The 3′ Untranslated Region of Sindbis Virus Represses Deadenylation of Viral Transcripts in Mosquito and Mammalian Cells

Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...

Full description

Saved in:
Bibliographic Details
Published inJournal of Virology Vol. 82; no. 2; pp. 880 - 892
Main Authors Garneau, Nicole L., Sokoloski, Kevin J., Opyrchal, Mateusz, Neff, C. Preston, Wilusz, Carol J., Wilusz, Jeffrey
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.01.2008
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text
ISSN0022-538X
1098-5514
1098-5514
DOI10.1128/JVI.01205-07

Cover

Loading…
Abstract Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
AbstractList The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5' cap and a 3' poly(A) tail. It is likely, therefore, that SINV RNAs must successfully overcome the cytoplasmic mRNA decay machinery of the cell in order to establish an efficient, productive infection. In this study, we have taken advantage of a temperature-sensitive polymerase to shut off viral transcription, and we demonstrate that SINV RNAs are subject to decay during a viral infection in both C6/36 (Aedes albopictus) and baby hamster kidney cells. Interestingly, in contrast to most cellular mRNAs, the decay of SINV RNAs was not initiated by poly(A) tail shortening in either cell line except when most of the 3' untranslated region (UTR) was deleted from the virus. This block in deadenylation of viral transcripts was recapitulated in vitro using C6/36 mosquito cell cytoplasmic extracts. Two distinct regions of the 319-base SINV 3' UTR, the repeat sequence elements and a U-rich domain, were shown to be responsible for mediating the repression of deadenylation of viral mRNAs. Through competition studies performed in parallel with UV cross-linking and functional assays, mosquito cell factors-including a 38-kDa protein-were implicated in the repression of deadenylation mediated by the SINV 3' UTR. This same 38-kDa protein was also implicated in mediating the repression of deadenylation by the 3' UTR of another alphavirus, Venezuelan equine encephalitis virus. In summary, these data provide clear evidence that SINV transcripts do indeed interface with the cellular mRNA decay machinery during an infection and that the virus has evolved a way to avoid the major deadenylation-dependent pathway of mRNA decay.The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5' cap and a 3' poly(A) tail. It is likely, therefore, that SINV RNAs must successfully overcome the cytoplasmic mRNA decay machinery of the cell in order to establish an efficient, productive infection. In this study, we have taken advantage of a temperature-sensitive polymerase to shut off viral transcription, and we demonstrate that SINV RNAs are subject to decay during a viral infection in both C6/36 (Aedes albopictus) and baby hamster kidney cells. Interestingly, in contrast to most cellular mRNAs, the decay of SINV RNAs was not initiated by poly(A) tail shortening in either cell line except when most of the 3' untranslated region (UTR) was deleted from the virus. This block in deadenylation of viral transcripts was recapitulated in vitro using C6/36 mosquito cell cytoplasmic extracts. Two distinct regions of the 319-base SINV 3' UTR, the repeat sequence elements and a U-rich domain, were shown to be responsible for mediating the repression of deadenylation of viral mRNAs. Through competition studies performed in parallel with UV cross-linking and functional assays, mosquito cell factors-including a 38-kDa protein-were implicated in the repression of deadenylation mediated by the SINV 3' UTR. This same 38-kDa protein was also implicated in mediating the repression of deadenylation by the 3' UTR of another alphavirus, Venezuelan equine encephalitis virus. In summary, these data provide clear evidence that SINV transcripts do indeed interface with the cellular mRNA decay machinery during an infection and that the virus has evolved a way to avoid the major deadenylation-dependent pathway of mRNA decay.
Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JVI .asm.org, visit: JVI       
The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5′ cap and a 3′ poly(A) tail. It is likely, therefore, that SINV RNAs must successfully overcome the cytoplasmic mRNA decay machinery of the cell in order to establish an efficient, productive infection. In this study, we have taken advantage of a temperature-sensitive polymerase to shut off viral transcription, and we demonstrate that SINV RNAs are subject to decay during a viral infection in both C6/36 ( Aedes albopictus ) and baby hamster kidney cells. Interestingly, in contrast to most cellular mRNAs, the decay of SINV RNAs was not initiated by poly(A) tail shortening in either cell line except when most of the 3′ untranslated region (UTR) was deleted from the virus. This block in deadenylation of viral transcripts was recapitulated in vitro using C6/36 mosquito cell cytoplasmic extracts. Two distinct regions of the 319-base SINV 3′ UTR, the repeat sequence elements and a U-rich domain, were shown to be responsible for mediating the repression of deadenylation of viral mRNAs. Through competition studies performed in parallel with UV cross-linking and functional assays, mosquito cell factors—including a 38-kDa protein—were implicated in the repression of deadenylation mediated by the SINV 3′ UTR. This same 38-kDa protein was also implicated in mediating the repression of deadenylation by the 3′ UTR of another alphavirus, Venezuelan equine encephalitis virus. In summary, these data provide clear evidence that SINV transcripts do indeed interface with the cellular mRNA decay machinery during an infection and that the virus has evolved a way to avoid the major deadenylation-dependent pathway of mRNA decay.
The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5' cap and a 3' poly(A) tail. It is likely, therefore, that SINV RNAs must successfully overcome the cytoplasmic mRNA decay machinery of the cell in order to establish an efficient, productive infection. In this study, we have taken advantage of a temperature-sensitive polymerase to shut off viral transcription, and we demonstrate that SINV RNAs are subject to decay during a viral infection in both C6/36 (Aedes albopictus) and baby hamster kidney cells. Interestingly, in contrast to most cellular mRNAs, the decay of SINV RNAs was not initiated by poly(A) tail shortening in either cell line except when most of the 3' untranslated region (UTR) was deleted from the virus. This block in deadenylation of viral transcripts was recapitulated in vitro using C6/36 mosquito cell cytoplasmic extracts. Two distinct regions of the 319-base SINV 3' UTR, the repeat sequence elements and a U-rich domain, were shown to be responsible for mediating the repression of deadenylation of viral mRNAs. Through competition studies performed in parallel with UV cross-linking and functional assays, mosquito cell factors-including a 38-kDa protein-were implicated in the repression of deadenylation mediated by the SINV 3' UTR. This same 38-kDa protein was also implicated in mediating the repression of deadenylation by the 3' UTR of another alphavirus, Venezuelan equine encephalitis virus. In summary, these data provide clear evidence that SINV transcripts do indeed interface with the cellular mRNA decay machinery during an infection and that the virus has evolved a way to avoid the major deadenylation-dependent pathway of mRNA decay.
Author Jeffrey Wilusz
C. Preston Neff
Nicole L. Garneau
Carol J. Wilusz
Kevin J. Sokoloski
Mateusz Opyrchal
AuthorAffiliation Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado
AuthorAffiliation_xml – name: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado
Author_xml – sequence: 1
  givenname: Nicole L.
  surname: Garneau
  fullname: Garneau, Nicole L.
  organization: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado
– sequence: 2
  givenname: Kevin J.
  surname: Sokoloski
  fullname: Sokoloski, Kevin J.
  organization: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado
– sequence: 3
  givenname: Mateusz
  surname: Opyrchal
  fullname: Opyrchal, Mateusz
  organization: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado
– sequence: 4
  givenname: C. Preston
  surname: Neff
  fullname: Neff, C. Preston
  organization: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado
– sequence: 5
  givenname: Carol J.
  surname: Wilusz
  fullname: Wilusz, Carol J.
  organization: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado
– sequence: 6
  givenname: Jeffrey
  surname: Wilusz
  fullname: Wilusz, Jeffrey
  organization: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20192652$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17977976$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1rFDEYx4NU7LZ68yy56MmpeZnMZC5CWa1WWgTdFm8hmzyzmzKTbJOZlnryM_mR_CRmu-uiIgiBQPJ7_v_n7QDt-eABoaeUHFHK5KsPl6dHhDIiClI_QBNKGlkIQcs9NCGEsUJw-WUfHaR0RQgty6p8hPZp3dT5VBP0dbYEzH98-44v_BC1T50ewOJPsHDB49Diz87buUv40sUx5fdVhJQg4TegLfi7jG_BDOgOz9YaJrrVkLDz-Dyk69ENAWtv8bnue9057fEUui49Rg9b3SV4sr0P0cXJ29n0fXH28d3p9PisMGUlh0LYek64oVzMZU0sSM1p2UjJNGdQGcIkyKZsCZ1bQ6mGhlowFnTb2opxwfkher3RXY3zHqyBdaGdWkXX63ingnbqzx_vlmoRbhRjrBSNzAIvtgIxXI-QBtW7ZHIJ2kMYk6pJ7qfIZv8DGSlryjjJ4LPfU9rl8msuGXi-BXQyumtzV41LO44R2rBKrB3ZhjMxpBShVcYN9yPJlbhOUaLWS6Lykqj7JVGkzkEv_wra-f8bxxt86RbLWxdB6dSrqxunJFNMSUn4T3PsytY
CitedBy_id crossref_primary_10_1074_jbc_M112_371203
crossref_primary_10_1099_jgv_0_000249
crossref_primary_10_1016_j_jviromet_2012_09_020
crossref_primary_10_1128_JVI_02171_17
crossref_primary_10_1128_JVI_01657_10
crossref_primary_10_1016_j_coviro_2014_09_001
crossref_primary_10_1016_j_virusres_2012_03_015
crossref_primary_10_3390_v10020070
crossref_primary_10_1128_JVI_01514_07
crossref_primary_10_1002_dvdy_22344
crossref_primary_10_1111_cmi_12381
crossref_primary_10_1016_j_virol_2010_11_012
crossref_primary_10_1002_wrna_3
crossref_primary_10_1016_j_meegid_2014_03_015
crossref_primary_10_1016_j_virol_2015_03_001
crossref_primary_10_1002_wrna_1536
crossref_primary_10_1099_vir_0_064501_0
crossref_primary_10_1016_j_addr_2021_113900
crossref_primary_10_1038_s41467_022_28776_w
crossref_primary_10_4161_rna_8_2_15391
crossref_primary_10_1016_j_virusres_2010_08_027
crossref_primary_10_1371_journal_ppat_1006473
crossref_primary_10_1093_ve_vey012
crossref_primary_10_1371_journal_pone_0029732
crossref_primary_10_1016_j_celrep_2012_05_020
crossref_primary_10_1128_JVI_00553_15
crossref_primary_10_1016_j_celrep_2013_10_012
crossref_primary_10_1128_JVI_00816_17
crossref_primary_10_1371_journal_pntd_0001931
crossref_primary_10_3390_biomedicines6040111
crossref_primary_10_3390_pathogens10060771
crossref_primary_10_1128_mBio_02342_18
crossref_primary_10_1038_emboj_2011_272
crossref_primary_10_1038_srep19217
crossref_primary_10_1016_j_mib_2012_04_009
crossref_primary_10_1371_journal_pntd_0003354
crossref_primary_10_1371_journal_ppat_1003591
crossref_primary_10_1074_jbc_M117_805796
crossref_primary_10_1016_j_nantod_2018_10_005
crossref_primary_10_1128_JVI_00136_21
crossref_primary_10_1371_journal_pone_0238254
crossref_primary_10_3390_v13030377
crossref_primary_10_3390_v9080204
crossref_primary_10_1016_j_chom_2010_07_003
crossref_primary_10_1128_JVI_01856_14
crossref_primary_10_2217_fvl_14_62
crossref_primary_10_3390_v15010164
crossref_primary_10_1016_j_bbagrm_2012_12_003
crossref_primary_10_1128_JVI_02437_13
crossref_primary_10_1016_j_virusres_2015_01_016
crossref_primary_10_1186_s12864_017_4144_1
crossref_primary_10_1261_rna_069906_118
crossref_primary_10_1016_j_cell_2009_01_019
crossref_primary_10_1093_hmg_ddp569
Cites_doi 10.1101/gad.1407606
10.1016/j.molcel.2006.10.029
10.1128/JVI.76.18.8989-9001.2002
10.1038/nrm2085
10.1128/MCB.23.10.3506-3515.2003
10.1128/mcb.10.12.6132-6140.1990
10.1080/10409230490513991
10.1016/0003-2697(91)90500-S
10.1093/nar/27.4.1159
10.1074/jbc.M102270200
10.1006/meth.1998.0703
10.1128/MCB.17.8.4611
10.1186/1471-2164-6-75
10.1016/j.tig.2006.01.001
10.1290/1543-706X(2004)040<0074:POMDVB>2.0.CO;2
10.1042/BST0331541
10.1093/emboj/19.5.1079
10.1093/nar/26.2.558
10.1128/JVI.77.21.11555-11562.2003
10.1159/000468756
10.1101/gad.7.8.1632
10.1046/j.1432-1327.2000.01753.x
10.1016/j.molcel.2006.08.016
10.1006/viro.2000.0535
10.1128/mr.58.3.491-562.1994
10.1146/annurev.bi.65.070196.003401
10.1128/MCB.01445-06
10.1093/emboj/21.6.1427
10.1038/nrm1942
10.1038/nrm1964
10.1038/336396a0
10.1128/jvi.64.4.1465-1476.1990
10.1016/j.molcel.2007.01.026
10.1016/j.molcel.2004.06.004
10.1023/A:1012441824719
10.1053/j.gastro.2006.12.031
10.1016/0092-8674(88)90510-7
10.1074/mcp.M500429-MCP200
10.1101/gad.8.7.855
10.1128/MCB.00128-07
10.1261/rna.5180304
10.1128/MCB.00090-06
10.1038/nrm2080
10.1016/0092-8674(86)90492-7
10.1038/nsmb1016
10.1128/MCB.23.14.4805-4813.2003
10.1016/S0168-1702(97)01461-5
10.1146/annurev.biochem.76.050106.093909
10.1096/fasebj.10.5.8621056
10.1016/j.tibs.2006.03.001
10.1016/j.ibmb.2005.08.004
10.1093/nar/gki169
10.1128/JVI.79.8.4630-4639.2005
10.1196/annals.1359.026
10.1016/S1097-2765(00)80442-6
10.1038/nrm2104
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright © 2008, American Society for Microbiology
Copyright_xml – notice: 2008 INIST-CNRS
– notice: Copyright © 2008, American Society for Microbiology
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TM
7U9
H94
7X8
5PM
DOI 10.1128/JVI.01205-07
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Entomology Abstracts (Full archive)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Entomology Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
EndPage 892
ExternalDocumentID PMC2224598
17977976
20192652
10_1128_JVI_01205_07
jvi_82_2_880
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI063434
– fundername: NIAID NIH HHS
  grantid: R01 AI063434
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AFFNX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
.55
.GJ
41~
6TJ
AAYJJ
ADXHL
AI.
D0S
IQODW
VH1
X7M
Y6R
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TM
7U9
H94
7X8
5PM
ID FETCH-LOGICAL-c468t-5d7b03c135b870de8a3149882a32e6c028e894f01bdc11ae91decdeaffd623533
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:29:05 EDT 2025
Fri Sep 05 05:56:48 EDT 2025
Fri Sep 05 05:51:04 EDT 2025
Mon Jul 21 06:04:04 EDT 2025
Mon Jul 21 09:12:03 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
Tue Jul 01 00:57:19 EDT 2025
Wed May 18 15:25:37 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Virus
Vertebrata
Mammalia
Messenger RNA
Gene
Togaviridae
Alphavirus
In vitro
Virology
Sindbis virus
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c468t-5d7b03c135b870de8a3149882a32e6c028e894f01bdc11ae91decdeaffd623533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
N.L.G. and K.J.S. contributed equally to this work.
Corresponding author. Mailing address: Colorado State University, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523-1682. Phone: (970) 491-0652. Fax: (970) 491-4941. E-mail: jeffrey.wilusz@colostate.edu
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/2224598
PMID 17977976
PQID 20471230
PQPubID 23462
PageCount 13
ParticipantIDs crossref_citationtrail_10_1128_JVI_01205_07
pubmed_primary_17977976
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2224598
crossref_primary_10_1128_JVI_01205_07
proquest_miscellaneous_70179562
pascalfrancis_primary_20192652
highwire_asm_jvi_82_2_880
proquest_miscellaneous_20471230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-01-01
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
PublicationTitle Journal of Virology
PublicationTitleAlternate J Virol
PublicationYear 2008
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References e_1_3_2_26_2
e_1_3_2_49_2
(e_1_3_2_3_2) 2004; 257
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
(e_1_3_2_57_2) 2001; 7
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_61_2
(e_1_3_2_46_2) 1994; 9
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
(e_1_3_2_63_2) 1995; 18
(e_1_3_2_10_2) 2006; 20
(e_1_3_2_50_2) 2007
10882133 - Mol Cell. 2000 Mar;5(3):479-88
10698948 - EMBO J. 2000 Mar 1;19(5):1079-86
2319643 - J Virol. 1990 Apr;64(4):1465-76
3753584 - Cell. 1986 Jan 17;44(1):137-45
16291088 - Insect Biochem Mol Biol. 2005 Dec;35(12):1321-34
11359775 - J Biol Chem. 2001 Jul 27;276(30):27923-9
17052452 - Mol Cell. 2006 Oct 20;24(2):173-83
17296726 - Mol Cell Biol. 2007 Apr;27(8):2791-9
9255930 - Virus Res. 1997 Jul;50(1):1-13
3194021 - Nature. 1988 Nov 24;336(6197):396-9
11022007 - Virology. 2000 Oct 10;276(1):190-201
10075879 - Methods. 1999 Jan;17(1):21-7
8621056 - FASEB J. 1996 Apr;10(5):559-73
9927751 - Nucleic Acids Res. 1999 Feb 15;27(4):1159-67
12186883 - J Virol. 2002 Sep;76(18):8989-9001
14970390 - RNA. 2004 Mar;10(3):448-57
15260981 - Mol Cell. 2004 Jul 23;15(2):303-13
12832468 - Mol Cell Biol. 2003 Jul;23(14):4805-13
17245413 - Nat Rev Mol Cell Biol. 2007 Feb;8(2):113-26
9234718 - Mol Cell Biol. 1997 Aug;17(8):4611-21
14557641 - J Virol. 2003 Nov;77(21):11555-62
7926773 - Genes Dev. 1994 Apr 1;8(7):855-66
15907206 - BMC Genomics. 2005;6:75
16284618 - Nat Struct Mol Biol. 2005 Dec;12(12):1054-63
15795249 - J Virol. 2005 Apr;79(8):4630-9
11595836 - Apoptosis. 2001 Dec;6(6):463-8
7968923 - Microbiol Rev. 1994 Sep;58(3):491-562
16430990 - Trends Genet. 2006 Mar;22(3):119-22
18369990 - Methods Mol Biol. 2008;419:277-88
15311964 - In Vitro Cell Dev Biol Anim. 2004 Mar-Apr;40(3-4):74-5
9421516 - Nucleic Acids Res. 1998 Jan 15;26(2):558-65
11054111 - Eur J Biochem. 2000 Nov;267(22):6594-601
17352659 - Annu Rev Biochem. 2007;76:51-74
1789423 - Anal Biochem. 1991 Oct;198(1):19-29
16723977 - Nat Rev Mol Cell Biol. 2006 Jun;7(6):415-25
16829983 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):529-39
17183358 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):23-36
2830023 - Cell. 1988 Jan 29;52(2):221-8
16500930 - Mol Cell Proteomics. 2006 Jun;5(6):1006-18
8032249 - Arch Virol Suppl. 1994;9:181-94
11889048 - EMBO J. 2002 Mar 15;21(6):1427-36
8811193 - Annu Rev Biochem. 1996;65:693-739
16982678 - Mol Cell Biol. 2006 Dec;26(23):8803-13
16394137 - Ann N Y Acad Sci. 2005 Nov;1058:196-204
7779397 - Biotechniques. 1995 Mar;18(3):465-9
16580207 - Trends Biochem Sci. 2006 May;31(5):241-3
16246165 - Biochem Soc Trans. 2005 Dec;33(Pt 6):1541-3
8393418 - Genes Dev. 1993 Aug;7(8):1632-43
12724409 - Mol Cell Biol. 2003 May;23(10):3506-15
15653638 - Nucleic Acids Res. 2005;33(1):376-87
17183357 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):9-22
16481468 - Genes Dev. 2006 Feb 15;20(4):391-8
15596551 - Crit Rev Biochem Mol Biol. 2004 Jul-Aug;39(4):197-216
17349962 - Mol Cell. 2007 Mar 9;25(5):779-87
17383427 - Gastroenterology. 2007 Mar;132(3):1055-65
17403906 - Mol Cell Biol. 2007 Jun;27(11):3970-81
14770003 - Methods Mol Biol. 2004;257:135-54
16433023 - In Vivo. 2006 Jan-Feb;20(1):17-23
11680846 - RNA. 2001 Oct;7(10):1416-24
1701014 - Mol Cell Biol. 1990 Dec;10(12):6132-40
17189195 - Mol Cell. 2006 Dec 28;24(6):943-53
2133650 - Enzyme. 1990;44(1-4):181-92
References_xml – ident: e_1_3_2_4_2
  doi: 10.1101/gad.1407606
– ident: e_1_3_2_11_2
  doi: 10.1016/j.molcel.2006.10.029
– ident: e_1_3_2_17_2
  doi: 10.1128/JVI.76.18.8989-9001.2002
– ident: e_1_3_2_47_2
  doi: 10.1038/nrm2085
– ident: e_1_3_2_51_2
  doi: 10.1128/MCB.23.10.3506-3515.2003
– ident: e_1_3_2_35_2
  doi: 10.1128/mcb.10.12.6132-6140.1990
– ident: e_1_3_2_39_2
  doi: 10.1080/10409230490513991
– ident: e_1_3_2_27_2
  doi: 10.1016/0003-2697(91)90500-S
– ident: e_1_3_2_19_2
  doi: 10.1093/nar/27.4.1159
– ident: e_1_3_2_38_2
  doi: 10.1074/jbc.M102270200
– volume: 257
  start-page: 135
  year: 2004
  ident: e_1_3_2_3_2
  publication-title: Methods Mol. Biol.
– ident: e_1_3_2_20_2
  doi: 10.1006/meth.1998.0703
– ident: e_1_3_2_59_2
  doi: 10.1128/MCB.17.8.4611
– ident: e_1_3_2_7_2
  doi: 10.1186/1471-2164-6-75
– ident: e_1_3_2_29_2
  doi: 10.1016/j.tig.2006.01.001
– ident: e_1_3_2_53_2
  doi: 10.1290/1543-706X(2004)040<0074:POMDVB>2.0.CO;2
– ident: e_1_3_2_44_2
  doi: 10.1042/BST0331541
– ident: e_1_3_2_13_2
  doi: 10.1093/emboj/19.5.1079
– ident: e_1_3_2_60_2
  doi: 10.1093/nar/26.2.558
– ident: e_1_3_2_5_2
  doi: 10.1128/JVI.77.21.11555-11562.2003
– volume: 9
  start-page: 181
  year: 1994
  ident: e_1_3_2_46_2
  publication-title: Arch. Virol. Suppl.
– ident: e_1_3_2_24_2
  doi: 10.1159/000468756
– ident: e_1_3_2_12_2
  doi: 10.1101/gad.7.8.1632
– volume: 7
  start-page: 1416
  year: 2001
  ident: e_1_3_2_57_2
  publication-title: RNA
– ident: e_1_3_2_37_2
  doi: 10.1046/j.1432-1327.2000.01753.x
– ident: e_1_3_2_32_2
  doi: 10.1016/j.molcel.2006.08.016
– ident: e_1_3_2_16_2
  doi: 10.1006/viro.2000.0535
– volume: 18
  start-page: 465
  year: 1995
  ident: e_1_3_2_63_2
  publication-title: BioTechniques
– ident: e_1_3_2_52_2
  doi: 10.1128/mr.58.3.491-562.1994
– ident: e_1_3_2_30_2
  doi: 10.1146/annurev.bi.65.070196.003401
– ident: e_1_3_2_42_2
  doi: 10.1128/MCB.01445-06
– ident: e_1_3_2_55_2
  doi: 10.1093/emboj/21.6.1427
– ident: e_1_3_2_2_2
  doi: 10.1038/nrm1942
– ident: e_1_3_2_28_2
  doi: 10.1038/nrm1964
– ident: e_1_3_2_56_2
  doi: 10.1038/336396a0
– ident: e_1_3_2_34_2
  doi: 10.1128/jvi.64.4.1465-1476.1990
– ident: e_1_3_2_45_2
  doi: 10.1016/j.molcel.2007.01.026
– ident: e_1_3_2_22_2
  doi: 10.1016/j.molcel.2004.06.004
– ident: e_1_3_2_18_2
  doi: 10.1023/A:1012441824719
– ident: e_1_3_2_54_2
  doi: 10.1053/j.gastro.2006.12.031
– ident: e_1_3_2_58_2
  doi: 10.1016/0092-8674(88)90510-7
– ident: e_1_3_2_26_2
  doi: 10.1074/mcp.M500429-MCP200
– ident: e_1_3_2_41_2
  doi: 10.1101/gad.8.7.855
– ident: e_1_3_2_15_2
  doi: 10.1128/MCB.00128-07
– ident: e_1_3_2_40_2
  doi: 10.1261/rna.5180304
– ident: e_1_3_2_62_2
  doi: 10.1128/MCB.00090-06
– ident: e_1_3_2_14_2
  doi: 10.1038/nrm2080
– ident: e_1_3_2_36_2
  doi: 10.1016/0092-8674(86)90492-7
– ident: e_1_3_2_61_2
  doi: 10.1038/nsmb1016
– ident: e_1_3_2_9_2
  doi: 10.1128/MCB.23.14.4805-4813.2003
– ident: e_1_3_2_31_2
  doi: 10.1016/S0168-1702(97)01461-5
– ident: e_1_3_2_6_2
  doi: 10.1146/annurev.biochem.76.050106.093909
– ident: e_1_3_2_33_2
  doi: 10.1096/fasebj.10.5.8621056
– ident: e_1_3_2_49_2
  doi: 10.1016/j.tibs.2006.03.001
– ident: e_1_3_2_43_2
  doi: 10.1016/j.ibmb.2005.08.004
– ident: e_1_3_2_48_2
  doi: 10.1093/nar/gki169
– start-page: 277
  year: 2007
  ident: e_1_3_2_50_2
  publication-title: Post-transcriptional control of gene expression.
– ident: e_1_3_2_25_2
  doi: 10.1128/JVI.79.8.4630-4639.2005
– ident: e_1_3_2_8_2
  doi: 10.1196/annals.1359.026
– volume: 20
  start-page: 17
  year: 2006
  ident: e_1_3_2_10_2
  publication-title: In Vivo
– ident: e_1_3_2_21_2
  doi: 10.1016/S1097-2765(00)80442-6
– ident: e_1_3_2_23_2
  doi: 10.1038/nrm2104
– reference: 11054111 - Eur J Biochem. 2000 Nov;267(22):6594-601
– reference: 1701014 - Mol Cell Biol. 1990 Dec;10(12):6132-40
– reference: 15311964 - In Vitro Cell Dev Biol Anim. 2004 Mar-Apr;40(3-4):74-5
– reference: 16723977 - Nat Rev Mol Cell Biol. 2006 Jun;7(6):415-25
– reference: 14770003 - Methods Mol Biol. 2004;257:135-54
– reference: 15596551 - Crit Rev Biochem Mol Biol. 2004 Jul-Aug;39(4):197-216
– reference: 16291088 - Insect Biochem Mol Biol. 2005 Dec;35(12):1321-34
– reference: 15260981 - Mol Cell. 2004 Jul 23;15(2):303-13
– reference: 7779397 - Biotechniques. 1995 Mar;18(3):465-9
– reference: 11022007 - Virology. 2000 Oct 10;276(1):190-201
– reference: 15653638 - Nucleic Acids Res. 2005;33(1):376-87
– reference: 9234718 - Mol Cell Biol. 1997 Aug;17(8):4611-21
– reference: 8811193 - Annu Rev Biochem. 1996;65:693-739
– reference: 7926773 - Genes Dev. 1994 Apr 1;8(7):855-66
– reference: 3753584 - Cell. 1986 Jan 17;44(1):137-45
– reference: 15795249 - J Virol. 2005 Apr;79(8):4630-9
– reference: 17245413 - Nat Rev Mol Cell Biol. 2007 Feb;8(2):113-26
– reference: 10075879 - Methods. 1999 Jan;17(1):21-7
– reference: 16481468 - Genes Dev. 2006 Feb 15;20(4):391-8
– reference: 16433023 - In Vivo. 2006 Jan-Feb;20(1):17-23
– reference: 16500930 - Mol Cell Proteomics. 2006 Jun;5(6):1006-18
– reference: 12832468 - Mol Cell Biol. 2003 Jul;23(14):4805-13
– reference: 3194021 - Nature. 1988 Nov 24;336(6197):396-9
– reference: 14970390 - RNA. 2004 Mar;10(3):448-57
– reference: 1789423 - Anal Biochem. 1991 Oct;198(1):19-29
– reference: 10882133 - Mol Cell. 2000 Mar;5(3):479-88
– reference: 8621056 - FASEB J. 1996 Apr;10(5):559-73
– reference: 14557641 - J Virol. 2003 Nov;77(21):11555-62
– reference: 2319643 - J Virol. 1990 Apr;64(4):1465-76
– reference: 10698948 - EMBO J. 2000 Mar 1;19(5):1079-86
– reference: 15907206 - BMC Genomics. 2005;6:75
– reference: 8032249 - Arch Virol Suppl. 1994;9:181-94
– reference: 16580207 - Trends Biochem Sci. 2006 May;31(5):241-3
– reference: 2830023 - Cell. 1988 Jan 29;52(2):221-8
– reference: 17183357 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):9-22
– reference: 17383427 - Gastroenterology. 2007 Mar;132(3):1055-65
– reference: 8393418 - Genes Dev. 1993 Aug;7(8):1632-43
– reference: 9927751 - Nucleic Acids Res. 1999 Feb 15;27(4):1159-67
– reference: 16394137 - Ann N Y Acad Sci. 2005 Nov;1058:196-204
– reference: 18369990 - Methods Mol Biol. 2008;419:277-88
– reference: 17052452 - Mol Cell. 2006 Oct 20;24(2):173-83
– reference: 16829983 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):529-39
– reference: 11359775 - J Biol Chem. 2001 Jul 27;276(30):27923-9
– reference: 16430990 - Trends Genet. 2006 Mar;22(3):119-22
– reference: 17183358 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):23-36
– reference: 17352659 - Annu Rev Biochem. 2007;76:51-74
– reference: 2133650 - Enzyme. 1990;44(1-4):181-92
– reference: 16982678 - Mol Cell Biol. 2006 Dec;26(23):8803-13
– reference: 17349962 - Mol Cell. 2007 Mar 9;25(5):779-87
– reference: 7968923 - Microbiol Rev. 1994 Sep;58(3):491-562
– reference: 17403906 - Mol Cell Biol. 2007 Jun;27(11):3970-81
– reference: 12724409 - Mol Cell Biol. 2003 May;23(10):3506-15
– reference: 9255930 - Virus Res. 1997 Jul;50(1):1-13
– reference: 11595836 - Apoptosis. 2001 Dec;6(6):463-8
– reference: 17189195 - Mol Cell. 2006 Dec 28;24(6):943-53
– reference: 9421516 - Nucleic Acids Res. 1998 Jan 15;26(2):558-65
– reference: 12186883 - J Virol. 2002 Sep;76(18):8989-9001
– reference: 11680846 - RNA. 2001 Oct;7(10):1416-24
– reference: 11889048 - EMBO J. 2002 Mar 15;21(6):1427-36
– reference: 17296726 - Mol Cell Biol. 2007 Apr;27(8):2791-9
– reference: 16284618 - Nat Struct Mol Biol. 2005 Dec;12(12):1054-63
– reference: 16246165 - Biochem Soc Trans. 2005 Dec;33(Pt 6):1541-3
SSID ssj0014464
Score 2.1640303
Snippet Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5′ cap and a 3′ poly(A) tail. It is likely, therefore,...
The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5' cap and a 3' poly(A) tail. It is likely, therefore,...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 880
SubjectTerms 3' Untranslated Regions - genetics
3' Untranslated Regions - physiology
Aedes
Aedes albopictus
Alphavirus
Animals
Biological and medical sciences
Cell Line
Cercopithecus aethiops
Cricetinae
Fundamental and applied biological sciences. Psychology
Genome and Regulation of Viral Gene Expression
Host-Pathogen Interactions
Microbiology
Miscellaneous
Molecular Weight
Proteins - chemistry
Proteins - isolation & purification
RNA Stability
RNA, Viral - metabolism
Sequence Deletion
Sindbis virus
Sindbis Virus - genetics
Sindbis Virus - metabolism
Venezuelan equine encephalitis virus
Virology
Title The 3′ Untranslated Region of Sindbis Virus Represses Deadenylation of Viral Transcripts in Mosquito and Mammalian Cells
URI http://jvi.asm.org/content/82/2/880.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17977976
https://www.proquest.com/docview/20471230
https://www.proquest.com/docview/70179562
https://pubmed.ncbi.nlm.nih.gov/PMC2224598
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5FRUhcEG_Mo-wBTpFDsn6tjxABJVCQoK1ys9b2BgKOU2IbKTnxm_qT-CXM7NobuzRS4WJF9ngTe76dV-ZByFPmOwmIvdBOZSps7MBlh_4otocCZ1x5aRqobPfDD_7BsTuZetNe76yVtVSV8SDZXFhX8j9chXPAV6yS_QfOmkXhBHwG_sIROAzHS_PYqdMVXjKwH0vUPJlAK_KT_FLbgp_B7Y7nRf9kvqqwKkSlvsoCRI0AobPOjNEIBFitj2soWaJSZQ-XxY8Ktn2dkbFY6MDIWGZZscOyxdK5drD-jVjlUlQGeLL_fmAiO8vvQFsPz34HWjrvT8zFj6drbOWU6aKiUlbFZhu81u0kxwOVRVLW6GriF7wVv9jWE4DYnWqNpMUwdjlFW64tpzlr4ZG1hC7Xs6Aa_a1n6_2tGhiWO0xO3g6wXtiz9bDdbgfuc5rR5CsqT4nxCO6O1N0RNjC4wsA1UeNCpiatCN1rt-lQj0_VFFsw_rz93V0zqGlNjZm5ooDNOdNTVS5ye85n77bMoaMb5HrNbfpCg_Im6cn8FrmqJ5uub5MNQJM6v3-d0TYoqQYlXc5oDUqqQEkNKGkHlEioQElboKTznDagpABKakBJFSjvkOPXr47GB3Y95sNOXJ-XtpcG8RAkhuPFoDxSyYUDbjt4fsJh0k_AAJY8dGfDUZwmo5GQ4SiVSSrFbJaC7Q7uyl2yly9zeZ9QGfAEDF5wmmPmJqOAu9IRSSB4OHR44vsW6TdvPUrqHvg4iiWLLuKwRZ4Z6lPd-2UHndUwMBLFIvr2cx5xFrEIgGmR_Q5HzUIMfSvfYxZ50rA4AsmOf9eJXC6rAijAcGTOcDdFgOoUHBiL3NOQ2P7MAPw68DQsEnTAYgiwq3z3Sj7_qrrLw_tzvZA_uOTDPyTXtrv6EdkrV5V8DHZ6Ge-rjfEHr0HqNg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+3%E2%80%B2+Untranslated+Region+of+Sindbis+Virus+Represses+Deadenylation+of+Viral+Transcripts+in+Mosquito+and+Mammalian+Cells&rft.jtitle=Journal+of+virology&rft.au=Garneau%2C+Nicole+L.&rft.au=Sokoloski%2C+Kevin+J.&rft.au=Opyrchal%2C+Mateusz&rft.au=Neff%2C+C.+Preston&rft.date=2008-01-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=82&rft.issue=2&rft.spage=880&rft.epage=892&rft_id=info:doi/10.1128%2FJVI.01205-07&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_01205_07
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon