Arabidopsis Chaperone J3 Regulates the Plasma Membrane H⁺-ATPase through Interaction with the PKS5 Kinase

The plasma membrane H⁺-ATPase (PM H⁺-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H⁺-ATPase activity is controlled by many factors, including hormon...

Full description

Saved in:
Bibliographic Details
Published inThe Plant cell Vol. 22; no. 4; pp. 1313 - 1332
Main Authors Yang, Yongqing, Qin, Yunxia, Xie, Changgen, Zhao, Feiyi, Zhao, Jinfeng, Liu, Dafa, Chen, Shouyi, Fuglsang, Anja T, Palmgren, Michael G, Schumaker, Karen S, Deng, Xing Wang, Guo, Yan
Format Journal Article
LanguageEnglish
Published England American Society of Plant Biologists 01.04.2010
Subjects
Online AccessGet full text
ISSN1040-4651
1532-298X
1532-298X
DOI10.1105/tpc.109.069609

Cover

Loading…
Abstract The plasma membrane H⁺-ATPase (PM H⁺-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H⁺-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H⁺-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H⁺-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H⁺-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H⁺-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H⁺-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.
AbstractList The plasma membrane H(+)-ATPase (PM H(+)-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H(+)-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H(+)-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H(+)-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H(+)-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H(+)-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H(+)-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.
The plasma membrane H⁺-ATPase (PM H⁺-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H⁺-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H⁺-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H⁺-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H⁺-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H⁺-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H⁺-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.
The plasma membrane H(+)-ATPase (PM H(+)-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H(+)-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H(+)-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H(+)-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H(+)-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H(+)-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H(+)-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.The plasma membrane H(+)-ATPase (PM H(+)-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H(+)-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H(+)-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H(+)-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H(+)-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H(+)-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H(+)-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.
This work examines the effect of a DnaJ homolog, Arabidopsis J3, on the activity of the plasma membrane H + -ATPase, showing that J3 affects activity of the ATPase by direct interaction with and inactivation of a repressor protein kinase, Salt Overly Sensitive2-Like Protein Kinase5. The plasma membrane H + -ATPase (PM H + -ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H + -ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H + -ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H + -ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H + -ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H + -ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H + -ATPase activity by J3 takes place via inactivation of the PKS5 kinase.
Author Deng, Xing Wang
Guo, Yan
Palmgren, Michael G
Fuglsang, Anja T
Xie, Changgen
Liu, Dafa
Qin, Yunxia
Zhao, Jinfeng
Yang, Yongqing
Zhao, Feiyi
Chen, Shouyi
Schumaker, Karen S
AuthorAffiliation e Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
c State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
d Key Lab of Ministry of Agriculture for Biology of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
f Department of Plant Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
a College of Life Sciences, Peking University, Beijing 100871, China
b National Institute of Biological Sciences, Beijing 102206, China
g Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
AuthorAffiliation_xml – name: b National Institute of Biological Sciences, Beijing 102206, China
– name: d Key Lab of Ministry of Agriculture for Biology of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
– name: c State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
– name: f Department of Plant Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
– name: g Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721
– name: e Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
– name: a College of Life Sciences, Peking University, Beijing 100871, China
Author_xml – sequence: 1
  fullname: Yang, Yongqing
– sequence: 2
  fullname: Qin, Yunxia
– sequence: 3
  fullname: Xie, Changgen
– sequence: 4
  fullname: Zhao, Feiyi
– sequence: 5
  fullname: Zhao, Jinfeng
– sequence: 6
  fullname: Liu, Dafa
– sequence: 7
  fullname: Chen, Shouyi
– sequence: 8
  fullname: Fuglsang, Anja T
– sequence: 9
  fullname: Palmgren, Michael G
– sequence: 10
  fullname: Schumaker, Karen S
– sequence: 11
  fullname: Deng, Xing Wang
– sequence: 12
  fullname: Guo, Yan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20418496$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhiPUil5gyw7IDjYZfI-9qTQaAS0toqKtxM4643gmLkkcbA-IJa_F4_Ak9SilXCRY-Uj_9x-fc_6DYmfwgy2KRxjNMEb8RRrNDCM1Q0IJpO4V-5hTUhElP-zkGjFUMcHxXnEQ4zVCCNdY3S_2CGJYMiX2i4_zAEvX-DG6WC5aGG3IH5RvaPnerjcdJBvL1NryvIPYQ_nW9ssAGTj-8e17Nb88h2izHvxm3ZYnQ7IBTHJ-KL-41E7G0wtenrohgw-K3RV00T68fQ-Lq1cvLxfH1dm71yeL-VllmJCp4oJgBDVTlEvSGK6IErKRXBjMCaeCAIbaGGh41qlAIFkDXDVKspUiSNLD4mjqO26WvW2MHVKATo_B9RC-ag9O_6kMrtVr_1kTWauabRs8u20Q_KeNjUn3LhrbdXlzv4m6phQLQjnK5PP_kpgKjvI6ss7ok9-nuhvnZxYZmE2ACT7GYFd3CEZ6G7bOYeda6SnsbGB_GYxLsD1_3sp1_7Y9nmzXMfnwaw4uJMKUZf3ppK_Aa1gHF_XVBckSwpIjKQS9AQwywGI
CitedBy_id crossref_primary_10_1038_s41467_019_09181_2
crossref_primary_10_1016_j_plantsci_2019_110171
crossref_primary_10_1093_jxb_erac211
crossref_primary_10_1093_jxb_erx156
crossref_primary_10_1007_s11738_014_1644_3
crossref_primary_10_1111_jipb_12689
crossref_primary_10_1080_15592324_2020_1813999
crossref_primary_10_1186_s12864_023_09669_8
crossref_primary_10_1186_s13059_020_02069_1
crossref_primary_10_3390_ijms21113918
crossref_primary_10_1016_j_tplants_2020_03_002
crossref_primary_10_1016_j_rsci_2023_03_015
crossref_primary_10_3390_ijms25084236
crossref_primary_10_1186_s12864_016_3421_8
crossref_primary_10_1016_j_plantsci_2023_111794
crossref_primary_10_1038_s41598_019_55651_4
crossref_primary_10_3389_fpls_2020_00044
crossref_primary_10_1073_pnas_1708087114
crossref_primary_10_1016_j_envexpbot_2023_105321
crossref_primary_10_3390_cells11244052
crossref_primary_10_1111_jipb_13256
crossref_primary_10_48130_frures_0023_0037
crossref_primary_10_1016_j_envexpbot_2021_104752
crossref_primary_10_1007_s11105_014_0759_4
crossref_primary_10_1146_annurev_arplant_102820_114551
crossref_primary_10_1016_j_envexpbot_2020_104076
crossref_primary_10_1186_s12870_018_1415_1
crossref_primary_10_1093_plcell_koac106
crossref_primary_10_1093_plcell_koac226
crossref_primary_10_3390_life12101633
crossref_primary_10_1371_journal_pone_0069046
crossref_primary_10_1093_treephys_tpaa022
crossref_primary_10_1038_s41467_019_14027_y
crossref_primary_10_1016_j_jplph_2022_153881
crossref_primary_10_1242_jcs_088716
crossref_primary_10_1093_treephys_tpaa142
crossref_primary_10_1007_s11101_012_9269_x
crossref_primary_10_3389_fbioe_2021_759016
crossref_primary_10_1111_jipb_13403
crossref_primary_10_1007_s13562_021_00706_9
crossref_primary_10_1007_s00709_013_0555_2
crossref_primary_10_1016_j_scienta_2022_111453
crossref_primary_10_1093_plphys_kiae464
crossref_primary_10_1016_j_plaphy_2014_07_023
crossref_primary_10_1016_j_plaphy_2023_108133
crossref_primary_10_3389_fpls_2022_824422
crossref_primary_10_1007_s11105_014_0722_4
crossref_primary_10_1007_s00122_018_3182_7
crossref_primary_10_1016_j_molp_2021_11_012
crossref_primary_10_1534_g3_117_042291
crossref_primary_10_1016_j_plaphy_2021_02_024
crossref_primary_10_1111_tpj_12418
crossref_primary_10_1111_pbi_13290
crossref_primary_10_1111_pce_15469
crossref_primary_10_1007_s11103_017_0623_7
crossref_primary_10_1038_s42003_024_05847_w
crossref_primary_10_1016_j_molp_2023_01_010
crossref_primary_10_3389_fpls_2022_866265
crossref_primary_10_3390_ijms19113668
crossref_primary_10_1104_pp_113_224758
crossref_primary_10_1111_jipb_13793
crossref_primary_10_1093_jxb_erw171
crossref_primary_10_1093_jxb_erv245
crossref_primary_10_1016_j_molp_2021_07_020
crossref_primary_10_1371_journal_pone_0185732
crossref_primary_10_1016_j_jare_2024_05_027
crossref_primary_10_1016_j_envexpbot_2021_104778
crossref_primary_10_3389_fpls_2017_01839
crossref_primary_10_1016_j_jgg_2011_05_006
crossref_primary_10_1016_j_plaphy_2018_09_024
crossref_primary_10_1007_s00122_011_1599_3
crossref_primary_10_1002_fes3_445
crossref_primary_10_1093_jxb_ers259
crossref_primary_10_3390_plants8010024
crossref_primary_10_15252_embj_2021110518
crossref_primary_10_1093_jxb_erad154
crossref_primary_10_1111_pce_13845
crossref_primary_10_1111_pbi_12526
crossref_primary_10_3390_ijms24087644
crossref_primary_10_1016_j_plantsci_2017_06_012
crossref_primary_10_1080_07352689_2019_1693716
crossref_primary_10_3389_fpls_2023_1238507
crossref_primary_10_1007_s11240_017_1188_5
crossref_primary_10_1105_tpc_114_135095
crossref_primary_10_1007_s13258_014_0207_8
crossref_primary_10_1111_j_1469_8137_2012_04070_x
crossref_primary_10_1016_j_jgg_2022_05_007
crossref_primary_10_1080_11263504_2023_2236105
crossref_primary_10_3390_plants10102204
crossref_primary_10_1016_j_jplph_2015_02_010
crossref_primary_10_1105_tpc_111_083048
crossref_primary_10_3390_ijms232113134
crossref_primary_10_1093_plphys_kiab330
crossref_primary_10_1016_j_jplph_2021_153430
crossref_primary_10_1038_s41598_020_62057_0
crossref_primary_10_3724_SP_J_1259_2011_00233
crossref_primary_10_1111_pce_13662
crossref_primary_10_3389_fpls_2023_1135552
crossref_primary_10_3390_agronomy12061419
crossref_primary_10_3390_plants13172488
crossref_primary_10_1371_journal_pone_0112515
crossref_primary_10_1186_s12870_019_1990_9
crossref_primary_10_1093_jxb_erv465
crossref_primary_10_1104_pp_113_232272
crossref_primary_10_1139_gen_2017_0206
crossref_primary_10_1021_acs_jafc_4c06062
crossref_primary_10_1111_jipb_12119
crossref_primary_10_1007_s11103_017_0643_3
crossref_primary_10_3390_f11030292
crossref_primary_10_1104_pp_111_173377
crossref_primary_10_1016_j_gene_2014_05_006
crossref_primary_10_1111_nph_14827
crossref_primary_10_1111_jac_12058
crossref_primary_10_3389_fpls_2017_01143
crossref_primary_10_3389_fpls_2020_00232
crossref_primary_10_1074_jbc_M115_639385
crossref_primary_10_1126_sciadv_abd4113
crossref_primary_10_3389_fpls_2016_00344
crossref_primary_10_1016_j_isci_2022_104298
crossref_primary_10_1186_s12864_017_3853_9
crossref_primary_10_1111_tpj_13187
crossref_primary_10_3389_fpls_2022_881456
crossref_primary_10_1016_j_plaphy_2024_108566
crossref_primary_10_3390_ijms252413719
crossref_primary_10_1007_s11103_013_0082_8
crossref_primary_10_3389_fpls_2016_00220
crossref_primary_10_1093_plcell_koad167
crossref_primary_10_1111_nph_16398
crossref_primary_10_1016_j_plaphy_2014_05_011
crossref_primary_10_1111_mpp_12063
crossref_primary_10_1007_s11240_017_1263_y
crossref_primary_10_15252_embr_202050164
crossref_primary_10_1105_tpc_112_106393
crossref_primary_10_3389_fpls_2023_1217193
crossref_primary_10_3389_fpls_2022_934877
crossref_primary_10_1007_s12298_019_00678_0
crossref_primary_10_3390_ijms232416048
crossref_primary_10_3390_plants13141960
crossref_primary_10_2139_ssrn_3910822
crossref_primary_10_1111_ppl_12169
crossref_primary_10_1111_tpj_12108
crossref_primary_10_3390_ijms150916196
crossref_primary_10_3390_plants13121638
crossref_primary_10_1007_s00299_023_03103_9
crossref_primary_10_1016_j_plantsci_2024_112342
crossref_primary_10_2139_ssrn_4077515
crossref_primary_10_1016_j_plantsci_2015_06_021
crossref_primary_10_1111_j_1742_4658_2011_08147_x
crossref_primary_10_1111_jipb_13599
crossref_primary_10_1186_s12870_022_03489_w
crossref_primary_10_3390_plants12152808
crossref_primary_10_1093_jxb_erac301
crossref_primary_10_3389_fgene_2022_884106
crossref_primary_10_3390_ijms24010805
crossref_primary_10_1016_j_plaphy_2021_01_029
crossref_primary_10_1016_j_molp_2015_11_002
crossref_primary_10_1104_pp_114_255455
crossref_primary_10_1016_j_plaphy_2020_08_019
crossref_primary_10_1371_journal_ppat_1003659
crossref_primary_10_1007_s10811_018_1501_7
crossref_primary_10_1093_hr_uhab074
crossref_primary_10_3389_fpls_2021_693285
crossref_primary_10_1111_pce_13013
crossref_primary_10_1007_s00468_023_02400_w
crossref_primary_10_1093_pcp_pcy081
crossref_primary_10_3389_fpls_2022_1049144
crossref_primary_10_3389_fpls_2021_682799
crossref_primary_10_1016_j_febslet_2015_06_035
crossref_primary_10_1111_pce_13370
crossref_primary_10_1111_nph_14920
crossref_primary_10_1007_s13258_013_0078_4
crossref_primary_10_1089_omi_2011_0109
crossref_primary_10_1093_jxb_erz493
crossref_primary_10_3389_fpls_2022_973471
Cites_doi 10.1104/pp.013466
10.1104/pp.010869
10.1379/1466-1268(2001)006<0209:TJDPOA>2.0.CO;2
10.1126/science.1086391
10.1046/j.1365-313X.1997.11030605.x
10.1016/S0141-8130(98)00073-7
10.1093/jxb/49.323.1005
10.1007/s004250050266
10.1074/jbc.M009416200
10.1007/s00018-006-6192-6
10.1074/jbc.271.25.14840
10.1091/mbc.4.6.555
10.1105/tpc.105.035626
10.1074/jbc.275.14.9919
10.1073/pnas.88.7.2874
10.1105/tpc.106.046631
10.1073/pnas.90.18.8557
10.1093/jxb/47.1.25
10.1105/tpc.106.043158
10.1002/j.1460-2075.1996.tb00371.x
10.1104/pp.121.3.695
10.1104/pp.104.046573
10.1007/BF00337864
10.1073/pnas.96.10.5452
10.1038/sj.emboj.7601750
10.2307/3870106
10.1111/j.1399-3054.2006.00757.x
10.1073/pnas.97.7.3735
10.1105/TPC.010021
10.1006/jmbi.1996.0394
10.1091/mbc.4.11.1145
10.1104/pp.010820
10.1034/j.1399-3054.1998.1030404.x
10.1073/pnas.122224699
10.1105/tpc.109.066217
10.1046/j.1365-2958.1998.01067.x
10.1146/annurev.arplant.52.1.817
10.1073/pnas.132092099
10.1093/jxb/47.3.325
10.1093/jxb/48.2.229
10.1016/0092-8674(93)90287-Z
10.1105/tpc.106.042291
10.1101/gr.977903
10.1104/pp.104.039255
10.1007/BF00039383
10.1105/tpc.106.046417
10.1016/j.cell.2006.06.011
10.1016/S0021-9258(18)54948-6
10.1016/S0005-2736(00)00128-0
10.1016/j.molcel.2006.12.017
10.1074/jbc.270.5.2139
10.1073/pnas.0504498102
10.1104/pp.107.103762
10.2307/3870332
10.1016/j.tplants.2004.03.006
10.1097/00010694-195408000-00012
10.1016/S0092-8674(00)80928-9
10.1074/jbc.M807311200
10.1111/j.1365-313X.2004.02169.x
10.1104/pp.104.1.209
10.1105/tpc.12.11.2219
ContentType Journal Article
Copyright 2010 American Society of Plant Biologists
2010 American Society of Plant Biologists 2010
Copyright_xml – notice: 2010 American Society of Plant Biologists
– notice: 2010 American Society of Plant Biologists 2010
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
DOI 10.1105/tpc.109.069609
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic


CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Botany
EISSN 1532-298X
EndPage 1332
ExternalDocumentID PMC2879748
20418496
10_1105_tpc_109_069609
25680134
US201301850866
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R37 GM047850
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2FS
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHKG
AAPXW
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABPTK
ABTLG
ABUWG
ABXZS
ACBTR
ACFRR
ACGFO
ACGOD
ACIPB
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFFDN
AFFNX
AFFZL
AFGWE
AFKRA
AFMIJ
AFRAH
AFYAG
AGCDD
AGUYK
AHMBA
AICQM
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
BYORX
C1A
CBGCD
CCPQU
CS3
CWIXF
D1J
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
F8P
F9R
FBQ
FLUFQ
FOEOM
FRP
FYUFA
GNUQQ
GTFYD
GX1
HCIFZ
HGD
HMCUK
HTVGU
H~9
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2P
M2Q
M7P
MV1
MVM
N9A
NEJ
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
U5U
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YR2
YSK
ZCA
ZCG
ZCN
~KM
0R~
AAHBH
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABVGC
ABXSQ
ABXVV
ACHIC
ADGKP
ADQBN
ADXHL
AEUYN
AGORE
AHXOZ
AJNCP
ALIPV
AQVQM
ATGXG
BEYMZ
H13
IPSME
JXSIZ
NU-
PHGZM
PHGZT
AAYXX
CITATION
ABIME
ABPIB
ABZEO
ACVCV
ACZBC
AGMDO
AHGBF
AJBYB
AJDVS
APJGH
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7S9
L.6
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c468t-56210a7493582dc592968d856c1525362a1a7ccad5582360a84da59d984f92083
ISSN 1040-4651
1532-298X
IngestDate Thu Aug 21 14:12:59 EDT 2025
Fri Sep 05 03:37:24 EDT 2025
Thu Sep 04 21:21:15 EDT 2025
Mon Jul 21 06:02:06 EDT 2025
Tue Jul 01 02:52:49 EDT 2025
Thu Apr 24 23:00:37 EDT 2025
Fri Jun 20 02:29:37 EDT 2025
Wed Dec 27 19:10:53 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c468t-56210a7493582dc592968d856c1525362a1a7ccad5582360a84da59d984f92083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Some figures in this article are displayed in color online but in black and white in the print edition.
These authors contributed equally to this work.
Online version contains Web-only data.
www.plantcell.org/cgi/doi/10.1105/tpc.109.069609
OpenAccessLink https://academic.oup.com/plcell/article-pdf/22/4/1313/36929347/plcell_v22_4_1313.pdf
PMID 20418496
PQID 1365021087
PQPubID 24069
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2879748
proquest_miscellaneous_733162350
proquest_miscellaneous_1365021087
pubmed_primary_20418496
crossref_primary_10_1105_tpc_109_069609
crossref_citationtrail_10_1105_tpc_109_069609
jstor_primary_25680134
fao_agris_US201301850866
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-01
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle The Plant cell
PublicationTitleAlternate Plant Cell
PublicationYear 2010
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References Miernyk (2021040621472898600_b30) 1999; 121
Vera-Estrella (2021040621472898600_b54) 1994; 104
Waters (2021040621472898600_b57) 1996; 47
Scidmore (2021040621472898600_b46) 1993; 4
Roelfsema (2021040621472898600_b44) 1998; 103
Kinoshita (2021040621472898600_b22) 1995; 7
Fuglsang (2021040621472898600_b12) 2007; 19
Zhu (2021040621472898600_b66) 1993; 90
Bowler (2021040621472898600_b6) 2004; 39
Quintero (2021040621472898600_b41) 2002; 99
Qiu (2021040621472898600_b38) 2002; 99
Boston (2021040621472898600_b5) 1996; 32
Xing (2021040621472898600_b59) 1996; 8
Palmgren (2021040621472898600_b35) 1991; 266
Sheen (2021040621472898600_b47) 2001; 127
Aoyama (2021040621472898600_b2) 1997; 11
Gevaudant (2021040621472898600_b15) 2007; 144
Szabo (2021040621472898600_b50) 1996; 15
Merlot (2021040621472898600_b29) 2007; 26
Ottmann (2021040621472898600_b33) 2007; 25
Kanczewska (2021040621472898600_b20) 2005; 102
Quan (2021040621472898600_b40) 2007; 19
Liberek (2021040621472898600_b25) 1991; 88
Miernyk (2021040621472898600_b31) 2001; 6
Laufen (2021040621472898600_b23) 1999; 96
Xu (2021040621472898600_b61) 2006; 125
Goffin (2021040621472898600_b16) 1998; 30
Svennelid (2021040621472898600_b49) 1999; 11
Morsomme (2021040621472898600_b32) 2000; 1465
Banecki (2021040621472898600_b4) 1996; 271
Caplan (2021040621472898600_b10) 1993; 4
Wall (2021040621472898600_b55) 1995; 270
Guo (2021040621472898600_b17) 2001; 13
Fuglsang (2021040621472898600_b13) 2006; 128
Yan (2021040621472898600_b62) 1999; 24
Camoni (2021040621472898600_b9) 2000; 275
Rober-Kleber (2021040621472898600_b43) 2003; 131
Lino (2021040621472898600_b27) 1998; 204
Palmgren (2021040621472898600_b34) 2001; 52
Ayala (2021040621472898600_b3) 1996; 47
Zhou (2021040621472898600_b65) 1999; 41
Ham (2021040621472898600_b19) 2006; 18
Zhang (2021040621472898600_b64) 2004; 136
Bukau (2021040621472898600_b8) 1998; 92
Georgopoulos (2021040621472898600_b14) 1980; 178
Wang (2021040621472898600_b56) 2004; 9
Xing (2021040621472898600_b60) 1997; 48
Halfter (2021040621472898600_b18) 2000; 97
Qiu (2021040621472898600_b39) 2006; 63
Alonso (2021040621472898600_b1) 2003; 301
Tamura (2021040621472898600_b51) 2007; 19
Qian (2021040621472898600_b37) 1996; 260
Till (2021040621472898600_b52) 2003; 13
Yan (2021040621472898600_b63) 2002; 129
Torii (2021040621472898600_b53) 1996; 8
Li (2021040621472898600_b24) 2005; 31
Silver (2021040621472898600_b48) 1993; 74
Schaller (2021040621472898600_b45) 1999; 11
Pimpl (2021040621472898600_b36) 2000; 12
Duby (2021040621472898600_b11) 2009; 284
Brault (2021040621472898600_b7) 2004; 135
Lu (2021040621472898600_b28) 2006; 18
Kim (2021040621472898600_b21) 2001; 276
Lin (2021040621472898600_b26) 2009; 21
Wu (2021040621472898600_b58) 1998; 49
Richards (2021040621472898600_b42) 1954
References_xml – volume: 131
  start-page: 1302
  year: 2003
  ident: 2021040621472898600_b43
  article-title: Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development
  publication-title: Plant Physiol.
  doi: 10.1104/pp.013466
– volume: 129
  start-page: 50
  year: 2002
  ident: 2021040621472898600_b63
  article-title: Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency
  publication-title: Plant Physiol.
  doi: 10.1104/pp.010869
– volume: 6
  start-page: 209
  year: 2001
  ident: 2021040621472898600_b31
  article-title: The J-domain proteins of Arabidopsis thaliana: An unexpectedly large and diverse family of chaperones
  publication-title: Cell Stress Chaperones
  doi: 10.1379/1466-1268(2001)006<0209:TJDPOA>2.0.CO;2
– volume: 301
  start-page: 653
  year: 2003
  ident: 2021040621472898600_b1
  article-title: Genome-wide insertional mutagenesis of Arabidopsis thaliana
  publication-title: Science
  doi: 10.1126/science.1086391
– volume: 11
  start-page: 605
  year: 1997
  ident: 2021040621472898600_b2
  article-title: A glucocorticoid-mediated transcriptional induction system in transgenic plants
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1997.11030605.x
– volume: 31
  start-page: 47
  year: 2005
  ident: 2021040621472898600_b24
  article-title: The responses of AtJ2 and AtJ3 gene expression to environmental stresses in Arabidopsis
  publication-title: Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao
– volume: 24
  start-page: 65
  year: 1999
  ident: 2021040621472898600_b62
  article-title: Size and folding in globular proteins
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/S0141-8130(98)00073-7
– volume: 49
  start-page: 1005
  year: 1998
  ident: 2021040621472898600_b58
  article-title: Salinity adaptation of plasma membrane H+-ATPase in the salt marsh plant Spartina patens: ATP hydrolysis and enzyme kinetics
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/49.323.1005
– volume: 204
  start-page: 352
  year: 1998
  ident: 2021040621472898600_b27
  article-title: The plasma-membrane H+-ATPase from beet root is inhibited by a calcium-dependent phosphorylation
  publication-title: Planta
  doi: 10.1007/s004250050266
– volume: 276
  start-page: 10730
  year: 2001
  ident: 2021040621472898600_b21
  article-title: A soluble auxin-binding protein, ABP57. Purification with anti-bovine serum albumin antibody and characterization of its mechanistic role in the auxin effect on plant plasma membrane H+-ATPase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M009416200
– volume: 63
  start-page: 2560
  year: 2006
  ident: 2021040621472898600_b39
  article-title: The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-006-6192-6
– volume: 271
  start-page: 14840
  year: 1996
  ident: 2021040621472898600_b4
  article-title: Structure-function analysis of the zinc finger region of the DnaJ molecular chaperone
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.25.14840
– volume: 4
  start-page: 555
  year: 1993
  ident: 2021040621472898600_b10
  article-title: Eukaryotic homologues of Escherichia coli dnaJ: A diverse protein family that functions with hsp70 stress proteins
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.4.6.555
– volume: 19
  start-page: 1617
  year: 2007
  ident: 2021040621472898600_b12
  article-title: Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.035626
– volume: 275
  start-page: 9919
  year: 2000
  ident: 2021040621472898600_b9
  article-title: Phosphorylation-dependent interaction between plant plasma membrane H+-ATPase and 14-3-3 proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.14.9919
– volume: 88
  start-page: 2874
  year: 1991
  ident: 2021040621472898600_b25
  article-title: Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.88.7.2874
– volume: 19
  start-page: 320
  year: 2007
  ident: 2021040621472898600_b51
  article-title: Arabidopsis KAM2/GRV2 is required for proper endosome formation and functions in vacuolar sorting and determination of the embryo growth axis
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.046631
– volume: 90
  start-page: 8557
  year: 1993
  ident: 2021040621472898600_b66
  article-title: Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.18.8557
– volume: 47
  start-page: 25
  year: 1996
  ident: 2021040621472898600_b3
  article-title: Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr. in response to NaCl
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/47.1.25
– volume: 18
  start-page: 2005
  year: 2006
  ident: 2021040621472898600_b19
  article-title: Tobacco Tsip1, a DnaJ-type Zn finger protein, is recruited to and potentiates Tsi1-mediated transcriptional activation
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.043158
– volume: 15
  start-page: 408
  year: 1996
  ident: 2021040621472898600_b50
  article-title: A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00371.x
– volume: 8
  start-page: 735
  year: 1996
  ident: 2021040621472898600_b53
  article-title: The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats
  publication-title: Plant Cell
– volume: 121
  start-page: 695
  year: 1999
  ident: 2021040621472898600_b30
  article-title: Protein folding in the plant cell
  publication-title: Plant Physiol.
  doi: 10.1104/pp.121.3.695
– volume: 136
  start-page: 4150
  year: 2004
  ident: 2021040621472898600_b64
  article-title: Inhibition of blue light-dependent H+ pumping by abscisic acid through hydrogen peroxide-induced dephosphorylation of the plasma membrane H+-ATPase in guard cell protoplasts
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.046573
– volume: 41
  start-page: 597
  year: 1999
  ident: 2021040621472898600_b65
  article-title: Cloning and analysis of AtJ3 gene in Arabidopsis thaliana
  publication-title: Acta Bot. Sin.
– volume: 178
  start-page: 583
  year: 1980
  ident: 2021040621472898600_b14
  article-title: Identification of the E. coli dnaJ gene product
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00337864
– volume: 96
  start-page: 5452
  year: 1999
  ident: 2021040621472898600_b23
  article-title: Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.10.5452
– volume: 26
  start-page: 3216
  year: 2007
  ident: 2021040621472898600_b29
  article-title: Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601750
– volume: 7
  start-page: 1333
  year: 1995
  ident: 2021040621472898600_b22
  article-title: Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean
  publication-title: Plant Cell
  doi: 10.2307/3870106
– volume: 128
  start-page: 334
  year: 2006
  ident: 2021040621472898600_b13
  article-title: Protein phosphatase 2A scaffolding subunit A interacts with plasma membrane H+-ATPase C-terminus in the same region as 14-3-3 protein
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2006.00757.x
– volume: 97
  start-page: 3735
  year: 2000
  ident: 2021040621472898600_b18
  article-title: The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.7.3735
– volume: 13
  start-page: 1383
  year: 2001
  ident: 2021040621472898600_b17
  article-title: Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance
  publication-title: Plant Cell
  doi: 10.1105/TPC.010021
– volume: 260
  start-page: 224
  year: 1996
  ident: 2021040621472898600_b37
  article-title: Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0394
– volume: 4
  start-page: 1145
  year: 1993
  ident: 2021040621472898600_b46
  article-title: Genetic interactions between KAR2 and SEC63, encoding eukaryotic homologues of DnaK and DnaJ in the endoplasmic reticulum
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.4.11.1145
– volume: 127
  start-page: 1466
  year: 2001
  ident: 2021040621472898600_b47
  article-title: Signal transduction in maize and Arabidopsis mesophyll protoplasts
  publication-title: Plant Physiol.
  doi: 10.1104/pp.010820
– volume: 103
  start-page: 466
  year: 1998
  ident: 2021040621472898600_b44
  article-title: Blue light-induced apoplastic acidification of Arabidopsis thaliana guard cells: Inhibition by ABA is mediated through protein phosphatases
  publication-title: Physiol. Plant.
  doi: 10.1034/j.1399-3054.1998.1030404.x
– volume: 99
  start-page: 8436
  year: 2002
  ident: 2021040621472898600_b38
  article-title: Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.122224699
– volume: 21
  start-page: 1607
  year: 2009
  ident: 2021040621472898600_b26
  article-title: Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.066217
– volume: 30
  start-page: 329
  year: 1998
  ident: 2021040621472898600_b16
  article-title: Genetic and biochemical characterization of mutations affecting the carboxy-terminal domain of the Escherichia coli molecular chaperone DnaJ
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1998.01067.x
– volume: 52
  start-page: 817
  year: 2001
  ident: 2021040621472898600_b34
  article-title: Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.52.1.817
– volume: 99
  start-page: 9061
  year: 2002
  ident: 2021040621472898600_b41
  article-title: Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.132092099
– volume: 11
  start-page: 263
  year: 1999
  ident: 2021040621472898600_b45
  article-title: Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants
  publication-title: Plant Cell
– volume: 47
  start-page: 325
  year: 1996
  ident: 2021040621472898600_b57
  article-title: Evolution, structure and function of the small heat shock proteins in plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/47.3.325
– volume: 48
  start-page: 229
  year: 1997
  ident: 2021040621472898600_b60
  article-title: Identification of G proteins mediating fungal elicitor-induced dephosphorylation of host plasma membrane H+-ATPase
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/48.2.229
– volume: 74
  start-page: 5
  year: 1993
  ident: 2021040621472898600_b48
  article-title: Eukaryotic DnaJ homologs and the specificity of Hsp70 activity
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90287-Z
– volume: 19
  start-page: 1415
  year: 2007
  ident: 2021040621472898600_b40
  article-title: SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.042291
– volume: 13
  start-page: 524
  year: 2003
  ident: 2021040621472898600_b52
  article-title: Large-scale discovery of induced point mutations with high throughput TILLING
  publication-title: Genome Res.
  doi: 10.1101/gr.977903
– volume: 135
  start-page: 231
  year: 2004
  ident: 2021040621472898600_b7
  article-title: Plasma membrane depolarization induced by abscisic acid in Arabidopsis suspension cells involves reduction of proton pumping in addition to anion channel activation, which are both Ca2+ dependent
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.039255
– volume: 32
  start-page: 191
  year: 1996
  ident: 2021040621472898600_b5
  article-title: Molecular chaperones and protein folding in plants
  publication-title: Plant Mol. Biol.
  doi: 10.1007/BF00039383
– volume: 18
  start-page: 3594
  year: 2006
  ident: 2021040621472898600_b28
  article-title: The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.046417
– volume: 125
  start-page: 1347
  year: 2006
  ident: 2021040621472898600_b61
  article-title: A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.011
– volume: 266
  start-page: 20470
  year: 1991
  ident: 2021040621472898600_b35
  article-title: Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H+-ATPase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)54948-6
– volume: 1465
  start-page: 1
  year: 2000
  ident: 2021040621472898600_b32
  article-title: The plant plasma membrane H+-ATPase: Structure, function and regulation
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(00)00128-0
– volume: 25
  start-page: 427
  year: 2007
  ident: 2021040621472898600_b33
  article-title: Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining X-ray crystallography and electron cryomicroscopy
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2006.12.017
– volume: 270
  start-page: 2139
  year: 1995
  ident: 2021040621472898600_b55
  article-title: The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.5.2139
– volume: 102
  start-page: 11675
  year: 2005
  ident: 2021040621472898600_b20
  article-title: Activation of the plant plasma membrane H+-ATPase by phosphorylation and binding of 14-3-3 proteins converts a dimer into a hexamer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0504498102
– volume: 144
  start-page: 1763
  year: 2007
  ident: 2021040621472898600_b15
  article-title: Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.103762
– volume: 8
  start-page: 555
  year: 1996
  ident: 2021040621472898600_b59
  article-title: Regulation of plant defense response to fungal pathogens: Two types of protein kinases in the reversible phosphorylation of the host plasma membrane H+-ATPase
  publication-title: Plant Cell
  doi: 10.2307/3870332
– volume: 9
  start-page: 244
  year: 2004
  ident: 2021040621472898600_b56
  article-title: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2004.03.006
– year: 1954
  ident: 2021040621472898600_b42
  article-title: Diagnosis and improvement of saline and alkali soils
  doi: 10.1097/00010694-195408000-00012
– volume: 92
  start-page: 351
  year: 1998
  ident: 2021040621472898600_b8
  article-title: The Hsp70 and Hsp60 chaperone machines
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80928-9
– volume: 284
  start-page: 4213
  year: 2009
  ident: 2021040621472898600_b11
  article-title: Activation of plant plasma membrane H+-ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+-ATPase C-terminal region
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807311200
– volume: 39
  start-page: 776
  year: 2004
  ident: 2021040621472898600_b6
  article-title: Chromatin techniques for plant cells
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02169.x
– volume: 104
  start-page: 209
  year: 1994
  ident: 2021040621472898600_b54
  article-title: Plant defense response to fungal pathogens (activation of host-plasma membrane H+-ATPase by elicitor-induced enzyme dephosphorylation)
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.1.209
– volume: 12
  start-page: 2219
  year: 2000
  ident: 2021040621472898600_b36
  article-title: In situ localization and in vitro induction of plant COPI-coated vesicles
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.11.2219
– volume: 11
  start-page: 2379
  year: 1999
  ident: 2021040621472898600_b49
  article-title: Phosphorylation of Thr-948 at the C terminus of the plasma membrane H+-ATPase creates a binding site for the regulatory 14-3-3 protein
  publication-title: Plant Cell
SSID ssj0001719
Score 2.4256692
Snippet The plasma membrane H⁺-ATPase (PM H⁺-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological...
The plasma membrane H+-ATPase (PM H+-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological...
The plasma membrane H(+)-ATPase (PM H(+)-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological...
This work examines the effect of a DnaJ homolog, Arabidopsis J3, on the activity of the plasma membrane H + -ATPase, showing that J3 affects activity of the...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1313
SubjectTerms alleles
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
calcium
cell growth
Cell membranes
Gene expression regulation
Gene Expression Regulation, Plant
heat shock proteins
hormones
HSP40 Heat-Shock Proteins - genetics
HSP40 Heat-Shock Proteins - metabolism
Hydrogen-Ion Concentration
ion transport
Microscopy, Confocal
mutants
Mutation
Plant cells
Plant roots
Plant Roots - metabolism
Plants
plasma membrane
Plasmids
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Proteins
Proton-Translocating ATPases - genetics
Proton-Translocating ATPases - metabolism
Protons
RNA, Plant - genetics
salts
Seedlings
Sodium Chloride - pharmacology
soil salinity
stomatal movement
Title Arabidopsis Chaperone J3 Regulates the Plasma Membrane H⁺-ATPase through Interaction with the PKS5 Kinase
URI https://www.jstor.org/stable/25680134
https://www.ncbi.nlm.nih.gov/pubmed/20418496
https://www.proquest.com/docview/1365021087
https://www.proquest.com/docview/733162350
https://pubmed.ncbi.nlm.nih.gov/PMC2879748
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF4lLRJcEBRKzSNaJBCHyMWPXa99TKpWUaJWgSZSysVaP5IaUTsER6LcOPGf-Dn8Emb8Dkok4GJZ9nq98nzeeezsN4S8Mk1pSIeBb8K8QGXSMVTJwWtFU3vuBLYXZnQM5xfWYMqGMz5rtX40spbWqXfsf9u6r-R_pArXQK64S_YfJFt1ChfgHOQLR5AwHP9axr2V9KIgWSKxCG4mCFcJ2I1DEz5cVmUeKRyg2Ris5BvZPQ9vwD2GBoMsy0F_3e-pvckYVFlVsSeLERYVxPMoLT4-uuTdURSXazkf6wFg2aO0iwsA1QxSxKCvknjxuVSNGFzN-Qqu1vHXqNIGs3yBJNvlsKj3pX24llkQ9yyMbqNmaAJX1dlGmke55lQmoGJWXzamvM4m4LgRkNQxtxErszfnZsNoYJA1JlrdzLewFkobPG1ju0LQkDsjXfrIm3WsWUiwV6u-KiERDD9Q1SZrk30D_A2sATJ6V9PO6yKrEFMNsWD_hM7fbna9Yd205zIp01y3OTB_5uE2DJvJA3K_8EhoL4fXQ9IK4wNyp5-A13B7QO6elBUBH5EExE0beKMV3ujQpBXeKACG5nijJd7o4Nf3nwXSaIE02kAaRaTlDwLSaI60x2R6djo5GahFwQ7VZ5adqmBL65oUDNfWjcDnYHpbdmBzy8cqW2AqSV0KmDICDvdNS5M2CyR3Asdmc8cAZ-CQ7MUw6CNCTU1yi1l66Js-C6WQUgokH2Qh56bwPIWo5Yd2_YLNHouqfHIzr1bjLggG0yvcXDAKeVO1X-Y8LjtbHoHcXLkAJetOLw1c2gejFlx_SyGHmTCrHkrYKORlKV0XZIK_HHzaZP3FxSxSDKvYQiF0RxssmwpeCNcU8iQHRP0Cjek2c-DNYgMqVQNkh9-8E0fXGUu8YQtHMPvprjE_I_fqf_Y52UtX6_AFGNip1yFtMRMdst8_vRi_72S_wm9wQc92
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Arabidopsis+Chaperone+J3+Regulates+the+Plasma+Membrane+H%E2%81%BA-ATPase+through+Interaction+with+the+PKS5+Kinase&rft.jtitle=The+Plant+cell&rft.au=Yang%2C+Yongqing&rft.au=Qin%2C+Yunxia&rft.au=Xie%2C+Changgen&rft.au=Zhao%2C+Feiyi&rft.date=2010-04-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=1040-4651&rft.volume=22&rft.issue=4&rft.spage=1313&rft.epage=1332&rft_id=info:doi/10.1105%2Ftpc.109.069609&rft.externalDocID=25680134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-4651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-4651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-4651&client=summon