Eicosapentaenoic acid attenuates renal lipotoxicity by restoring autophagic flux
Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for the renovation of plasma and organelle membranes to maintain the integrity of the PTECs. However, this autophagic activation places a burden...
Saved in:
Published in | Autophagy Vol. 17; no. 7; pp. 1700 - 1713 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
03.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for the renovation of plasma and organelle membranes to maintain the integrity of the PTECs. However, this autophagic activation places a burden on the lysosomal system, leading to a downstream suppression of autophagy, which manifests as phospholipid accumulation and inadequate acidification in lysosomes. Here, we investigated whether pharmacological correction by eicosapentaenoic acid (EPA) supplementation could restore autophagic flux and alleviate renal lipotoxicity. EPA supplementation to high-fat diet (HFD)-fed mice reduced several hallmarks of lipotoxicity in the PTECs, such as phospholipid accumulation in the lysosome, mitochondrial dysfunction, inflammation, and fibrosis. In addition to improving the metabolic syndrome, EPA alleviated renal lipotoxicity via several mechanisms. EPA supplementation to HFD-fed mice or the isolated PTECs cultured in palmitic acid (PA) restored lysosomal function with significant improvements in the autophagic flux. The PA-induced redistribution of phospholipids from cellular membranes into lysosomes and the HFD-induced accumulation of SQSTM1/p62 (sequestosome 1), an autophagy substrate, during the temporal and genetic ablation of autophagy were significantly reduced by EPA, indicating that EPA attenuated the HFD-mediated increases in autophagy demand. Moreover, a fatty acid pulse-chase assay revealed that EPA promoted lipid droplet (LD) formation and transfer from LDs to the mitochondria for beta-oxidation. Noteworthy, the efficacy of EPA on lipotoxicity is autophagy-dependent and cell-intrinsic. In conclusion, EPA counteracts lipotoxicity in the proximal tubule by alleviating autophagic numbness, making it potentially suitable as a novel treatment for obesity-related kidney diseases.
Abbreviations: 4-HNE: 4-hydroxy-2-nonenal; ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; ATG: autophagy-related; ATP: adenosine triphosphate; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; cKO: conditional knockout; CML: N-carboxymethyllysine; COL1A1: collagen type I alpha 1 chain; COX: cytochrome c oxidase; CTRL: control; DGAT: diacylglycerol O-acyltransferase; EPA: eicosapentaenoic acid; FA: fatty acid; FFA: free fatty acid; GFP: green fluorescent protein; HFD: high-fat diet; iKO: inducible knockout; IRI: ischemia-reperfusion injury; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor-related protein 2; MAP1LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleic acid; PAS: periodic-acid Schiff; PPAR: peroxisome proliferator activated receptor; PPARGC1/PGC1: peroxisome proliferator activated receptor, gamma, coactivator 1; PTEC: proximal tubular epithelial cell; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SDH: succinate dehydrogenase complex; SFC/MS/MS: supercritical fluid chromatography triple quadrupole mass spectrometry; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TG: triglyceride; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling. |
---|---|
AbstractList | Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for the renovation of plasma and organelle membranes to maintain the integrity of the PTECs. However, this autophagic activation places a burden on the lysosomal system, leading to a downstream suppression of autophagy, which manifests as phospholipid accumulation and inadequate acidification in lysosomes. Here, we investigated whether pharmacological correction by eicosapentaenoic acid (EPA) supplementation could restore autophagic flux and alleviate renal lipotoxicity. EPA supplementation to high-fat diet (HFD)-fed mice reduced several hallmarks of lipotoxicity in the PTECs, such as phospholipid accumulation in the lysosome, mitochondrial dysfunction, inflammation, and fibrosis. In addition to improving the metabolic syndrome, EPA alleviated renal lipotoxicity via several mechanisms. EPA supplementation to HFD-fed mice or the isolated PTECs cultured in palmitic acid (PA) restored lysosomal function with significant improvements in the autophagic flux. The PA-induced redistribution of phospholipids from cellular membranes into lysosomes and the HFD-induced accumulation of SQSTM1/p62 (sequestosome 1), an autophagy substrate, during the temporal and genetic ablation of autophagy were significantly reduced by EPA, indicating that EPA attenuated the HFD-mediated increases in autophagy demand. Moreover, a fatty acid pulse-chase assay revealed that EPA promoted lipid droplet (LD) formation and transfer from LDs to the mitochondria for beta-oxidation. Noteworthy, the efficacy of EPA on lipotoxicity is autophagy-dependent and cell-intrinsic. In conclusion, EPA counteracts lipotoxicity in the proximal tubule by alleviating autophagic numbness, making it potentially suitable as a novel treatment for obesity-related kidney diseases.
Abbreviations: 4-HNE: 4-hydroxy-2-nonenal; ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; ATG: autophagy-related; ATP: adenosine triphosphate; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; cKO: conditional knockout; CML: N-carboxymethyllysine; COL1A1: collagen type I alpha 1 chain; COX: cytochrome c oxidase; CTRL: control; DGAT: diacylglycerol O-acyltransferase; EPA: eicosapentaenoic acid; FA: fatty acid; FFA: free fatty acid; GFP: green fluorescent protein; HFD: high-fat diet; iKO: inducible knockout; IRI: ischemia-reperfusion injury; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor-related protein 2; MAP1LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleic acid; PAS: periodic-acid Schiff; PPAR: peroxisome proliferator activated receptor; PPARGC1/PGC1: peroxisome proliferator activated receptor, gamma, coactivator 1; PTEC: proximal tubular epithelial cell; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SDH: succinate dehydrogenase complex; SFC/MS/MS: supercritical fluid chromatography triple quadrupole mass spectrometry; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TG: triglyceride; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling. Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for the renovation of plasma and organelle membranes to maintain the integrity of the PTECs. However, this autophagic activation places a burden on the lysosomal system, leading to a downstream suppression of autophagy, which manifests as phospholipid accumulation and inadequate acidification in lysosomes. Here, we investigated whether pharmacological correction by eicosapentaenoic acid (EPA) supplementation could restore autophagic flux and alleviate renal lipotoxicity. EPA supplementation to high-fat diet (HFD)-fed mice reduced several hallmarks of lipotoxicity in the PTECs, such as phospholipid accumulation in the lysosome, mitochondrial dysfunction, inflammation, and fibrosis. In addition to improving the metabolic syndrome, EPA alleviated renal lipotoxicity via several mechanisms. EPA supplementation to HFD-fed mice or the isolated PTECs cultured in palmitic acid (PA) restored lysosomal function with significant improvements in the autophagic flux. The PA-induced redistribution of phospholipids from cellular membranes into lysosomes and the HFD-induced accumulation of SQSTM1/p62 (sequestosome 1), an autophagy substrate, during the temporal and genetic ablation of autophagy were significantly reduced by EPA, indicating that EPA attenuated the HFD-mediated increases in autophagy demand. Moreover, a fatty acid pulse-chase assay revealed that EPA promoted lipid droplet (LD) formation and transfer from LDs to the mitochondria for beta-oxidation. Noteworthy, the efficacy of EPA on lipotoxicity is autophagy-dependent and cell-intrinsic. In conclusion, EPA counteracts lipotoxicity in the proximal tubule by alleviating autophagic numbness, making it potentially suitable as a novel treatment for obesity-related kidney diseases. 4-HNE: 4-hydroxy-2-nonenal; ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; ATG: autophagy-related; ATP: adenosine triphosphate; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; cKO: conditional knockout; CML: N-carboxymethyllysine; COL1A1: collagen type I alpha 1 chain; COX: cytochrome c oxidase; CTRL: control; DGAT: diacylglycerol O-acyltransferase; EPA: eicosapentaenoic acid; FA: fatty acid; FFA: free fatty acid; GFP: green fluorescent protein; HFD: high-fat diet; iKO: inducible knockout; IRI: ischemia-reperfusion injury; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor-related protein 2; MAP1LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleic acid; PAS: periodic-acid Schiff; PPAR: peroxisome proliferator activated receptor; PPARGC1/PGC1: peroxisome proliferator activated receptor, gamma, coactivator 1; PTEC: proximal tubular epithelial cell; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SDH: succinate dehydrogenase complex; SFC/MS/MS: supercritical fluid chromatography triple quadrupole mass spectrometry; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TG: triglyceride; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling. Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for the renovation of plasma and organelle membranes to maintain the integrity of the PTECs. However, this autophagic activation places a burden on the lysosomal system, leading to a downstream suppression of autophagy, which manifests as phospholipid accumulation and inadequate acidification in lysosomes. Here, we investigated whether pharmacological correction by eicosapentaenoic acid (EPA) supplementation could restore autophagic flux and alleviate renal lipotoxicity. EPA supplementation to high-fat diet (HFD)-fed mice reduced several hallmarks of lipotoxicity in the PTECs, such as phospholipid accumulation in the lysosome, mitochondrial dysfunction, inflammation, and fibrosis. In addition to improving the metabolic syndrome, EPA alleviated renal lipotoxicity via several mechanisms. EPA supplementation to HFD-fed mice or the isolated PTECs cultured in palmitic acid (PA) restored lysosomal function with significant improvements in the autophagic flux. The PA-induced redistribution of phospholipids from cellular membranes into lysosomes and the HFD-induced accumulation of SQSTM1/p62 (sequestosome 1), an autophagy substrate, during the temporal and genetic ablation of autophagy were significantly reduced by EPA, indicating that EPA attenuated the HFD-mediated increases in autophagy demand. Moreover, a fatty acid pulse-chase assay revealed that EPA promoted lipid droplet (LD) formation and transfer from LDs to the mitochondria for beta-oxidation. Noteworthy, the efficacy of EPA on lipotoxicity is autophagy-dependent and cell-intrinsic. In conclusion, EPA counteracts lipotoxicity in the proximal tubule by alleviating autophagic numbness, making it potentially suitable as a novel treatment for obesity-related kidney diseases. Abbreviations: 4-HNE: 4-hydroxy-2-nonenal; ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; ATG: autophagy-related; ATP: adenosine triphosphate; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; cKO: conditional knockout; CML: N-carboxymethyllysine; COL1A1: collagen type I alpha 1 chain; COX: cytochrome c oxidase; CTRL: control; DGAT: diacylglycerol O-acyltransferase; EPA: eicosapentaenoic acid; FA: fatty acid; FFA: free fatty acid; GFP: green fluorescent protein; HFD: high-fat diet; iKO: inducible knockout; IRI: ischemia-reperfusion injury; LAMP1: lysosomal-associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor-related protein 2; MAP1LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleic acid; PAS: periodic-acid Schiff; PPAR: peroxisome proliferator activated receptor; PPARGC1/PGC1: peroxisome proliferator activated receptor, gamma, coactivator 1; PTEC: proximal tubular epithelial cell; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SDH: succinate dehydrogenase complex; SFC/MS/MS: supercritical fluid chromatography triple quadrupole mass spectrometry; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TG: triglyceride; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling. |
Author | Yamamoto, Takeshi Niimura, Fumio Yanagita, Motoko Matsuda, Jun Matsusaka, Taiji Takahashi, Masatomo Bamba, Takeshi Takabatake, Yoshitsugu Namba-Hamano, Tomoko Minami, Satoshi Isaka, Yoshitaka Takahashi, Atsushi Kaimori, Jun-Ya Takeda, Hiroaki Sakai, Shinsuke Izumi, Yoshihiro Kimura, Tomonori Fujimura, Ryuta Matsui, Isao |
Author_xml | – sequence: 1 givenname: Takeshi surname: Yamamoto fullname: Yamamoto, Takeshi organization: Osaka University Graduate School of Medicine – sequence: 2 givenname: Yoshitsugu orcidid: 0000-0002-8912-2316 surname: Takabatake fullname: Takabatake, Yoshitsugu email: takaba@kid.med.osaka-u.ac.jp organization: Osaka University Graduate School of Medicine – sequence: 3 givenname: Satoshi surname: Minami fullname: Minami, Satoshi organization: Osaka University Graduate School of Medicine – sequence: 4 givenname: Shinsuke surname: Sakai fullname: Sakai, Shinsuke organization: Osaka University Graduate School of Medicine – sequence: 5 givenname: Ryuta surname: Fujimura fullname: Fujimura, Ryuta organization: Osaka University Graduate School of Medicine – sequence: 6 givenname: Atsushi surname: Takahashi fullname: Takahashi, Atsushi organization: Osaka University Graduate School of Medicine – sequence: 7 givenname: Tomoko orcidid: 0000-0002-6049-7616 surname: Namba-Hamano fullname: Namba-Hamano, Tomoko organization: Osaka University Graduate School of Medicine – sequence: 8 givenname: Jun surname: Matsuda fullname: Matsuda, Jun organization: Osaka University Graduate School of Medicine – sequence: 9 givenname: Tomonori surname: Kimura fullname: Kimura, Tomonori organization: National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN) – sequence: 10 givenname: Isao orcidid: 0000-0001-8378-6130 surname: Matsui fullname: Matsui, Isao organization: Osaka University Graduate School of Medicine – sequence: 11 givenname: Jun-Ya surname: Kaimori fullname: Kaimori, Jun-Ya organization: Osaka University Graduate School of Medicine – sequence: 12 givenname: Hiroaki surname: Takeda fullname: Takeda, Hiroaki organization: Medical Institute of Bioregulation, Kyushu University – sequence: 13 givenname: Masatomo surname: Takahashi fullname: Takahashi, Masatomo organization: Medical Institute of Bioregulation, Kyushu University – sequence: 14 givenname: Yoshihiro surname: Izumi fullname: Izumi, Yoshihiro organization: Medical Institute of Bioregulation, Kyushu University – sequence: 15 givenname: Takeshi surname: Bamba fullname: Bamba, Takeshi organization: Medical Institute of Bioregulation, Kyushu University – sequence: 16 givenname: Taiji surname: Matsusaka fullname: Matsusaka, Taiji organization: Tokai University School of Medicine – sequence: 17 givenname: Fumio surname: Niimura fullname: Niimura, Fumio organization: Tokai University School of Medicine – sequence: 18 givenname: Motoko surname: Yanagita fullname: Yanagita, Motoko organization: Kyoto University – sequence: 19 givenname: Yoshitaka surname: Isaka fullname: Isaka, Yoshitaka organization: Osaka University Graduate School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32546086$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1vGyEQRZWr5qP9Ca32mIsdFliWvUSJrHxJlppDekazLDhUGLbAtvG_D5Ydq730NKPHe29meGdo5oPXCH2t8aLGAl_WTcMEJ-2CYFKgVhBM2Qd0usPngtNmduxJe4LOUvqJMeWiI5_QCSUN41jwU_R0a1VIMGqfQftgVQXKDhXkrP0EWacqag-ucnYMObxaZfO26rcFTTlE69cVTDmML7AuUuOm18_oowGX9JdDPUc_7m6flw_z1ff7x-XNaq4YF3lOO2pYbwg3YAYlup4CKNKZAQboa6N0Z2pjFOEDAO0JNJi0HQBuO8xarhk9R1d733HqN3pQ5YAITo7RbiBuZQAr_33x9kWuw28paMOaThSDi4NBDL-mco7c2KS0c-B1mJIkrGasJpSRQm32VBVDSlGb45gay10a8j0NuUtDHtIoum9_73hUvX9_IVzvCdabEDfwJ0Q3yAxbF6KJ4JVNkv5_xhvdeJ9I |
CitedBy_id | crossref_primary_10_1681_ASN_0000000000000414 crossref_primary_10_3390_cells11182891 crossref_primary_10_3389_fphys_2020_01050 crossref_primary_10_1007_s00380_021_01982_0 crossref_primary_10_1016_j_phrs_2024_107144 crossref_primary_10_4239_wjd_v15_i6_1091 crossref_primary_10_3390_cells12030412 crossref_primary_10_1021_acs_jafc_3c09634 crossref_primary_10_1021_acs_jafc_4c00152 crossref_primary_10_1016_j_biopha_2023_114465 crossref_primary_10_1146_annurev_physiol_042222_024724 crossref_primary_10_1016_j_bcp_2023_115550 crossref_primary_10_1016_j_molmet_2024_101892 crossref_primary_10_3390_cancers14184526 crossref_primary_10_1080_00032719_2022_2040523 crossref_primary_10_1152_ajpendo_00147_2023 crossref_primary_10_1159_000518456 crossref_primary_10_1016_j_ecoenv_2022_113500 crossref_primary_10_1111_cas_15454 crossref_primary_10_1016_j_jlr_2024_100586 crossref_primary_10_1080_15548627_2023_2287930 crossref_primary_10_1021_acsabm_2c00287 crossref_primary_10_1038_s41392_022_01104_w crossref_primary_10_1172_jci_insight_162498 crossref_primary_10_3390_ph16091256 crossref_primary_10_1038_s41419_024_06753_z crossref_primary_10_34067_KID_0000000000000252 crossref_primary_10_1159_000536532 crossref_primary_10_1038_s41420_022_01034_0 crossref_primary_10_3389_fmed_2021_746920 crossref_primary_10_1080_15548627_2023_2259282 crossref_primary_10_1007_s00018_024_05145_y crossref_primary_10_1016_j_ecoenv_2023_114719 crossref_primary_10_1016_j_ejphar_2023_175642 crossref_primary_10_1080_23723556_2020_1789418 crossref_primary_10_14336_AD_2021_1027 crossref_primary_10_3389_fcell_2021_651021 crossref_primary_10_3390_nu14224742 crossref_primary_10_3389_fphys_2021_786599 crossref_primary_10_1007_s12274_024_6610_9 crossref_primary_10_3389_fcell_2021_745621 crossref_primary_10_1111_febs_17057 |
Cites_doi | 10.1016/j.atherosclerosis.2015.07.035 10.1016/j.abb.2018.08.001 10.1002/jcb.24354 10.1111/j.1365-2133.1995.tb02618.x 10.1080/15548627.2017.1341464 10.1038/ncb2718 10.1007/BF00270037 10.1016/j.jbiosc.2015.02.015 10.1016/j.bbamem.2016.10.002 10.1681/ASN.2013090986 10.1038/labinvest.3700518 10.1111/j.1753-4887.2010.00287.x 10.1073/pnas.0630588100 10.1038/emboj.2013.171 10.1080/15548627.2016.1159376 10.1007/s00394-013-0562-2 10.1016/j.bbamem.2014.10.016 10.1113/jphysiol.2013.267336 10.1074/jbc.M114.601864 10.1139/o59-099 10.1016/j.mce.2016.10.029 10.4161/auto.19653 10.1056/NEJMra1205406 10.1016/j.devcel.2015.01.029 10.1038/cddis.2016.144 10.1083/jcb.3.3.349 10.1097/MOL.0b013e328342b10f 10.1681/ASN.2010070705 10.1016/j.cell.2011.10.026 10.1016/j.neuint.2010.12.004 10.18632/oncotarget.12759 10.1186/s12944-017-0415-8 10.1172/JCI36066 10.2337/db16-0397 10.1681/ASN.2016070731 10.2174/1871520610909040457 10.1016/j.bbadis.2014.04.001 10.1016/j.devcel.2017.06.003 10.1016/S0021-9258(18)64849-5 10.1016/j.cell.2007.12.018 |
ContentType | Journal Article |
Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 Informa UK Limited, trading as Taylor & Francis Group |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1080/15548627.2020.1782034 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | T. YAMAMOTO ET AL |
EISSN | 1554-8635 |
EndPage | 1713 |
ExternalDocumentID | 10_1080_15548627_2020_1782034 32546086 1782034 |
Genre | Research Paper Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0BK 0R~ 23N 30N 4.4 53G 5GY AAAVI AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABFIM ABJVF ABLIJ ABPEM ABQHQ ABTAI ABXUL ACGFS ACTIO ADBBV ADCVX ADGTB AEGYZ AEISY AENEX AEYOC AFOLD AFWLO AGDLA AHDLD AIJEM AIRXU AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AVBZW BAWUL BLEHA CCCUG DGEBU DIK DKSSO E3Z EBS EMOBN F5P FUNRP FVPDL GTTXZ HYE IPNFZ KYCEM LJTGL M4Z O9- OK1 P2P RIG RNANH ROSJB RPM RTWRZ SNACF TEI TFL TFT TFW TQWBC TR2 TTHFI V1K ZA5 ZGOLN AAGME ABFMO ABJNI ABPAQ ABXYU ACDHJ ACZPZ ADOPC AHDZW AURDB AWYRJ BFWEY C1A CGR CUY CVF CWRZV ECM EIF EJD H13 NPM PCLFJ SV3 TBQAZ TDBHL TUROJ AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c468t-393f4bf26fafdc89b3aac29fdadab1fce9f1ffc26daa3b2a50279aa0790476e43 |
IEDL.DBID | RPM |
ISSN | 1554-8627 |
IngestDate | Tue Sep 17 21:11:10 EDT 2024 Fri Oct 25 22:12:39 EDT 2024 Fri Aug 23 01:42:54 EDT 2024 Wed Oct 16 00:42:31 EDT 2024 Tue Jul 04 18:17:16 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | lipid droplet autophagy lysosome mitochondria Autophagic flux |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-393f4bf26fafdc89b3aac29fdadab1fce9f1ffc26daa3b2a50279aa0790476e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 T.Y., Y.T., and S.M. contributed equally to this work. |
ORCID | 0000-0001-8378-6130 0000-0002-8912-2316 0000-0002-6049-7616 |
OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.1080/15548627.2020.1782034?needAccess=true |
PMID | 32546086 |
PQID | 2414412342 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1080_15548627_2020_1782034 proquest_miscellaneous_2414412342 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8354598 pubmed_primary_32546086 informaworld_taylorfrancis_310_1080_15548627_2020_1782034 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-03 |
PublicationDateYYYYMMDD | 2021-07-03 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Autophagy |
PublicationTitleAlternate | Autophagy |
PublicationYear | 2021 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 Tsugawa H (cit0042) 2014; 5 cit0019 cit0017 cit0039 cit0018 cit0015 cit0037 cit0016 cit0038 cit0013 cit0035 cit0014 cit0036 cit0022 cit0001 cit0023 cit0020 cit0021 cit0043 cit0040 cit0041 cit0008 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025 Ackerman D (cit0030) 2018; 24 |
References_xml | – ident: cit0018 doi: 10.1016/j.atherosclerosis.2015.07.035 – ident: cit0027 doi: 10.1016/j.abb.2018.08.001 – ident: cit0020 doi: 10.1002/jcb.24354 – ident: cit0016 doi: 10.1111/j.1365-2133.1995.tb02618.x – ident: cit0026 doi: 10.1080/15548627.2017.1341464 – ident: cit0036 doi: 10.1038/ncb2718 – ident: cit0023 doi: 10.1007/BF00270037 – ident: cit0043 doi: 10.1016/j.jbiosc.2015.02.015 – ident: cit0019 doi: 10.1016/j.bbamem.2016.10.002 – ident: cit0032 doi: 10.1016/j.bbamem.2016.10.002 – ident: cit0006 doi: 10.1681/ASN.2013090986 – ident: cit0040 doi: 10.1038/labinvest.3700518 – ident: cit0012 doi: 10.1111/j.1753-4887.2010.00287.x – ident: cit0024 doi: 10.1073/pnas.0630588100 – ident: cit0008 doi: 10.1038/emboj.2013.171 – ident: cit0007 doi: 10.1080/15548627.2016.1159376 – ident: cit0022 doi: 10.1007/s00394-013-0562-2 – ident: cit0015 doi: 10.1016/j.bbamem.2014.10.016 – ident: cit0037 doi: 10.1113/jphysiol.2013.267336 – ident: cit0029 doi: 10.1074/jbc.M114.601864 – ident: cit0041 doi: 10.1139/o59-099 – ident: cit0035 doi: 10.1016/j.mce.2016.10.029 – ident: cit0025 doi: 10.4161/auto.19653 – ident: cit0002 doi: 10.1056/NEJMra1205406 – ident: cit0039 doi: 10.1016/j.devcel.2015.01.029 – volume: 24 issue: 2596 year: 2018 ident: cit0030 publication-title: Cell Rep contributor: fullname: Ackerman D – ident: cit0021 doi: 10.1038/cddis.2016.144 – ident: cit0004 doi: 10.1083/jcb.3.3.349 – ident: cit0014 doi: 10.1097/MOL.0b013e328342b10f – ident: cit0005 doi: 10.1681/ASN.2010070705 – ident: cit0003 doi: 10.1016/j.cell.2011.10.026 – ident: cit0017 doi: 10.1016/j.neuint.2010.12.004 – volume: 5 start-page: 471 year: 2014 ident: cit0042 publication-title: Front Genet contributor: fullname: Tsugawa H – ident: cit0034 doi: 10.18632/oncotarget.12759 – ident: cit0011 doi: 10.1186/s12944-017-0415-8 – ident: cit0028 doi: 10.1172/JCI36066 – ident: cit0009 doi: 10.2337/db16-0397 – ident: cit0010 doi: 10.1681/ASN.2016070731 – ident: cit0013 doi: 10.2174/1871520610909040457 – ident: cit0033 doi: 10.1016/j.bbadis.2014.04.001 – ident: cit0031 doi: 10.1016/j.devcel.2017.06.003 – ident: cit0038 doi: 10.1016/S0021-9258(18)64849-5 – ident: cit0001 doi: 10.1016/j.cell.2007.12.018 |
SSID | ssj0036892 |
Score | 2.5756633 |
Snippet | Recently, we identified a novel mechanism of lipotoxicity in the kidney proximal tubular cells (PTECs); lipid overload stimulates macroautophagy/autophagy for... |
SourceID | pubmedcentral proquest crossref pubmed informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1700 |
SubjectTerms | Acute Kidney Injury - chemically induced Acute Kidney Injury - drug therapy Animals Autophagic flux autophagy Autophagy - drug effects Diet, High-Fat - adverse effects Eicosapentaenoic Acid - pharmacology Eicosapentaenoic Acid - therapeutic use Kidney - drug effects Kidney Tubules, Proximal - drug effects lipid droplet lysosome Lysosomes - drug effects Mice Mice, Transgenic mitochondria Phospholipids - metabolism Research Paper |
Title | Eicosapentaenoic acid attenuates renal lipotoxicity by restoring autophagic flux |
URI | https://www.tandfonline.com/doi/abs/10.1080/15548627.2020.1782034 https://www.ncbi.nlm.nih.gov/pubmed/32546086 https://search.proquest.com/docview/2414412342 https://pubmed.ncbi.nlm.nih.gov/PMC8354598 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6ygUIvpe9uH0GFXr1rS7ZsHUtICIWEHBrIzYxkiRo29rKxIfn3nfEj7JZCoVfZAjHfePRJnvkG4JuuDOt6J5ENSYjSXNvIpkWIHNqi8qnyOuMC58srfXGT_rjNbo8gm2thhqR9Z-tVs7lbNfWvIbdye-fWc57Y-vrylC8rMlOsF7AgB52P6GP4VboYOiHzPhkRXc_nsp0iXvMYD9GxUNIQS8UpbsyjWBQ-5nLqvb3pQLn0b_zzzzTKvX3p_CW8mAil-D4u_BUc-eY1PBtbTD6-geszgvoet5wi7pu2dgJdXQlW1Wx65pli53n-pt62XftQO2Llwj6K3dBxhvY1gT1rDyBFSBE2_cNbuDk_-3l6EU1dFCKX6qKLlFEhtUHqgKFyhbEK0UkTKqzQJsF5QygFJ3WFqKzEjA6qBjHOTUzQEVzv4LhpG_8BBFqtgpfKo85TXykTHIWIBFFS2PTeLmE126_cjmIZZTJpkM62L9n25WT7JZh9K5fdcEsRxpYipfrH3K8zJCV9EvyfAxvf9vclkRIieVKlcgnvR4ieljNDvYT8ALynF1hu-_AJeeEguz153cf_nvkJnkvOiOHLYfUZjrtd778QpensCSxUfHUyOPJvhaT2cw |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808,60220,61009 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYIL78fyDBLXLBvb68RHhFot0K44tFJv1tixRUSVrLaJ1PLrmUk21W4F4tBrkokcezzzeTLzDcBHXRrm9c5SF7OYqly71Kkiph5dUQYlg55zgfPRUi9O1LfT-elWLQynVfIZOg5EEb2t5s3NwegxJe4T-0BC4jkd7wRdYso3qW7DHc1lo1zGMVuO1ljqom-MzCIpy4xVPP96zY5_2mEv_RsGvZ5KueWbDh6CH79qSEn5Ne1aN_W_rxE-3uyzH8GDDXRNPg-69hhuhfoJ3B2aWV4-hR_7pFTnuOJk9FA3lU_QV2XC_J11x4g2WQeWP6tWTdtcVJ7wf-Iuk3Xf24Y8aIIdsxwg2eIknnUXz-DkYP_4yyLd9GtIvdJFm0ojo3JR6Iix9IVxEtELE0ss0WXRB0P6EL3QJaJ0Aud0JDaIs9zMSElIMZ7DXt3U4SUk6LSMQciAOlehlCZ6MkYZoiADHYKbwHRcJbsaaDlstmE7HafJ8jTZzTRNwGyvpW37eEgcmpdY-R_ZD-PCW9p8_EcF69B055bgD8FJIZWYwItBEa6GI7nTAB0YJ5DvqMjVA0zsvXunrn72BN8cjJub4tUNxvwe7i2Ojw7t4dfl99dwX3AmDgel5RvYa9ddeEtQqnXv-r3yB2PrFWE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMSF92OhgJG4ZtnYXic-ItpVea16oBI3a-zYIqJKVruJ1PbXdyaPqltR9dBrkokc-_PMZ2f8DWOfdGFI1ztNXExjojLtEqfymHhweRGUDHpOB5x_LfXBkfr-Zz5mE26GtEpaQ8deKKLz1TS5V0UcM-I-UwhEIp7h6k7gJVJ8k-ouu4dMYEbAlrPl6Iylzru6yGSSkM14iOe612yFpy3x0v9R0KuZlJdC0-Ixc-NH9Rkp_6Zt46b-7Ire462--gl7NBBX_qVH2lN2J1TP2P2-lOXpc3a4j5DawIpS0UNVl56DLwtO6p1VS3yWrwPZH5eruqlPSo_sn7tTvu4q22D85NCSxgGgJ-bxuD15wY4W-7-_HiRDtYbEK503iTQyKheFjhALnxsnAbwwsYACXBp9MIiG6IUuAKQTMMcFsQGYZWaGEEFYvGQ7VV2F14yD0zIGIQPoTIVCmujRFaUAAt1zCG7CpuMg2VUvymHTQet07CZL3WSHbpowc3kobdPthsS-dImVN9h-HMfd4tSj_ylQhbrdWCQ_SCaFVGLCXvU4uGiOpDoDuFycsGwLIRcPkKz39p2q_NvJe9NW3Nzkb27R5g_sweHewv78tvzxlj0UlIZDO9Jyl-006za8Qx7VuPfdTDkHK0cUFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eicosapentaenoic+acid+attenuates+renal+lipotoxicity+by+restoring+autophagic+flux&rft.jtitle=Autophagy&rft.au=Yamamoto%2C+Takeshi&rft.au=Takabatake%2C+Yoshitsugu&rft.au=Minami%2C+Satoshi&rft.au=Sakai%2C+Shinsuke&rft.date=2021-07-03&rft.issn=1554-8627&rft.eissn=1554-8635&rft.volume=17&rft.issue=7&rft.spage=1700&rft.epage=1713&rft_id=info:doi/10.1080%2F15548627.2020.1782034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15548627_2020_1782034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon |