Magnetovaccination as a Novel Method to Assess and Quantify Dendritic Cell Tumor Antigen Capture and Delivery to Lymph Nodes
A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 69; no. 7; pp. 3180 - 3187 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.04.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0008-5472 1538-7445 1538-7445 |
DOI | 10.1158/0008-5472.CAN-08-3691 |
Cover
Loading…
Abstract | A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use of cellular magnetic resonance (MR) imaging (MRI) is a promising approach for this purpose; however, cellular imaging currently requires ex vivo prelabeling of cells with contrast agents followed by reintroduction of cells into the subject being monitored. Here, we describe an in vivo labeling method, which relies upon cell-to-cell transfer of superparamagnetic iron oxide (SPIO) from tumor cells to endogenous APCs, in situ, to quantify APC delivery to LNs in a tumor vaccine model. Mice were immunized with a tumor cell–based vaccine that was irradiated and labeled with SPIO. APCs that had captured SPIO were imaged over time as they accumulated in LNs. We show here that MRI is capable of monitoring, in vivo, the trafficking of magnetically labeled APCs inducing a tumor-specific immune response, and that these cells can be magnetically recovered ex vivo. Excellent correlation was observed between in vivo and ex vivo quantification of APCs, with resolution sufficient to detect increased APC trafficking elicited by an adjuvant. This study shows the potential of magnetovaccination and MRI cell tracking to systematically evaluate a key parameter relevant to the optimization of vaccine therapies through noninvasive MRI-based quantification of APC numbers. [Cancer Res 2009;69(7):3180–7] |
---|---|
AbstractList | A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use of cellular magnetic resonance (MR) imaging (MRI) is a promising approach for this purpose; however, cellular imaging currently requires ex vivo prelabeling of cells with contrast agents followed by reintroduction of cells into the subject being monitored. Here, we describe an in vivo labeling method, which relies upon cell-to-cell transfer of superparamagnetic iron oxide (SPIO) from tumor cells to endogenous APCs, in situ, to quantify APC delivery to LNs in a tumor vaccine model. Mice were immunized with a tumor cell-based vaccine that was irradiated and labeled with SPIO. APCs that had captured SPIO were imaged over time as they accumulated in LNs. We show here that MRI is capable of monitoring, in vivo, the trafficking of magnetically labeled APCs inducing a tumor-specific immune response, and that these cells can be magnetically recovered ex vivo. Excellent correlation was observed between in vivo and ex vivo quantification of APCs, with resolution sufficient to detect increased APC trafficking elicited by an adjuvant. This study shows the potential of magnetovaccination and MRI cell tracking to systematically evaluate a key parameter relevant to the optimization of vaccine therapies through noninvasive MRI-based quantification of APC numbers.A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use of cellular magnetic resonance (MR) imaging (MRI) is a promising approach for this purpose; however, cellular imaging currently requires ex vivo prelabeling of cells with contrast agents followed by reintroduction of cells into the subject being monitored. Here, we describe an in vivo labeling method, which relies upon cell-to-cell transfer of superparamagnetic iron oxide (SPIO) from tumor cells to endogenous APCs, in situ, to quantify APC delivery to LNs in a tumor vaccine model. Mice were immunized with a tumor cell-based vaccine that was irradiated and labeled with SPIO. APCs that had captured SPIO were imaged over time as they accumulated in LNs. We show here that MRI is capable of monitoring, in vivo, the trafficking of magnetically labeled APCs inducing a tumor-specific immune response, and that these cells can be magnetically recovered ex vivo. Excellent correlation was observed between in vivo and ex vivo quantification of APCs, with resolution sufficient to detect increased APC trafficking elicited by an adjuvant. This study shows the potential of magnetovaccination and MRI cell tracking to systematically evaluate a key parameter relevant to the optimization of vaccine therapies through noninvasive MRI-based quantification of APC numbers. A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use of cellular magnetic resonance (MR) imaging (MRI) is a promising approach for this purpose; however, cellular imaging currently requires ex vivo prelabeling of cells with contrast agents followed by reintroduction of cells into the subject being monitored. Here, we describe an in vivo labeling method, which relies upon cell-to-cell transfer of superparamagnetic iron oxide (SPIO) from tumor cells to endogenous APCs, in situ, to quantify APC delivery to LNs in a tumor vaccine model. Mice were immunized with a tumor cell-based vaccine that was irradiated and labeled with SPIO. APCs that had captured SPIO were imaged over time as they accumulated in LNs. We show here that MRI is capable of monitoring, in vivo, the trafficking of magnetically labeled APCs inducing a tumor-specific immune response, and that these cells can be magnetically recovered ex vivo. Excellent correlation was observed between in vivo and ex vivo quantification of APCs, with resolution sufficient to detect increased APC trafficking elicited by an adjuvant. This study shows the potential of magnetovaccination and MRI cell tracking to systematically evaluate a key parameter relevant to the optimization of vaccine therapies through noninvasive MRI-based quantification of APC numbers. A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use of cellular magnetic resonance (MR) imaging (MRI) is a promising approach for this purpose; however, cellular imaging currently requires ex vivo prelabeling of cells with contrast agents followed by reintroduction of cells into the subject being monitored. Here, we describe an in vivo labeling method, which relies upon cell-to-cell transfer of superparamagnetic iron oxide (SPIO) from tumor cells to endogenous APCs, in situ, to quantify APC delivery to LNs in a tumor vaccine model. Mice were immunized with a tumor cell–based vaccine that was irradiated and labeled with SPIO. APCs that had captured SPIO were imaged over time as they accumulated in LNs. We show here that MRI is capable of monitoring, in vivo, the trafficking of magnetically labeled APCs inducing a tumor-specific immune response, and that these cells can be magnetically recovered ex vivo. Excellent correlation was observed between in vivo and ex vivo quantification of APCs, with resolution sufficient to detect increased APC trafficking elicited by an adjuvant. This study shows the potential of magnetovaccination and MRI cell tracking to systematically evaluate a key parameter relevant to the optimization of vaccine therapies through noninvasive MRI-based quantification of APC numbers. [Cancer Res 2009;69(7):3180–7] A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to draining lymph nodes (LN). Currently, a quantitative noninvasive technique for monitoring in vivo antigen capture and delivery is lacking. The use of cellular magnetic resonance (MR) imaging (MRI) is a promising approach for this purpose; however, cellular imaging currently requires ex vivo prelabeling of cells with contrast agents followed by reintroduction of cells into the subject being monitored. Here, we describe an in vivo labeling method, which relies upon cell-to-cell transfer of super-paramagnetic iron oxide (SPIO) from tumor cells to endogenous APCs, in situ , to quantify APC delivery to LNs in a tumor vaccine model. Mice were immunized with a tumor cell–based vaccine that was irradiated and labeled with SPIO. APCs that had captured SPIO were imaged over time as they accumulated in LNs. We show here that MRI is capable of monitoring, in vivo , the trafficking of magnetically labeled APCs inducing a tumor-specific immune response, and that these cells can be magnetically recovered ex vivo . Excellent correlation was observed between in vivo and ex vivo quantification of APCs, with resolution sufficient to detect increased APC trafficking elicited by an adjuvant. This study shows the potential of magnetovaccination and MRI cell tracking to systematically evaluate a key parameter relevant to the optimization of vaccine therapies through noninvasive MRI-based quantification of APC numbers. |
Author | Long, Christopher M. Levitsky, Hyam I. van Laarhoven, Hanneke W.M. Bulte, Jeff W.M. |
AuthorAffiliation | 4 Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine Baltimore, Maryland 1 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 6 Department of Medical Oncology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands 3 Russel H. Morgan Department of Radiology, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 5 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, Maryland 2 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland |
AuthorAffiliation_xml | – name: 4 Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine Baltimore, Maryland – name: 3 Russel H. Morgan Department of Radiology, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland – name: 1 Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland – name: 2 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland – name: 5 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, Maryland – name: 6 Department of Medical Oncology, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands |
Author_xml | – sequence: 1 givenname: Christopher M. surname: Long fullname: Long, Christopher M. – sequence: 2 givenname: Hanneke W.M. surname: van Laarhoven fullname: van Laarhoven, Hanneke W.M. – sequence: 3 givenname: Jeff W.M. surname: Bulte fullname: Bulte, Jeff W.M. – sequence: 4 givenname: Hyam I. surname: Levitsky fullname: Levitsky, Hyam I. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21678507$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19276358$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkttuEzEQhi1URNPCI4B8A3db7Pi4QkKKtpyktAipXFterzcx2rWD7Y0UiYfH24ZwuOHKY833_-PxzAU488FbAJ5jdIUxk68RQrJiVCyvmtVtVWLCa_wILDAjshKUsjOwODHn4CKlb-XKMGJPwDmul4ITJhfgx43eeJvDXhvjvM4ueKgT1PA27O0Ab2zehg7mAFcp2VQSvoNfJu2z6w_w2vouuuwMbOwwwLtpDBGuSm5jPWz0Lk_R3iuu7eD2Nh5mo_Vh3G2LfWfTU_C410Oyz47nJfj6_t1d87Faf_7wqVmtK0O5zKWDjtCWibpvBS0v76RoKSc9J4IRgXuJGKeSk5YYgZDoLcK4ZZ1oeyPaGnXkErx98N1N7Wg7Y32OelC76EYdDypop_7OeLdVm7BXBBFcS1kMXh0NYvg-2ZTV6JIpPWtvw5QUFxhxTFEBX_xZ6VTi14cX4OUR0MnooY_aG5dO3BJzIRkShWMPnIkhpWj731ZIzQug5uGqebiqLIAq8bwARffmH51x-X6spTE3_Ef9EygBtq4 |
CODEN | CNREA8 |
CitedBy_id | crossref_primary_10_1007_s11307_021_01647_4 crossref_primary_10_1002_wnan_1227 crossref_primary_10_1007_s11434_016_1038_6 crossref_primary_10_1016_j_actbio_2012_08_038 crossref_primary_10_1097_CM9_0000000000002525 crossref_primary_10_1016_j_addr_2023_114865 crossref_primary_10_1002_nbm_1788 crossref_primary_10_3923_jms_2012_256_266 crossref_primary_10_1371_journal_pone_0038350 crossref_primary_10_2217_nnm_11_147 crossref_primary_10_1016_j_biomaterials_2014_10_043 crossref_primary_10_1158_1078_0432_CCR_10_3262 crossref_primary_10_2310_7290_2011_00045 crossref_primary_10_1111_pim_12315 crossref_primary_10_1021_nl3010308 crossref_primary_10_2174_1573413717666210708162149 crossref_primary_10_1002_eji_201344337 crossref_primary_10_1021_acs_chemrev_8b00363 crossref_primary_10_1016_j_ijpharm_2018_03_029 crossref_primary_10_1158_0008_5472_CAN_13_2685 crossref_primary_10_1158_0008_5472_CAN_14_0820 crossref_primary_10_3389_fmed_2020_00034 crossref_primary_10_2463_mrms_10_219 crossref_primary_10_1586_erv_09_100 crossref_primary_10_1007_s00018_012_1159_2 crossref_primary_10_4137_MRI_S23557 crossref_primary_10_1002_mrm_22313 crossref_primary_10_1002_nbm_1774 crossref_primary_10_2217_fnl_13_77 crossref_primary_10_1371_journal_pone_0019662 crossref_primary_10_3389_fimmu_2017_00774 crossref_primary_10_1007_s11307_022_01738_w crossref_primary_10_1007_s11307_019_01393_8 crossref_primary_10_1021_cr500314d crossref_primary_10_1002_cmmi_481 crossref_primary_10_1002_wnan_1169 crossref_primary_10_1016_j_molimm_2014_08_006 crossref_primary_10_1007_s00109_011_0764_0 crossref_primary_10_3389_fonc_2022_933125 crossref_primary_10_1007_s11307_010_0403_0 crossref_primary_10_2967_jnumed_118_213348 crossref_primary_10_2214_AJR_09_3107 crossref_primary_10_1097_RMR_0000000000000101 crossref_primary_10_1002_mrm_26708 crossref_primary_10_1038_nrclinonc_2011_141 crossref_primary_10_2217_imt_12_76 crossref_primary_10_1002_cmmi_433 crossref_primary_10_1155_2013_349408 crossref_primary_10_1038_nnano_2011_149 crossref_primary_10_1148_radiol_14142331 crossref_primary_10_1158_1078_0432_CCR_09_2046 crossref_primary_10_2967_jnumed_109_068130 crossref_primary_10_1007_s11095_012_0679_7 crossref_primary_10_1016_j_jcyt_2013_09_006 crossref_primary_10_1002_mrm_24271 crossref_primary_10_1002_smll_202406950 crossref_primary_10_1002_mrm_23100 crossref_primary_10_1038_nri3531 crossref_primary_10_1038_s41598_017_04484_0 crossref_primary_10_1002_adma_201102313 crossref_primary_10_1002_mrm_22613 crossref_primary_10_1002_adfm_202207626 crossref_primary_10_1016_j_addr_2010_08_009 crossref_primary_10_1039_c0mb00198h crossref_primary_10_1371_journal_pone_0125291 |
Cites_doi | 10.1016/S1074-7613(00)80248-4 10.1002/mrm.20701 10.1016/j.immuni.2006.04.017 10.1084/jem.20030448 10.1084/jem.20021598 10.1038/nbt1121 10.1038/nm1100 10.1081/CNV-120025091 10.1016/j.coi.2005.01.004 10.1038/nbt1154 10.1084/jem.188.6.1075 10.1038/ni962 10.1182/blood-2007-11-120998 10.1126/science.7513904 10.1038/nm1039 10.4049/jimmunol.171.11.6275 10.1084/jem.194.6.707 10.1016/j.imbio.2006.05.011 10.1200/JCO.2003.06.041 10.1016/S0076-6879(04)86013-0 10.1084/jem.186.2.239 10.1002/eji.200535742 10.1084/jem.191.3.541 10.1016/S0952-7915(02)00009-2 10.1002/nbm.924 10.1007/s00259-002-1001-4 10.1038/nri1842 10.1073/pnas.90.8.3539 10.1016/S1074-7613(03)00175-4 10.1016/S1074-7613(00)00076-5 10.1084/jem.179.4.1215 10.1038/nbt1201-1141 |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS 2009 American Association for Cancer Research. 2009 |
Copyright_xml | – notice: 2009 INIST-CNRS – notice: 2009 American Association for Cancer Research. 2009 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/0008-5472.CAN-08-3691 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 3187 |
ExternalDocumentID | PMC3031988 19276358 21678507 10_1158_0008_5472_CAN_08_3691 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R01 DA026299 |
GroupedDBID | --- -ET .55 18M 29B 2WC 34G 39C 3O- 53G 5GY 5RE 5VS 6J9 8WZ A6W AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW AENEX AETEA AFFNX AFHIN AFOSN AFRAH AFUMD AI. ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OHT OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 UDS VH1 W2D W8F WH7 WOQ X7M XJT YKV YZZ ZCG .GJ ADNWM D0S IQODW J5H MVM WHG ZGI CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c468t-54d34b579fb74927d87b463f6375371f80564863b3c7007fe011b5d7bfc7b90d3 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Thu Aug 21 18:26:18 EDT 2025 Thu Jul 10 19:32:42 EDT 2025 Mon Jul 21 05:29:00 EDT 2025 Mon Jul 21 09:14:21 EDT 2025 Tue Jul 01 03:44:37 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Performance evaluation Dendritic cell Tumor associated antigen Lymph node Rodentia Method Route of administration Nuclear magnetic resonance imaging Capture In vivo Vertebrata Mammalia Mouse Antigen presenting cell Animal Application method Technique Tumor cell |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c468t-54d34b579fb74927d87b463f6375371f80564863b3c7007fe011b5d7bfc7b90d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://aacrjournals.org/cancerres/article-pdf/69/7/3180/2624275/3180.pdf |
PMID | 19276358 |
PQID | 67106140 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3031988 proquest_miscellaneous_67106140 pubmed_primary_19276358 pascalfrancis_primary_21678507 crossref_primary_10_1158_0008_5472_CAN_08_3691 crossref_citationtrail_10_1158_0008_5472_CAN_08_3691 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-04-01 |
PublicationDateYYYYMMDD | 2009-04-01 |
PublicationDate_xml | – month: 04 year: 2009 text: 2009-04-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2009 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061701491725000_B29 2022061701491725000_B28 2022061701491725000_B1 2022061701491725000_B30 2022061701491725000_B7 2022061701491725000_B10 2022061701491725000_B32 2022061701491725000_B6 2022061701491725000_B31 2022061701491725000_B9 2022061701491725000_B12 2022061701491725000_B8 2022061701491725000_B11 2022061701491725000_B33 2022061701491725000_B3 2022061701491725000_B14 2022061701491725000_B2 2022061701491725000_B13 2022061701491725000_B5 2022061701491725000_B16 2022061701491725000_B4 2022061701491725000_B15 2022061701491725000_B18 2022061701491725000_B17 2022061701491725000_B19 2022061701491725000_B21 2022061701491725000_B20 2022061701491725000_B23 2022061701491725000_B22 2022061701491725000_B25 2022061701491725000_B24 2022061701491725000_B27 2022061701491725000_B26 |
References_xml | – ident: 2022061701491725000_B17 doi: 10.1016/S1074-7613(00)80248-4 – ident: 2022061701491725000_B23 doi: 10.1002/mrm.20701 – ident: 2022061701491725000_B27 doi: 10.1016/j.immuni.2006.04.017 – ident: 2022061701491725000_B5 doi: 10.1084/jem.20030448 – ident: 2022061701491725000_B8 doi: 10.1084/jem.20021598 – ident: 2022061701491725000_B12 doi: 10.1038/nbt1121 – ident: 2022061701491725000_B4 doi: 10.1038/nm1100 – ident: 2022061701491725000_B3 doi: 10.1081/CNV-120025091 – ident: 2022061701491725000_B11 doi: 10.1016/j.coi.2005.01.004 – ident: 2022061701491725000_B15 doi: 10.1038/nbt1154 – ident: 2022061701491725000_B32 doi: 10.1084/jem.188.6.1075 – ident: 2022061701491725000_B33 doi: 10.1038/ni962 – ident: 2022061701491725000_B21 doi: 10.1182/blood-2007-11-120998 – ident: 2022061701491725000_B18 doi: 10.1126/science.7513904 – ident: 2022061701491725000_B16 doi: 10.1038/nm1039 – ident: 2022061701491725000_B28 doi: 10.4049/jimmunol.171.11.6275 – ident: 2022061701491725000_B9 doi: 10.1084/jem.194.6.707 – ident: 2022061701491725000_B31 – ident: 2022061701491725000_B29 doi: 10.1016/j.imbio.2006.05.011 – ident: 2022061701491725000_B2 doi: 10.1200/JCO.2003.06.041 – ident: 2022061701491725000_B24 doi: 10.1016/S0076-6879(04)86013-0 – ident: 2022061701491725000_B10 doi: 10.1084/jem.186.2.239 – ident: 2022061701491725000_B13 doi: 10.1002/eji.200535742 – ident: 2022061701491725000_B26 doi: 10.1084/jem.191.3.541 – ident: 2022061701491725000_B6 doi: 10.1016/S0952-7915(02)00009-2 – ident: 2022061701491725000_B14 doi: 10.1002/nbm.924 – ident: 2022061701491725000_B30 doi: 10.1007/s00259-002-1001-4 – ident: 2022061701491725000_B1 doi: 10.1038/nri1842 – ident: 2022061701491725000_B19 doi: 10.1073/pnas.90.8.3539 – ident: 2022061701491725000_B20 doi: 10.1016/S1074-7613(03)00175-4 – ident: 2022061701491725000_B7 doi: 10.1016/S1074-7613(00)00076-5 – ident: 2022061701491725000_B22 doi: 10.1084/jem.179.4.1215 – ident: 2022061701491725000_B25 doi: 10.1038/nbt1201-1141 |
SSID | ssj0005105 |
Score | 2.2505097 |
Snippet | A major parameter limiting immune responses to vaccination is the number of activated antigen-presenting cells (APC) that capture antigen and migrate to... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3180 |
SubjectTerms | Adjuvants, Immunologic - pharmacology Aminoquinolines - pharmacology Animals Antigen Presentation Antineoplastic agents Biological and medical sciences Cancer Vaccines - immunology Cancer Vaccines - pharmacology Dendritic Cells - immunology Female Ferric Compounds - administration & dosage Ferric Compounds - analysis Granulocyte-Macrophage Colony-Stimulating Factor - immunology Image Processing, Computer-Assisted Imiquimod Lymph Nodes - immunology Magnetic Resonance Imaging - methods Magnetics - methods Medical sciences Melanoma, Experimental - immunology Melanoma, Experimental - metabolism Melanoma, Experimental - therapy Mice Mice, Inbred C57BL Pharmacology. Drug treatments Tumors |
Title | Magnetovaccination as a Novel Method to Assess and Quantify Dendritic Cell Tumor Antigen Capture and Delivery to Lymph Nodes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19276358 https://www.proquest.com/docview/67106140 https://pubmed.ncbi.nlm.nih.gov/PMC3031988 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEkhHhTHosP3KKEtnFi97h0QV1oK5C6Ym-R4zh0RZtUbbJSEb-SX8T4kUehErCXKE3iOM18Gc-MP88g9NqnMHCnMTg5XEiXyDhw2bAnXBZI5ksqfa5JNNNZOD4nHy6Ci07nZ4u1VBaxJ74fXFdyHanCMZCrWiX7H5KtbwoHYB_kC1uQMGz_ScZT_jWTRX7Fhbg0UT1VNoY7s_xKE1ZVcWhlXJqZXT1P8Lnkih60A0WTJbrMgTNS4bt5uco3KpWAys7pjPi6nlk4lUvF3dBW6mQHwofbJ5Z52KQ4EHLj2MRBCz0zbCgeWgUtl14r4DCxJOBWWgNn6lVndRlhzjcL-AtaIY45jATfpPPFay56Wy5NVT89Pd0-M4FxvrDx4PGOr5wzby-uMWzRYSpdzdyAmMI-nmzUMyUmAWWlv02pF4tT2lLGoK56rYEdftLDg0bADMvS9OeNTmY6ahyaOmItIK1XGklgFas8fqwZQ2tm46fpyFcLwxi7gW4OwHVRVTVOzz42tCNLq616s6vK4BneHHwCndXWdLdnOt1Z8y18xakpv3LIP_qd5tuym-b30F3r8OATg977qCOzB-jW1FI6HqIff4IY8y3mWIMYGxDjIscGxBggiSsQ4xrEWIEYaxBjC2JsQaxbVCBWN9IgxhrEj9D5-3fz0di1JUFcQUJWwNtJfBIHFNQLJfBaEkZjEvpp6IPbTfspA3uesNCPfQFKiKYShq84SGicChoPe4n_GB1leSafIizgokAl9kqSmPR5MhQ0ZQMRsHSol6t3EanediRsvnxVtmUZab85YIq3wSIlrwjkFcG-klcXeXWztUkY87cGx3uirFsN-mBIgrvWRa8q2Uag-9WEHs9kXm6jkOqATq-LnhhJNz1ayHQR3cNAfYHKKr9_Jrtc6OzyFr7Prt3yObrdfM8v0FGxKeVLsNyL-Fh_Cr8Apg_qCg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetovaccination+as+a+Novel+Method+to+Assess+and+Quantify+Dendritic+Cell+Tumor+Antigen+Capture+and+Delivery+to+Lymph+Nodes&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Long%2C+Christopher+M.&rft.au=van+Laarhoven%2C+Hanneke+W.M.&rft.au=Bulte%2C+Jeff+W.M.&rft.au=Levitsky%2C+Hyam+I.&rft.date=2009-04-01&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=69&rft.issue=7&rft.spage=3180&rft.epage=3187&rft_id=info:doi/10.1158%2F0008-5472.CAN-08-3691&rft_id=info%3Apmid%2F19276358&rft.externalDocID=PMC3031988 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |