A review of progress in the physics of open quantum systems: theory and experiment
This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consis...
Saved in:
Published in | Reports on progress in physics Vol. 78; no. 11; pp. 114001 - 37 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q + P = 1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In addition to discussing experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states, we also review manifestations of DPTs in mesoscopic devices and other systems. These experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various superradiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics. |
---|---|
AbstractList | This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q + P = 1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In addition to discussing experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states, we also review manifestations of DPTs in mesoscopic devices and other systems. These experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various superradiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics. This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. The experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various super-radiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics. This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q + P = 1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In addition to discussing experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states, we also review manifestations of DPTs in mesoscopic devices and other systems. These experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various superradiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics.This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q + P = 1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In addition to discussing experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states, we also review manifestations of DPTs in mesoscopic devices and other systems. These experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various superradiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics. |
Author | Rotter, I Bird, J P |
Author_xml | – sequence: 1 givenname: I surname: Rotter fullname: Rotter, I email: rotter@pks.mpg.de organization: Max Planck Institute for the Physics of Complex Systems , D-01187 Dresden, Germany – sequence: 2 givenname: J P surname: Bird fullname: Bird, J P email: jbird@buffalo.edu organization: University at Buffalo Department of Electrical Engineering, the State University of New York, Buffalo, NY 14260, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26510115$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVFLHDEQx0Ox1FP7FSSPvqyX2exmE_FFxKogCKU-h9zurEZukzXJqvftm-WslFJQCAzD_H4h-c8e2XHeISGHwI6BSblkjFdFJWW9bOQSIJ-KMfhCFsAFFEJwvkMW79Au2YvxMQMgS_WN7JaihtzUC_LzjAZ8tvhCfU_H4O8Dxkito-kB6fiwibaN88iP6OjTZFyaBho3MeEQT2bIhw01rqP4OmKwA7p0QL72Zh3x-1vdJ3c_Ln6dXxU3t5fX52c3RVsJmQrRd5IpkCgBoWuZKAWvaiPqkinsuawQQalGqRpMV4NsKmX4qlW8RyYaWPF9crS9Nz_7acKY9GBji-u1ceinqKGRomQlMPUJlFelFIzXGT18Q6fVgJ0e86dM2Og_kWVAbIE2-BgD9u8IMD3vRs-x6zl23UgNoLe7yeLpP2Jrk0nWuxSMXX-sl1vd-lE_-im4HO7H0tF_pJCbvzE9dj3_DVSnrfA |
CODEN | RPPHAG |
CitedBy_id | crossref_primary_10_1002_qute_201900060 crossref_primary_10_1140_epjd_e2015_60389_7 crossref_primary_10_1002_prop_202200042 crossref_primary_10_1103_PhysRevA_97_052126 crossref_primary_10_1103_PRXQuantum_3_030318 crossref_primary_10_1103_PhysRevA_96_052511 crossref_primary_10_1103_PhysRevB_106_165411 crossref_primary_10_1103_PhysRevB_94_161407 crossref_primary_10_3103_S1541308X23040064 crossref_primary_10_1038_s41598_023_30840_4 crossref_primary_10_1103_PhysRevA_105_053527 crossref_primary_10_1103_PhysRevResearch_6_033124 crossref_primary_10_1088_1361_648X_abe796 crossref_primary_10_1088_1402_4896_aa8079 crossref_primary_10_2139_ssrn_4076932 crossref_primary_10_3367_UFNe_2022_07_039219 crossref_primary_10_1063_1_5075628 crossref_primary_10_1103_PhysRevA_96_043821 crossref_primary_10_1063_1_5002689 crossref_primary_10_1103_PhysRevD_102_025012 crossref_primary_10_3390_e25020187 crossref_primary_10_1103_PhysRevA_99_052103 crossref_primary_10_1103_RevModPhys_89_015001 crossref_primary_10_1103_PhysRevA_99_023820 crossref_primary_10_1039_D1CP02504J crossref_primary_10_1103_PhysRevB_101_045130 crossref_primary_10_1103_PhysRevC_95_061301 crossref_primary_10_1088_1361_648X_ad3539 crossref_primary_10_1103_PhysRevB_96_205441 crossref_primary_10_1103_PhysRevE_102_022140 crossref_primary_10_1038_s41598_017_06198_9 crossref_primary_10_1063_1_4983809 crossref_primary_10_1103_PhysRevLett_125_126402 crossref_primary_10_1088_1361_6382_ad7452 crossref_primary_10_1038_s41467_023_36012_2 crossref_primary_10_1103_PhysRevResearch_5_033042 crossref_primary_10_1088_1751_8121_ac76f7 crossref_primary_10_1088_1361_6455_aca852 crossref_primary_10_1103_RevModPhys_92_021001 crossref_primary_10_1007_JHEP10_2021_028 crossref_primary_10_1063_5_0124385 crossref_primary_10_1002_qute_202300399 crossref_primary_10_1038_s41467_019_10048_9 crossref_primary_10_1088_1367_2630_ab4d09 crossref_primary_10_1002_andp_201900054 crossref_primary_10_1088_1367_2630_ab32ab crossref_primary_10_3390_e23020147 crossref_primary_10_1103_PhysRevB_97_115436 crossref_primary_10_1088_1751_8121_aab721 crossref_primary_10_1103_PhysRevA_94_042122 crossref_primary_10_1103_PhysRevLett_128_146804 crossref_primary_10_1364_OL_43_004457 crossref_primary_10_1103_PhysRevB_104_184515 crossref_primary_10_1103_PhysRevB_95_014201 crossref_primary_10_1088_1402_4896_ab0fc0 crossref_primary_10_1063_5_0174536 crossref_primary_10_1038_s41467_024_53769_2 crossref_primary_10_1088_2058_9565_ad420b crossref_primary_10_1103_PhysRevA_106_022424 crossref_primary_10_1103_PhysRevResearch_3_033029 crossref_primary_10_1103_PhysRevB_107_214203 crossref_primary_10_1103_PhysRevA_97_012121 crossref_primary_10_3390_sym12060892 crossref_primary_10_1038_s41598_021_02413_w crossref_primary_10_1103_PhysRevA_95_053865 crossref_primary_10_1103_PhysRevE_110_044141 crossref_primary_10_1103_PhysRevLett_129_083602 crossref_primary_10_1063_5_0142022 crossref_primary_10_1088_1361_6463_ace8a4 crossref_primary_10_1016_j_physe_2019_113780 crossref_primary_10_1080_17455030_2020_1774680 crossref_primary_10_3390_e23060708 crossref_primary_10_1103_PhysRevA_95_022117 crossref_primary_10_1103_PhysRevB_108_195138 crossref_primary_10_1140_epjp_s13360_022_03016_8 crossref_primary_10_3367_UFNr_2022_07_039219 crossref_primary_10_1103_PhysRevApplied_13_034061 crossref_primary_10_1103_PhysRevB_102_201110 crossref_primary_10_1016_j_aop_2017_01_025 crossref_primary_10_1109_ACCESS_2019_2933198 crossref_primary_10_1103_PhysRevB_108_035104 crossref_primary_10_1103_PhysRevA_100_032124 crossref_primary_10_1088_2399_6528_ad5b37 crossref_primary_10_1103_PhysRevB_107_104306 crossref_primary_10_1098_rspa_2019_0831 crossref_primary_10_18287_2412_6179_2019_43_2_168_173 crossref_primary_10_1088_1367_2630_ac3e9f crossref_primary_10_1103_PhysRevE_100_042119 crossref_primary_10_1016_j_csbj_2024_11_030 crossref_primary_10_1103_PhysRevB_111_045130 crossref_primary_10_1364_OE_501689 crossref_primary_10_3938_jkps_73_516 crossref_primary_10_22331_q_2023_06_01_1027 crossref_primary_10_1103_PhysRevLett_124_136802 crossref_primary_10_1088_2515_7639_ab4092 crossref_primary_10_1038_nphys3842 crossref_primary_10_1103_PhysRevA_98_033835 crossref_primary_10_1088_1742_6596_2038_1_012011 crossref_primary_10_1103_PhysRevB_97_121401 crossref_primary_10_1103_PhysRevD_107_106007 crossref_primary_10_3390_particles7040067 crossref_primary_10_1088_1742_6596_2038_1_012017 crossref_primary_10_1103_PhysRevA_101_063829 crossref_primary_10_1016_j_physrep_2020_04_002 crossref_primary_10_1103_PhysRevB_106_045126 crossref_primary_10_1140_epjst_e2018_800091_5 crossref_primary_10_1103_PhysRevLett_125_240404 crossref_primary_10_1103_PhysRevResearch_2_033092 crossref_primary_10_1021_acs_jctc_2c00108 crossref_primary_10_1088_1742_5468_ad1d56 crossref_primary_10_1088_1367_2630_abb03f crossref_primary_10_1088_1742_5468_ad4861 crossref_primary_10_1103_PhysRevA_109_022607 crossref_primary_10_1140_epjd_e2018_90031_1 crossref_primary_10_3390_e23121577 crossref_primary_10_1103_PhysRevB_100_081104 crossref_primary_10_1103_PhysRevA_108_012620 crossref_primary_10_1103_PhysRevB_108_L121105 crossref_primary_10_1103_PhysRevB_104_205131 crossref_primary_10_1088_1367_2630_aca559 crossref_primary_10_1103_PhysRevA_98_052102 crossref_primary_10_1103_PhysRevB_99_245116 crossref_primary_10_1103_PRXQuantum_5_020202 crossref_primary_10_1103_PhysRevB_99_125420 crossref_primary_10_1016_j_nuclphysb_2019_114699 crossref_primary_10_1063_5_0177714 crossref_primary_10_1103_PhysRevB_104_245140 crossref_primary_10_1103_PhysRevA_100_062116 crossref_primary_10_1103_PhysRevA_108_052204 crossref_primary_10_22331_q_2021_08_19_528 crossref_primary_10_1103_PhysRevB_110_L241410 crossref_primary_10_1103_PhysRevE_95_062109 crossref_primary_10_1103_PhysRevA_102_022219 crossref_primary_10_1111_jep_13890 crossref_primary_10_1088_1361_6633_aaaf9a crossref_primary_10_1103_PhysRevResearch_5_013185 crossref_primary_10_1103_PhysRevA_105_063501 crossref_primary_10_1103_PhysRevResearch_6_033075 crossref_primary_10_1103_PhysRevLett_126_170503 crossref_primary_10_1063_5_0006365 crossref_primary_10_1103_PhysRevB_100_155117 crossref_primary_10_1038_s41586_018_0348_z crossref_primary_10_1103_PhysRevLett_120_065301 crossref_primary_10_3390_sym12050761 crossref_primary_10_1103_PhysRevA_93_042116 crossref_primary_10_1103_PhysRevA_95_042115 crossref_primary_10_1103_PhysRevA_94_022105 crossref_primary_10_1142_S1230161221500207 crossref_primary_10_3390_info15010035 crossref_primary_10_3390_e20060441 crossref_primary_10_1016_j_aop_2016_12_019 crossref_primary_10_1103_PhysRevD_104_056023 crossref_primary_10_1088_1361_648X_aabbfc crossref_primary_10_1103_PhysRevB_106_235125 crossref_primary_10_3390_e18120451 crossref_primary_10_1088_1361_6455_aae42f crossref_primary_10_1142_S0217979222501752 crossref_primary_10_21468_SciPostPhysCore_6_2_037 crossref_primary_10_1103_PhysRevApplied_19_064038 crossref_primary_10_1103_PhysRevB_99_174416 crossref_primary_10_1103_PhysRevB_100_115117 crossref_primary_10_1103_PhysRevB_102_174309 crossref_primary_10_1088_1751_8121_ad0ce4 crossref_primary_10_1142_S0217984917300046 crossref_primary_10_1088_1751_8121_aaf479 crossref_primary_10_1016_j_physletb_2022_136970 crossref_primary_10_1103_PhysRevB_109_045145 crossref_primary_10_1103_PhysRevA_98_042117 crossref_primary_10_1103_PhysRevA_104_062406 crossref_primary_10_1103_PhysRevLett_126_086401 crossref_primary_10_1103_PhysRevA_100_023836 crossref_primary_10_1038_s42005_018_0087_3 crossref_primary_10_1103_PhysRevB_106_125425 crossref_primary_10_1103_PhysRevLett_123_250401 crossref_primary_10_1103_PhysRevB_104_155141 crossref_primary_10_1098_rsta_2015_0158 crossref_primary_10_1103_PhysRevD_111_065014 crossref_primary_10_1088_1367_2630_ad1140 crossref_primary_10_1016_j_scib_2017_05_012 crossref_primary_10_1103_PhysRevB_110_L121116 crossref_primary_10_1103_PhysRevA_110_032213 crossref_primary_10_1088_1361_648X_abe266 crossref_primary_10_1103_PhysRevB_101_125418 crossref_primary_10_1088_1361_648X_ac57d6 crossref_primary_10_1140_epjp_s13360_022_03111_w crossref_primary_10_1080_09500340_2017_1337941 crossref_primary_10_1103_PhysRevResearch_4_023146 crossref_primary_10_1016_j_aop_2022_168939 crossref_primary_10_1140_epjd_e2020_10218_1 crossref_primary_10_1016_j_aop_2017_08_026 crossref_primary_10_1088_1361_6633_aa518f crossref_primary_10_1088_1361_648X_ad22f8 crossref_primary_10_3390_e22090984 crossref_primary_10_1088_2053_1591_3_8_085017 crossref_primary_10_1103_PhysRevB_104_125406 crossref_primary_10_1103_PhysRevResearch_6_023072 crossref_primary_10_1007_s40042_022_00677_7 crossref_primary_10_3390_sym15122174 crossref_primary_10_1016_j_physleta_2018_01_033 |
Cites_doi | 10.1103/PhysRevB.66.085322 10.1140/epjd/e2015-60390-2 10.1103/PhysRevA.85.062122 10.1016/0003-4916(58)90007-1 10.1103/PhysRevB.54.17705 10.1038/nature03899 10.1103/PhysRevLett.101.024102 10.1103/PhysRevE.89.062910 10.1103/PhysRevLett.100.030402 10.1103/PhysRevA.81.032109 10.1038/nature05054 10.1103/PhysRevE.68.046205 10.1103/PhysRevLett.93.026803 10.1063/1.1490404 10.1103/PhysRevLett.110.234101 10.1103/PhysRev.115.485 10.1103/PhysRevE.61.66 10.1103/PhysRevLett.86.787 10.1103/PhysRevLett.103.123003 10.1007/BF01474753 10.1103/RevModPhys.75.715 10.1002/prop.201200068 10.1103/PhysRevE.58.8001 10.1017/CBO9780511805776 10.1103/PhysRevLett.101.103602 10.1063/1.467932 10.1103/PhysRevB.65.165317 10.1088/0305-4470/38/49/012 10.1103/PhysRevA.88.062111 10.1103/PhysRevE.60.114 10.1103/PhysRevA.89.043842 10.1016/0375-9474(69)90038-4 10.1364/OL.32.002632 10.1088/0034-4885/51/11/002 10.1038/nphys1612 10.1016/0003-4916(62)90221-X 10.1126/science.1187770 10.1515/9783110270433 10.1103/PhysRevLett.100.103904 10.1103/PhysRevLett.75.53 10.1103/PhysRevA.84.040101 10.1088/0953-4075/32/7/010 10.1103/PhysRevLett.109.033902 10.1140/epjd/e2014-40780-8 10.1088/0034-4885/74/10/106301 10.1080/09500340.2012.752113 10.1051/epjap/2013130240 10.1103/PhysRevE.71.046204 10.1088/1367-2630/9/5/122 10.1103/PhysRevC.32.1742 10.1088/0268-1242/26/4/043001 10.1126/science.1094520 10.1103/PhysRevLett.99.136805 10.1103/PhysRevLett.96.010501 10.1021/jp302627w 10.1103/PhysRevB.90.085142 10.1080/00018738600101921 10.1103/PhysRevA.82.043803 10.1063/1.2193518 10.1063/1.2126791 10.1103/PhysRevA.85.053830 10.1038/nnano.2014.4 10.14311/AP.2014.54.0106 10.1080/09500341003605445 10.1103/PhysRevLett.85.2478 10.1038/nnano.2013.297 10.1088/0034-4885/70/6/R03 10.1098/rspa.1932.0165 10.1088/2040-8978/12/6/065701 10.1364/OE.22.009574 10.1016/j.physleta.2011.08.005 10.1080/09500340802334579 10.1103/PhysRevLett.107.163604 10.1007/s10773-014-2375-3 10.1103/PhysRevE.54.3339 10.1103/PhysRevLett.90.026804 10.1103/PhysRevLett.88.226805 10.1088/0268-1242/9/11S/005 10.1103/PhysRevB.79.121304 10.1017/CBO9780511840463 10.1103/PhysRevE.52.5961 10.1021/nl404133d 10.1002/prop.201200074 10.1016/0375-9474(78)90274-9 10.1088/0953-4075/42/4/044013 10.1103/PhysRevA.78.062116 10.1016/S0370-1573(00)00084-3 10.1007/978-3-662-05016-3 10.1103/PhysRevX.2.021003 10.1103/PhysRevLett.65.2442 10.1038/nphys494 10.1103/PhysRevB.90.075113 10.1103/PhysRevA.77.043833 10.1103/PhysRevLett.102.143601 10.1088/0953-4075/34/1/303 10.1103/PhysRevA.85.031804 10.1103/PhysRevA.80.052107 10.1103/PhysRev.124.1866 10.1051/epjconf/20122104002 10.1103/PhysRevE.64.036213 10.1088/0305-4470/36/45/005 10.1103/PhysRevE.74.056204 10.1103/PhysRevLett.82.4691 10.1103/RevModPhys.79.1217 10.1103/PhysRevE.68.016211 10.1103/RevModPhys.53.385 10.1038/nphys2927 10.1103/PhysRev.93.99 10.1103/PhysRevLett.90.034101 10.1103/PhysRevE.62.450 10.1038/nphys2207 10.1103/PhysRevE.64.056214 10.1103/PhysRevLett.98.204101 10.1088/0953-4075/45/5/051002 10.1063/1.473990 10.1103/PhysRevA.87.013823 10.1103/PhysRevLett.74.4047 10.1103/PhysRevLett.69.506 10.1103/PhysRevLett.92.096802 10.1088/0305-4470/38/9/L03 10.1038/137344a0 10.1002/prop.201200069 10.1103/PhysRevE.69.066201 10.1063/1.473989 10.1103/PhysRevLett.73.2111 10.1017/CBO9780511976186 10.1103/PhysRevLett.108.173901 10.1016/j.physb.2007.05.024 10.1038/385417a0 10.1063/1.1579851 10.1103/PhysRevA.80.042705 10.1103/PhysRevLett.108.123602 10.1038/nphys1515 10.1002/prop.201200054 10.1103/PhysRevLett.103.030402 10.1103/PhysRevLett.103.093902 10.1021/jp4092909 10.1016/j.physrep.2006.09.003 10.1103/PhysRevE.58.1334 10.1103/PhysRevB.76.214302 |
ContentType | Journal Article |
Copyright | 2015 IOP Publishing Ltd |
Copyright_xml | – notice: 2015 IOP Publishing Ltd |
DBID | AAYXX CITATION NPM 7X8 7U5 8FD H8D L7M |
DOI | 10.1088/0034-4885/78/11/114001 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | PubMed Aerospace Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | A review of progress in the physics of open quantum systems: theory and experiment |
EISSN | 1361-6633 |
EndPage | 37 |
ExternalDocumentID | 26510115 10_1088_0034_4885_78_11_114001 ropaa01cf |
Genre | Journal Article |
GrantInformation_xml | – fundername: US Department of Energy grantid: DE-FG02-04ER46180 |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ACAFW ACBEA ACGFO ACGFS ACHIP ACNCT ADIYS AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RKQ RNS RO9 ROL RPA SY9 TN5 UCJ W28 WH7 XPP ZMT ~02 AAYXX ADEQX CITATION 02O 1PV 1WK 29P 5ZI 9BW AAGCF ABEFU ABTAH ACKIV ACWPO AERVB AFFNX AHSEE ARNYC BBWZM FEDTE HVGLF JCGBZ MVM NPM OHT PKN Q02 S3P T37 VO1 XOL ZCG ZY4 7X8 AEINN 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c468t-6fd80918e81e1dc0626345a65209ef384ee19979951ad518749a3bc93fe0671b3 |
IEDL.DBID | IOP |
ISSN | 0034-4885 1361-6633 |
IngestDate | Sun Aug 24 03:02:32 EDT 2025 Tue Aug 05 09:04:48 EDT 2025 Wed Feb 19 02:18:06 EST 2025 Tue Jul 01 02:52:54 EDT 2025 Thu Apr 24 22:56:39 EDT 2025 Wed Aug 21 03:33:13 EDT 2024 Thu Jan 07 13:48:47 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-6fd80918e81e1dc0626345a65209ef384ee19979951ad518749a3bc93fe0671b3 |
Notes | ROPP-100275.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/11858/00-001M-0000-002A-048E-3 |
PMID | 26510115 |
PQID | 1734286035 |
PQPubID | 23479 |
PageCount | 37 |
ParticipantIDs | crossref_primary_10_1088_0034_4885_78_11_114001 pubmed_primary_26510115 iop_journals_10_1088_0034_4885_78_11_114001 proquest_miscellaneous_1786202109 proquest_miscellaneous_1734286035 crossref_citationtrail_10_1088_0034_4885_78_11_114001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Reports on progress in physics |
PublicationTitleAbbrev | RoPP |
PublicationTitleAlternate | Rep. Prog. Phys |
PublicationYear | 2015 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 89 Yoon Y (37) 2012; 2 Nobel Media A B (114) 2014 Micolich A P (39) 2011; 23 110 111 112 113 115 116 90 117 118 92 93 94 10 98 11 12 13 14 15 16 17 Sadreev A F (96) 2005; 38 120 121 122 123 124 4 125 5 126 6 127 7 128 129 9 20 21 22 23 25 26 27 28 Connerade J P (56) 1988; 51 29 Liu C (119) 2014; 4 130 131 132 133 Rotter I (1) 2009; 42 134 135 136 Bender C M (80) 2007; 70 137 138 139 Gilary I (104) 2012; 45 30 31 33 34 35 36 38 140 141 142 143 144 145 146 147 148 149 40 41 42 43 44 45 46 47 Rotter I (97) 2008 48 49 Eleuch H (75) Auerbach N (32) 2011; 74 150 151 Rotter I (88) 2010; 12 152 153 von Neumann J (18) 1929; 30 Magunov A I (58) 1999; 32 154 155 156 157 Eleuch H (73) 2015; 69 50 51 52 53 54 55 Brody D C (71) 2014; 47 Oreg Y (24) 2007; 9 Landau L (66) 1932; 2 von Neumann J (19) 1929; 30 60 61 62 63 64 65 67 Ferry D K (3) 2011; 26 Imry Y (8) 1994; 9 Ruschhaupt A (84) 2005; 38 70 72 Ferry D K (2) 2011; 24 74 76 Toroker M C (99) 2009; 42 77 78 Eleuch H (68) 79 Dittes F M (69) 1990; 337 Sadreev A F (95) 2003; 36 100 101 102 103 105 106 107 Magunov A I (59) 2001; 34 81 108 82 109 83 Kato T (57) 1966 85 86 87 Schindler J (91) 2012; 45 |
References_xml | – ident: 63 doi: 10.1103/PhysRevB.66.085322 – ident: 74 doi: 10.1140/epjd/e2015-60390-2 – ident: 131 doi: 10.1103/PhysRevA.85.062122 – ident: 35 doi: 10.1016/0003-4916(58)90007-1 – volume: 47 issn: 0305-4470 year: 2014 ident: 71 publication-title: J. Phys. – ident: 51 doi: 10.1103/PhysRevB.54.17705 – ident: 22 doi: 10.1038/nature03899 – ident: 118 doi: 10.1103/PhysRevLett.101.024102 – ident: 78 doi: 10.1103/PhysRevE.89.062910 – ident: 87 doi: 10.1103/PhysRevLett.100.030402 – ident: 127 doi: 10.1103/PhysRevA.81.032109 – ident: 6 doi: 10.1038/nature05054 – ident: 79 doi: 10.1103/PhysRevE.68.046205 – ident: 16 doi: 10.1103/PhysRevLett.93.026803 – ident: 15 doi: 10.1063/1.1490404 – ident: 132 doi: 10.1103/PhysRevLett.110.234101 – ident: 120 doi: 10.1103/PhysRev.115.485 – ident: 61 doi: 10.1103/PhysRevE.61.66 – ident: 76 doi: 10.1103/PhysRevLett.86.787 – ident: 103 doi: 10.1103/PhysRevLett.103.123003 – ident: 113 doi: 10.1007/BF01474753 – ident: 116 doi: 10.1103/RevModPhys.75.715 – volume: 4 year: 2014 ident: 119 publication-title: Phys. Rev. – ident: 154 doi: 10.1002/prop.201200068 – ident: 60 doi: 10.1103/PhysRevE.58.8001 – ident: 98 doi: 10.1017/CBO9780511805776 – ident: 148 doi: 10.1103/PhysRevLett.101.103602 – ident: 107 doi: 10.1063/1.467932 – ident: 52 doi: 10.1103/PhysRevB.65.165317 – volume: 38 start-page: 10647 issn: 0305-4470 year: 2005 ident: 96 publication-title: J. Phys. doi: 10.1088/0305-4470/38/49/012 – ident: 123 doi: 10.1103/PhysRevA.88.062111 – ident: 100 doi: 10.1103/PhysRevE.60.114 – ident: 93 doi: 10.1103/PhysRevA.89.043842 – ident: 106 doi: 10.1016/0375-9474(69)90038-4 – ident: 85 doi: 10.1364/OL.32.002632 – volume: 51 start-page: 1439 issn: 0034-4885 year: 1988 ident: 56 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/51/11/002 – ident: 83 doi: 10.1038/nphys1612 – ident: 36 doi: 10.1016/0003-4916(62)90221-X – ident: 146 doi: 10.1126/science.1187770 – ident: 155 doi: 10.1515/9783110270433 – ident: 86 doi: 10.1103/PhysRevLett.100.103904 – ident: 115 doi: 10.1103/PhysRevLett.75.53 – ident: 134 doi: 10.1103/PhysRevA.84.040101 – volume: 32 start-page: 1669 issn: 0953-4075 year: 1999 ident: 58 publication-title: J. Phys. doi: 10.1088/0953-4075/32/7/010 – ident: 130 doi: 10.1103/PhysRevLett.109.033902 – ident: 72 doi: 10.1140/epjd/e2014-40780-8 – volume: 74 issn: 0034-4885 year: 2011 ident: 32 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/74/10/106301 – ident: 143 doi: 10.1080/09500340.2012.752113 – ident: 128 doi: 10.1051/epjap/2013130240 – ident: 17 doi: 10.1103/PhysRevE.71.046204 – volume: 9 start-page: 122 issn: 1367-2630 year: 2007 ident: 24 publication-title: New J. Phys. doi: 10.1088/1367-2630/9/5/122 – ident: 34 doi: 10.1103/PhysRevC.32.1742 – volume: 26 issn: 0268-1242 year: 2011 ident: 3 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/26/4/043001 – ident: 43 doi: 10.1126/science.1094520 – ident: 46 doi: 10.1103/PhysRevLett.99.136805 – year: 1966 ident: 57 publication-title: Perturbation Theory for Linear Operators – ident: 137 doi: 10.1103/PhysRevLett.96.010501 – ident: 149 doi: 10.1021/jp302627w – ident: 153 doi: 10.1103/PhysRevB.90.085142 – ident: 121 doi: 10.1080/00018738600101921 – ident: 129 doi: 10.1103/PhysRevA.82.043803 – ident: 11 doi: 10.1063/1.2193518 – ident: 45 doi: 10.1063/1.2126791 – ident: 142 doi: 10.1103/PhysRevA.85.053830 – ident: 27 doi: 10.1038/nnano.2014.4 – ident: 89 doi: 10.14311/AP.2014.54.0106 – ident: 141 doi: 10.1080/09500341003605445 – ident: 13 doi: 10.1103/PhysRevLett.85.2478 – ident: 26 doi: 10.1038/nnano.2013.297 – volume: 70 start-page: 947 issn: 0034-4885 year: 2007 ident: 80 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/70/6/R03 – ident: 67 doi: 10.1098/rspa.1932.0165 – volume: 12 issn: 0150-536X year: 2010 ident: 88 publication-title: J. Opt. doi: 10.1088/2040-8978/12/6/065701 – ident: 133 doi: 10.1364/OE.22.009574 – ident: 124 doi: 10.1016/j.physleta.2011.08.005 – ident: 138 doi: 10.1080/09500340802334579 – ident: 144 doi: 10.1103/PhysRevLett.107.163604 – ident: 90 doi: 10.1007/s10773-014-2375-3 – ident: 110 doi: 10.1103/PhysRevE.54.3339 – ident: 40 doi: 10.1103/PhysRevLett.90.026804 – ident: 41 doi: 10.1103/PhysRevLett.88.226805 – volume: 9 start-page: 1879 issn: 0268-1242 year: 1994 ident: 8 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/9/11S/005 – ident: 47 doi: 10.1103/PhysRevB.79.121304 – ident: 4 doi: 10.1017/CBO9780511840463 – ident: 70 doi: 10.1103/PhysRevE.52.5961 – ident: 55 doi: 10.1021/nl404133d – ident: 147 doi: 10.1002/prop.201200074 – ident: 156 doi: 10.1016/0375-9474(78)90274-9 – ident: 68 – volume: 42 issn: 0953-4075 year: 2009 ident: 99 publication-title: J. Phys. doi: 10.1088/0953-4075/42/4/044013 – ident: 122 doi: 10.1103/PhysRevA.78.062116 – ident: 23 doi: 10.1016/S0370-1573(00)00084-3 – ident: 38 doi: 10.1007/978-3-662-05016-3 – volume: 45 issn: 0305-4470 year: 2012 ident: 91 publication-title: J. Phys. – volume: 2 start-page: 46 year: 1932 ident: 66 publication-title: Phys. Sov. Union – volume: 2 year: 2012 ident: 37 publication-title: Phys. Rev. doi: 10.1103/PhysRevX.2.021003 – ident: 48 doi: 10.1103/PhysRevLett.65.2442 – ident: 29 doi: 10.1038/nphys494 – ident: 152 doi: 10.1103/PhysRevB.90.075113 – ident: 139 doi: 10.1103/PhysRevA.77.043833 – ident: 140 doi: 10.1103/PhysRevLett.102.143601 – volume: 34 start-page: 29 issn: 0953-4075 year: 2001 ident: 59 publication-title: J. Phys. doi: 10.1088/0953-4075/34/1/303 – ident: 105 doi: 10.1103/PhysRevA.85.031804 – ident: 126 doi: 10.1103/PhysRevA.80.052107 – volume: 24 year: 2011 ident: 2 publication-title: J. Phys.: Condens. Matter – ident: 54 doi: 10.1103/PhysRev.124.1866 – ident: 33 doi: 10.1051/epjconf/20122104002 – ident: 65 doi: 10.1103/PhysRevE.64.036213 – volume: 36 start-page: 11413 issn: 0305-4470 year: 2003 ident: 95 publication-title: J. Phys. doi: 10.1088/0305-4470/36/45/005 – ident: 102 doi: 10.1103/PhysRevE.74.056204 – ident: 14 doi: 10.1103/PhysRevLett.82.4691 – ident: 53 doi: 10.1103/RevModPhys.79.1217 – ident: 94 doi: 10.1103/PhysRevE.68.016211 – ident: 31 doi: 10.1103/RevModPhys.53.385 – ident: 135 doi: 10.1038/nphys2927 – ident: 28 doi: 10.1103/PhysRev.93.99 – ident: 77 doi: 10.1103/PhysRevLett.90.034101 – ident: 64 doi: 10.1103/PhysRevE.62.450 – ident: 30 doi: 10.1038/nphys2207 – ident: 62 doi: 10.1103/PhysRevE.64.056214 – ident: 117 doi: 10.1103/PhysRevLett.98.204101 – volume: 45 issn: 0953-4075 year: 2012 ident: 104 publication-title: J. Phys. doi: 10.1088/0953-4075/45/5/051002 – ident: 109 doi: 10.1063/1.473990 – ident: 145 doi: 10.1103/PhysRevA.87.013823 – ident: 20 doi: 10.1103/PhysRevLett.74.4047 – ident: 49 doi: 10.1103/PhysRevLett.69.506 – ident: 44 doi: 10.1103/PhysRevLett.92.096802 – volume: 69 start-page: 229 year: 2015 ident: 73 publication-title: Eur. Phys. J. – volume: 38 start-page: L171 issn: 0305-4470 year: 2005 ident: 84 publication-title: J. Phys. doi: 10.1088/0305-4470/38/9/L03 – ident: 112 doi: 10.1038/137344a0 – year: 2014 ident: 114 – ident: 150 doi: 10.1002/prop.201200069 – volume: 30 start-page: 467 issn: 0722-3277 year: 1929 ident: 19 publication-title: Physik – ident: 101 doi: 10.1103/PhysRevE.69.066201 – ident: 108 doi: 10.1063/1.473989 – ident: 50 doi: 10.1103/PhysRevLett.73.2111 – ident: 7 doi: 10.1017/CBO9780511976186 – ident: 92 doi: 10.1103/PhysRevLett.108.173901 – ident: 12 doi: 10.1016/j.physb.2007.05.024 – ident: 21 doi: 10.1038/385417a0 – ident: 42 doi: 10.1063/1.1579851 – ident: 25 doi: 10.1103/PhysRevA.80.042705 – ident: 136 doi: 10.1103/PhysRevLett.108.123602 – volume: 42 issn: 0305-4470 year: 2009 ident: 1 publication-title: J. Phys. – ident: 82 doi: 10.1038/nphys1515 – ident: 10 doi: 10.1002/prop.201200054 – ident: 75 – ident: 125 doi: 10.1103/PhysRevLett.103.030402 – ident: 81 doi: 10.1103/PhysRevLett.103.093902 – volume: 23 issn: 0953-8984 year: 2011 ident: 39 publication-title: J. Phys.: Condens. Matter – ident: 151 doi: 10.1021/jp4092909 – volume: 30 start-page: 465 issn: 0722-3277 year: 1929 ident: 18 publication-title: Physik – ident: 9 doi: 10.1016/j.physrep.2006.09.003 – ident: 111 doi: 10.1103/PhysRevE.58.1334 – ident: 5 doi: 10.1103/PhysRevB.76.214302 – volume: 337 start-page: 243 year: 1990 ident: 69 publication-title: Z. Phys. – start-page: 427 year: 2008 ident: 97 publication-title: Quantum Dots: Research, Technology and Applications – ident: 157 doi: 10.1016/0375-9474(78)90274-9 |
SSID | ssj0011829 |
Score | 2.6078098 |
SecondaryResourceType | review_article |
Snippet | This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114001 |
SubjectTerms | dynamical phase transition Electronics Evolution exceptional points Holes Joining mesoscopic physics Microwaves open quantum systems optical tests of quantum theory Quantum theory quantum transport Semiconductors Single-electron transistors |
Title | A review of progress in the physics of open quantum systems: theory and experiment |
URI | https://iopscience.iop.org/article/10.1088/0034-4885/78/11/114001 https://www.ncbi.nlm.nih.gov/pubmed/26510115 https://www.proquest.com/docview/1734286035 https://www.proquest.com/docview/1786202109 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46EXzxfpk3Ivgm3dbmssS3IQ4VvCAOfCtNmoKo7dzWB_31njTtdMIcIvShJSchl5PkOz03hI5jq_ohknqayMSjXElPKAWiSkASqZnQpjD5v77hFz169cgqa8LCFybrl0d_A15doGA3haVBnLDpx6gHfMeabdH0fXiAD0EAWiCCc5vE4PL2bqxIAPjsEHBZp3ISntrOxP00D32YDj2LK6i7glTVeWd58tzIR6qhP37EdfzX6FbRcglQccdVWENzJl1Hi4WhqB5uoPsOdt4uOEtwYdwFRyV-SjEASex-kwxtkc3Khd9yWLf8Fbtw0cNTXLhNvuMojfFXaoFN1OueP5xdeGVeBk9TLkYeT2IBMEMY4Rs_1i0b0IayiFuLGpMQQY2x5isSwFsUM5v0T0ZEaUkSA3ejr8gWqqVZanYQlsRnKvANVVrQCLhJt4IY5HUtgki2I1ZHrFqNUJdBy23ujJewUJ4LYWOb0tDOV9gWIM6Ebr7qqDmu13dhO2bWOIElCcsdPJxJfTRBPYCP7-VhP06ApmKcEPasVcREqclyaLtNQOrjLcJ-owFZ0wrkso62HdeNRxJwe5L6bPdPfd5DS4D2mHOk3Ee10SA3B4CoRuqw2DOf8twNDA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BFagX2vIoS19G4lZldxPbWZsbKqyg5SVUJG5W7DhS1Ta7kM0Bfj0zcXZbkChClXJI5If89jeZmW8AtnNS_XAtIsd1EYnU6khZi6JKwgvtpHK-Mfk_PkkPLsTXS3k5B_szX5jRuD36u_gaiILDELYGcYrCj4kI153sDVQvjvERxCM0zot5eCF5yolC__D0bKZMQAgdUHBbbuoo_Ghd9-6oeWzH4_CzuYaGr4K5SNWwF5L1yc9uPbFdd_uA2_G_e_gallugynZDoTcw58sVWGwMRl21Cue7LHi9sFHBGiMvPDLZj5IhoGThd0lFSRSdi13VOH_1bxZoo6sd1rhP3rCszNmfEANrcDHc__7lIGrjM0ROpGoSpUWuEG4or2If565PxDZCZilZ1viCK-E9mbFoBHFZLin4n864dZoXHu_I2PJ1WChHpd8ApnksbRJ7YZ0SGa4q109ylNudSjI9yGQH5HRGjGvJyymGxi_TKNGVIo5TYWjMzEChWGPCmHWgNys3DvQdT5b4jNNi2p1cPZl7617ua_z4O93gnGGe6eIxuHdJIZOVflRj3QOO0l_a5_JfeVDmJMFcd-BtWHmzniQpnaix3HxWmz_B0tne0Bwdnnx7By8RAMrgW_keFibXtf-AIGtiPzZb6A6mJxJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+progress+in+the+physics+of+open+quantum+systems%3A+theory+and+experiment&rft.jtitle=Reports+on+progress+in+physics&rft.au=Rotter%2C+I&rft.au=Bird%2C+J+P&rft.date=2015-11-01&rft.issn=1361-6633&rft.eissn=1361-6633&rft.volume=78&rft.issue=11&rft.spage=114001&rft_id=info:doi/10.1088%2F0034-4885%2F78%2F11%2F114001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4885&client=summon |