Arabidopsis Chaperone J3 Regulates the Plasma Membrane H⁺-ATPase through Interaction with the PKS5 Kinase
The plasma membrane H⁺-ATPase (PM H⁺-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H⁺-ATPase activity is controlled by many factors, including hormon...
Saved in:
Published in | The Plant cell Vol. 22; no. 4; pp. 1313 - 1332 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
American Society of Plant Biologists
01.04.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1040-4651 1532-298X 1532-298X |
DOI | 10.1105/tpc.109.069609 |
Cover
Loading…
Abstract | The plasma membrane H⁺-ATPase (PM H⁺-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H⁺-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H⁺-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H⁺-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H⁺-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H⁺-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H⁺-ATPase activity by J3 takes place via inactivation of the PKS5 kinase. |
---|---|
AbstractList | The plasma membrane H(+)-ATPase (PM H(+)-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H(+)-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H(+)-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H(+)-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H(+)-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H(+)-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H(+)-ATPase activity by J3 takes place via inactivation of the PKS5 kinase. The plasma membrane H⁺-ATPase (PM H⁺-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H⁺-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H⁺-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H⁺-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H⁺-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H⁺-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H⁺-ATPase activity by J3 takes place via inactivation of the PKS5 kinase. The plasma membrane H(+)-ATPase (PM H(+)-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H(+)-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H(+)-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H(+)-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H(+)-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H(+)-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H(+)-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.The plasma membrane H(+)-ATPase (PM H(+)-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H(+)-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H(+)-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H(+)-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H(+)-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H(+)-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H(+)-ATPase activity by J3 takes place via inactivation of the PKS5 kinase. This work examines the effect of a DnaJ homolog, Arabidopsis J3, on the activity of the plasma membrane H + -ATPase, showing that J3 affects activity of the ATPase by direct interaction with and inactivation of a repressor protein kinase, Salt Overly Sensitive2-Like Protein Kinase5. The plasma membrane H + -ATPase (PM H + -ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H + -ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H + -ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H + -ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H + -ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H + -ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H + -ATPase activity by J3 takes place via inactivation of the PKS5 kinase. |
Author | Deng, Xing Wang Guo, Yan Palmgren, Michael G Fuglsang, Anja T Xie, Changgen Liu, Dafa Qin, Yunxia Zhao, Jinfeng Yang, Yongqing Zhao, Feiyi Chen, Shouyi Schumaker, Karen S |
AuthorAffiliation | e Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China c State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China d Key Lab of Ministry of Agriculture for Biology of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China f Department of Plant Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark a College of Life Sciences, Peking University, Beijing 100871, China b National Institute of Biological Sciences, Beijing 102206, China g Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721 |
AuthorAffiliation_xml | – name: b National Institute of Biological Sciences, Beijing 102206, China – name: d Key Lab of Ministry of Agriculture for Biology of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China – name: c State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China – name: f Department of Plant Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark – name: g Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721 – name: e Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China – name: a College of Life Sciences, Peking University, Beijing 100871, China |
Author_xml | – sequence: 1 fullname: Yang, Yongqing – sequence: 2 fullname: Qin, Yunxia – sequence: 3 fullname: Xie, Changgen – sequence: 4 fullname: Zhao, Feiyi – sequence: 5 fullname: Zhao, Jinfeng – sequence: 6 fullname: Liu, Dafa – sequence: 7 fullname: Chen, Shouyi – sequence: 8 fullname: Fuglsang, Anja T – sequence: 9 fullname: Palmgren, Michael G – sequence: 10 fullname: Schumaker, Karen S – sequence: 11 fullname: Deng, Xing Wang – sequence: 12 fullname: Guo, Yan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20418496$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1DAUhiPUil5gyw7IDjYZfI-9qTQaAS0toqKtxM4643gmLkkcbA-IJa_F4_Ak9SilXCRY-Uj_9x-fc_6DYmfwgy2KRxjNMEb8RRrNDCM1Q0IJpO4V-5hTUhElP-zkGjFUMcHxXnEQ4zVCCNdY3S_2CGJYMiX2i4_zAEvX-DG6WC5aGG3IH5RvaPnerjcdJBvL1NryvIPYQ_nW9ssAGTj-8e17Nb88h2izHvxm3ZYnQ7IBTHJ-KL-41E7G0wtenrohgw-K3RV00T68fQ-Lq1cvLxfH1dm71yeL-VllmJCp4oJgBDVTlEvSGK6IErKRXBjMCaeCAIbaGGh41qlAIFkDXDVKspUiSNLD4mjqO26WvW2MHVKATo_B9RC-ag9O_6kMrtVr_1kTWauabRs8u20Q_KeNjUn3LhrbdXlzv4m6phQLQjnK5PP_kpgKjvI6ss7ok9-nuhvnZxYZmE2ACT7GYFd3CEZ6G7bOYeda6SnsbGB_GYxLsD1_3sp1_7Y9nmzXMfnwaw4uJMKUZf3ppK_Aa1gHF_XVBckSwpIjKQS9AQwywGI |
CitedBy_id | crossref_primary_10_1038_s41467_019_09181_2 crossref_primary_10_1016_j_plantsci_2019_110171 crossref_primary_10_1093_jxb_erac211 crossref_primary_10_1093_jxb_erx156 crossref_primary_10_1007_s11738_014_1644_3 crossref_primary_10_1111_jipb_12689 crossref_primary_10_1080_15592324_2020_1813999 crossref_primary_10_1186_s12864_023_09669_8 crossref_primary_10_1186_s13059_020_02069_1 crossref_primary_10_3390_ijms21113918 crossref_primary_10_1016_j_tplants_2020_03_002 crossref_primary_10_1016_j_rsci_2023_03_015 crossref_primary_10_3390_ijms25084236 crossref_primary_10_1186_s12864_016_3421_8 crossref_primary_10_1016_j_plantsci_2023_111794 crossref_primary_10_1038_s41598_019_55651_4 crossref_primary_10_3389_fpls_2020_00044 crossref_primary_10_1073_pnas_1708087114 crossref_primary_10_1016_j_envexpbot_2023_105321 crossref_primary_10_3390_cells11244052 crossref_primary_10_1111_jipb_13256 crossref_primary_10_48130_frures_0023_0037 crossref_primary_10_1016_j_envexpbot_2021_104752 crossref_primary_10_1007_s11105_014_0759_4 crossref_primary_10_1146_annurev_arplant_102820_114551 crossref_primary_10_1016_j_envexpbot_2020_104076 crossref_primary_10_1186_s12870_018_1415_1 crossref_primary_10_1093_plcell_koac106 crossref_primary_10_1093_plcell_koac226 crossref_primary_10_3390_life12101633 crossref_primary_10_1371_journal_pone_0069046 crossref_primary_10_1093_treephys_tpaa022 crossref_primary_10_1038_s41467_019_14027_y crossref_primary_10_1016_j_jplph_2022_153881 crossref_primary_10_1242_jcs_088716 crossref_primary_10_1093_treephys_tpaa142 crossref_primary_10_1007_s11101_012_9269_x crossref_primary_10_3389_fbioe_2021_759016 crossref_primary_10_1111_jipb_13403 crossref_primary_10_1007_s13562_021_00706_9 crossref_primary_10_1007_s00709_013_0555_2 crossref_primary_10_1016_j_scienta_2022_111453 crossref_primary_10_1093_plphys_kiae464 crossref_primary_10_1016_j_plaphy_2014_07_023 crossref_primary_10_1016_j_plaphy_2023_108133 crossref_primary_10_3389_fpls_2022_824422 crossref_primary_10_1007_s11105_014_0722_4 crossref_primary_10_1007_s00122_018_3182_7 crossref_primary_10_1016_j_molp_2021_11_012 crossref_primary_10_1534_g3_117_042291 crossref_primary_10_1016_j_plaphy_2021_02_024 crossref_primary_10_1111_tpj_12418 crossref_primary_10_1111_pbi_13290 crossref_primary_10_1111_pce_15469 crossref_primary_10_1007_s11103_017_0623_7 crossref_primary_10_1038_s42003_024_05847_w crossref_primary_10_1016_j_molp_2023_01_010 crossref_primary_10_3389_fpls_2022_866265 crossref_primary_10_3390_ijms19113668 crossref_primary_10_1104_pp_113_224758 crossref_primary_10_1111_jipb_13793 crossref_primary_10_1093_jxb_erw171 crossref_primary_10_1093_jxb_erv245 crossref_primary_10_1016_j_molp_2021_07_020 crossref_primary_10_1371_journal_pone_0185732 crossref_primary_10_1016_j_jare_2024_05_027 crossref_primary_10_1016_j_envexpbot_2021_104778 crossref_primary_10_3389_fpls_2017_01839 crossref_primary_10_1016_j_jgg_2011_05_006 crossref_primary_10_1016_j_plaphy_2018_09_024 crossref_primary_10_1007_s00122_011_1599_3 crossref_primary_10_1002_fes3_445 crossref_primary_10_1093_jxb_ers259 crossref_primary_10_3390_plants8010024 crossref_primary_10_15252_embj_2021110518 crossref_primary_10_1093_jxb_erad154 crossref_primary_10_1111_pce_13845 crossref_primary_10_1111_pbi_12526 crossref_primary_10_3390_ijms24087644 crossref_primary_10_1016_j_plantsci_2017_06_012 crossref_primary_10_1080_07352689_2019_1693716 crossref_primary_10_3389_fpls_2023_1238507 crossref_primary_10_1007_s11240_017_1188_5 crossref_primary_10_1105_tpc_114_135095 crossref_primary_10_1007_s13258_014_0207_8 crossref_primary_10_1111_j_1469_8137_2012_04070_x crossref_primary_10_1016_j_jgg_2022_05_007 crossref_primary_10_1080_11263504_2023_2236105 crossref_primary_10_3390_plants10102204 crossref_primary_10_1016_j_jplph_2015_02_010 crossref_primary_10_1105_tpc_111_083048 crossref_primary_10_3390_ijms232113134 crossref_primary_10_1093_plphys_kiab330 crossref_primary_10_1016_j_jplph_2021_153430 crossref_primary_10_1038_s41598_020_62057_0 crossref_primary_10_3724_SP_J_1259_2011_00233 crossref_primary_10_1111_pce_13662 crossref_primary_10_3389_fpls_2023_1135552 crossref_primary_10_3390_agronomy12061419 crossref_primary_10_3390_plants13172488 crossref_primary_10_1371_journal_pone_0112515 crossref_primary_10_1186_s12870_019_1990_9 crossref_primary_10_1093_jxb_erv465 crossref_primary_10_1104_pp_113_232272 crossref_primary_10_1139_gen_2017_0206 crossref_primary_10_1021_acs_jafc_4c06062 crossref_primary_10_1111_jipb_12119 crossref_primary_10_1007_s11103_017_0643_3 crossref_primary_10_3390_f11030292 crossref_primary_10_1104_pp_111_173377 crossref_primary_10_1016_j_gene_2014_05_006 crossref_primary_10_1111_nph_14827 crossref_primary_10_1111_jac_12058 crossref_primary_10_3389_fpls_2017_01143 crossref_primary_10_3389_fpls_2020_00232 crossref_primary_10_1074_jbc_M115_639385 crossref_primary_10_1126_sciadv_abd4113 crossref_primary_10_3389_fpls_2016_00344 crossref_primary_10_1016_j_isci_2022_104298 crossref_primary_10_1186_s12864_017_3853_9 crossref_primary_10_1111_tpj_13187 crossref_primary_10_3389_fpls_2022_881456 crossref_primary_10_1016_j_plaphy_2024_108566 crossref_primary_10_3390_ijms252413719 crossref_primary_10_1007_s11103_013_0082_8 crossref_primary_10_3389_fpls_2016_00220 crossref_primary_10_1093_plcell_koad167 crossref_primary_10_1111_nph_16398 crossref_primary_10_1016_j_plaphy_2014_05_011 crossref_primary_10_1111_mpp_12063 crossref_primary_10_1007_s11240_017_1263_y crossref_primary_10_15252_embr_202050164 crossref_primary_10_1105_tpc_112_106393 crossref_primary_10_3389_fpls_2023_1217193 crossref_primary_10_3389_fpls_2022_934877 crossref_primary_10_1007_s12298_019_00678_0 crossref_primary_10_3390_ijms232416048 crossref_primary_10_3390_plants13141960 crossref_primary_10_2139_ssrn_3910822 crossref_primary_10_1111_ppl_12169 crossref_primary_10_1111_tpj_12108 crossref_primary_10_3390_ijms150916196 crossref_primary_10_3390_plants13121638 crossref_primary_10_1007_s00299_023_03103_9 crossref_primary_10_1016_j_plantsci_2024_112342 crossref_primary_10_2139_ssrn_4077515 crossref_primary_10_1016_j_plantsci_2015_06_021 crossref_primary_10_1111_j_1742_4658_2011_08147_x crossref_primary_10_1111_jipb_13599 crossref_primary_10_1186_s12870_022_03489_w crossref_primary_10_3390_plants12152808 crossref_primary_10_1093_jxb_erac301 crossref_primary_10_3389_fgene_2022_884106 crossref_primary_10_3390_ijms24010805 crossref_primary_10_1016_j_plaphy_2021_01_029 crossref_primary_10_1016_j_molp_2015_11_002 crossref_primary_10_1104_pp_114_255455 crossref_primary_10_1016_j_plaphy_2020_08_019 crossref_primary_10_1371_journal_ppat_1003659 crossref_primary_10_1007_s10811_018_1501_7 crossref_primary_10_1093_hr_uhab074 crossref_primary_10_3389_fpls_2021_693285 crossref_primary_10_1111_pce_13013 crossref_primary_10_1007_s00468_023_02400_w crossref_primary_10_1093_pcp_pcy081 crossref_primary_10_3389_fpls_2022_1049144 crossref_primary_10_3389_fpls_2021_682799 crossref_primary_10_1016_j_febslet_2015_06_035 crossref_primary_10_1111_pce_13370 crossref_primary_10_1111_nph_14920 crossref_primary_10_1007_s13258_013_0078_4 crossref_primary_10_1089_omi_2011_0109 crossref_primary_10_1093_jxb_erz493 crossref_primary_10_3389_fpls_2022_973471 |
Cites_doi | 10.1104/pp.013466 10.1104/pp.010869 10.1379/1466-1268(2001)006<0209:TJDPOA>2.0.CO;2 10.1126/science.1086391 10.1046/j.1365-313X.1997.11030605.x 10.1016/S0141-8130(98)00073-7 10.1093/jxb/49.323.1005 10.1007/s004250050266 10.1074/jbc.M009416200 10.1007/s00018-006-6192-6 10.1074/jbc.271.25.14840 10.1091/mbc.4.6.555 10.1105/tpc.105.035626 10.1074/jbc.275.14.9919 10.1073/pnas.88.7.2874 10.1105/tpc.106.046631 10.1073/pnas.90.18.8557 10.1093/jxb/47.1.25 10.1105/tpc.106.043158 10.1002/j.1460-2075.1996.tb00371.x 10.1104/pp.121.3.695 10.1104/pp.104.046573 10.1007/BF00337864 10.1073/pnas.96.10.5452 10.1038/sj.emboj.7601750 10.2307/3870106 10.1111/j.1399-3054.2006.00757.x 10.1073/pnas.97.7.3735 10.1105/TPC.010021 10.1006/jmbi.1996.0394 10.1091/mbc.4.11.1145 10.1104/pp.010820 10.1034/j.1399-3054.1998.1030404.x 10.1073/pnas.122224699 10.1105/tpc.109.066217 10.1046/j.1365-2958.1998.01067.x 10.1146/annurev.arplant.52.1.817 10.1073/pnas.132092099 10.1093/jxb/47.3.325 10.1093/jxb/48.2.229 10.1016/0092-8674(93)90287-Z 10.1105/tpc.106.042291 10.1101/gr.977903 10.1104/pp.104.039255 10.1007/BF00039383 10.1105/tpc.106.046417 10.1016/j.cell.2006.06.011 10.1016/S0021-9258(18)54948-6 10.1016/S0005-2736(00)00128-0 10.1016/j.molcel.2006.12.017 10.1074/jbc.270.5.2139 10.1073/pnas.0504498102 10.1104/pp.107.103762 10.2307/3870332 10.1016/j.tplants.2004.03.006 10.1097/00010694-195408000-00012 10.1016/S0092-8674(00)80928-9 10.1074/jbc.M807311200 10.1111/j.1365-313X.2004.02169.x 10.1104/pp.104.1.209 10.1105/tpc.12.11.2219 |
ContentType | Journal Article |
Copyright | 2010 American Society of Plant Biologists 2010 American Society of Plant Biologists 2010 |
Copyright_xml | – notice: 2010 American Society of Plant Biologists – notice: 2010 American Society of Plant Biologists 2010 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
DOI | 10.1105/tpc.109.069609 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Botany |
EISSN | 1532-298X |
EndPage | 1332 |
ExternalDocumentID | PMC2879748 20418496 10_1105_tpc_109_069609 25680134 US201301850866 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R37 GM047850 |
GroupedDBID | --- -DZ -~X 123 29O 2AX 2FS 2WC 2~F 3V. 4.4 53G 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHKG AAPXW AAVAP AAWDT AAXTN AAYJJ ABBHK ABJNI ABPLY ABPPZ ABPTD ABPTK ABTLG ABUWG ABXZS ACBTR ACFRR ACGFO ACGOD ACIPB ACIWK ACNCT ACPRK ACUFI ACUTJ ADBBV ADIPN ADIYS ADULT ADVEK ADYHW ADZLD AEEJZ AENEX AESBF AEUPB AFAZZ AFFDN AFFNX AFFZL AFGWE AFKRA AFMIJ AFRAH AFYAG AGCDD AGUYK AHMBA AICQM AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD AQDSO AS~ ATCPS AZQEC BAWUL BBNVY BCRHZ BENPR BHPHI BPHCQ BTFSW BVXVI BYORX C1A CBGCD CCPQU CS3 CWIXF D1J DATOO DFEDG DIK DOOOF DU5 DWIUU DWQXO E3Z EBS ECGQY EJD F20 F5P F8P F9R FBQ FLUFQ FOEOM FRP FYUFA GNUQQ GTFYD GX1 HCIFZ HGD HMCUK HTVGU H~9 ISR JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KOP KQ8 KSI KSN LK8 M0K M0L M1P M2P M2Q M7P MV1 MVM N9A NEJ NOMLY OBOKY OJZSN OK1 OWPYF P0- P2P PQQKQ PROAC PSQYO Q2X RHF RHI ROX RPB RPM RWL RXW S0X SA0 TAE TCN TN5 TR2 U5U UBC UKHRP UKR VQA W8F WH7 WHG WOQ XOL XSW Y6R YBU YR2 YSK ZCA ZCG ZCN ~KM 0R~ AAHBH AARHZ AAUAY ABDFA ABEJV ABGNP ABMNT ABVGC ABXSQ ABXVV ACHIC ADGKP ADQBN ADXHL AEUYN AGORE AHXOZ AJNCP ALIPV AQVQM ATGXG BEYMZ H13 IPSME JXSIZ NU- PHGZM PHGZT AAYXX CITATION ABIME ABPIB ABZEO ACVCV ACZBC AGMDO AHGBF AJBYB AJDVS APJGH CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7S9 L.6 PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c468t-56210a7493582dc592968d856c1525362a1a7ccad5582360a84da59d984f92083 |
ISSN | 1040-4651 1532-298X |
IngestDate | Thu Aug 21 14:12:59 EDT 2025 Fri Sep 05 03:37:24 EDT 2025 Thu Sep 04 21:21:15 EDT 2025 Mon Jul 21 06:02:06 EDT 2025 Tue Jul 01 02:52:49 EDT 2025 Thu Apr 24 23:00:37 EDT 2025 Fri Jun 20 02:29:37 EDT 2025 Wed Dec 27 19:10:53 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c468t-56210a7493582dc592968d856c1525362a1a7ccad5582360a84da59d984f92083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Some figures in this article are displayed in color online but in black and white in the print edition. These authors contributed equally to this work. Online version contains Web-only data. www.plantcell.org/cgi/doi/10.1105/tpc.109.069609 |
OpenAccessLink | https://academic.oup.com/plcell/article-pdf/22/4/1313/36929347/plcell_v22_4_1313.pdf |
PMID | 20418496 |
PQID | 1365021087 |
PQPubID | 24069 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2879748 proquest_miscellaneous_733162350 proquest_miscellaneous_1365021087 pubmed_primary_20418496 crossref_primary_10_1105_tpc_109_069609 crossref_citationtrail_10_1105_tpc_109_069609 jstor_primary_25680134 fao_agris_US201301850866 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-04-01 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | The Plant cell |
PublicationTitleAlternate | Plant Cell |
PublicationYear | 2010 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | Miernyk (2021040621472898600_b30) 1999; 121 Vera-Estrella (2021040621472898600_b54) 1994; 104 Waters (2021040621472898600_b57) 1996; 47 Scidmore (2021040621472898600_b46) 1993; 4 Roelfsema (2021040621472898600_b44) 1998; 103 Kinoshita (2021040621472898600_b22) 1995; 7 Fuglsang (2021040621472898600_b12) 2007; 19 Zhu (2021040621472898600_b66) 1993; 90 Bowler (2021040621472898600_b6) 2004; 39 Quintero (2021040621472898600_b41) 2002; 99 Qiu (2021040621472898600_b38) 2002; 99 Boston (2021040621472898600_b5) 1996; 32 Xing (2021040621472898600_b59) 1996; 8 Palmgren (2021040621472898600_b35) 1991; 266 Sheen (2021040621472898600_b47) 2001; 127 Aoyama (2021040621472898600_b2) 1997; 11 Gevaudant (2021040621472898600_b15) 2007; 144 Szabo (2021040621472898600_b50) 1996; 15 Merlot (2021040621472898600_b29) 2007; 26 Ottmann (2021040621472898600_b33) 2007; 25 Kanczewska (2021040621472898600_b20) 2005; 102 Quan (2021040621472898600_b40) 2007; 19 Liberek (2021040621472898600_b25) 1991; 88 Miernyk (2021040621472898600_b31) 2001; 6 Laufen (2021040621472898600_b23) 1999; 96 Xu (2021040621472898600_b61) 2006; 125 Goffin (2021040621472898600_b16) 1998; 30 Svennelid (2021040621472898600_b49) 1999; 11 Morsomme (2021040621472898600_b32) 2000; 1465 Banecki (2021040621472898600_b4) 1996; 271 Caplan (2021040621472898600_b10) 1993; 4 Wall (2021040621472898600_b55) 1995; 270 Guo (2021040621472898600_b17) 2001; 13 Fuglsang (2021040621472898600_b13) 2006; 128 Yan (2021040621472898600_b62) 1999; 24 Camoni (2021040621472898600_b9) 2000; 275 Rober-Kleber (2021040621472898600_b43) 2003; 131 Lino (2021040621472898600_b27) 1998; 204 Palmgren (2021040621472898600_b34) 2001; 52 Ayala (2021040621472898600_b3) 1996; 47 Zhou (2021040621472898600_b65) 1999; 41 Ham (2021040621472898600_b19) 2006; 18 Zhang (2021040621472898600_b64) 2004; 136 Bukau (2021040621472898600_b8) 1998; 92 Georgopoulos (2021040621472898600_b14) 1980; 178 Wang (2021040621472898600_b56) 2004; 9 Xing (2021040621472898600_b60) 1997; 48 Halfter (2021040621472898600_b18) 2000; 97 Qiu (2021040621472898600_b39) 2006; 63 Alonso (2021040621472898600_b1) 2003; 301 Tamura (2021040621472898600_b51) 2007; 19 Qian (2021040621472898600_b37) 1996; 260 Till (2021040621472898600_b52) 2003; 13 Yan (2021040621472898600_b63) 2002; 129 Torii (2021040621472898600_b53) 1996; 8 Li (2021040621472898600_b24) 2005; 31 Silver (2021040621472898600_b48) 1993; 74 Schaller (2021040621472898600_b45) 1999; 11 Pimpl (2021040621472898600_b36) 2000; 12 Duby (2021040621472898600_b11) 2009; 284 Brault (2021040621472898600_b7) 2004; 135 Lu (2021040621472898600_b28) 2006; 18 Kim (2021040621472898600_b21) 2001; 276 Lin (2021040621472898600_b26) 2009; 21 Wu (2021040621472898600_b58) 1998; 49 Richards (2021040621472898600_b42) 1954 |
References_xml | – volume: 131 start-page: 1302 year: 2003 ident: 2021040621472898600_b43 article-title: Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development publication-title: Plant Physiol. doi: 10.1104/pp.013466 – volume: 129 start-page: 50 year: 2002 ident: 2021040621472898600_b63 article-title: Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency publication-title: Plant Physiol. doi: 10.1104/pp.010869 – volume: 6 start-page: 209 year: 2001 ident: 2021040621472898600_b31 article-title: The J-domain proteins of Arabidopsis thaliana: An unexpectedly large and diverse family of chaperones publication-title: Cell Stress Chaperones doi: 10.1379/1466-1268(2001)006<0209:TJDPOA>2.0.CO;2 – volume: 301 start-page: 653 year: 2003 ident: 2021040621472898600_b1 article-title: Genome-wide insertional mutagenesis of Arabidopsis thaliana publication-title: Science doi: 10.1126/science.1086391 – volume: 11 start-page: 605 year: 1997 ident: 2021040621472898600_b2 article-title: A glucocorticoid-mediated transcriptional induction system in transgenic plants publication-title: Plant J. doi: 10.1046/j.1365-313X.1997.11030605.x – volume: 31 start-page: 47 year: 2005 ident: 2021040621472898600_b24 article-title: The responses of AtJ2 and AtJ3 gene expression to environmental stresses in Arabidopsis publication-title: Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao – volume: 24 start-page: 65 year: 1999 ident: 2021040621472898600_b62 article-title: Size and folding in globular proteins publication-title: Int. J. Biol. Macromol. doi: 10.1016/S0141-8130(98)00073-7 – volume: 49 start-page: 1005 year: 1998 ident: 2021040621472898600_b58 article-title: Salinity adaptation of plasma membrane H+-ATPase in the salt marsh plant Spartina patens: ATP hydrolysis and enzyme kinetics publication-title: J. Exp. Bot. doi: 10.1093/jxb/49.323.1005 – volume: 204 start-page: 352 year: 1998 ident: 2021040621472898600_b27 article-title: The plasma-membrane H+-ATPase from beet root is inhibited by a calcium-dependent phosphorylation publication-title: Planta doi: 10.1007/s004250050266 – volume: 276 start-page: 10730 year: 2001 ident: 2021040621472898600_b21 article-title: A soluble auxin-binding protein, ABP57. Purification with anti-bovine serum albumin antibody and characterization of its mechanistic role in the auxin effect on plant plasma membrane H+-ATPase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M009416200 – volume: 63 start-page: 2560 year: 2006 ident: 2021040621472898600_b39 article-title: The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-006-6192-6 – volume: 271 start-page: 14840 year: 1996 ident: 2021040621472898600_b4 article-title: Structure-function analysis of the zinc finger region of the DnaJ molecular chaperone publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.25.14840 – volume: 4 start-page: 555 year: 1993 ident: 2021040621472898600_b10 article-title: Eukaryotic homologues of Escherichia coli dnaJ: A diverse protein family that functions with hsp70 stress proteins publication-title: Mol. Biol. Cell doi: 10.1091/mbc.4.6.555 – volume: 19 start-page: 1617 year: 2007 ident: 2021040621472898600_b12 article-title: Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein publication-title: Plant Cell doi: 10.1105/tpc.105.035626 – volume: 275 start-page: 9919 year: 2000 ident: 2021040621472898600_b9 article-title: Phosphorylation-dependent interaction between plant plasma membrane H+-ATPase and 14-3-3 proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.14.9919 – volume: 88 start-page: 2874 year: 1991 ident: 2021040621472898600_b25 article-title: Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.88.7.2874 – volume: 19 start-page: 320 year: 2007 ident: 2021040621472898600_b51 article-title: Arabidopsis KAM2/GRV2 is required for proper endosome formation and functions in vacuolar sorting and determination of the embryo growth axis publication-title: Plant Cell doi: 10.1105/tpc.106.046631 – volume: 90 start-page: 8557 year: 1993 ident: 2021040621472898600_b66 article-title: Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.18.8557 – volume: 47 start-page: 25 year: 1996 ident: 2021040621472898600_b3 article-title: Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr. in response to NaCl publication-title: J. Exp. Bot. doi: 10.1093/jxb/47.1.25 – volume: 18 start-page: 2005 year: 2006 ident: 2021040621472898600_b19 article-title: Tobacco Tsip1, a DnaJ-type Zn finger protein, is recruited to and potentiates Tsi1-mediated transcriptional activation publication-title: Plant Cell doi: 10.1105/tpc.106.043158 – volume: 15 start-page: 408 year: 1996 ident: 2021040621472898600_b50 article-title: A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00371.x – volume: 8 start-page: 735 year: 1996 ident: 2021040621472898600_b53 article-title: The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats publication-title: Plant Cell – volume: 121 start-page: 695 year: 1999 ident: 2021040621472898600_b30 article-title: Protein folding in the plant cell publication-title: Plant Physiol. doi: 10.1104/pp.121.3.695 – volume: 136 start-page: 4150 year: 2004 ident: 2021040621472898600_b64 article-title: Inhibition of blue light-dependent H+ pumping by abscisic acid through hydrogen peroxide-induced dephosphorylation of the plasma membrane H+-ATPase in guard cell protoplasts publication-title: Plant Physiol. doi: 10.1104/pp.104.046573 – volume: 41 start-page: 597 year: 1999 ident: 2021040621472898600_b65 article-title: Cloning and analysis of AtJ3 gene in Arabidopsis thaliana publication-title: Acta Bot. Sin. – volume: 178 start-page: 583 year: 1980 ident: 2021040621472898600_b14 article-title: Identification of the E. coli dnaJ gene product publication-title: Mol. Gen. Genet. doi: 10.1007/BF00337864 – volume: 96 start-page: 5452 year: 1999 ident: 2021040621472898600_b23 article-title: Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.10.5452 – volume: 26 start-page: 3216 year: 2007 ident: 2021040621472898600_b29 article-title: Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure publication-title: EMBO J. doi: 10.1038/sj.emboj.7601750 – volume: 7 start-page: 1333 year: 1995 ident: 2021040621472898600_b22 article-title: Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean publication-title: Plant Cell doi: 10.2307/3870106 – volume: 128 start-page: 334 year: 2006 ident: 2021040621472898600_b13 article-title: Protein phosphatase 2A scaffolding subunit A interacts with plasma membrane H+-ATPase C-terminus in the same region as 14-3-3 protein publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2006.00757.x – volume: 97 start-page: 3735 year: 2000 ident: 2021040621472898600_b18 article-title: The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.7.3735 – volume: 13 start-page: 1383 year: 2001 ident: 2021040621472898600_b17 article-title: Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance publication-title: Plant Cell doi: 10.1105/TPC.010021 – volume: 260 start-page: 224 year: 1996 ident: 2021040621472898600_b37 article-title: Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1996.0394 – volume: 4 start-page: 1145 year: 1993 ident: 2021040621472898600_b46 article-title: Genetic interactions between KAR2 and SEC63, encoding eukaryotic homologues of DnaK and DnaJ in the endoplasmic reticulum publication-title: Mol. Biol. Cell doi: 10.1091/mbc.4.11.1145 – volume: 127 start-page: 1466 year: 2001 ident: 2021040621472898600_b47 article-title: Signal transduction in maize and Arabidopsis mesophyll protoplasts publication-title: Plant Physiol. doi: 10.1104/pp.010820 – volume: 103 start-page: 466 year: 1998 ident: 2021040621472898600_b44 article-title: Blue light-induced apoplastic acidification of Arabidopsis thaliana guard cells: Inhibition by ABA is mediated through protein phosphatases publication-title: Physiol. Plant. doi: 10.1034/j.1399-3054.1998.1030404.x – volume: 99 start-page: 8436 year: 2002 ident: 2021040621472898600_b38 article-title: Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.122224699 – volume: 21 start-page: 1607 year: 2009 ident: 2021040621472898600_b26 article-title: Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.109.066217 – volume: 30 start-page: 329 year: 1998 ident: 2021040621472898600_b16 article-title: Genetic and biochemical characterization of mutations affecting the carboxy-terminal domain of the Escherichia coli molecular chaperone DnaJ publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1998.01067.x – volume: 52 start-page: 817 year: 2001 ident: 2021040621472898600_b34 article-title: Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.arplant.52.1.817 – volume: 99 start-page: 9061 year: 2002 ident: 2021040621472898600_b41 article-title: Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.132092099 – volume: 11 start-page: 263 year: 1999 ident: 2021040621472898600_b45 article-title: Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants publication-title: Plant Cell – volume: 47 start-page: 325 year: 1996 ident: 2021040621472898600_b57 article-title: Evolution, structure and function of the small heat shock proteins in plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/47.3.325 – volume: 48 start-page: 229 year: 1997 ident: 2021040621472898600_b60 article-title: Identification of G proteins mediating fungal elicitor-induced dephosphorylation of host plasma membrane H+-ATPase publication-title: J. Exp. Bot. doi: 10.1093/jxb/48.2.229 – volume: 74 start-page: 5 year: 1993 ident: 2021040621472898600_b48 article-title: Eukaryotic DnaJ homologs and the specificity of Hsp70 activity publication-title: Cell doi: 10.1016/0092-8674(93)90287-Z – volume: 19 start-page: 1415 year: 2007 ident: 2021040621472898600_b40 article-title: SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress publication-title: Plant Cell doi: 10.1105/tpc.106.042291 – volume: 13 start-page: 524 year: 2003 ident: 2021040621472898600_b52 article-title: Large-scale discovery of induced point mutations with high throughput TILLING publication-title: Genome Res. doi: 10.1101/gr.977903 – volume: 135 start-page: 231 year: 2004 ident: 2021040621472898600_b7 article-title: Plasma membrane depolarization induced by abscisic acid in Arabidopsis suspension cells involves reduction of proton pumping in addition to anion channel activation, which are both Ca2+ dependent publication-title: Plant Physiol. doi: 10.1104/pp.104.039255 – volume: 32 start-page: 191 year: 1996 ident: 2021040621472898600_b5 article-title: Molecular chaperones and protein folding in plants publication-title: Plant Mol. Biol. doi: 10.1007/BF00039383 – volume: 18 start-page: 3594 year: 2006 ident: 2021040621472898600_b28 article-title: The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation publication-title: Plant Cell doi: 10.1105/tpc.106.046417 – volume: 125 start-page: 1347 year: 2006 ident: 2021040621472898600_b61 article-title: A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis publication-title: Cell doi: 10.1016/j.cell.2006.06.011 – volume: 266 start-page: 20470 year: 1991 ident: 2021040621472898600_b35 article-title: Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H+-ATPase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)54948-6 – volume: 1465 start-page: 1 year: 2000 ident: 2021040621472898600_b32 article-title: The plant plasma membrane H+-ATPase: Structure, function and regulation publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(00)00128-0 – volume: 25 start-page: 427 year: 2007 ident: 2021040621472898600_b33 article-title: Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining X-ray crystallography and electron cryomicroscopy publication-title: Mol. Cell doi: 10.1016/j.molcel.2006.12.017 – volume: 270 start-page: 2139 year: 1995 ident: 2021040621472898600_b55 article-title: The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.5.2139 – volume: 102 start-page: 11675 year: 2005 ident: 2021040621472898600_b20 article-title: Activation of the plant plasma membrane H+-ATPase by phosphorylation and binding of 14-3-3 proteins converts a dimer into a hexamer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0504498102 – volume: 144 start-page: 1763 year: 2007 ident: 2021040621472898600_b15 article-title: Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance publication-title: Plant Physiol. doi: 10.1104/pp.107.103762 – volume: 8 start-page: 555 year: 1996 ident: 2021040621472898600_b59 article-title: Regulation of plant defense response to fungal pathogens: Two types of protein kinases in the reversible phosphorylation of the host plasma membrane H+-ATPase publication-title: Plant Cell doi: 10.2307/3870332 – volume: 9 start-page: 244 year: 2004 ident: 2021040621472898600_b56 article-title: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2004.03.006 – year: 1954 ident: 2021040621472898600_b42 article-title: Diagnosis and improvement of saline and alkali soils doi: 10.1097/00010694-195408000-00012 – volume: 92 start-page: 351 year: 1998 ident: 2021040621472898600_b8 article-title: The Hsp70 and Hsp60 chaperone machines publication-title: Cell doi: 10.1016/S0092-8674(00)80928-9 – volume: 284 start-page: 4213 year: 2009 ident: 2021040621472898600_b11 article-title: Activation of plant plasma membrane H+-ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+-ATPase C-terminal region publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807311200 – volume: 39 start-page: 776 year: 2004 ident: 2021040621472898600_b6 article-title: Chromatin techniques for plant cells publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02169.x – volume: 104 start-page: 209 year: 1994 ident: 2021040621472898600_b54 article-title: Plant defense response to fungal pathogens (activation of host-plasma membrane H+-ATPase by elicitor-induced enzyme dephosphorylation) publication-title: Plant Physiol. doi: 10.1104/pp.104.1.209 – volume: 12 start-page: 2219 year: 2000 ident: 2021040621472898600_b36 article-title: In situ localization and in vitro induction of plant COPI-coated vesicles publication-title: Plant Cell doi: 10.1105/tpc.12.11.2219 – volume: 11 start-page: 2379 year: 1999 ident: 2021040621472898600_b49 article-title: Phosphorylation of Thr-948 at the C terminus of the plasma membrane H+-ATPase creates a binding site for the regulatory 14-3-3 protein publication-title: Plant Cell |
SSID | ssj0001719 |
Score | 2.4256692 |
Snippet | The plasma membrane H⁺-ATPase (PM H⁺-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological... The plasma membrane H+-ATPase (PM H+-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological... The plasma membrane H(+)-ATPase (PM H(+)-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological... This work examines the effect of a DnaJ homolog, Arabidopsis J3, on the activity of the plasma membrane H + -ATPase, showing that J3 affects activity of the... |
SourceID | pubmedcentral proquest pubmed crossref jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1313 |
SubjectTerms | alleles Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana calcium cell growth Cell membranes Gene expression regulation Gene Expression Regulation, Plant heat shock proteins hormones HSP40 Heat-Shock Proteins - genetics HSP40 Heat-Shock Proteins - metabolism Hydrogen-Ion Concentration ion transport Microscopy, Confocal mutants Mutation Plant cells Plant roots Plant Roots - metabolism Plants plasma membrane Plasmids Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Proteins Proton-Translocating ATPases - genetics Proton-Translocating ATPases - metabolism Protons RNA, Plant - genetics salts Seedlings Sodium Chloride - pharmacology soil salinity stomatal movement |
Title | Arabidopsis Chaperone J3 Regulates the Plasma Membrane H⁺-ATPase through Interaction with the PKS5 Kinase |
URI | https://www.jstor.org/stable/25680134 https://www.ncbi.nlm.nih.gov/pubmed/20418496 https://www.proquest.com/docview/1365021087 https://www.proquest.com/docview/733162350 https://pubmed.ncbi.nlm.nih.gov/PMC2879748 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF4lLRJcEBRKzSNaJBCHyMWPXa99TKpWUaJWgSZSysVaP5IaUTsER6LcOPGf-Dn8Emb8Dkok4GJZ9nq98nzeeezsN4S8Mk1pSIeBb8K8QGXSMVTJwWtFU3vuBLYXZnQM5xfWYMqGMz5rtX40spbWqXfsf9u6r-R_pArXQK64S_YfJFt1ChfgHOQLR5AwHP9axr2V9KIgWSKxCG4mCFcJ2I1DEz5cVmUeKRyg2Ris5BvZPQ9vwD2GBoMsy0F_3e-pvckYVFlVsSeLERYVxPMoLT4-uuTdURSXazkf6wFg2aO0iwsA1QxSxKCvknjxuVSNGFzN-Qqu1vHXqNIGs3yBJNvlsKj3pX24llkQ9yyMbqNmaAJX1dlGmke55lQmoGJWXzamvM4m4LgRkNQxtxErszfnZsNoYJA1JlrdzLewFkobPG1ju0LQkDsjXfrIm3WsWUiwV6u-KiERDD9Q1SZrk30D_A2sATJ6V9PO6yKrEFMNsWD_hM7fbna9Yd205zIp01y3OTB_5uE2DJvJA3K_8EhoL4fXQ9IK4wNyp5-A13B7QO6elBUBH5EExE0beKMV3ujQpBXeKACG5nijJd7o4Nf3nwXSaIE02kAaRaTlDwLSaI60x2R6djo5GahFwQ7VZ5adqmBL65oUDNfWjcDnYHpbdmBzy8cqW2AqSV0KmDICDvdNS5M2CyR3Asdmc8cAZ-CQ7MUw6CNCTU1yi1l66Js-C6WQUgokH2Qh56bwPIWo5Yd2_YLNHouqfHIzr1bjLggG0yvcXDAKeVO1X-Y8LjtbHoHcXLkAJetOLw1c2gejFlx_SyGHmTCrHkrYKORlKV0XZIK_HHzaZP3FxSxSDKvYQiF0RxssmwpeCNcU8iQHRP0Cjek2c-DNYgMqVQNkh9-8E0fXGUu8YQtHMPvprjE_I_fqf_Y52UtX6_AFGNip1yFtMRMdst8_vRi_72S_wm9wQc92 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Arabidopsis+Chaperone+J3+Regulates+the+Plasma+Membrane+H%E2%81%BA-ATPase+through+Interaction+with+the+PKS5+Kinase&rft.jtitle=The+Plant+cell&rft.au=Yang%2C+Yongqing&rft.au=Qin%2C+Yunxia&rft.au=Xie%2C+Changgen&rft.au=Zhao%2C+Feiyi&rft.date=2010-04-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=1040-4651&rft.volume=22&rft.issue=4&rft.spage=1313&rft.epage=1332&rft_id=info:doi/10.1105%2Ftpc.109.069609&rft.externalDocID=25680134 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon |