Magnetovaccination as a Novel Method to Assess and Quantify Dendritic Cell Tumor Antigen Capture and Delivery to Lymph Nodes

A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 69; no. 7; pp. 3180 - 3187
Main Authors Long, Christopher M., van Laarhoven, Hanneke W.M., Bulte, Jeff W.M., Levitsky, Hyam I.
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 01.04.2009
Subjects
Online AccessGet full text
ISSN0008-5472
1538-7445
1538-7445
DOI10.1158/0008-5472.CAN-08-3691

Cover

Loading…
Abstract A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use of cellular magnetic resonance (MR) imaging (MRI) is a promising approach for this purpose; however, cellular imaging currently requires ex vivo prelabeling of cells with contrast agents followed by reintroduction of cells into the subject being monitored. Here, we describe an in vivo labeling method, which relies upon cell-to-cell transfer of superparamagnetic iron oxide (SPIO) from tumor cells to endogenous APCs, in situ, to quantify APC delivery to LNs in a tumor vaccine model. Mice were immunized with a tumor cell–based vaccine that was irradiated and labeled with SPIO. APCs that had captured SPIO were imaged over time as they accumulated in LNs. We show here that MRI is capable of monitoring, in vivo, the trafficking of magnetically labeled APCs inducing a tumor-specific immune response, and that these cells can be magnetically recovered ex vivo. Excellent correlation was observed between in vivo and ex vivo quantification of APCs, with resolution sufficient to detect increased APC trafficking elicited by an adjuvant. This study shows the potential of magnetovaccination and MRI cell tracking to systematically evaluate a key parameter relevant to the optimization of vaccine therapies through noninvasive MRI-based quantification of APC numbers. [Cancer Res 2009;69(7):3180–7]
AbstractList A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use of cellular magnetic resonance (MR) imaging (MRI) is a promising approach for this purpose; however, cellular imaging currently requires ex vivo prelabeling of cells with contrast agents followed by reintroduction of cells into the subject being monitored. Here, we describe an in vivo labeling method, which relies upon cell-to-cell transfer of superparamagnetic iron oxide (SPIO) from tumor cells to endogenous APCs, in situ, to quantify APC delivery to LNs in a tumor vaccine model. Mice were immunized with a tumor cell-based vaccine that was irradiated and labeled with SPIO. APCs that had captured SPIO were imaged over time as they accumulated in LNs. We show here that MRI is capable of monitoring, in vivo, the trafficking of magnetically labeled APCs inducing a tumor-specific immune response, and that these cells can be magnetically recovered ex vivo. Excellent correlation was observed between in vivo and ex vivo quantification of APCs, with resolution sufficient to detect increased APC trafficking elicited by an adjuvant. This study shows the potential of magnetovaccination and MRI cell tracking to systematically evaluate a key parameter relevant to the optimization of vaccine therapies through noninvasive MRI-based quantification of APC numbers.A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use of cellular magnetic resonance (MR) imaging (MRI) is a promising approach for this purpose; however, cellular imaging currently requires ex vivo prelabeling of cells with contrast agents followed by reintroduction of cells into the subject being monitored. Here, we describe an in vivo labeling method, which relies upon cell-to-cell transfer of superparamagnetic iron oxide (SPIO) from tumor cells to endogenous APCs, in situ, to quantify APC delivery to LNs in a tumor vaccine model. Mice were immunized with a tumor cell-based vaccine that was irradiated and labeled with SPIO. APCs that had captured SPIO were imaged over time as they accumulated in LNs. We show here that MRI is capable of monitoring, in vivo, the trafficking of magnetically labeled APCs inducing a tumor-specific immune response, and that these cells can be magnetically recovered ex vivo. Excellent correlation was observed between in vivo and ex vivo quantification of APCs, with resolution sufficient to detect increased APC trafficking elicited by an adjuvant. This study shows the potential of magnetovaccination and MRI cell tracking to systematically evaluate a key parameter relevant to the optimization of vaccine therapies through noninvasive MRI-based quantification of APC numbers.
A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use of cellular magnetic resonance (MR) imaging (MRI) is a promising approach for this purpose; however, cellular imaging currently requires ex vivo prelabeling of cells with contrast agents followed by reintroduction of cells into the subject being monitored. Here, we describe an in vivo labeling method, which relies upon cell-to-cell transfer of superparamagnetic iron oxide (SPIO) from tumor cells to endogenous APCs, in situ, to quantify APC delivery to LNs in a tumor vaccine model. Mice were immunized with a tumor cell-based vaccine that was irradiated and labeled with SPIO. APCs that had captured SPIO were imaged over time as they accumulated in LNs. We show here that MRI is capable of monitoring, in vivo, the trafficking of magnetically labeled APCs inducing a tumor-specific immune response, and that these cells can be magnetically recovered ex vivo. Excellent correlation was observed between in vivo and ex vivo quantification of APCs, with resolution sufficient to detect increased APC trafficking elicited by an adjuvant. This study shows the potential of magnetovaccination and MRI cell tracking to systematically evaluate a key parameter relevant to the optimization of vaccine therapies through noninvasive MRI-based quantification of APC numbers.
A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use of cellular magnetic resonance (MR) imaging (MRI) is a promising approach for this purpose; however, cellular imaging currently requires ex vivo prelabeling of cells with contrast agents followed by reintroduction of cells into the subject being monitored. Here, we describe an in vivo labeling method, which relies upon cell-to-cell transfer of superparamagnetic iron oxide (SPIO) from tumor cells to endogenous APCs, in situ, to quantify APC delivery to LNs in a tumor vaccine model. Mice were immunized with a tumor cell–based vaccine that was irradiated and labeled with SPIO. APCs that had captured SPIO were imaged over time as they accumulated in LNs. We show here that MRI is capable of monitoring, in vivo, the trafficking of magnetically labeled APCs inducing a tumor-specific immune response, and that these cells can be magnetically recovered ex vivo. Excellent correlation was observed between in vivo and ex vivo quantification of APCs, with resolution sufficient to detect increased APC trafficking elicited by an adjuvant. This study shows the potential of magnetovaccination and MRI cell tracking to systematically evaluate a key parameter relevant to the optimization of vaccine therapies through noninvasive MRI-based quantification of APC numbers. [Cancer Res 2009;69(7):3180–7]
A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use of cellular magnetic resonance (MR) imaging (MRI) is a promising approach for this purpose; however, cellular imaging currently requires ex vivo prelabeling of cells with contrast agents followed by reintroduction of cells into the subject being monitored. Here, we describe an in vivo labeling method, which relies upon cell-to-cell transfer of super-paramagnetic iron oxide (SPIO) from tumor cells to endogenous APCs, in situ , to quantify APC delivery to LNs in a tumor vaccine model. Mice were immunized with a tumor cell–based vaccine that was irradiated and labeled with SPIO. APCs that had captured SPIO were imaged over time as they accumulated in LNs. We show here that MRI is capable of monitoring, in vivo , the trafficking of magnetically labeled APCs inducing a tumor-specific immune response, and that these cells can be magnetically recovered ex vivo . Excellent correlation was observed between in vivo and ex vivo quantification of APCs, with resolution sufficient to detect increased APC trafficking elicited by an adjuvant. This study shows the potential of magnetovaccination and MRI cell tracking to systematically evaluate a key parameter relevant to the optimization of vaccine therapies through noninvasive MRI-based quantification of APC numbers.
Author Long, Christopher M.
Levitsky, Hyam I.
van Laarhoven, Hanneke W.M.
Bulte, Jeff W.M.
AuthorAffiliation 4 Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine Baltimore, Maryland
1 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
6 Department of Medical Oncology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
3 Russel H. Morgan Department of Radiology, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
5 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, Maryland
2 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
AuthorAffiliation_xml – name: 4 Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine Baltimore, Maryland
– name: 3 Russel H. Morgan Department of Radiology, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
– name: 1 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
– name: 2 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
– name: 5 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, Maryland
– name: 6 Department of Medical Oncology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
Author_xml – sequence: 1
  givenname: Christopher M.
  surname: Long
  fullname: Long, Christopher M.
– sequence: 2
  givenname: Hanneke W.M.
  surname: van Laarhoven
  fullname: van Laarhoven, Hanneke W.M.
– sequence: 3
  givenname: Jeff W.M.
  surname: Bulte
  fullname: Bulte, Jeff W.M.
– sequence: 4
  givenname: Hyam I.
  surname: Levitsky
  fullname: Levitsky, Hyam I.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21678507$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19276358$$D View this record in MEDLINE/PubMed
BookMark eNqFkttuEzEQhi1URNPCI4B8A3db7Pi4QkKKtpyktAipXFterzcx2rWD7Y0UiYfH24ZwuOHKY833_-PxzAU488FbAJ5jdIUxk68RQrJiVCyvmtVtVWLCa_wILDAjshKUsjOwODHn4CKlb-XKMGJPwDmul4ITJhfgx43eeJvDXhvjvM4ueKgT1PA27O0Ab2zehg7mAFcp2VQSvoNfJu2z6w_w2vouuuwMbOwwwLtpDBGuSm5jPWz0Lk_R3iuu7eD2Nh5mo_Vh3G2LfWfTU_C410Oyz47nJfj6_t1d87Faf_7wqVmtK0O5zKWDjtCWibpvBS0v76RoKSc9J4IRgXuJGKeSk5YYgZDoLcK4ZZ1oeyPaGnXkErx98N1N7Wg7Y32OelC76EYdDypop_7OeLdVm7BXBBFcS1kMXh0NYvg-2ZTV6JIpPWtvw5QUFxhxTFEBX_xZ6VTi14cX4OUR0MnooY_aG5dO3BJzIRkShWMPnIkhpWj731ZIzQug5uGqebiqLIAq8bwARffmH51x-X6spTE3_Ef9EygBtq4
CODEN CNREA8
CitedBy_id crossref_primary_10_1007_s11307_021_01647_4
crossref_primary_10_1002_wnan_1227
crossref_primary_10_1007_s11434_016_1038_6
crossref_primary_10_1016_j_actbio_2012_08_038
crossref_primary_10_1097_CM9_0000000000002525
crossref_primary_10_1016_j_addr_2023_114865
crossref_primary_10_1002_nbm_1788
crossref_primary_10_3923_jms_2012_256_266
crossref_primary_10_1371_journal_pone_0038350
crossref_primary_10_2217_nnm_11_147
crossref_primary_10_1016_j_biomaterials_2014_10_043
crossref_primary_10_1158_1078_0432_CCR_10_3262
crossref_primary_10_2310_7290_2011_00045
crossref_primary_10_1111_pim_12315
crossref_primary_10_1021_nl3010308
crossref_primary_10_2174_1573413717666210708162149
crossref_primary_10_1002_eji_201344337
crossref_primary_10_1021_acs_chemrev_8b00363
crossref_primary_10_1016_j_ijpharm_2018_03_029
crossref_primary_10_1158_0008_5472_CAN_13_2685
crossref_primary_10_1158_0008_5472_CAN_14_0820
crossref_primary_10_3389_fmed_2020_00034
crossref_primary_10_2463_mrms_10_219
crossref_primary_10_1586_erv_09_100
crossref_primary_10_1007_s00018_012_1159_2
crossref_primary_10_4137_MRI_S23557
crossref_primary_10_1002_mrm_22313
crossref_primary_10_1002_nbm_1774
crossref_primary_10_2217_fnl_13_77
crossref_primary_10_1371_journal_pone_0019662
crossref_primary_10_3389_fimmu_2017_00774
crossref_primary_10_1007_s11307_022_01738_w
crossref_primary_10_1007_s11307_019_01393_8
crossref_primary_10_1021_cr500314d
crossref_primary_10_1002_cmmi_481
crossref_primary_10_1002_wnan_1169
crossref_primary_10_1016_j_molimm_2014_08_006
crossref_primary_10_1007_s00109_011_0764_0
crossref_primary_10_3389_fonc_2022_933125
crossref_primary_10_1007_s11307_010_0403_0
crossref_primary_10_2967_jnumed_118_213348
crossref_primary_10_2214_AJR_09_3107
crossref_primary_10_1097_RMR_0000000000000101
crossref_primary_10_1002_mrm_26708
crossref_primary_10_1038_nrclinonc_2011_141
crossref_primary_10_2217_imt_12_76
crossref_primary_10_1002_cmmi_433
crossref_primary_10_1155_2013_349408
crossref_primary_10_1038_nnano_2011_149
crossref_primary_10_1148_radiol_14142331
crossref_primary_10_1158_1078_0432_CCR_09_2046
crossref_primary_10_2967_jnumed_109_068130
crossref_primary_10_1007_s11095_012_0679_7
crossref_primary_10_1016_j_jcyt_2013_09_006
crossref_primary_10_1002_mrm_24271
crossref_primary_10_1002_smll_202406950
crossref_primary_10_1002_mrm_23100
crossref_primary_10_1038_nri3531
crossref_primary_10_1038_s41598_017_04484_0
crossref_primary_10_1002_adma_201102313
crossref_primary_10_1002_mrm_22613
crossref_primary_10_1002_adfm_202207626
crossref_primary_10_1016_j_addr_2010_08_009
crossref_primary_10_1039_c0mb00198h
crossref_primary_10_1371_journal_pone_0125291
Cites_doi 10.1016/S1074-7613(00)80248-4
10.1002/mrm.20701
10.1016/j.immuni.2006.04.017
10.1084/jem.20030448
10.1084/jem.20021598
10.1038/nbt1121
10.1038/nm1100
10.1081/CNV-120025091
10.1016/j.coi.2005.01.004
10.1038/nbt1154
10.1084/jem.188.6.1075
10.1038/ni962
10.1182/blood-2007-11-120998
10.1126/science.7513904
10.1038/nm1039
10.4049/jimmunol.171.11.6275
10.1084/jem.194.6.707
10.1016/j.imbio.2006.05.011
10.1200/JCO.2003.06.041
10.1016/S0076-6879(04)86013-0
10.1084/jem.186.2.239
10.1002/eji.200535742
10.1084/jem.191.3.541
10.1016/S0952-7915(02)00009-2
10.1002/nbm.924
10.1007/s00259-002-1001-4
10.1038/nri1842
10.1073/pnas.90.8.3539
10.1016/S1074-7613(03)00175-4
10.1016/S1074-7613(00)00076-5
10.1084/jem.179.4.1215
10.1038/nbt1201-1141
ContentType Journal Article
Copyright 2009 INIST-CNRS
2009 American Association for Cancer Research. 2009
Copyright_xml – notice: 2009 INIST-CNRS
– notice: 2009 American Association for Cancer Research. 2009
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/0008-5472.CAN-08-3691
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 3187
ExternalDocumentID PMC3031988
19276358
21678507
10_1158_0008_5472_CAN_08_3691
Genre Journal Article
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01 DA026299
GroupedDBID ---
-ET
.55
18M
29B
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
6J9
8WZ
A6W
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFHIN
AFOSN
AFRAH
AFUMD
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OHT
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
UDS
VH1
W2D
W8F
WH7
WOQ
X7M
XJT
YKV
YZZ
ZCG
.GJ
ADNWM
D0S
IQODW
J5H
MVM
WHG
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c468t-54d34b579fb74927d87b463f6375371f80564863b3c7007fe011b5d7bfc7b90d3
ISSN 0008-5472
1538-7445
IngestDate Thu Aug 21 18:26:18 EDT 2025
Thu Jul 10 19:32:42 EDT 2025
Mon Jul 21 05:29:00 EDT 2025
Mon Jul 21 09:14:21 EDT 2025
Tue Jul 01 03:44:37 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Performance evaluation
Dendritic cell
Tumor associated antigen
Lymph node
Rodentia
Method
Route of administration
Nuclear magnetic resonance imaging
Capture
In vivo
Vertebrata
Mammalia
Mouse
Antigen presenting cell
Animal
Application method
Technique
Tumor cell
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c468t-54d34b579fb74927d87b463f6375371f80564863b3c7007fe011b5d7bfc7b90d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aacrjournals.org/cancerres/article-pdf/69/7/3180/2624275/3180.pdf
PMID 19276358
PQID 67106140
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3031988
proquest_miscellaneous_67106140
pubmed_primary_19276358
pascalfrancis_primary_21678507
crossref_primary_10_1158_0008_5472_CAN_08_3691
crossref_citationtrail_10_1158_0008_5472_CAN_08_3691
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-04-01
PublicationDateYYYYMMDD 2009-04-01
PublicationDate_xml – month: 04
  year: 2009
  text: 2009-04-01
  day: 01
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2009
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 2022061701491725000_B29
2022061701491725000_B28
2022061701491725000_B1
2022061701491725000_B30
2022061701491725000_B7
2022061701491725000_B10
2022061701491725000_B32
2022061701491725000_B6
2022061701491725000_B31
2022061701491725000_B9
2022061701491725000_B12
2022061701491725000_B8
2022061701491725000_B11
2022061701491725000_B33
2022061701491725000_B3
2022061701491725000_B14
2022061701491725000_B2
2022061701491725000_B13
2022061701491725000_B5
2022061701491725000_B16
2022061701491725000_B4
2022061701491725000_B15
2022061701491725000_B18
2022061701491725000_B17
2022061701491725000_B19
2022061701491725000_B21
2022061701491725000_B20
2022061701491725000_B23
2022061701491725000_B22
2022061701491725000_B25
2022061701491725000_B24
2022061701491725000_B27
2022061701491725000_B26
References_xml – ident: 2022061701491725000_B17
  doi: 10.1016/S1074-7613(00)80248-4
– ident: 2022061701491725000_B23
  doi: 10.1002/mrm.20701
– ident: 2022061701491725000_B27
  doi: 10.1016/j.immuni.2006.04.017
– ident: 2022061701491725000_B5
  doi: 10.1084/jem.20030448
– ident: 2022061701491725000_B8
  doi: 10.1084/jem.20021598
– ident: 2022061701491725000_B12
  doi: 10.1038/nbt1121
– ident: 2022061701491725000_B4
  doi: 10.1038/nm1100
– ident: 2022061701491725000_B3
  doi: 10.1081/CNV-120025091
– ident: 2022061701491725000_B11
  doi: 10.1016/j.coi.2005.01.004
– ident: 2022061701491725000_B15
  doi: 10.1038/nbt1154
– ident: 2022061701491725000_B32
  doi: 10.1084/jem.188.6.1075
– ident: 2022061701491725000_B33
  doi: 10.1038/ni962
– ident: 2022061701491725000_B21
  doi: 10.1182/blood-2007-11-120998
– ident: 2022061701491725000_B18
  doi: 10.1126/science.7513904
– ident: 2022061701491725000_B16
  doi: 10.1038/nm1039
– ident: 2022061701491725000_B28
  doi: 10.4049/jimmunol.171.11.6275
– ident: 2022061701491725000_B9
  doi: 10.1084/jem.194.6.707
– ident: 2022061701491725000_B31
– ident: 2022061701491725000_B29
  doi: 10.1016/j.imbio.2006.05.011
– ident: 2022061701491725000_B2
  doi: 10.1200/JCO.2003.06.041
– ident: 2022061701491725000_B24
  doi: 10.1016/S0076-6879(04)86013-0
– ident: 2022061701491725000_B10
  doi: 10.1084/jem.186.2.239
– ident: 2022061701491725000_B13
  doi: 10.1002/eji.200535742
– ident: 2022061701491725000_B26
  doi: 10.1084/jem.191.3.541
– ident: 2022061701491725000_B6
  doi: 10.1016/S0952-7915(02)00009-2
– ident: 2022061701491725000_B14
  doi: 10.1002/nbm.924
– ident: 2022061701491725000_B30
  doi: 10.1007/s00259-002-1001-4
– ident: 2022061701491725000_B1
  doi: 10.1038/nri1842
– ident: 2022061701491725000_B19
  doi: 10.1073/pnas.90.8.3539
– ident: 2022061701491725000_B20
  doi: 10.1016/S1074-7613(03)00175-4
– ident: 2022061701491725000_B7
  doi: 10.1016/S1074-7613(00)00076-5
– ident: 2022061701491725000_B22
  doi: 10.1084/jem.179.4.1215
– ident: 2022061701491725000_B25
  doi: 10.1038/nbt1201-1141
SSID ssj0005105
Score 2.2505097
Snippet A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3180
SubjectTerms Adjuvants, Immunologic - pharmacology
Aminoquinolines - pharmacology
Animals
Antigen Presentation
Antineoplastic agents
Biological and medical sciences
Cancer Vaccines - immunology
Cancer Vaccines - pharmacology
Dendritic Cells - immunology
Female
Ferric Compounds - administration & dosage
Ferric Compounds - analysis
Granulocyte-Macrophage Colony-Stimulating Factor - immunology
Image Processing, Computer-Assisted
Imiquimod
Lymph Nodes - immunology
Magnetic Resonance Imaging - methods
Magnetics - methods
Medical sciences
Melanoma, Experimental - immunology
Melanoma, Experimental - metabolism
Melanoma, Experimental - therapy
Mice
Mice, Inbred C57BL
Pharmacology. Drug treatments
Tumors
Title Magnetovaccination as a Novel Method to Assess and Quantify Dendritic Cell Tumor Antigen Capture and Delivery to Lymph Nodes
URI https://www.ncbi.nlm.nih.gov/pubmed/19276358
https://www.proquest.com/docview/67106140
https://pubmed.ncbi.nlm.nih.gov/PMC3031988
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEkhHhTHosP3KKEtnFi97h0QV1oK5C6Ym-R4zh0RZtUbbJSEb-SX8T4kUehErCXKE3iOM18Gc-MP88g9NqnMHCnMTg5XEiXyDhw2bAnXBZI5ksqfa5JNNNZOD4nHy6Ci07nZ4u1VBaxJ74fXFdyHanCMZCrWiX7H5KtbwoHYB_kC1uQMGz_ScZT_jWTRX7Fhbg0UT1VNoY7s_xKE1ZVcWhlXJqZXT1P8Lnkih60A0WTJbrMgTNS4bt5uco3KpWAys7pjPi6nlk4lUvF3dBW6mQHwofbJ5Z52KQ4EHLj2MRBCz0zbCgeWgUtl14r4DCxJOBWWgNn6lVndRlhzjcL-AtaIY45jATfpPPFay56Wy5NVT89Pd0-M4FxvrDx4PGOr5wzby-uMWzRYSpdzdyAmMI-nmzUMyUmAWWlv02pF4tT2lLGoK56rYEdftLDg0bADMvS9OeNTmY6ahyaOmItIK1XGklgFas8fqwZQ2tm46fpyFcLwxi7gW4OwHVRVTVOzz42tCNLq616s6vK4BneHHwCndXWdLdnOt1Z8y18xakpv3LIP_qd5tuym-b30F3r8OATg977qCOzB-jW1FI6HqIff4IY8y3mWIMYGxDjIscGxBggiSsQ4xrEWIEYaxBjC2JsQaxbVCBWN9IgxhrEj9D5-3fz0di1JUFcQUJWwNtJfBIHFNQLJfBaEkZjEvpp6IPbTfspA3uesNCPfQFKiKYShq84SGicChoPe4n_GB1leSafIizgokAl9kqSmPR5MhQ0ZQMRsHSol6t3EanediRsvnxVtmUZab85YIq3wSIlrwjkFcG-klcXeXWztUkY87cGx3uirFsN-mBIgrvWRa8q2Uag-9WEHs9kXm6jkOqATq-LnhhJNz1ayHQR3cNAfYHKKr9_Jrtc6OzyFr7Prt3yObrdfM8v0FGxKeVLsNyL-Fh_Cr8Apg_qCg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetovaccination+as+a+Novel+Method+to+Assess+and+Quantify+Dendritic+Cell+Tumor+Antigen+Capture+and+Delivery+to+Lymph+Nodes&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Long%2C+Christopher+M.&rft.au=van+Laarhoven%2C+Hanneke+W.M.&rft.au=Bulte%2C+Jeff+W.M.&rft.au=Levitsky%2C+Hyam+I.&rft.date=2009-04-01&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=69&rft.issue=7&rft.spage=3180&rft.epage=3187&rft_id=info:doi/10.1158%2F0008-5472.CAN-08-3691&rft_id=info%3Apmid%2F19276358&rft.externalDocID=PMC3031988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon