Eicosapentaenoic acid attenuates renal lipotoxicity by restoring autophagic flux

Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for the renovation of plasma and organelle membranes to maintain the integrity of the PTECs. However, this autophagic activation places a burden...

Full description

Saved in:
Bibliographic Details
Published inAutophagy Vol. 17; no. 7; pp. 1700 - 1713
Main Authors Yamamoto, Takeshi, Takabatake, Yoshitsugu, Minami, Satoshi, Sakai, Shinsuke, Fujimura, Ryuta, Takahashi, Atsushi, Namba-Hamano, Tomoko, Matsuda, Jun, Kimura, Tomonori, Matsui, Isao, Kaimori, Jun-Ya, Takeda, Hiroaki, Takahashi, Masatomo, Izumi, Yoshihiro, Bamba, Takeshi, Matsusaka, Taiji, Niimura, Fumio, Yanagita, Motoko, Isaka, Yoshitaka
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 03.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for the renovation of plasma and organelle membranes to maintain the integrity of the PTECs. However, this autophagic activation places a burden on the lysosomal system, leading to a downstream suppression of autophagy, which manifests as phospholipid accumulation and inadequate acidification in lysosomes. Here, we investigated whether pharmacological correction by eicosapentaenoic acid (EPA) supplementation could restore autophagic flux and alleviate renal lipotoxicity. EPA supplementation to high-fat diet (HFD)-fed mice reduced several hallmarks of lipotoxicity in the PTECs, such as phospholipid accumulation in the lysosome, mitochondrial dysfunction, inflammation, and fibrosis. In addition to improving the metabolic syndrome, EPA alleviated renal lipotoxicity via several mechanisms. EPA supplementation to HFD-fed mice or the isolated PTECs cultured in palmitic acid (PA) restored lysosomal function with significant improvements in the autophagic flux. The PA-induced redistribution of phospholipids from cellular membranes into lysosomes and the HFD-induced accumulation of SQSTM1/p62 (sequestosome 1), an autophagy substrate, during the temporal and genetic ablation of autophagy were significantly reduced by EPA, indicating that EPA attenuated the HFD-mediated increases in autophagy demand. Moreover, a fatty acid pulse-chase assay revealed that EPA promoted lipid droplet (LD) formation and transfer from LDs to the mitochondria for beta-oxidation. Noteworthy, the efficacy of EPA on lipotoxicity is autophagy-dependent and cell-intrinsic. In conclusion, EPA counteracts lipotoxicity in the proximal tubule by alleviating autophagic numbness, making it potentially suitable as a novel treatment for obesity-related kidney diseases. Abbreviations: 4-HNE: 4-hydroxy-2-nonenal; ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; ATG: autophagy-related; ATP: adenosine triphosphate; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; cKO: conditional knockout; CML: N-carboxymethyllysine; COL1A1: collagen type I alpha 1 chain; COX: cytochrome c oxidase; CTRL: control; DGAT: diacylglycerol O-acyltransferase; EPA: eicosapentaenoic acid; FA: fatty acid; FFA: free fatty acid; GFP: green fluorescent protein; HFD: high-fat diet; iKO: inducible knockout; IRI: ischemia-reperfusion injury; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor-related protein 2; MAP1LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleic acid; PAS: periodic-acid Schiff; PPAR: peroxisome proliferator activated receptor; PPARGC1/PGC1: peroxisome proliferator activated receptor, gamma, coactivator 1; PTEC: proximal tubular epithelial cell; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SDH: succinate dehydrogenase complex; SFC/MS/MS: supercritical fluid chromatography triple quadrupole mass spectrometry; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TG: triglyceride; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.
AbstractList Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for the renovation of plasma and organelle membranes to maintain the integrity of the PTECs. However, this autophagic activation places a burden on the lysosomal system, leading to a downstream suppression of autophagy, which manifests as phospholipid accumulation and inadequate acidification in lysosomes. Here, we investigated whether pharmacological correction by eicosapentaenoic acid (EPA) supplementation could restore autophagic flux and alleviate renal lipotoxicity. EPA supplementation to high-fat diet (HFD)-fed mice reduced several hallmarks of lipotoxicity in the PTECs, such as phospholipid accumulation in the lysosome, mitochondrial dysfunction, inflammation, and fibrosis. In addition to improving the metabolic syndrome, EPA alleviated renal lipotoxicity via several mechanisms. EPA supplementation to HFD-fed mice or the isolated PTECs cultured in palmitic acid (PA) restored lysosomal function with significant improvements in the autophagic flux. The PA-induced redistribution of phospholipids from cellular membranes into lysosomes and the HFD-induced accumulation of SQSTM1/p62 (sequestosome 1), an autophagy substrate, during the temporal and genetic ablation of autophagy were significantly reduced by EPA, indicating that EPA attenuated the HFD-mediated increases in autophagy demand. Moreover, a fatty acid pulse-chase assay revealed that EPA promoted lipid droplet (LD) formation and transfer from LDs to the mitochondria for beta-oxidation. Noteworthy, the efficacy of EPA on lipotoxicity is autophagy-dependent and cell-intrinsic. In conclusion, EPA counteracts lipotoxicity in the proximal tubule by alleviating autophagic numbness, making it potentially suitable as a novel treatment for obesity-related kidney diseases. Abbreviations: 4-HNE: 4-hydroxy-2-nonenal; ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; ATG: autophagy-related; ATP: adenosine triphosphate; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; cKO: conditional knockout; CML: N-carboxymethyllysine; COL1A1: collagen type I alpha 1 chain; COX: cytochrome c oxidase; CTRL: control; DGAT: diacylglycerol O-acyltransferase; EPA: eicosapentaenoic acid; FA: fatty acid; FFA: free fatty acid; GFP: green fluorescent protein; HFD: high-fat diet; iKO: inducible knockout; IRI: ischemia-reperfusion injury; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor-related protein 2; MAP1LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleic acid; PAS: periodic-acid Schiff; PPAR: peroxisome proliferator activated receptor; PPARGC1/PGC1: peroxisome proliferator activated receptor, gamma, coactivator 1; PTEC: proximal tubular epithelial cell; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SDH: succinate dehydrogenase complex; SFC/MS/MS: supercritical fluid chromatography triple quadrupole mass spectrometry; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TG: triglyceride; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.
Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for the renovation of plasma and organelle membranes to maintain the integrity of the PTECs. However, this autophagic activation places a burden on the lysosomal system, leading to a downstream suppression of autophagy, which manifests as phospholipid accumulation and inadequate acidification in lysosomes. Here, we investigated whether pharmacological correction by eicosapentaenoic acid (EPA) supplementation could restore autophagic flux and alleviate renal lipotoxicity. EPA supplementation to high-fat diet (HFD)-fed mice reduced several hallmarks of lipotoxicity in the PTECs, such as phospholipid accumulation in the lysosome, mitochondrial dysfunction, inflammation, and fibrosis. In addition to improving the metabolic syndrome, EPA alleviated renal lipotoxicity via several mechanisms. EPA supplementation to HFD-fed mice or the isolated PTECs cultured in palmitic acid (PA) restored lysosomal function with significant improvements in the autophagic flux. The PA-induced redistribution of phospholipids from cellular membranes into lysosomes and the HFD-induced accumulation of SQSTM1/p62 (sequestosome 1), an autophagy substrate, during the temporal and genetic ablation of autophagy were significantly reduced by EPA, indicating that EPA attenuated the HFD-mediated increases in autophagy demand. Moreover, a fatty acid pulse-chase assay revealed that EPA promoted lipid droplet (LD) formation and transfer from LDs to the mitochondria for beta-oxidation. Noteworthy, the efficacy of EPA on lipotoxicity is autophagy-dependent and cell-intrinsic. In conclusion, EPA counteracts lipotoxicity in the proximal tubule by alleviating autophagic numbness, making it potentially suitable as a novel treatment for obesity-related kidney diseases. 4-HNE: 4-hydroxy-2-nonenal; ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; ATG: autophagy-related; ATP: adenosine triphosphate; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; cKO: conditional knockout; CML: N-carboxymethyllysine; COL1A1: collagen type I alpha 1 chain; COX: cytochrome c oxidase; CTRL: control; DGAT: diacylglycerol O-acyltransferase; EPA: eicosapentaenoic acid; FA: fatty acid; FFA: free fatty acid; GFP: green fluorescent protein; HFD: high-fat diet; iKO: inducible knockout; IRI: ischemia-reperfusion injury; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor-related protein 2; MAP1LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleic acid; PAS: periodic-acid Schiff; PPAR: peroxisome proliferator activated receptor; PPARGC1/PGC1: peroxisome proliferator activated receptor, gamma, coactivator 1; PTEC: proximal tubular epithelial cell; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SDH: succinate dehydrogenase complex; SFC/MS/MS: supercritical fluid chromatography triple quadrupole mass spectrometry; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TG: triglyceride; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.
Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for the renovation of plasma and organelle membranes to maintain the integrity of the PTECs. However, this autophagic activation places a burden on the lysosomal system, leading to a downstream suppression of autophagy, which manifests as phospholipid accumulation and inadequate acidification in lysosomes. Here, we investigated whether pharmacological correction by eicosapentaenoic acid (EPA) supplementation could restore autophagic flux and alleviate renal lipotoxicity. EPA supplementation to high-fat diet (HFD)-fed mice reduced several hallmarks of lipotoxicity in the PTECs, such as phospholipid accumulation in the lysosome, mitochondrial dysfunction, inflammation, and fibrosis. In addition to improving the metabolic syndrome, EPA alleviated renal lipotoxicity via several mechanisms. EPA supplementation to HFD-fed mice or the isolated PTECs cultured in palmitic acid (PA) restored lysosomal function with significant improvements in the autophagic flux. The PA-induced redistribution of phospholipids from cellular membranes into lysosomes and the HFD-induced accumulation of SQSTM1/p62 (sequestosome 1), an autophagy substrate, during the temporal and genetic ablation of autophagy were significantly reduced by EPA, indicating that EPA attenuated the HFD-mediated increases in autophagy demand. Moreover, a fatty acid pulse-chase assay revealed that EPA promoted lipid droplet (LD) formation and transfer from LDs to the mitochondria for beta-oxidation. Noteworthy, the efficacy of EPA on lipotoxicity is autophagy-dependent and cell-intrinsic. In conclusion, EPA counteracts lipotoxicity in the proximal tubule by alleviating autophagic numbness, making it potentially suitable as a novel treatment for obesity-related kidney diseases. Abbreviations: 4-HNE: 4-hydroxy-2-nonenal; ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; ATG: autophagy-related; ATP: adenosine triphosphate; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; cKO: conditional knockout; CML: N-carboxymethyllysine; COL1A1: collagen type I alpha 1 chain; COX: cytochrome c oxidase; CTRL: control; DGAT: diacylglycerol O-acyltransferase; EPA: eicosapentaenoic acid; FA: fatty acid; FFA: free fatty acid; GFP: green fluorescent protein; HFD: high-fat diet; iKO: inducible knockout; IRI: ischemia-reperfusion injury; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor-related protein 2; MAP1LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleic acid; PAS: periodic-acid Schiff; PPAR: peroxisome proliferator activated receptor; PPARGC1/PGC1: peroxisome proliferator activated receptor, gamma, coactivator 1; PTEC: proximal tubular epithelial cell; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SDH: succinate dehydrogenase complex; SFC/MS/MS: supercritical fluid chromatography triple quadrupole mass spectrometry; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TG: triglyceride; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.
