The 3′ Untranslated Region of Sindbis Virus Represses Deadenylation of Viral Transcripts in Mosquito and Mammalian Cells
Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...
Saved in:
Published in | Journal of Virology Vol. 82; no. 2; pp. 880 - 892 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.01.2008
American Society for Microbiology (ASM) |
Subjects | |
Online Access | Get full text |
ISSN | 0022-538X 1098-5514 1098-5514 |
DOI | 10.1128/JVI.01205-07 |
Cover
Loading…
Abstract | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
JVI
About
JVI
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JVI
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0022-538X
Online ISSN:
1098-5514
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JVI
.asm.org, visit:
JVI
|
---|---|
AbstractList | The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5' cap and a 3' poly(A) tail. It is likely, therefore, that SINV RNAs must successfully overcome the cytoplasmic mRNA decay machinery of the cell in order to establish an efficient, productive infection. In this study, we have taken advantage of a temperature-sensitive polymerase to shut off viral transcription, and we demonstrate that SINV RNAs are subject to decay during a viral infection in both C6/36 (Aedes albopictus) and baby hamster kidney cells. Interestingly, in contrast to most cellular mRNAs, the decay of SINV RNAs was not initiated by poly(A) tail shortening in either cell line except when most of the 3' untranslated region (UTR) was deleted from the virus. This block in deadenylation of viral transcripts was recapitulated in vitro using C6/36 mosquito cell cytoplasmic extracts. Two distinct regions of the 319-base SINV 3' UTR, the repeat sequence elements and a U-rich domain, were shown to be responsible for mediating the repression of deadenylation of viral mRNAs. Through competition studies performed in parallel with UV cross-linking and functional assays, mosquito cell factors-including a 38-kDa protein-were implicated in the repression of deadenylation mediated by the SINV 3' UTR. This same 38-kDa protein was also implicated in mediating the repression of deadenylation by the 3' UTR of another alphavirus, Venezuelan equine encephalitis virus. In summary, these data provide clear evidence that SINV transcripts do indeed interface with the cellular mRNA decay machinery during an infection and that the virus has evolved a way to avoid the major deadenylation-dependent pathway of mRNA decay.The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5' cap and a 3' poly(A) tail. It is likely, therefore, that SINV RNAs must successfully overcome the cytoplasmic mRNA decay machinery of the cell in order to establish an efficient, productive infection. In this study, we have taken advantage of a temperature-sensitive polymerase to shut off viral transcription, and we demonstrate that SINV RNAs are subject to decay during a viral infection in both C6/36 (Aedes albopictus) and baby hamster kidney cells. Interestingly, in contrast to most cellular mRNAs, the decay of SINV RNAs was not initiated by poly(A) tail shortening in either cell line except when most of the 3' untranslated region (UTR) was deleted from the virus. This block in deadenylation of viral transcripts was recapitulated in vitro using C6/36 mosquito cell cytoplasmic extracts. Two distinct regions of the 319-base SINV 3' UTR, the repeat sequence elements and a U-rich domain, were shown to be responsible for mediating the repression of deadenylation of viral mRNAs. Through competition studies performed in parallel with UV cross-linking and functional assays, mosquito cell factors-including a 38-kDa protein-were implicated in the repression of deadenylation mediated by the SINV 3' UTR. This same 38-kDa protein was also implicated in mediating the repression of deadenylation by the 3' UTR of another alphavirus, Venezuelan equine encephalitis virus. In summary, these data provide clear evidence that SINV transcripts do indeed interface with the cellular mRNA decay machinery during an infection and that the virus has evolved a way to avoid the major deadenylation-dependent pathway of mRNA decay. Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology. For an alternate route to JVI .asm.org, visit: JVI The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5′ cap and a 3′ poly(A) tail. It is likely, therefore, that SINV RNAs must successfully overcome the cytoplasmic mRNA decay machinery of the cell in order to establish an efficient, productive infection. In this study, we have taken advantage of a temperature-sensitive polymerase to shut off viral transcription, and we demonstrate that SINV RNAs are subject to decay during a viral infection in both C6/36 ( Aedes albopictus ) and baby hamster kidney cells. Interestingly, in contrast to most cellular mRNAs, the decay of SINV RNAs was not initiated by poly(A) tail shortening in either cell line except when most of the 3′ untranslated region (UTR) was deleted from the virus. This block in deadenylation of viral transcripts was recapitulated in vitro using C6/36 mosquito cell cytoplasmic extracts. Two distinct regions of the 319-base SINV 3′ UTR, the repeat sequence elements and a U-rich domain, were shown to be responsible for mediating the repression of deadenylation of viral mRNAs. Through competition studies performed in parallel with UV cross-linking and functional assays, mosquito cell factors—including a 38-kDa protein—were implicated in the repression of deadenylation mediated by the SINV 3′ UTR. This same 38-kDa protein was also implicated in mediating the repression of deadenylation by the 3′ UTR of another alphavirus, Venezuelan equine encephalitis virus. In summary, these data provide clear evidence that SINV transcripts do indeed interface with the cellular mRNA decay machinery during an infection and that the virus has evolved a way to avoid the major deadenylation-dependent pathway of mRNA decay. The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5' cap and a 3' poly(A) tail. It is likely, therefore, that SINV RNAs must successfully overcome the cytoplasmic mRNA decay machinery of the cell in order to establish an efficient, productive infection. In this study, we have taken advantage of a temperature-sensitive polymerase to shut off viral transcription, and we demonstrate that SINV RNAs are subject to decay during a viral infection in both C6/36 (Aedes albopictus) and baby hamster kidney cells. Interestingly, in contrast to most cellular mRNAs, the decay of SINV RNAs was not initiated by poly(A) tail shortening in either cell line except when most of the 3' untranslated region (UTR) was deleted from the virus. This block in deadenylation of viral transcripts was recapitulated in vitro using C6/36 mosquito cell cytoplasmic extracts. Two distinct regions of the 319-base SINV 3' UTR, the repeat sequence elements and a U-rich domain, were shown to be responsible for mediating the repression of deadenylation of viral mRNAs. Through competition studies performed in parallel with UV cross-linking and functional assays, mosquito cell factors-including a 38-kDa protein-were implicated in the repression of deadenylation mediated by the SINV 3' UTR. This same 38-kDa protein was also implicated in mediating the repression of deadenylation by the 3' UTR of another alphavirus, Venezuelan equine encephalitis virus. In summary, these data provide clear evidence that SINV transcripts do indeed interface with the cellular mRNA decay machinery during an infection and that the virus has evolved a way to avoid the major deadenylation-dependent pathway of mRNA decay. |
Author | Jeffrey Wilusz C. Preston Neff Nicole L. Garneau Carol J. Wilusz Kevin J. Sokoloski Mateusz Opyrchal |
AuthorAffiliation | Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado |
AuthorAffiliation_xml | – name: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado |
Author_xml | – sequence: 1 givenname: Nicole L. surname: Garneau fullname: Garneau, Nicole L. organization: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado – sequence: 2 givenname: Kevin J. surname: Sokoloski fullname: Sokoloski, Kevin J. organization: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado – sequence: 3 givenname: Mateusz surname: Opyrchal fullname: Opyrchal, Mateusz organization: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado – sequence: 4 givenname: C. Preston surname: Neff fullname: Neff, C. Preston organization: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado – sequence: 5 givenname: Carol J. surname: Wilusz fullname: Wilusz, Carol J. organization: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado – sequence: 6 givenname: Jeffrey surname: Wilusz fullname: Wilusz, Jeffrey organization: Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, Colorado |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20192652$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17977976$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1rFDEYx4NU7LZ68yy56MmpeZnMZC5CWa1WWgTdFm8hmzyzmzKTbJOZlnryM_mR_CRmu-uiIgiBQPJ7_v_n7QDt-eABoaeUHFHK5KsPl6dHhDIiClI_QBNKGlkIQcs9NCGEsUJw-WUfHaR0RQgty6p8hPZp3dT5VBP0dbYEzH98-44v_BC1T50ewOJPsHDB49Diz87buUv40sUx5fdVhJQg4TegLfi7jG_BDOgOz9YaJrrVkLDz-Dyk69ENAWtv8bnue9057fEUui49Rg9b3SV4sr0P0cXJ29n0fXH28d3p9PisMGUlh0LYek64oVzMZU0sSM1p2UjJNGdQGcIkyKZsCZ1bQ6mGhlowFnTb2opxwfkher3RXY3zHqyBdaGdWkXX63ingnbqzx_vlmoRbhRjrBSNzAIvtgIxXI-QBtW7ZHIJ2kMYk6pJ7qfIZv8DGSlryjjJ4LPfU9rl8msuGXi-BXQyumtzV41LO44R2rBKrB3ZhjMxpBShVcYN9yPJlbhOUaLWS6Lykqj7JVGkzkEv_wra-f8bxxt86RbLWxdB6dSrqxunJFNMSUn4T3PsytY |
CitedBy_id | crossref_primary_10_1074_jbc_M112_371203 crossref_primary_10_1099_jgv_0_000249 crossref_primary_10_1016_j_jviromet_2012_09_020 crossref_primary_10_1128_JVI_02171_17 crossref_primary_10_1128_JVI_01657_10 crossref_primary_10_1016_j_coviro_2014_09_001 crossref_primary_10_1016_j_virusres_2012_03_015 crossref_primary_10_3390_v10020070 crossref_primary_10_1128_JVI_01514_07 crossref_primary_10_1002_dvdy_22344 crossref_primary_10_1111_cmi_12381 crossref_primary_10_1016_j_virol_2010_11_012 crossref_primary_10_1002_wrna_3 crossref_primary_10_1016_j_meegid_2014_03_015 crossref_primary_10_1016_j_virol_2015_03_001 crossref_primary_10_1002_wrna_1536 crossref_primary_10_1099_vir_0_064501_0 crossref_primary_10_1016_j_addr_2021_113900 crossref_primary_10_1038_s41467_022_28776_w crossref_primary_10_4161_rna_8_2_15391 crossref_primary_10_1016_j_virusres_2010_08_027 crossref_primary_10_1371_journal_ppat_1006473 crossref_primary_10_1093_ve_vey012 crossref_primary_10_1371_journal_pone_0029732 crossref_primary_10_1016_j_celrep_2012_05_020 crossref_primary_10_1128_JVI_00553_15 crossref_primary_10_1016_j_celrep_2013_10_012 crossref_primary_10_1128_JVI_00816_17 crossref_primary_10_1371_journal_pntd_0001931 crossref_primary_10_3390_biomedicines6040111 crossref_primary_10_3390_pathogens10060771 crossref_primary_10_1128_mBio_02342_18 crossref_primary_10_1038_emboj_2011_272 crossref_primary_10_1038_srep19217 crossref_primary_10_1016_j_mib_2012_04_009 crossref_primary_10_1371_journal_pntd_0003354 crossref_primary_10_1371_journal_ppat_1003591 crossref_primary_10_1074_jbc_M117_805796 crossref_primary_10_1016_j_nantod_2018_10_005 crossref_primary_10_1128_JVI_00136_21 crossref_primary_10_1371_journal_pone_0238254 crossref_primary_10_3390_v13030377 crossref_primary_10_3390_v9080204 crossref_primary_10_1016_j_chom_2010_07_003 crossref_primary_10_1128_JVI_01856_14 crossref_primary_10_2217_fvl_14_62 crossref_primary_10_3390_v15010164 crossref_primary_10_1016_j_bbagrm_2012_12_003 crossref_primary_10_1128_JVI_02437_13 crossref_primary_10_1016_j_virusres_2015_01_016 crossref_primary_10_1186_s12864_017_4144_1 crossref_primary_10_1261_rna_069906_118 crossref_primary_10_1016_j_cell_2009_01_019 crossref_primary_10_1093_hmg_ddp569 |
Cites_doi | 10.1101/gad.1407606 10.1016/j.molcel.2006.10.029 10.1128/JVI.76.18.8989-9001.2002 10.1038/nrm2085 10.1128/MCB.23.10.3506-3515.2003 10.1128/mcb.10.12.6132-6140.1990 10.1080/10409230490513991 10.1016/0003-2697(91)90500-S 10.1093/nar/27.4.1159 10.1074/jbc.M102270200 10.1006/meth.1998.0703 10.1128/MCB.17.8.4611 10.1186/1471-2164-6-75 10.1016/j.tig.2006.01.001 10.1290/1543-706X(2004)040<0074:POMDVB>2.0.CO;2 10.1042/BST0331541 10.1093/emboj/19.5.1079 10.1093/nar/26.2.558 10.1128/JVI.77.21.11555-11562.2003 10.1159/000468756 10.1101/gad.7.8.1632 10.1046/j.1432-1327.2000.01753.x 10.1016/j.molcel.2006.08.016 10.1006/viro.2000.0535 10.1128/mr.58.3.491-562.1994 10.1146/annurev.bi.65.070196.003401 10.1128/MCB.01445-06 10.1093/emboj/21.6.1427 10.1038/nrm1942 10.1038/nrm1964 10.1038/336396a0 10.1128/jvi.64.4.1465-1476.1990 10.1016/j.molcel.2007.01.026 10.1016/j.molcel.2004.06.004 10.1023/A:1012441824719 10.1053/j.gastro.2006.12.031 10.1016/0092-8674(88)90510-7 10.1074/mcp.M500429-MCP200 10.1101/gad.8.7.855 10.1128/MCB.00128-07 10.1261/rna.5180304 10.1128/MCB.00090-06 10.1038/nrm2080 10.1016/0092-8674(86)90492-7 10.1038/nsmb1016 10.1128/MCB.23.14.4805-4813.2003 10.1016/S0168-1702(97)01461-5 10.1146/annurev.biochem.76.050106.093909 10.1096/fasebj.10.5.8621056 10.1016/j.tibs.2006.03.001 10.1016/j.ibmb.2005.08.004 10.1093/nar/gki169 10.1128/JVI.79.8.4630-4639.2005 10.1196/annals.1359.026 10.1016/S1097-2765(00)80442-6 10.1038/nrm2104 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS Copyright © 2008, American Society for Microbiology |
Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright © 2008, American Society for Microbiology |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SS 7TM 7U9 H94 7X8 5PM |
DOI | 10.1128/JVI.01205-07 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Entomology Abstracts (Full archive) Nucleic Acids Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Entomology Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
EndPage | 892 |
ExternalDocumentID | PMC2224598 17977976 20192652 10_1128_JVI_01205_07 jvi_82_2_880 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI063434 – fundername: NIAID NIH HHS grantid: R01 AI063434 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AFFNX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM .55 .GJ 41~ 6TJ AAYJJ ADXHL AI. D0S IQODW VH1 X7M Y6R ZGI ZXP CGR CUY CVF ECM EIF NPM 7SS 7TM 7U9 H94 7X8 5PM |
ID | FETCH-LOGICAL-c468t-5d7b03c135b870de8a3149882a32e6c028e894f01bdc11ae91decdeaffd623533 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 18:29:05 EDT 2025 Fri Sep 05 05:56:48 EDT 2025 Fri Sep 05 05:51:04 EDT 2025 Mon Jul 21 06:04:04 EDT 2025 Mon Jul 21 09:12:03 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 Tue Jul 01 00:57:19 EDT 2025 Wed May 18 15:25:37 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Virus Vertebrata Mammalia Messenger RNA Gene Togaviridae Alphavirus In vitro Virology Sindbis virus |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c468t-5d7b03c135b870de8a3149882a32e6c028e894f01bdc11ae91decdeaffd623533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 N.L.G. and K.J.S. contributed equally to this work. Corresponding author. Mailing address: Colorado State University, Department of Microbiology, Immunology and Pathology, 1682 Campus Delivery, Fort Collins, CO 80523-1682. Phone: (970) 491-0652. Fax: (970) 491-4941. E-mail: jeffrey.wilusz@colostate.edu |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/2224598 |
PMID | 17977976 |
PQID | 20471230 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1128_JVI_01205_07 pubmed_primary_17977976 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2224598 crossref_primary_10_1128_JVI_01205_07 proquest_miscellaneous_70179562 pascalfrancis_primary_20192652 highwire_asm_jvi_82_2_880 proquest_miscellaneous_20471230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-01-01 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Journal of Virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2008 |
Publisher | American Society for Microbiology American Society for Microbiology (ASM) |
Publisher_xml | – name: American Society for Microbiology – name: American Society for Microbiology (ASM) |
References | e_1_3_2_26_2 e_1_3_2_49_2 (e_1_3_2_3_2) 2004; 257 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 (e_1_3_2_57_2) 2001; 7 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_61_2 (e_1_3_2_46_2) 1994; 9 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 (e_1_3_2_63_2) 1995; 18 (e_1_3_2_10_2) 2006; 20 (e_1_3_2_50_2) 2007 10882133 - Mol Cell. 2000 Mar;5(3):479-88 10698948 - EMBO J. 2000 Mar 1;19(5):1079-86 2319643 - J Virol. 1990 Apr;64(4):1465-76 3753584 - Cell. 1986 Jan 17;44(1):137-45 16291088 - Insect Biochem Mol Biol. 2005 Dec;35(12):1321-34 11359775 - J Biol Chem. 2001 Jul 27;276(30):27923-9 17052452 - Mol Cell. 2006 Oct 20;24(2):173-83 17296726 - Mol Cell Biol. 2007 Apr;27(8):2791-9 9255930 - Virus Res. 1997 Jul;50(1):1-13 3194021 - Nature. 1988 Nov 24;336(6197):396-9 11022007 - Virology. 2000 Oct 10;276(1):190-201 10075879 - Methods. 1999 Jan;17(1):21-7 8621056 - FASEB J. 1996 Apr;10(5):559-73 9927751 - Nucleic Acids Res. 1999 Feb 15;27(4):1159-67 12186883 - J Virol. 2002 Sep;76(18):8989-9001 14970390 - RNA. 2004 Mar;10(3):448-57 15260981 - Mol Cell. 2004 Jul 23;15(2):303-13 12832468 - Mol Cell Biol. 2003 Jul;23(14):4805-13 17245413 - Nat Rev Mol Cell Biol. 2007 Feb;8(2):113-26 9234718 - Mol Cell Biol. 1997 Aug;17(8):4611-21 14557641 - J Virol. 2003 Nov;77(21):11555-62 7926773 - Genes Dev. 1994 Apr 1;8(7):855-66 15907206 - BMC Genomics. 2005;6:75 16284618 - Nat Struct Mol Biol. 2005 Dec;12(12):1054-63 15795249 - J Virol. 2005 Apr;79(8):4630-9 11595836 - Apoptosis. 2001 Dec;6(6):463-8 7968923 - Microbiol Rev. 1994 Sep;58(3):491-562 16430990 - Trends Genet. 2006 Mar;22(3):119-22 18369990 - Methods Mol Biol. 2008;419:277-88 15311964 - In Vitro Cell Dev Biol Anim. 2004 Mar-Apr;40(3-4):74-5 9421516 - Nucleic Acids Res. 1998 Jan 15;26(2):558-65 11054111 - Eur J Biochem. 2000 Nov;267(22):6594-601 17352659 - Annu Rev Biochem. 2007;76:51-74 1789423 - Anal Biochem. 1991 Oct;198(1):19-29 16723977 - Nat Rev Mol Cell Biol. 2006 Jun;7(6):415-25 16829983 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):529-39 17183358 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):23-36 2830023 - Cell. 1988 Jan 29;52(2):221-8 16500930 - Mol Cell Proteomics. 2006 Jun;5(6):1006-18 8032249 - Arch Virol Suppl. 1994;9:181-94 11889048 - EMBO J. 2002 Mar 15;21(6):1427-36 8811193 - Annu Rev Biochem. 1996;65:693-739 16982678 - Mol Cell Biol. 2006 Dec;26(23):8803-13 16394137 - Ann N Y Acad Sci. 2005 Nov;1058:196-204 7779397 - Biotechniques. 1995 Mar;18(3):465-9 16580207 - Trends Biochem Sci. 2006 May;31(5):241-3 16246165 - Biochem Soc Trans. 2005 Dec;33(Pt 6):1541-3 8393418 - Genes Dev. 1993 Aug;7(8):1632-43 12724409 - Mol Cell Biol. 2003 May;23(10):3506-15 15653638 - Nucleic Acids Res. 2005;33(1):376-87 17183357 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):9-22 16481468 - Genes Dev. 2006 Feb 15;20(4):391-8 15596551 - Crit Rev Biochem Mol Biol. 2004 Jul-Aug;39(4):197-216 17349962 - Mol Cell. 2007 Mar 9;25(5):779-87 17383427 - Gastroenterology. 2007 Mar;132(3):1055-65 17403906 - Mol Cell Biol. 2007 Jun;27(11):3970-81 14770003 - Methods Mol Biol. 2004;257:135-54 16433023 - In Vivo. 2006 Jan-Feb;20(1):17-23 11680846 - RNA. 2001 Oct;7(10):1416-24 1701014 - Mol Cell Biol. 1990 Dec;10(12):6132-40 17189195 - Mol Cell. 2006 Dec 28;24(6):943-53 2133650 - Enzyme. 1990;44(1-4):181-92 |
References_xml | – ident: e_1_3_2_4_2 doi: 10.1101/gad.1407606 – ident: e_1_3_2_11_2 doi: 10.1016/j.molcel.2006.10.029 – ident: e_1_3_2_17_2 doi: 10.1128/JVI.76.18.8989-9001.2002 – ident: e_1_3_2_47_2 doi: 10.1038/nrm2085 – ident: e_1_3_2_51_2 doi: 10.1128/MCB.23.10.3506-3515.2003 – ident: e_1_3_2_35_2 doi: 10.1128/mcb.10.12.6132-6140.1990 – ident: e_1_3_2_39_2 doi: 10.1080/10409230490513991 – ident: e_1_3_2_27_2 doi: 10.1016/0003-2697(91)90500-S – ident: e_1_3_2_19_2 doi: 10.1093/nar/27.4.1159 – ident: e_1_3_2_38_2 doi: 10.1074/jbc.M102270200 – volume: 257 start-page: 135 year: 2004 ident: e_1_3_2_3_2 publication-title: Methods Mol. Biol. – ident: e_1_3_2_20_2 doi: 10.1006/meth.1998.0703 – ident: e_1_3_2_59_2 doi: 10.1128/MCB.17.8.4611 – ident: e_1_3_2_7_2 doi: 10.1186/1471-2164-6-75 – ident: e_1_3_2_29_2 doi: 10.1016/j.tig.2006.01.001 – ident: e_1_3_2_53_2 doi: 10.1290/1543-706X(2004)040<0074:POMDVB>2.0.CO;2 – ident: e_1_3_2_44_2 doi: 10.1042/BST0331541 – ident: e_1_3_2_13_2 doi: 10.1093/emboj/19.5.1079 – ident: e_1_3_2_60_2 doi: 10.1093/nar/26.2.558 – ident: e_1_3_2_5_2 doi: 10.1128/JVI.77.21.11555-11562.2003 – volume: 9 start-page: 181 year: 1994 ident: e_1_3_2_46_2 publication-title: Arch. Virol. Suppl. – ident: e_1_3_2_24_2 doi: 10.1159/000468756 – ident: e_1_3_2_12_2 doi: 10.1101/gad.7.8.1632 – volume: 7 start-page: 1416 year: 2001 ident: e_1_3_2_57_2 publication-title: RNA – ident: e_1_3_2_37_2 doi: 10.1046/j.1432-1327.2000.01753.x – ident: e_1_3_2_32_2 doi: 10.1016/j.molcel.2006.08.016 – ident: e_1_3_2_16_2 doi: 10.1006/viro.2000.0535 – volume: 18 start-page: 465 year: 1995 ident: e_1_3_2_63_2 publication-title: BioTechniques – ident: e_1_3_2_52_2 doi: 10.1128/mr.58.3.491-562.1994 – ident: e_1_3_2_30_2 doi: 10.1146/annurev.bi.65.070196.003401 – ident: e_1_3_2_42_2 doi: 10.1128/MCB.01445-06 – ident: e_1_3_2_55_2 doi: 10.1093/emboj/21.6.1427 – ident: e_1_3_2_2_2 doi: 10.1038/nrm1942 – ident: e_1_3_2_28_2 doi: 10.1038/nrm1964 – ident: e_1_3_2_56_2 doi: 10.1038/336396a0 – ident: e_1_3_2_34_2 doi: 10.1128/jvi.64.4.1465-1476.1990 – ident: e_1_3_2_45_2 doi: 10.1016/j.molcel.2007.01.026 – ident: e_1_3_2_22_2 doi: 10.1016/j.molcel.2004.06.004 – ident: e_1_3_2_18_2 doi: 10.1023/A:1012441824719 – ident: e_1_3_2_54_2 doi: 10.1053/j.gastro.2006.12.031 – ident: e_1_3_2_58_2 doi: 10.1016/0092-8674(88)90510-7 – ident: e_1_3_2_26_2 doi: 10.1074/mcp.M500429-MCP200 – ident: e_1_3_2_41_2 doi: 10.1101/gad.8.7.855 – ident: e_1_3_2_15_2 doi: 10.1128/MCB.00128-07 – ident: e_1_3_2_40_2 doi: 10.1261/rna.5180304 – ident: e_1_3_2_62_2 doi: 10.1128/MCB.00090-06 – ident: e_1_3_2_14_2 doi: 10.1038/nrm2080 – ident: e_1_3_2_36_2 doi: 10.1016/0092-8674(86)90492-7 – ident: e_1_3_2_61_2 doi: 10.1038/nsmb1016 – ident: e_1_3_2_9_2 doi: 10.1128/MCB.23.14.4805-4813.2003 – ident: e_1_3_2_31_2 doi: 10.1016/S0168-1702(97)01461-5 – ident: e_1_3_2_6_2 doi: 10.1146/annurev.biochem.76.050106.093909 – ident: e_1_3_2_33_2 doi: 10.1096/fasebj.10.5.8621056 – ident: e_1_3_2_49_2 doi: 10.1016/j.tibs.2006.03.001 – ident: e_1_3_2_43_2 doi: 10.1016/j.ibmb.2005.08.004 – ident: e_1_3_2_48_2 doi: 10.1093/nar/gki169 – start-page: 277 year: 2007 ident: e_1_3_2_50_2 publication-title: Post-transcriptional control of gene expression. – ident: e_1_3_2_25_2 doi: 10.1128/JVI.79.8.4630-4639.2005 – ident: e_1_3_2_8_2 doi: 10.1196/annals.1359.026 – volume: 20 start-page: 17 year: 2006 ident: e_1_3_2_10_2 publication-title: In Vivo – ident: e_1_3_2_21_2 doi: 10.1016/S1097-2765(00)80442-6 – ident: e_1_3_2_23_2 doi: 10.1038/nrm2104 – reference: 11054111 - Eur J Biochem. 2000 Nov;267(22):6594-601 – reference: 1701014 - Mol Cell Biol. 1990 Dec;10(12):6132-40 – reference: 15311964 - In Vitro Cell Dev Biol Anim. 2004 Mar-Apr;40(3-4):74-5 – reference: 16723977 - Nat Rev Mol Cell Biol. 2006 Jun;7(6):415-25 – reference: 14770003 - Methods Mol Biol. 2004;257:135-54 – reference: 15596551 - Crit Rev Biochem Mol Biol. 2004 Jul-Aug;39(4):197-216 – reference: 16291088 - Insect Biochem Mol Biol. 2005 Dec;35(12):1321-34 – reference: 15260981 - Mol Cell. 2004 Jul 23;15(2):303-13 – reference: 7779397 - Biotechniques. 1995 Mar;18(3):465-9 – reference: 11022007 - Virology. 2000 Oct 10;276(1):190-201 – reference: 15653638 - Nucleic Acids Res. 2005;33(1):376-87 – reference: 9234718 - Mol Cell Biol. 1997 Aug;17(8):4611-21 – reference: 8811193 - Annu Rev Biochem. 1996;65:693-739 – reference: 7926773 - Genes Dev. 1994 Apr 1;8(7):855-66 – reference: 3753584 - Cell. 1986 Jan 17;44(1):137-45 – reference: 15795249 - J Virol. 2005 Apr;79(8):4630-9 – reference: 17245413 - Nat Rev Mol Cell Biol. 2007 Feb;8(2):113-26 – reference: 10075879 - Methods. 1999 Jan;17(1):21-7 – reference: 16481468 - Genes Dev. 2006 Feb 15;20(4):391-8 – reference: 16433023 - In Vivo. 2006 Jan-Feb;20(1):17-23 – reference: 16500930 - Mol Cell Proteomics. 2006 Jun;5(6):1006-18 – reference: 12832468 - Mol Cell Biol. 2003 Jul;23(14):4805-13 – reference: 3194021 - Nature. 1988 Nov 24;336(6197):396-9 – reference: 14970390 - RNA. 2004 Mar;10(3):448-57 – reference: 1789423 - Anal Biochem. 1991 Oct;198(1):19-29 – reference: 10882133 - Mol Cell. 2000 Mar;5(3):479-88 – reference: 8621056 - FASEB J. 1996 Apr;10(5):559-73 – reference: 14557641 - J Virol. 2003 Nov;77(21):11555-62 – reference: 2319643 - J Virol. 1990 Apr;64(4):1465-76 – reference: 10698948 - EMBO J. 2000 Mar 1;19(5):1079-86 – reference: 15907206 - BMC Genomics. 2005;6:75 – reference: 8032249 - Arch Virol Suppl. 1994;9:181-94 – reference: 16580207 - Trends Biochem Sci. 2006 May;31(5):241-3 – reference: 2830023 - Cell. 1988 Jan 29;52(2):221-8 – reference: 17183357 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):9-22 – reference: 17383427 - Gastroenterology. 2007 Mar;132(3):1055-65 – reference: 8393418 - Genes Dev. 1993 Aug;7(8):1632-43 – reference: 9927751 - Nucleic Acids Res. 1999 Feb 15;27(4):1159-67 – reference: 16394137 - Ann N Y Acad Sci. 2005 Nov;1058:196-204 – reference: 18369990 - Methods Mol Biol. 2008;419:277-88 – reference: 17052452 - Mol Cell. 2006 Oct 20;24(2):173-83 – reference: 16829983 - Nat Rev Mol Cell Biol. 2006 Jul;7(7):529-39 – reference: 11359775 - J Biol Chem. 2001 Jul 27;276(30):27923-9 – reference: 16430990 - Trends Genet. 2006 Mar;22(3):119-22 – reference: 17183358 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):23-36 – reference: 17352659 - Annu Rev Biochem. 2007;76:51-74 – reference: 2133650 - Enzyme. 1990;44(1-4):181-92 – reference: 16982678 - Mol Cell Biol. 2006 Dec;26(23):8803-13 – reference: 17349962 - Mol Cell. 2007 Mar 9;25(5):779-87 – reference: 7968923 - Microbiol Rev. 1994 Sep;58(3):491-562 – reference: 17403906 - Mol Cell Biol. 2007 Jun;27(11):3970-81 – reference: 12724409 - Mol Cell Biol. 2003 May;23(10):3506-15 – reference: 9255930 - Virus Res. 1997 Jul;50(1):1-13 – reference: 11595836 - Apoptosis. 2001 Dec;6(6):463-8 – reference: 17189195 - Mol Cell. 2006 Dec 28;24(6):943-53 – reference: 9421516 - Nucleic Acids Res. 1998 Jan 15;26(2):558-65 – reference: 12186883 - J Virol. 2002 Sep;76(18):8989-9001 – reference: 11680846 - RNA. 2001 Oct;7(10):1416-24 – reference: 11889048 - EMBO J. 2002 Mar 15;21(6):1427-36 – reference: 17296726 - Mol Cell Biol. 2007 Apr;27(8):2791-9 – reference: 16284618 - Nat Struct Mol Biol. 2005 Dec;12(12):1054-63 – reference: 16246165 - Biochem Soc Trans. 2005 Dec;33(Pt 6):1541-3 |
SSID | ssj0014464 |
Score | 2.1640303 |
Snippet | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5′ cap and a 3′ poly(A) tail. It is likely, therefore,... The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5' cap and a 3' poly(A) tail. It is likely, therefore,... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 880 |
SubjectTerms | 3' Untranslated Regions - genetics 3' Untranslated Regions - physiology Aedes Aedes albopictus Alphavirus Animals Biological and medical sciences Cell Line Cercopithecus aethiops Cricetinae Fundamental and applied biological sciences. Psychology Genome and Regulation of Viral Gene Expression Host-Pathogen Interactions Microbiology Miscellaneous Molecular Weight Proteins - chemistry Proteins - isolation & purification RNA Stability RNA, Viral - metabolism Sequence Deletion Sindbis virus Sindbis Virus - genetics Sindbis Virus - metabolism Venezuelan equine encephalitis virus Virology |
Title | The 3′ Untranslated Region of Sindbis Virus Represses Deadenylation of Viral Transcripts in Mosquito and Mammalian Cells |
URI | http://jvi.asm.org/content/82/2/880.abstract https://www.ncbi.nlm.nih.gov/pubmed/17977976 https://www.proquest.com/docview/20471230 https://www.proquest.com/docview/70179562 https://pubmed.ncbi.nlm.nih.gov/PMC2224598 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5FRUhcEG_Mo-wBTpFDsn6tjxABJVCQoK1ys9b2BgKOU2IbKTnxm_qT-CXM7NobuzRS4WJF9ngTe76dV-ZByFPmOwmIvdBOZSps7MBlh_4otocCZ1x5aRqobPfDD_7BsTuZetNe76yVtVSV8SDZXFhX8j9chXPAV6yS_QfOmkXhBHwG_sIROAzHS_PYqdMVXjKwH0vUPJlAK_KT_FLbgp_B7Y7nRf9kvqqwKkSlvsoCRI0AobPOjNEIBFitj2soWaJSZQ-XxY8Ktn2dkbFY6MDIWGZZscOyxdK5drD-jVjlUlQGeLL_fmAiO8vvQFsPz34HWjrvT8zFj6drbOWU6aKiUlbFZhu81u0kxwOVRVLW6GriF7wVv9jWE4DYnWqNpMUwdjlFW64tpzlr4ZG1hC7Xs6Aa_a1n6_2tGhiWO0xO3g6wXtiz9bDdbgfuc5rR5CsqT4nxCO6O1N0RNjC4wsA1UeNCpiatCN1rt-lQj0_VFFsw_rz93V0zqGlNjZm5ooDNOdNTVS5ye85n77bMoaMb5HrNbfpCg_Im6cn8FrmqJ5uub5MNQJM6v3-d0TYoqQYlXc5oDUqqQEkNKGkHlEioQElboKTznDagpABKakBJFSjvkOPXr47GB3Y95sNOXJ-XtpcG8RAkhuPFoDxSyYUDbjt4fsJh0k_AAJY8dGfDUZwmo5GQ4SiVSSrFbJaC7Q7uyl2yly9zeZ9QGfAEDF5wmmPmJqOAu9IRSSB4OHR44vsW6TdvPUrqHvg4iiWLLuKwRZ4Z6lPd-2UHndUwMBLFIvr2cx5xFrEIgGmR_Q5HzUIMfSvfYxZ50rA4AsmOf9eJXC6rAijAcGTOcDdFgOoUHBiL3NOQ2P7MAPw68DQsEnTAYgiwq3z3Sj7_qrrLw_tzvZA_uOTDPyTXtrv6EdkrV5V8DHZ6Ge-rjfEHr0HqNg |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+3%E2%80%B2+Untranslated+Region+of+Sindbis+Virus+Represses+Deadenylation+of+Viral+Transcripts+in+Mosquito+and+Mammalian+Cells&rft.jtitle=Journal+of+virology&rft.au=Garneau%2C+Nicole+L.&rft.au=Sokoloski%2C+Kevin+J.&rft.au=Opyrchal%2C+Mateusz&rft.au=Neff%2C+C.+Preston&rft.date=2008-01-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=82&rft.issue=2&rft.spage=880&rft.epage=892&rft_id=info:doi/10.1128%2FJVI.01205-07&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_01205_07 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |