXXATLf5sehBdY_wPlxT7Jy8SOBx8Rfczw0ojXFP0HrniCTwbk3FM00WNafz5GvMgLEbchM6bwP3OtX4WXkUJR5ZAteV0YwbSC99Oab6cRt1wqQSp_Tz896o-hRsfX8_1h7fL949gFxOiii3jh7DTXq79Y8RnrX0Sh-APFuEqSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Splitting+Methods+for+Convex+Clustering&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Chi%2C+Eric+C.&rft.au=Lange%2C+Kenneth&rft.date=2015-10-02&rft.issn=1061-8600&rft.volume=24&rft.issue=4&rft.spage=994&rft.epage=1013&rft_id=info:doi/10.1080%2F10618600.2014.948181&rft_id=info%3Apmid%2F27087770&rft.externalDocID=PMC4830509 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |