A review of progress in the physics of open quantum systems: theory and experiment

This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consis...

Full description

Saved in:
Bibliographic Details
Published inReports on progress in physics Vol. 78; no. 11; pp. 114001 - 37
Main Authors Rotter, I, Bird, J P
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q   +   P   =   1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In addition to discussing experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states, we also review manifestations of DPTs in mesoscopic devices and other systems. These experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various superradiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics.
AbstractList This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q   +   P   =   1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In addition to discussing experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states, we also review manifestations of DPTs in mesoscopic devices and other systems. These experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various superradiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics.
This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. The experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various super-radiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics.
This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q   +   P   =   1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In addition to discussing experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states, we also review manifestations of DPTs in mesoscopic devices and other systems. These experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various superradiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics.This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q   +   P   =   1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In addition to discussing experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states, we also review manifestations of DPTs in mesoscopic devices and other systems. These experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various superradiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics.
Author Rotter, I
Bird, J P
Author_xml – sequence: 1
  givenname: I
  surname: Rotter
  fullname: Rotter, I
  email: rotter@pks.mpg.de
  organization: Max Planck Institute for the Physics of Complex Systems , D-01187 Dresden, Germany
– sequence: 2
  givenname: J P
  surname: Bird
  fullname: Bird, J P
  email: jbird@buffalo.edu
  organization: University at Buffalo Department of Electrical Engineering, the State University of New York, Buffalo, NY 14260, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26510115$$D View this record in MEDLINE/PubMed
BookMark eNqNkVFLHDEQx0Ox1FP7FSSPvqyX2exmE_FFxKogCKU-h9zurEZukzXJqvftm-WslFJQCAzD_H4h-c8e2XHeISGHwI6BSblkjFdFJWW9bOQSIJ-KMfhCFsAFFEJwvkMW79Au2YvxMQMgS_WN7JaihtzUC_LzjAZ8tvhCfU_H4O8Dxkito-kB6fiwibaN88iP6OjTZFyaBho3MeEQT2bIhw01rqP4OmKwA7p0QL72Zh3x-1vdJ3c_Ln6dXxU3t5fX52c3RVsJmQrRd5IpkCgBoWuZKAWvaiPqkinsuawQQalGqRpMV4NsKmX4qlW8RyYaWPF9crS9Nz_7acKY9GBji-u1ceinqKGRomQlMPUJlFelFIzXGT18Q6fVgJ0e86dM2Og_kWVAbIE2-BgD9u8IMD3vRs-x6zl23UgNoLe7yeLpP2Jrk0nWuxSMXX-sl1vd-lE_-im4HO7H0tF_pJCbvzE9dj3_DVSnrfA
CODEN RPPHAG
CitedBy_id crossref_primary_10_1002_qute_201900060
crossref_primary_10_1140_epjd_e2015_60389_7
crossref_primary_10_1002_prop_202200042
crossref_primary_10_1103_PhysRevA_97_052126
crossref_primary_10_1103_PRXQuantum_3_030318
crossref_primary_10_1103_PhysRevA_96_052511
crossref_primary_10_1103_PhysRevB_106_165411
crossref_primary_10_1103_PhysRevB_94_161407
crossref_primary_10_3103_S1541308X23040064
crossref_primary_10_1038_s41598_023_30840_4
crossref_primary_10_1103_PhysRevA_105_053527
crossref_primary_10_1103_PhysRevResearch_6_033124
crossref_primary_10_1088_1361_648X_abe796
crossref_primary_10_1088_1402_4896_aa8079
crossref_primary_10_2139_ssrn_4076932
crossref_primary_10_3367_UFNe_2022_07_039219
crossref_primary_10_1063_1_5075628
crossref_primary_10_1103_PhysRevA_96_043821
crossref_primary_10_1063_1_5002689
crossref_primary_10_1103_PhysRevD_102_025012
crossref_primary_10_3390_e25020187
crossref_primary_10_1103_PhysRevA_99_052103
crossref_primary_10_1103_RevModPhys_89_015001
crossref_primary_10_1103_PhysRevA_99_023820
crossref_primary_10_1039_D1CP02504J
crossref_primary_10_1103_PhysRevB_101_045130
crossref_primary_10_1103_PhysRevC_95_061301
crossref_primary_10_1088_1361_648X_ad3539
crossref_primary_10_1103_PhysRevB_96_205441
crossref_primary_10_1103_PhysRevE_102_022140
crossref_primary_10_1038_s41598_017_06198_9
crossref_primary_10_1063_1_4983809
crossref_primary_10_1103_PhysRevLett_125_126402
crossref_primary_10_1088_1361_6382_ad7452
crossref_primary_10_1038_s41467_023_36012_2
crossref_primary_10_1103_PhysRevResearch_5_033042
crossref_primary_10_1088_1751_8121_ac76f7
crossref_primary_10_1088_1361_6455_aca852
crossref_primary_10_1103_RevModPhys_92_021001
crossref_primary_10_1007_JHEP10_2021_028
crossref_primary_10_1063_5_0124385
crossref_primary_10_1002_qute_202300399
crossref_primary_10_1038_s41467_019_10048_9
crossref_primary_10_1088_1367_2630_ab4d09
crossref_primary_10_1002_andp_201900054
crossref_primary_10_1088_1367_2630_ab32ab
crossref_primary_10_3390_e23020147
crossref_primary_10_1103_PhysRevB_97_115436
crossref_primary_10_1088_1751_8121_aab721
crossref_primary_10_1103_PhysRevA_94_042122
crossref_primary_10_1103_PhysRevLett_128_146804
crossref_primary_10_1364_OL_43_004457
crossref_primary_10_1103_PhysRevB_104_184515
crossref_primary_10_1103_PhysRevB_95_014201
crossref_primary_10_1088_1402_4896_ab0fc0
crossref_primary_10_1063_5_0174536
crossref_primary_10_1038_s41467_024_53769_2
crossref_primary_10_1088_2058_9565_ad420b
crossref_primary_10_1103_PhysRevA_106_022424
crossref_primary_10_1103_PhysRevResearch_3_033029
crossref_primary_10_1103_PhysRevB_107_214203
crossref_primary_10_1103_PhysRevA_97_012121
crossref_primary_10_3390_sym12060892
crossref_primary_10_1038_s41598_021_02413_w
crossref_primary_10_1103_PhysRevA_95_053865
crossref_primary_10_1103_PhysRevE_110_044141
crossref_primary_10_1103_PhysRevLett_129_083602
crossref_primary_10_1063_5_0142022
crossref_primary_10_1088_1361_6463_ace8a4
crossref_primary_10_1016_j_physe_2019_113780
crossref_primary_10_1080_17455030_2020_1774680
crossref_primary_10_3390_e23060708
crossref_primary_10_1103_PhysRevA_95_022117
crossref_primary_10_1103_PhysRevB_108_195138
crossref_primary_10_1140_epjp_s13360_022_03016_8
crossref_primary_10_3367_UFNr_2022_07_039219
crossref_primary_10_1103_PhysRevApplied_13_034061
crossref_primary_10_1103_PhysRevB_102_201110
crossref_primary_10_1016_j_aop_2017_01_025
crossref_primary_10_1109_ACCESS_2019_2933198
crossref_primary_10_1103_PhysRevB_108_035104
crossref_primary_10_1103_PhysRevA_100_032124
crossref_primary_10_1088_2399_6528_ad5b37
crossref_primary_10_1103_PhysRevB_107_104306
crossref_primary_10_1098_rspa_2019_0831
crossref_primary_10_18287_2412_6179_2019_43_2_168_173
crossref_primary_10_1088_1367_2630_ac3e9f
crossref_primary_10_1103_PhysRevE_100_042119
crossref_primary_10_1016_j_csbj_2024_11_030
crossref_primary_10_1103_PhysRevB_111_045130
crossref_primary_10_1364_OE_501689
crossref_primary_10_3938_jkps_73_516
crossref_primary_10_22331_q_2023_06_01_1027
crossref_primary_10_1103_PhysRevLett_124_136802
crossref_primary_10_1088_2515_7639_ab4092
crossref_primary_10_1038_nphys3842
crossref_primary_10_1103_PhysRevA_98_033835
crossref_primary_10_1088_1742_6596_2038_1_012011
crossref_primary_10_1103_PhysRevB_97_121401
crossref_primary_10_1103_PhysRevD_107_106007
crossref_primary_10_3390_particles7040067
crossref_primary_10_1088_1742_6596_2038_1_012017
crossref_primary_10_1103_PhysRevA_101_063829
crossref_primary_10_1016_j_physrep_2020_04_002
crossref_primary_10_1103_PhysRevB_106_045126
crossref_primary_10_1140_epjst_e2018_800091_5
crossref_primary_10_1103_PhysRevLett_125_240404
crossref_primary_10_1103_PhysRevResearch_2_033092
crossref_primary_10_1021_acs_jctc_2c00108
crossref_primary_10_1088_1742_5468_ad1d56
crossref_primary_10_1088_1367_2630_abb03f
crossref_primary_10_1088_1742_5468_ad4861
crossref_primary_10_1103_PhysRevA_109_022607
crossref_primary_10_1140_epjd_e2018_90031_1
crossref_primary_10_3390_e23121577
crossref_primary_10_1103_PhysRevB_100_081104
crossref_primary_10_1103_PhysRevA_108_012620
crossref_primary_10_1103_PhysRevB_108_L121105
crossref_primary_10_1103_PhysRevB_104_205131
crossref_primary_10_1088_1367_2630_aca559
crossref_primary_10_1103_PhysRevA_98_052102
crossref_primary_10_1103_PhysRevB_99_245116
crossref_primary_10_1103_PRXQuantum_5_020202
crossref_primary_10_1103_PhysRevB_99_125420
crossref_primary_10_1016_j_nuclphysb_2019_114699
crossref_primary_10_1063_5_0177714
crossref_primary_10_1103_PhysRevB_104_245140
crossref_primary_10_1103_PhysRevA_100_062116
crossref_primary_10_1103_PhysRevA_108_052204
crossref_primary_10_22331_q_2021_08_19_528
crossref_primary_10_1103_PhysRevB_110_L241410
crossref_primary_10_1103_PhysRevE_95_062109
crossref_primary_10_1103_PhysRevA_102_022219
crossref_primary_10_1111_jep_13890
crossref_primary_10_1088_1361_6633_aaaf9a
crossref_primary_10_1103_PhysRevResearch_5_013185
crossref_primary_10_1103_PhysRevA_105_063501
crossref_primary_10_1103_PhysRevResearch_6_033075
crossref_primary_10_1103_PhysRevLett_126_170503
crossref_primary_10_1063_5_0006365
crossref_primary_10_1103_PhysRevB_100_155117
crossref_primary_10_1038_s41586_018_0348_z
crossref_primary_10_1103_PhysRevLett_120_065301
crossref_primary_10_3390_sym12050761
crossref_primary_10_1103_PhysRevA_93_042116
crossref_primary_10_1103_PhysRevA_95_042115
crossref_primary_10_1103_PhysRevA_94_022105
crossref_primary_10_1142_S1230161221500207
crossref_primary_10_3390_info15010035
crossref_primary_10_3390_e20060441
crossref_primary_10_1016_j_aop_2016_12_019
crossref_primary_10_1103_PhysRevD_104_056023
crossref_primary_10_1088_1361_648X_aabbfc
crossref_primary_10_1103_PhysRevB_106_235125
crossref_primary_10_3390_e18120451
crossref_primary_10_1088_1361_6455_aae42f
crossref_primary_10_1142_S0217979222501752
crossref_primary_10_21468_SciPostPhysCore_6_2_037
crossref_primary_10_1103_PhysRevApplied_19_064038
crossref_primary_10_1103_PhysRevB_99_174416
crossref_primary_10_1103_PhysRevB_100_115117
crossref_primary_10_1103_PhysRevB_102_174309
crossref_primary_10_1088_1751_8121_ad0ce4
crossref_primary_10_1142_S0217984917300046
crossref_primary_10_1088_1751_8121_aaf479
crossref_primary_10_1016_j_physletb_2022_136970
crossref_primary_10_1103_PhysRevB_109_045145
crossref_primary_10_1103_PhysRevA_98_042117
crossref_primary_10_1103_PhysRevA_104_062406
crossref_primary_10_1103_PhysRevLett_126_086401
crossref_primary_10_1103_PhysRevA_100_023836
crossref_primary_10_1038_s42005_018_0087_3
crossref_primary_10_1103_PhysRevB_106_125425
crossref_primary_10_1103_PhysRevLett_123_250401
crossref_primary_10_1103_PhysRevB_104_155141
crossref_primary_10_1098_rsta_2015_0158
crossref_primary_10_1103_PhysRevD_111_065014
crossref_primary_10_1088_1367_2630_ad1140
crossref_primary_10_1016_j_scib_2017_05_012
crossref_primary_10_1103_PhysRevB_110_L121116
crossref_primary_10_1103_PhysRevA_110_032213
crossref_primary_10_1088_1361_648X_abe266
crossref_primary_10_1103_PhysRevB_101_125418
crossref_primary_10_1088_1361_648X_ac57d6
crossref_primary_10_1140_epjp_s13360_022_03111_w
crossref_primary_10_1080_09500340_2017_1337941
crossref_primary_10_1103_PhysRevResearch_4_023146
crossref_primary_10_1016_j_aop_2022_168939
crossref_primary_10_1140_epjd_e2020_10218_1
crossref_primary_10_1016_j_aop_2017_08_026
crossref_primary_10_1088_1361_6633_aa518f
crossref_primary_10_1088_1361_648X_ad22f8
crossref_primary_10_3390_e22090984
crossref_primary_10_1088_2053_1591_3_8_085017
crossref_primary_10_1103_PhysRevB_104_125406
crossref_primary_10_1103_PhysRevResearch_6_023072
crossref_primary_10_1007_s40042_022_00677_7
crossref_primary_10_3390_sym15122174
crossref_primary_10_1016_j_physleta_2018_01_033
Cites_doi 10.1103/PhysRevB.66.085322
10.1140/epjd/e2015-60390-2
10.1103/PhysRevA.85.062122
10.1016/0003-4916(58)90007-1
10.1103/PhysRevB.54.17705
10.1038/nature03899
10.1103/PhysRevLett.101.024102
10.1103/PhysRevE.89.062910
10.1103/PhysRevLett.100.030402
10.1103/PhysRevA.81.032109
10.1038/nature05054
10.1103/PhysRevE.68.046205
10.1103/PhysRevLett.93.026803
10.1063/1.1490404
10.1103/PhysRevLett.110.234101
10.1103/PhysRev.115.485
10.1103/PhysRevE.61.66
10.1103/PhysRevLett.86.787
10.1103/PhysRevLett.103.123003
10.1007/BF01474753
10.1103/RevModPhys.75.715
10.1002/prop.201200068
10.1103/PhysRevE.58.8001
10.1017/CBO9780511805776
10.1103/PhysRevLett.101.103602
10.1063/1.467932
10.1103/PhysRevB.65.165317
10.1088/0305-4470/38/49/012
10.1103/PhysRevA.88.062111
10.1103/PhysRevE.60.114
10.1103/PhysRevA.89.043842
10.1016/0375-9474(69)90038-4
10.1364/OL.32.002632
10.1088/0034-4885/51/11/002
10.1038/nphys1612
10.1016/0003-4916(62)90221-X
10.1126/science.1187770
10.1515/9783110270433
10.1103/PhysRevLett.100.103904
10.1103/PhysRevLett.75.53
10.1103/PhysRevA.84.040101
10.1088/0953-4075/32/7/010
10.1103/PhysRevLett.109.033902
10.1140/epjd/e2014-40780-8
10.1088/0034-4885/74/10/106301
10.1080/09500340.2012.752113
10.1051/epjap/2013130240
10.1103/PhysRevE.71.046204
10.1088/1367-2630/9/5/122
10.1103/PhysRevC.32.1742
10.1088/0268-1242/26/4/043001
10.1126/science.1094520
10.1103/PhysRevLett.99.136805
10.1103/PhysRevLett.96.010501
10.1021/jp302627w
10.1103/PhysRevB.90.085142
10.1080/00018738600101921
10.1103/PhysRevA.82.043803
10.1063/1.2193518
10.1063/1.2126791
10.1103/PhysRevA.85.053830
10.1038/nnano.2014.4
10.14311/AP.2014.54.0106
10.1080/09500341003605445
10.1103/PhysRevLett.85.2478
10.1038/nnano.2013.297
10.1088/0034-4885/70/6/R03
10.1098/rspa.1932.0165
10.1088/2040-8978/12/6/065701
10.1364/OE.22.009574
10.1016/j.physleta.2011.08.005
10.1080/09500340802334579
10.1103/PhysRevLett.107.163604
10.1007/s10773-014-2375-3
10.1103/PhysRevE.54.3339
10.1103/PhysRevLett.90.026804
10.1103/PhysRevLett.88.226805
10.1088/0268-1242/9/11S/005
10.1103/PhysRevB.79.121304
10.1017/CBO9780511840463
10.1103/PhysRevE.52.5961
10.1021/nl404133d
10.1002/prop.201200074
10.1016/0375-9474(78)90274-9
10.1088/0953-4075/42/4/044013
10.1103/PhysRevA.78.062116
10.1016/S0370-1573(00)00084-3
10.1007/978-3-662-05016-3
10.1103/PhysRevX.2.021003
10.1103/PhysRevLett.65.2442
10.1038/nphys494
10.1103/PhysRevB.90.075113
10.1103/PhysRevA.77.043833
10.1103/PhysRevLett.102.143601
10.1088/0953-4075/34/1/303
10.1103/PhysRevA.85.031804
10.1103/PhysRevA.80.052107
10.1103/PhysRev.124.1866
10.1051/epjconf/20122104002
10.1103/PhysRevE.64.036213
10.1088/0305-4470/36/45/005
10.1103/PhysRevE.74.056204
10.1103/PhysRevLett.82.4691
10.1103/RevModPhys.79.1217
10.1103/PhysRevE.68.016211
10.1103/RevModPhys.53.385
10.1038/nphys2927
10.1103/PhysRev.93.99
10.1103/PhysRevLett.90.034101
10.1103/PhysRevE.62.450
10.1038/nphys2207
10.1103/PhysRevE.64.056214
10.1103/PhysRevLett.98.204101
10.1088/0953-4075/45/5/051002
10.1063/1.473990
10.1103/PhysRevA.87.013823
10.1103/PhysRevLett.74.4047
10.1103/PhysRevLett.69.506
10.1103/PhysRevLett.92.096802
10.1088/0305-4470/38/9/L03
10.1038/137344a0
10.1002/prop.201200069
10.1103/PhysRevE.69.066201
10.1063/1.473989
10.1103/PhysRevLett.73.2111
10.1017/CBO9780511976186
10.1103/PhysRevLett.108.173901
10.1016/j.physb.2007.05.024
10.1038/385417a0
10.1063/1.1579851
10.1103/PhysRevA.80.042705
10.1103/PhysRevLett.108.123602
10.1038/nphys1515
10.1002/prop.201200054
10.1103/PhysRevLett.103.030402
10.1103/PhysRevLett.103.093902
10.1021/jp4092909
10.1016/j.physrep.2006.09.003
10.1103/PhysRevE.58.1334
10.1103/PhysRevB.76.214302
ContentType Journal Article
Copyright 2015 IOP Publishing Ltd
Copyright_xml – notice: 2015 IOP Publishing Ltd
DBID AAYXX
CITATION
NPM
7X8
7U5
8FD
H8D
L7M
DOI 10.1088/0034-4885/78/11/114001
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList PubMed
Aerospace Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate A review of progress in the physics of open quantum systems: theory and experiment
EISSN 1361-6633
EndPage 37
ExternalDocumentID 26510115
10_1088_0034_4885_78_11_114001
ropaa01cf
Genre Journal Article
GrantInformation_xml – fundername: US Department of Energy
  grantid: DE-FG02-04ER46180
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ACNCT
ADIYS
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RKQ
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
WH7
XPP
ZMT
~02
AAYXX
ADEQX
CITATION
02O
1PV
1WK
29P
5ZI
9BW
AAGCF
ABEFU
ABTAH
ACKIV
ACWPO
AERVB
AFFNX
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
JCGBZ
MVM
NPM
OHT
PKN
Q02
S3P
T37
VO1
XOL
ZCG
ZY4
7X8
AEINN
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c468t-6fd80918e81e1dc0626345a65209ef384ee19979951ad518749a3bc93fe0671b3
IEDL.DBID IOP
ISSN 0034-4885
1361-6633
IngestDate Sun Aug 24 03:02:32 EDT 2025
Tue Aug 05 09:04:48 EDT 2025
Wed Feb 19 02:18:06 EST 2025
Tue Jul 01 02:52:54 EDT 2025
Thu Apr 24 22:56:39 EDT 2025
Wed Aug 21 03:33:13 EDT 2024
Thu Jan 07 13:48:47 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-6fd80918e81e1dc0626345a65209ef384ee19979951ad518749a3bc93fe0671b3
Notes ROPP-100275.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/11858/00-001M-0000-002A-048E-3
PMID 26510115
PQID 1734286035
PQPubID 23479
PageCount 37
ParticipantIDs crossref_primary_10_1088_0034_4885_78_11_114001
pubmed_primary_26510115
iop_journals_10_1088_0034_4885_78_11_114001
proquest_miscellaneous_1786202109
proquest_miscellaneous_1734286035
crossref_citationtrail_10_1088_0034_4885_78_11_114001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Reports on progress in physics
PublicationTitleAbbrev RoPP
PublicationTitleAlternate Rep. Prog. Phys
PublicationYear 2015
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 89
Yoon Y (37) 2012; 2
Nobel Media A B (114) 2014
Micolich A P (39) 2011; 23
110
111
112
113
115
116
90
117
118
92
93
94
10
98
11
12
13
14
15
16
17
Sadreev A F (96) 2005; 38
120
121
122
123
124
4
125
5
126
6
127
7
128
129
9
20
21
22
23
25
26
27
28
Connerade J P (56) 1988; 51
29
Liu C (119) 2014; 4
130
131
132
133
Rotter I (1) 2009; 42
134
135
136
Bender C M (80) 2007; 70
137
138
139
Gilary I (104) 2012; 45
30
31
33
34
35
36
38
140
141
142
143
144
145
146
147
148
149
40
41
42
43
44
45
46
47
Rotter I (97) 2008
48
49
Eleuch H (75)
Auerbach N (32) 2011; 74
150
151
Rotter I (88) 2010; 12
152
153
von Neumann J (18) 1929; 30
Magunov A I (58) 1999; 32
154
155
156
157
Eleuch H (73) 2015; 69
50
51
52
53
54
55
Brody D C (71) 2014; 47
Oreg Y (24) 2007; 9
Landau L (66) 1932; 2
von Neumann J (19) 1929; 30
60
61
62
63
64
65
67
Ferry D K (3) 2011; 26
Imry Y (8) 1994; 9
Ruschhaupt A (84) 2005; 38
70
72
Ferry D K (2) 2011; 24
74
76
Toroker M C (99) 2009; 42
77
78
Eleuch H (68)
79
Dittes F M (69) 1990; 337
Sadreev A F (95) 2003; 36
100
101
102
103
105
106
107
Magunov A I (59) 2001; 34
81
108
82
109
83
Kato T (57) 1966
85
86
87
Schindler J (91) 2012; 45
References_xml – ident: 63
  doi: 10.1103/PhysRevB.66.085322
– ident: 74
  doi: 10.1140/epjd/e2015-60390-2
– ident: 131
  doi: 10.1103/PhysRevA.85.062122
– ident: 35
  doi: 10.1016/0003-4916(58)90007-1
– volume: 47
  issn: 0305-4470
  year: 2014
  ident: 71
  publication-title: J. Phys.
– ident: 51
  doi: 10.1103/PhysRevB.54.17705
– ident: 22
  doi: 10.1038/nature03899
– ident: 118
  doi: 10.1103/PhysRevLett.101.024102
– ident: 78
  doi: 10.1103/PhysRevE.89.062910
– ident: 87
  doi: 10.1103/PhysRevLett.100.030402
– ident: 127
  doi: 10.1103/PhysRevA.81.032109
– ident: 6
  doi: 10.1038/nature05054
– ident: 79
  doi: 10.1103/PhysRevE.68.046205
– ident: 16
  doi: 10.1103/PhysRevLett.93.026803
– ident: 15
  doi: 10.1063/1.1490404
– ident: 132
  doi: 10.1103/PhysRevLett.110.234101
– ident: 120
  doi: 10.1103/PhysRev.115.485
– ident: 61
  doi: 10.1103/PhysRevE.61.66
– ident: 76
  doi: 10.1103/PhysRevLett.86.787
– ident: 103
  doi: 10.1103/PhysRevLett.103.123003
– ident: 113
  doi: 10.1007/BF01474753
– ident: 116
  doi: 10.1103/RevModPhys.75.715
– volume: 4
  year: 2014
  ident: 119
  publication-title: Phys. Rev.
– ident: 154
  doi: 10.1002/prop.201200068
– ident: 60
  doi: 10.1103/PhysRevE.58.8001
– ident: 98
  doi: 10.1017/CBO9780511805776
– ident: 148
  doi: 10.1103/PhysRevLett.101.103602
– ident: 107
  doi: 10.1063/1.467932
– ident: 52
  doi: 10.1103/PhysRevB.65.165317
– volume: 38
  start-page: 10647
  issn: 0305-4470
  year: 2005
  ident: 96
  publication-title: J. Phys.
  doi: 10.1088/0305-4470/38/49/012
– ident: 123
  doi: 10.1103/PhysRevA.88.062111
– ident: 100
  doi: 10.1103/PhysRevE.60.114
– ident: 93
  doi: 10.1103/PhysRevA.89.043842
– ident: 106
  doi: 10.1016/0375-9474(69)90038-4
– ident: 85
  doi: 10.1364/OL.32.002632
– volume: 51
  start-page: 1439
  issn: 0034-4885
  year: 1988
  ident: 56
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/51/11/002
– ident: 83
  doi: 10.1038/nphys1612
– ident: 36
  doi: 10.1016/0003-4916(62)90221-X
– ident: 146
  doi: 10.1126/science.1187770
– ident: 155
  doi: 10.1515/9783110270433
– ident: 86
  doi: 10.1103/PhysRevLett.100.103904
– ident: 115
  doi: 10.1103/PhysRevLett.75.53
– ident: 134
  doi: 10.1103/PhysRevA.84.040101
– volume: 32
  start-page: 1669
  issn: 0953-4075
  year: 1999
  ident: 58
  publication-title: J. Phys.
  doi: 10.1088/0953-4075/32/7/010
– ident: 130
  doi: 10.1103/PhysRevLett.109.033902
– ident: 72
  doi: 10.1140/epjd/e2014-40780-8
– volume: 74
  issn: 0034-4885
  year: 2011
  ident: 32
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/74/10/106301
– ident: 143
  doi: 10.1080/09500340.2012.752113
– ident: 128
  doi: 10.1051/epjap/2013130240
– ident: 17
  doi: 10.1103/PhysRevE.71.046204
– volume: 9
  start-page: 122
  issn: 1367-2630
  year: 2007
  ident: 24
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/9/5/122
– ident: 34
  doi: 10.1103/PhysRevC.32.1742
– volume: 26
  issn: 0268-1242
  year: 2011
  ident: 3
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/26/4/043001
– ident: 43
  doi: 10.1126/science.1094520
– ident: 46
  doi: 10.1103/PhysRevLett.99.136805
– year: 1966
  ident: 57
  publication-title: Perturbation Theory for Linear Operators
– ident: 137
  doi: 10.1103/PhysRevLett.96.010501
– ident: 149
  doi: 10.1021/jp302627w
– ident: 153
  doi: 10.1103/PhysRevB.90.085142
– ident: 121
  doi: 10.1080/00018738600101921
– ident: 129
  doi: 10.1103/PhysRevA.82.043803
– ident: 11
  doi: 10.1063/1.2193518
– ident: 45
  doi: 10.1063/1.2126791
– ident: 142
  doi: 10.1103/PhysRevA.85.053830
– ident: 27
  doi: 10.1038/nnano.2014.4
– ident: 89
  doi: 10.14311/AP.2014.54.0106
– ident: 141
  doi: 10.1080/09500341003605445
– ident: 13
  doi: 10.1103/PhysRevLett.85.2478
– ident: 26
  doi: 10.1038/nnano.2013.297
– volume: 70
  start-page: 947
  issn: 0034-4885
  year: 2007
  ident: 80
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/70/6/R03
– ident: 67
  doi: 10.1098/rspa.1932.0165
– volume: 12
  issn: 0150-536X
  year: 2010
  ident: 88
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/12/6/065701
– ident: 133
  doi: 10.1364/OE.22.009574
– ident: 124
  doi: 10.1016/j.physleta.2011.08.005
– ident: 138
  doi: 10.1080/09500340802334579
– ident: 144
  doi: 10.1103/PhysRevLett.107.163604
– ident: 90
  doi: 10.1007/s10773-014-2375-3
– ident: 110
  doi: 10.1103/PhysRevE.54.3339
– ident: 40
  doi: 10.1103/PhysRevLett.90.026804
– ident: 41
  doi: 10.1103/PhysRevLett.88.226805
– volume: 9
  start-page: 1879
  issn: 0268-1242
  year: 1994
  ident: 8
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/9/11S/005
– ident: 47
  doi: 10.1103/PhysRevB.79.121304
– ident: 4
  doi: 10.1017/CBO9780511840463
– ident: 70
  doi: 10.1103/PhysRevE.52.5961
– ident: 55
  doi: 10.1021/nl404133d
– ident: 147
  doi: 10.1002/prop.201200074
– ident: 156
  doi: 10.1016/0375-9474(78)90274-9
– ident: 68
– volume: 42
  issn: 0953-4075
  year: 2009
  ident: 99
  publication-title: J. Phys.
  doi: 10.1088/0953-4075/42/4/044013
– ident: 122
  doi: 10.1103/PhysRevA.78.062116
– ident: 23
  doi: 10.1016/S0370-1573(00)00084-3
– ident: 38
  doi: 10.1007/978-3-662-05016-3
– volume: 45
  issn: 0305-4470
  year: 2012
  ident: 91
  publication-title: J. Phys.
– volume: 2
  start-page: 46
  year: 1932
  ident: 66
  publication-title: Phys. Sov. Union
– volume: 2
  year: 2012
  ident: 37
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevX.2.021003
– ident: 48
  doi: 10.1103/PhysRevLett.65.2442
– ident: 29
  doi: 10.1038/nphys494
– ident: 152
  doi: 10.1103/PhysRevB.90.075113
– ident: 139
  doi: 10.1103/PhysRevA.77.043833
– ident: 140
  doi: 10.1103/PhysRevLett.102.143601
– volume: 34
  start-page: 29
  issn: 0953-4075
  year: 2001
  ident: 59
  publication-title: J. Phys.
  doi: 10.1088/0953-4075/34/1/303
– ident: 105
  doi: 10.1103/PhysRevA.85.031804
– ident: 126
  doi: 10.1103/PhysRevA.80.052107
– volume: 24
  year: 2011
  ident: 2
  publication-title: J. Phys.: Condens. Matter
– ident: 54
  doi: 10.1103/PhysRev.124.1866
– ident: 33
  doi: 10.1051/epjconf/20122104002
– ident: 65
  doi: 10.1103/PhysRevE.64.036213
– volume: 36
  start-page: 11413
  issn: 0305-4470
  year: 2003
  ident: 95
  publication-title: J. Phys.
  doi: 10.1088/0305-4470/36/45/005
– ident: 102
  doi: 10.1103/PhysRevE.74.056204
– ident: 14
  doi: 10.1103/PhysRevLett.82.4691
– ident: 53
  doi: 10.1103/RevModPhys.79.1217
– ident: 94
  doi: 10.1103/PhysRevE.68.016211
– ident: 31
  doi: 10.1103/RevModPhys.53.385
– ident: 135
  doi: 10.1038/nphys2927
– ident: 28
  doi: 10.1103/PhysRev.93.99
– ident: 77
  doi: 10.1103/PhysRevLett.90.034101
– ident: 64
  doi: 10.1103/PhysRevE.62.450
– ident: 30
  doi: 10.1038/nphys2207
– ident: 62
  doi: 10.1103/PhysRevE.64.056214
– ident: 117
  doi: 10.1103/PhysRevLett.98.204101
– volume: 45
  issn: 0953-4075
  year: 2012
  ident: 104
  publication-title: J. Phys.
  doi: 10.1088/0953-4075/45/5/051002
– ident: 109
  doi: 10.1063/1.473990
– ident: 145
  doi: 10.1103/PhysRevA.87.013823
– ident: 20
  doi: 10.1103/PhysRevLett.74.4047
– ident: 49
  doi: 10.1103/PhysRevLett.69.506
– ident: 44
  doi: 10.1103/PhysRevLett.92.096802
– volume: 69
  start-page: 229
  year: 2015
  ident: 73
  publication-title: Eur. Phys. J.
– volume: 38
  start-page: L171
  issn: 0305-4470
  year: 2005
  ident: 84
  publication-title: J. Phys.
  doi: 10.1088/0305-4470/38/9/L03
– ident: 112
  doi: 10.1038/137344a0
– year: 2014
  ident: 114
– ident: 150
  doi: 10.1002/prop.201200069
– volume: 30
  start-page: 467
  issn: 0722-3277
  year: 1929
  ident: 19
  publication-title: Physik
– ident: 101
  doi: 10.1103/PhysRevE.69.066201
– ident: 108
  doi: 10.1063/1.473989
– ident: 50
  doi: 10.1103/PhysRevLett.73.2111
– ident: 7
  doi: 10.1017/CBO9780511976186
– ident: 92
  doi: 10.1103/PhysRevLett.108.173901
– ident: 12
  doi: 10.1016/j.physb.2007.05.024
– ident: 21
  doi: 10.1038/385417a0
– ident: 42
  doi: 10.1063/1.1579851
– ident: 25
  doi: 10.1103/PhysRevA.80.042705
– ident: 136
  doi: 10.1103/PhysRevLett.108.123602
– volume: 42
  issn: 0305-4470
  year: 2009
  ident: 1
  publication-title: J. Phys.
– ident: 82
  doi: 10.1038/nphys1515
– ident: 10
  doi: 10.1002/prop.201200054
– ident: 75
– ident: 125
  doi: 10.1103/PhysRevLett.103.030402
– ident: 81
  doi: 10.1103/PhysRevLett.103.093902
– volume: 23
  issn: 0953-8984
  year: 2011
  ident: 39
  publication-title: J. Phys.: Condens. Matter
– ident: 151
  doi: 10.1021/jp4092909
– volume: 30
  start-page: 465
  issn: 0722-3277
  year: 1929
  ident: 18
  publication-title: Physik
– ident: 9
  doi: 10.1016/j.physrep.2006.09.003
– ident: 111
  doi: 10.1103/PhysRevE.58.1334
– ident: 5
  doi: 10.1103/PhysRevB.76.214302
– volume: 337
  start-page: 243
  year: 1990
  ident: 69
  publication-title: Z. Phys.
– start-page: 427
  year: 2008
  ident: 97
  publication-title: Quantum Dots: Research, Technology and Applications
– ident: 157
  doi: 10.1016/0375-9474(78)90274-9
SSID ssj0011829
Score 2.6078098
SecondaryResourceType review_article
Snippet This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114001
SubjectTerms dynamical phase transition
Electronics
Evolution
exceptional points
Holes
Joining
mesoscopic physics
Microwaves
open quantum systems
optical tests of quantum theory
Quantum theory
quantum transport
Semiconductors
Single-electron transistors
Title A review of progress in the physics of open quantum systems: theory and experiment
URI https://iopscience.iop.org/article/10.1088/0034-4885/78/11/114001
https://www.ncbi.nlm.nih.gov/pubmed/26510115
https://www.proquest.com/docview/1734286035
https://www.proquest.com/docview/1786202109
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46EXzxfpk3Ivgm3dbmssS3IQ4VvCAOfCtNmoKo7dzWB_31njTtdMIcIvShJSchl5PkOz03hI5jq_ohknqayMSjXElPKAWiSkASqZnQpjD5v77hFz169cgqa8LCFybrl0d_A15doGA3haVBnLDpx6gHfMeabdH0fXiAD0EAWiCCc5vE4PL2bqxIAPjsEHBZp3ISntrOxP00D32YDj2LK6i7glTVeWd58tzIR6qhP37EdfzX6FbRcglQccdVWENzJl1Hi4WhqB5uoPsOdt4uOEtwYdwFRyV-SjEASex-kwxtkc3Khd9yWLf8Fbtw0cNTXLhNvuMojfFXaoFN1OueP5xdeGVeBk9TLkYeT2IBMEMY4Rs_1i0b0IayiFuLGpMQQY2x5isSwFsUM5v0T0ZEaUkSA3ejr8gWqqVZanYQlsRnKvANVVrQCLhJt4IY5HUtgki2I1ZHrFqNUJdBy23ujJewUJ4LYWOb0tDOV9gWIM6Ebr7qqDmu13dhO2bWOIElCcsdPJxJfTRBPYCP7-VhP06ApmKcEPasVcREqclyaLtNQOrjLcJ-owFZ0wrkso62HdeNRxJwe5L6bPdPfd5DS4D2mHOk3Ee10SA3B4CoRuqw2DOf8twNDA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BFagX2vIoS19G4lZldxPbWZsbKqyg5SVUJG5W7DhS1Ta7kM0Bfj0zcXZbkChClXJI5If89jeZmW8AtnNS_XAtIsd1EYnU6khZi6JKwgvtpHK-Mfk_PkkPLsTXS3k5B_szX5jRuD36u_gaiILDELYGcYrCj4kI153sDVQvjvERxCM0zot5eCF5yolC__D0bKZMQAgdUHBbbuoo_Ghd9-6oeWzH4_CzuYaGr4K5SNWwF5L1yc9uPbFdd_uA2_G_e_gallugynZDoTcw58sVWGwMRl21Cue7LHi9sFHBGiMvPDLZj5IhoGThd0lFSRSdi13VOH_1bxZoo6sd1rhP3rCszNmfEANrcDHc__7lIGrjM0ROpGoSpUWuEG4or2If565PxDZCZilZ1viCK-E9mbFoBHFZLin4n864dZoXHu_I2PJ1WChHpd8ApnksbRJ7YZ0SGa4q109ylNudSjI9yGQH5HRGjGvJyymGxi_TKNGVIo5TYWjMzEChWGPCmHWgNys3DvQdT5b4jNNi2p1cPZl7617ua_z4O93gnGGe6eIxuHdJIZOVflRj3QOO0l_a5_JfeVDmJMFcd-BtWHmzniQpnaix3HxWmz_B0tne0Bwdnnx7By8RAMrgW_keFibXtf-AIGtiPzZb6A6mJxJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+progress+in+the+physics+of+open+quantum+systems%3A+theory+and+experiment&rft.jtitle=Reports+on+progress+in+physics&rft.au=Rotter%2C+I&rft.au=Bird%2C+J+P&rft.date=2015-11-01&rft.issn=1361-6633&rft.eissn=1361-6633&rft.volume=78&rft.issue=11&rft.spage=114001&rft_id=info:doi/10.1088%2F0034-4885%2F78%2F11%2F114001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4885&client=summon