Author Yamamoto, Takeshi
Niimura, Fumio
Yanagita, Motoko
Matsuda, Jun
Matsusaka, Taiji
Takahashi, Masatomo
Bamba, Takeshi
Takabatake, Yoshitsugu
Namba-Hamano, Tomoko
Minami, Satoshi
Isaka, Yoshitaka
Takahashi, Atsushi
Kaimori, Jun-Ya
Takeda, Hiroaki
Sakai, Shinsuke
Izumi, Yoshihiro
Kimura, Tomonori
Fujimura, Ryuta
Matsui, Isao
Author_xml – sequence: 1
  givenname: Takeshi
  surname: Yamamoto
  fullname: Yamamoto, Takeshi
  organization: Osaka University Graduate School of Medicine
– sequence: 2
  givenname: Yoshitsugu
  orcidid: 0000-0002-8912-2316
  surname: Takabatake
  fullname: Takabatake, Yoshitsugu
  email: takaba@kid.med.osaka-u.ac.jp
  organization: Osaka University Graduate School of Medicine
– sequence: 3
  givenname: Satoshi
  surname: Minami
  fullname: Minami, Satoshi
  organization: Osaka University Graduate School of Medicine
– sequence: 4
  givenname: Shinsuke
  surname: Sakai
  fullname: Sakai, Shinsuke
  organization: Osaka University Graduate School of Medicine
– sequence: 5
  givenname: Ryuta
  surname: Fujimura
  fullname: Fujimura, Ryuta
  organization: Osaka University Graduate School of Medicine
– sequence: 6
  givenname: Atsushi
  surname: Takahashi
  fullname: Takahashi, Atsushi
  organization: Osaka University Graduate School of Medicine
– sequence: 7
  givenname: Tomoko
  orcidid: 0000-0002-6049-7616
  surname: Namba-Hamano
  fullname: Namba-Hamano, Tomoko
  organization: Osaka University Graduate School of Medicine
– sequence: 8
  givenname: Jun
  surname: Matsuda
  fullname: Matsuda, Jun
  organization: Osaka University Graduate School of Medicine
– sequence: 9
  givenname: Tomonori
  surname: Kimura
  fullname: Kimura, Tomonori
  organization: National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN)
– sequence: 10
  givenname: Isao
  orcidid: 0000-0001-8378-6130
  surname: Matsui
  fullname: Matsui, Isao
  organization: Osaka University Graduate School of Medicine
– sequence: 11
  givenname: Jun-Ya
  surname: Kaimori
  fullname: Kaimori, Jun-Ya
  organization: Osaka University Graduate School of Medicine
– sequence: 12
  givenname: Hiroaki
  surname: Takeda
  fullname: Takeda, Hiroaki
  organization: Medical Institute of Bioregulation, Kyushu University
– sequence: 13
  givenname: Masatomo
  surname: Takahashi
  fullname: Takahashi, Masatomo
  organization: Medical Institute of Bioregulation, Kyushu University
– sequence: 14
  givenname: Yoshihiro
  surname: Izumi
  fullname: Izumi, Yoshihiro
  organization: Medical Institute of Bioregulation, Kyushu University
– sequence: 15
  givenname: Takeshi
  surname: Bamba
  fullname: Bamba, Takeshi
  organization: Medical Institute of Bioregulation, Kyushu University
– sequence: 16
  givenname: Taiji
  surname: Matsusaka
  fullname: Matsusaka, Taiji
  organization: Tokai University School of Medicine
– sequence: 17
  givenname: Fumio
  surname: Niimura
  fullname: Niimura, Fumio
  organization: Tokai University School of Medicine
– sequence: 18
  givenname: Motoko
  surname: Yanagita
  fullname: Yanagita, Motoko
  organization: Kyoto University
– sequence: 19
  givenname: Yoshitaka
  surname: Isaka
  fullname: Isaka, Yoshitaka
  organization: Osaka University Graduate School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32546086$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1vGyEQRZWr5qP9Ca32mIsdFliWvUSJrHxJlppDekazLDhUGLbAtvG_D5Ydq730NKPHe29meGdo5oPXCH2t8aLGAl_WTcMEJ-2CYFKgVhBM2Qd0usPngtNmduxJe4LOUvqJMeWiI5_QCSUN41jwU_R0a1VIMGqfQftgVQXKDhXkrP0EWacqag-ucnYMObxaZfO26rcFTTlE69cVTDmML7AuUuOm18_oowGX9JdDPUc_7m6flw_z1ff7x-XNaq4YF3lOO2pYbwg3YAYlup4CKNKZAQboa6N0Z2pjFOEDAO0JNJi0HQBuO8xarhk9R1d733HqN3pQ5YAITo7RbiBuZQAr_33x9kWuw28paMOaThSDi4NBDL-mco7c2KS0c-B1mJIkrGasJpSRQm32VBVDSlGb45gay10a8j0NuUtDHtIoum9_73hUvX9_IVzvCdabEDfwJ0Q3yAxbF6KJ4JVNkv5_xhvdeJ9I
CitedBy_id crossref_primary_10_1681_ASN_0000000000000414
crossref_primary_10_3390_cells11182891
crossref_primary_10_3389_fphys_2020_01050
crossref_primary_10_1007_s00380_021_01982_0
crossref_primary_10_1016_j_phrs_2024_107144
crossref_primary_10_4239_wjd_v15_i6_1091
crossref_primary_10_3390_cells12030412
crossref_primary_10_1021_acs_jafc_3c09634
crossref_primary_10_1021_acs_jafc_4c00152
crossref_primary_10_1016_j_biopha_2023_114465
crossref_primary_10_1146_annurev_physiol_042222_024724
crossref_primary_10_1016_j_bcp_2023_115550
crossref_primary_10_1016_j_molmet_2024_101892
crossref_primary_10_3390_cancers14184526
crossref_primary_10_1080_00032719_2022_2040523
crossref_primary_10_1152_ajpendo_00147_2023
crossref_primary_10_1159_000518456
crossref_primary_10_1016_j_ecoenv_2022_113500
crossref_primary_10_1111_cas_15454
crossref_primary_10_1016_j_jlr_2024_100586
crossref_primary_10_1080_15548627_2023_2287930
crossref_primary_10_1021_acsabm_2c00287
crossref_primary_10_1038_s41392_022_01104_w
crossref_primary_10_1172_jci_insight_162498
crossref_primary_10_3390_ph16091256
crossref_primary_10_1038_s41419_024_06753_z
crossref_primary_10_34067_KID_0000000000000252
crossref_primary_10_1159_000536532
crossref_primary_10_1038_s41420_022_01034_0
crossref_primary_10_3389_fmed_2021_746920
crossref_primary_10_1080_15548627_2023_2259282
crossref_primary_10_1007_s00018_024_05145_y
crossref_primary_10_1016_j_ecoenv_2023_114719
crossref_primary_10_1016_j_ejphar_2023_175642
crossref_primary_10_1080_23723556_2020_1789418
crossref_primary_10_14336_AD_2021_1027
crossref_primary_10_3389_fcell_2021_651021
crossref_primary_10_3390_nu14224742
crossref_primary_10_3389_fphys_2021_786599
crossref_primary_10_1007_s12274_024_6610_9
crossref_primary_10_3389_fcell_2021_745621
crossref_primary_10_1111_febs_17057
Cites_doi 10.1016/j.atherosclerosis.2015.07.035
10.1016/j.abb.2018.08.001
10.1002/jcb.24354
10.1111/j.1365-2133.1995.tb02618.x
10.1080/15548627.2017.1341464
10.1038/ncb2718
10.1007/BF00270037
10.1016/j.jbiosc.2015.02.015
10.1016/j.bbamem.2016.10.002
10.1681/ASN.2013090986
10.1038/labinvest.3700518
10.1111/j.1753-4887.2010.00287.x
10.1073/pnas.0630588100
10.1038/emboj.2013.171
10.1080/15548627.2016.1159376
10.1007/s00394-013-0562-2
10.1016/j.bbamem.2014.10.016
10.1113/jphysiol.2013.267336
10.1074/jbc.M114.601864
10.1139/o59-099
10.1016/j.mce.2016.10.029
10.4161/auto.19653
10.1056/NEJMra1205406
10.1016/j.devcel.2015.01.029
10.1038/cddis.2016.144
10.1083/jcb.3.3.349
10.1097/MOL.0b013e328342b10f
10.1681/ASN.2010070705
10.1016/j.cell.2011.10.026
10.1016/j.neuint.2010.12.004
10.18632/oncotarget.12759
10.1186/s12944-017-0415-8
10.1172/JCI36066
10.2337/db16-0397
10.1681/ASN.2016070731
10.2174/1871520610909040457
10.1016/j.bbadis.2014.04.001
10.1016/j.devcel.2017.06.003
10.1016/S0021-9258(18)64849-5
10.1016/j.cell.2007.12.018
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group 2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1080/15548627.2020.1782034
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate T. YAMAMOTO ET AL
EISSN 1554-8635
EndPage 1713
ExternalDocumentID 10_1080_15548627_2020_1782034
32546086
1782034
Genre Research Paper
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0BK
0R~
23N
30N
4.4
53G
5GY
AAAVI
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABFIM
ABJVF
ABLIJ
ABPEM
ABQHQ
ABTAI
ABXUL
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
AEGYZ
AEISY
AENEX
AEYOC
AFOLD
AFWLO
AGDLA
AHDLD
AIJEM
AIRXU
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AVBZW
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EMOBN
F5P
FUNRP
FVPDL
GTTXZ
HYE
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
P2P
RIG
RNANH
ROSJB
RPM
RTWRZ
SNACF
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
V1K
ZA5
ZGOLN
AAGME
ABFMO
ABJNI
ABPAQ
ABXYU
ACDHJ
ACZPZ
ADOPC
AHDZW
AURDB
AWYRJ
BFWEY
C1A
CGR
CUY
CVF
CWRZV
ECM
EIF
EJD
H13
NPM
PCLFJ
SV3
TBQAZ
TDBHL
TUROJ
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c468t-393f4bf26fafdc89b3aac29fdadab1fce9f1ffc26daa3b2a50279aa0790476e43
IEDL.DBID RPM
ISSN 1554-8627
IngestDate Tue Sep 17 21:11:10 EDT 2024
Fri Oct 25 22:12:39 EDT 2024
Fri Aug 23 01:42:54 EDT 2024
Wed Oct 16 00:42:31 EDT 2024
Tue Jul 04 18:17:16 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords lipid droplet
autophagy
lysosome
mitochondria
Autophagic flux
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-393f4bf26fafdc89b3aac29fdadab1fce9f1ffc26daa3b2a50279aa0790476e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
T.Y., Y.T., and S.M. contributed equally to this work.
ORCID 0000-0001-8378-6130
0000-0002-8912-2316
0000-0002-6049-7616
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.1080/15548627.2020.1782034?needAccess=true
PMID 32546086
PQID 2414412342
PQPubID 23479
PageCount 14
ParticipantIDs crossref_primary_10_1080_15548627_2020_1782034
proquest_miscellaneous_2414412342
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8354598
pubmed_primary_32546086
informaworld_taylorfrancis_310_1080_15548627_2020_1782034
PublicationCentury 2000
PublicationDate 2021-07-03
PublicationDateYYYYMMDD 2021-07-03
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Autophagy
PublicationTitleAlternate Autophagy
PublicationYear 2021
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
Tsugawa H (cit0042) 2014; 5
cit0019
cit0017
cit0039
cit0018
cit0015
cit0037
cit0016
cit0038
cit0013
cit0035
cit0014
cit0036
cit0022
cit0001
cit0023
cit0020
cit0021
cit0043
cit0040
cit0041
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
Ackerman D (cit0030) 2018; 24
References_xml – ident: cit0018
  doi: 10.1016/j.atherosclerosis.2015.07.035
– ident: cit0027
  doi: 10.1016/j.abb.2018.08.001
– ident: cit0020
  doi: 10.1002/jcb.24354
– ident: cit0016
  doi: 10.1111/j.1365-2133.1995.tb02618.x
– ident: cit0026
  doi: 10.1080/15548627.2017.1341464
– ident: cit0036
  doi: 10.1038/ncb2718
– ident: cit0023
  doi: 10.1007/BF00270037
– ident: cit0043
  doi: 10.1016/j.jbiosc.2015.02.015
– ident: cit0019
  doi: 10.1016/j.bbamem.2016.10.002
– ident: cit0032
  doi: 10.1016/j.bbamem.2016.10.002
– ident: cit0006
  doi: 10.1681/ASN.2013090986
– ident: cit0040
  doi: 10.1038/labinvest.3700518
– ident: cit0012
  doi: 10.1111/j.1753-4887.2010.00287.x
– ident: cit0024
  doi: 10.1073/pnas.0630588100
– ident: cit0008
  doi: 10.1038/emboj.2013.171
– ident: cit0007
  doi: 10.1080/15548627.2016.1159376
– ident: cit0022
  doi: 10.1007/s00394-013-0562-2
– ident: cit0015
  doi: 10.1016/j.bbamem.2014.10.016
– ident: cit0037
  doi: 10.1113/jphysiol.2013.267336
– ident: cit0029
  doi: 10.1074/jbc.M114.601864
– ident: cit0041
  doi: 10.1139/o59-099
– ident: cit0035
  doi: 10.1016/j.mce.2016.10.029
– ident: cit0025
  doi: 10.4161/auto.19653
– ident: cit0002
  doi: 10.1056/NEJMra1205406
– ident: cit0039
  doi: 10.1016/j.devcel.2015.01.029
– volume: 24
  issue: 2596
  year: 2018
  ident: cit0030
  publication-title: Cell Rep
  contributor:
    fullname: Ackerman D
– ident: cit0021
  doi: 10.1038/cddis.2016.144
– ident: cit0004
  doi: 10.1083/jcb.3.3.349
– ident: cit0014
  doi: 10.1097/MOL.0b013e328342b10f
– ident: cit0005
  doi: 10.1681/ASN.2010070705
– ident: cit0003
  doi: 10.1016/j.cell.2011.10.026
– ident: cit0017
  doi: 10.1016/j.neuint.2010.12.004
– volume: 5
  start-page: 471
  year: 2014
  ident: cit0042
  publication-title: Front Genet
  contributor:
    fullname: Tsugawa H
– ident: cit0034
  doi: 10.18632/oncotarget.12759
– ident: cit0011
  doi: 10.1186/s12944-017-0415-8
– ident: cit0028
  doi: 10.1172/JCI36066
– ident: cit0009
  doi: 10.2337/db16-0397
– ident: cit0010
  doi: 10.1681/ASN.2016070731
– ident: cit0013
  doi: 10.2174/1871520610909040457
– ident: cit0033
  doi: 10.1016/j.bbadis.2014.04.001
– ident: cit0031
  doi: 10.1016/j.devcel.2017.06.003
– ident: cit0038
  doi: 10.1016/S0021-9258(18)64849-5
– ident: cit0001
  doi: 10.1016/j.cell.2007.12.018
SSID ssj0036892
Score 2.5756633
Snippet Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for...
SourceID pubmedcentral
proquest
crossref
pubmed
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1700
SubjectTerms Acute Kidney Injury - chemically induced
Acute Kidney Injury - drug therapy
Animals
Autophagic flux
autophagy
Autophagy - drug effects
Diet, High-Fat - adverse effects
Eicosapentaenoic Acid - pharmacology
Eicosapentaenoic Acid - therapeutic use
Kidney - drug effects
Kidney Tubules, Proximal - drug effects
lipid droplet
lysosome
Lysosomes - drug effects
Mice
Mice, Transgenic
mitochondria
Phospholipids - metabolism
Research Paper
Title Eicosapentaenoic acid attenuates renal lipotoxicity by restoring autophagic flux
URI https://www.tandfonline.com/doi/abs/10.1080/15548627.2020.1782034
https://www.ncbi.nlm.nih.gov/pubmed/32546086
https://search.proquest.com/docview/2414412342
https://pubmed.ncbi.nlm.nih.gov/PMC8354598
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6ygUIvpe9uH0GFXr1rS7ZsHUtICIWEHBrIzYxkiRo29rKxIfn3nfEj7JZCoVfZAjHfePRJnvkG4JuuDOt6J5ENSYjSXNvIpkWIHNqi8qnyOuMC58srfXGT_rjNbo8gm2thhqR9Z-tVs7lbNfWvIbdye-fWc57Y-vrylC8rMlOsF7AgB52P6GP4VboYOiHzPhkRXc_nsp0iXvMYD9GxUNIQS8UpbsyjWBQ-5nLqvb3pQLn0b_zzzzTKvX3p_CW8mAil-D4u_BUc-eY1PBtbTD6-geszgvoet5wi7pu2dgJdXQlW1Wx65pli53n-pt62XftQO2Llwj6K3dBxhvY1gT1rDyBFSBE2_cNbuDk_-3l6EU1dFCKX6qKLlFEhtUHqgKFyhbEK0UkTKqzQJsF5QygFJ3WFqKzEjA6qBjHOTUzQEVzv4LhpG_8BBFqtgpfKo85TXykTHIWIBFFS2PTeLmE126_cjmIZZTJpkM62L9n25WT7JZh9K5fdcEsRxpYipfrH3K8zJCV9EvyfAxvf9vclkRIieVKlcgnvR4ieljNDvYT8ALynF1hu-_AJeeEguz153cf_nvkJnkvOiOHLYfUZjrtd778QpensCSxUfHUyOPJvhaT2cw
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808,60220,61009
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYIL78fyDBLXLBvb68RHhFot0K44tFJv1tixRUSVrLaJ1PLrmUk21W4F4tBrkokcezzzeTLzDcBHXRrm9c5SF7OYqly71Kkiph5dUQYlg55zgfPRUi9O1LfT-elWLQynVfIZOg5EEb2t5s3NwegxJe4T-0BC4jkd7wRdYso3qW7DHc1lo1zGMVuO1ljqom-MzCIpy4xVPP96zY5_2mEv_RsGvZ5KueWbDh6CH79qSEn5Ne1aN_W_rxE-3uyzH8GDDXRNPg-69hhuhfoJ3B2aWV4-hR_7pFTnuOJk9FA3lU_QV2XC_J11x4g2WQeWP6tWTdtcVJ7wf-Iuk3Xf24Y8aIIdsxwg2eIknnUXz-DkYP_4yyLd9GtIvdJFm0ojo3JR6Iix9IVxEtELE0ss0WXRB0P6EL3QJaJ0Aud0JDaIs9zMSElIMZ7DXt3U4SUk6LSMQciAOlehlCZ6MkYZoiADHYKbwHRcJbsaaDlstmE7HafJ8jTZzTRNwGyvpW37eEgcmpdY-R_ZD-PCW9p8_EcF69B055bgD8FJIZWYwItBEa6GI7nTAB0YJ5DvqMjVA0zsvXunrn72BN8cjJub4tUNxvwe7i2Ojw7t4dfl99dwX3AmDgel5RvYa9ddeEtQqnXv-r3yB2PrFWE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMSF92OhgJG4ZtnYXic-ItpVea16oBI3a-zYIqJKVruJ1PbXdyaPqltR9dBrkokc-_PMZ2f8DWOfdGFI1ztNXExjojLtEqfymHhweRGUDHpOB5x_LfXBkfr-Zz5mE26GtEpaQ8deKKLz1TS5V0UcM-I-UwhEIp7h6k7gJVJ8k-ouu4dMYEbAlrPl6Iylzru6yGSSkM14iOe612yFpy3x0v9R0KuZlJdC0-Ixc-NH9Rkp_6Zt46b-7Ire462--gl7NBBX_qVH2lN2J1TP2P2-lOXpc3a4j5DawIpS0UNVl56DLwtO6p1VS3yWrwPZH5eruqlPSo_sn7tTvu4q22D85NCSxgGgJ-bxuD15wY4W-7-_HiRDtYbEK503iTQyKheFjhALnxsnAbwwsYACXBp9MIiG6IUuAKQTMMcFsQGYZWaGEEFYvGQ7VV2F14yD0zIGIQPoTIVCmujRFaUAAt1zCG7CpuMg2VUvymHTQet07CZL3WSHbpowc3kobdPthsS-dImVN9h-HMfd4tSj_ylQhbrdWCQ_SCaFVGLCXvU4uGiOpDoDuFycsGwLIRcPkKz39p2q_NvJe9NW3Nzkb27R5g_sweHewv78tvzxlj0UlIZDO9Jyl-006za8Qx7VuPfdTDkHK0cUFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eicosapentaenoic+acid+attenuates+renal+lipotoxicity+by+restoring+autophagic+flux&rft.jtitle=Autophagy&rft.au=Yamamoto%2C+Takeshi&rft.au=Takabatake%2C+Yoshitsugu&rft.au=Minami%2C+Satoshi&rft.au=Sakai%2C+Shinsuke&rft.date=2021-07-03&rft.issn=1554-8627&rft.eissn=1554-8635&rft.volume=17&rft.issue=7&rft.spage=1700&rft.epage=1713&rft_id=info:doi/10.1080%2F15548627.2020.1782034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15548627_2020_1782034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon