Origins of the machinery of recombination and sex
Mutation plays the primary role in evolution that Weismann mistakenly attributed to sex. Homologous recombination, as in sex, is important for population genetics – shuffling of minor variants, but relatively insignificant for large-scale evolution. Major evolutionary innovations depend much more on...
Saved in:
Published in | Heredity Vol. 88; no. 2; pp. 125 - 141 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2002
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0018-067X 1365-2540 |
DOI | 10.1038/sj.hdy.6800034 |
Cover
Abstract | Mutation plays the primary role in evolution that Weismann mistakenly attributed to sex. Homologous recombination, as in sex, is important for population genetics – shuffling of minor variants, but relatively insignificant for large-scale evolution. Major evolutionary innovations depend much more on illegitimate recombination, which makes novel genes by gene duplication and by gene chimaerisation – essentially mutational forces. The machinery of recombination and sex evolved in two distinct bouts of quantum evolution separated by nearly 3 Gy of stasis; I discuss their nature and causes. The dominant selective force in the evolution of recombination and sex has been selection for replicational fidelity and viability; without the recombination machinery, accurate reproduction, stasis, resistance to radical deleterious evolutionary change and preservation of evolutionary innovations would be impossible. Recombination proteins betray in their phylogeny and domain structure a key role for gene duplication and chimaerisation in their own origin. They arose about 3.8 Gy ago to enable faithful replication and segregation of the first circular DNA genomes in precellular ancestors of Gram-negative eubacteria. Then they were recruited and modified by selfish genetic parasites (viruses; transposons) to help them spread from host to host. Bacteria differ fundamentally from eukaryotes in that gene transfer between cells, whether incidental to their absorptive feeding on DNA and virus infection or directly by plasmids, involves only genomic fragments. This was radically changed by the neomuran revolution about 850 million years ago when a posibacterium evolved into the thermophilic cenancestor of eukaryotes and archaebacteria (jointly called neomurans), radically modifying or substituting its DNA-handling enzymes (those responsible for transcription as well as for replication, repair and recombination) as a coadaptive consequence of the origin of core histones to stabilise its chromosome. Substitution of glycoprotein for peptidoglycan walls in the neomuran ancestor and the evolution of an endoskeleton and endomembrane system in eukaryotes alone required the origin of nuclei, mitosis and novel cell cycle controls and enabled them to evolve cell fusion and thereby the combination of whole genomes from different cells. Meiosis evolved because of resulting selection for periodic ploidy reduction, with incidental consequences for intrapopulation genetic exchange. Little modification was needed to recombination enzymes or to the ancient bacterial catalysts of homology search by spontaneous base pairing to mediate chromosome pairing. The key innovation was the origin of meiotic cohesins delaying centromere splitting to allow two successive divisions before reversion to vegetative growth and replication, necessarily yielding two-step meiosis. Also significant was the evolution of synaptonemal complexes to stabilise bivalents and of monopolins to orient sister centromeres to one spindle pole. The primary significance of sex was not to promote evolutionary change but to limit it by facilitating ploidy cycles to balance the conflicting selective forces acting on rapidly growing phagotrophic protozoa and starved dormant cysts subject to radiation and other damage. |
---|---|
AbstractList | Mutation plays the primary role in evolution that Weismann mistakenly attributed to sex. Homologous recombination, as in sex, is important for population genetics – shuffling of minor variants, but relatively insignificant for large-scale evolution. Major evolutionary innovations depend much more on illegitimate recombination, which makes novel genes by gene duplication and by gene chimaerisation – essentially mutational forces. The machinery of recombination and sex evolved in two distinct bouts of quantum evolution separated by nearly 3 Gy of stasis; I discuss their nature and causes. The dominant selective force in the evolution of recombination and sex has been selection for replicational fidelity and viability; without the recombination machinery, accurate reproduction, stasis, resistance to radical deleterious evolutionary change and preservation of evolutionary innovations would be impossible. Recombination proteins betray in their phylogeny and domain structure a key role for gene duplication and chimaerisation in their own origin. They arose about 3.8 Gy ago to enable faithful replication and segregation of the first circular DNA genomes in precellular ancestors of Gram-negative eubacteria. Then they were recruited and modified by selfish genetic parasites (viruses; transposons) to help them spread from host to host. Bacteria differ fundamentally from eukaryotes in that gene transfer between cells, whether incidental to their absorptive feeding on DNA and virus infection or directly by plasmids, involves only genomic fragments. This was radically changed by the neomuran revolution about 850 million years ago when a posibacterium evolved into the thermophilic cenancestor of eukaryotes and archaebacteria (jointly called neomurans), radically modifying or substituting its DNA-handling enzymes (those responsible for transcription as well as for replication, repair and recombination) as a coadaptive consequence of the origin of core histones to stabilise its chromosome. Substitution of glycoprotein for peptidoglycan walls in the neomuran ancestor and the evolution of an endoskeleton and endomembrane system in eukaryotes alone required the origin of nuclei, mitosis and novel cell cycle controls and enabled them to evolve cell fusion and thereby the combination of whole genomes from different cells. Meiosis evolved because of resulting selection for periodic ploidy reduction, with incidental consequences for intrapopulation genetic exchange. Little modification was needed to recombination enzymes or to the ancient bacterial catalysts of homology search by spontaneous base pairing to mediate chromosome pairing. The key innovation was the origin of meiotic cohesins delaying centromere splitting to allow two successive divisions before reversion to vegetative growth and replication, necessarily yielding two-step meiosis. Also significant was the evolution of synaptonemal complexes to stabilise bivalents and of monopolins to orient sister centromeres to one spindle pole. The primary significance of sex was not to promote evolutionary change but to limit it by facilitating ploidy cycles to balance the conflicting selective forces acting on rapidly growing phagotrophic protozoa and starved dormant cysts subject to radiation and other damage. Mutation plays the primary role in evolution that Weismann mistakenly attributed to sex. Homologous recombination, as in sex, is important for population genetics--shuffling of minor variants, but relatively insignificant for large-scale evolution. Major evolutionary innovations depend much more on illegitimate recombination, which makes novel genes by gene duplication and by gene chimaerisation--essentially mutational forces. The machinery of recombination and sex evolved in two distinct bouts of quantum evolution separated by nearly 3 Gy of stasis; I discuss their nature and causes. The dominant selective force in the evolution of recombination and sex has been selection for replicational fidelity and viability; without the recombination machinery, accurate reproduction, stasis, resistance to radical deleterious evolutionary change and preservation of evolutionary innovations would be impossible. Recombination proteins betray in their phylogeny and domain structure a key role for gene duplication and chimaerisation in their own origin. They arose about 3.8 Gy ago to enable faithful replication and segregation of the first circular DNA genomes in precellular ancestors of Gram-negative eubacteria. Then they were recruited and modified by selfish genetic parasites (viruses; transposons) to help them spread from host to host. Bacteria differ fundamentally from eukaryotes in that gene transfer between cells, whether incidental to their absorptive feeding on DNA and virus infection or directly by plasmids, involves only genomic fragments. This was radically changed by the neomuran revolution about 850 million years ago when a posibacterium evolved into the thermophilic cenancestor of eukaryotes and archaebacteria (jointly called neomurans), radically modifying or substituting its DNA-handling enzymes (those responsible for transcription as well as for replication, repair and recombination) as a coadaptive consequence of the origin of core histones to stabilise its chromosome. Substitution of glycoprotein for peptidoglycan walls in the neomuran ancestor and the evolution of an endoskeleton and endomembrane system in eukaryotes alone required the origin of nuclei, mitosis and novel cell cycle controls and enabled them to evolve cell fusion and thereby the combination of whole genomes from different cells. Meiosis evolved because of resulting selection for periodic ploidy reduction, with incidental consequences for intrapopulation genetic exchange. Little modification was needed to recombination enzymes or to the ancient bacterial catalysts of homology search by spontaneous base pairing to mediate chromosome pairing. The key innovation was the origin of meiotic cohesins delaying centromere splitting to allow two successive divisions before reversion to vegetative growth and replication, necessarily yielding two-step meiosis. Also significant was the evolution of synaptonemal complexes to stabilise bivalents and of monopolins to orient sister centromeres to one spindle pole. The primary significance of sex was not to promote evolutionary change but to limit it by facilitating ploidy cycles to balance the conflicting selective forces acting on rapidly growing phagotrophic protozoa and starved dormant cysts subject to radiation and other damage.Mutation plays the primary role in evolution that Weismann mistakenly attributed to sex. Homologous recombination, as in sex, is important for population genetics--shuffling of minor variants, but relatively insignificant for large-scale evolution. Major evolutionary innovations depend much more on illegitimate recombination, which makes novel genes by gene duplication and by gene chimaerisation--essentially mutational forces. The machinery of recombination and sex evolved in two distinct bouts of quantum evolution separated by nearly 3 Gy of stasis; I discuss their nature and causes. The dominant selective force in the evolution of recombination and sex has been selection for replicational fidelity and viability; without the recombination machinery, accurate reproduction, stasis, resistance to radical deleterious evolutionary change and preservation of evolutionary innovations would be impossible. Recombination proteins betray in their phylogeny and domain structure a key role for gene duplication and chimaerisation in their own origin. They arose about 3.8 Gy ago to enable faithful replication and segregation of the first circular DNA genomes in precellular ancestors of Gram-negative eubacteria. Then they were recruited and modified by selfish genetic parasites (viruses; transposons) to help them spread from host to host. Bacteria differ fundamentally from eukaryotes in that gene transfer between cells, whether incidental to their absorptive feeding on DNA and virus infection or directly by plasmids, involves only genomic fragments. This was radically changed by the neomuran revolution about 850 million years ago when a posibacterium evolved into the thermophilic cenancestor of eukaryotes and archaebacteria (jointly called neomurans), radically modifying or substituting its DNA-handling enzymes (those responsible for transcription as well as for replication, repair and recombination) as a coadaptive consequence of the origin of core histones to stabilise its chromosome. Substitution of glycoprotein for peptidoglycan walls in the neomuran ancestor and the evolution of an endoskeleton and endomembrane system in eukaryotes alone required the origin of nuclei, mitosis and novel cell cycle controls and enabled them to evolve cell fusion and thereby the combination of whole genomes from different cells. Meiosis evolved because of resulting selection for periodic ploidy reduction, with incidental consequences for intrapopulation genetic exchange. Little modification was needed to recombination enzymes or to the ancient bacterial catalysts of homology search by spontaneous base pairing to mediate chromosome pairing. The key innovation was the origin of meiotic cohesins delaying centromere splitting to allow two successive divisions before reversion to vegetative growth and replication, necessarily yielding two-step meiosis. Also significant was the evolution of synaptonemal complexes to stabilise bivalents and of monopolins to orient sister centromeres to one spindle pole. The primary significance of sex was not to promote evolutionary change but to limit it by facilitating ploidy cycles to balance the conflicting selective forces acting on rapidly growing phagotrophic protozoa and starved dormant cysts subject to radiation and other damage. |
Author | Cavalier-smith, T |
Author_xml | – sequence: 1 givenname: T surname: Cavalier-smith fullname: Cavalier-smith, T email: tom.cavalier-smith@zoo.ox.ac.uk organization: Department of Zoology, University of Oxford |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11932771$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtrAjEURkOx1Ee77bIMXXQ3evNwJrMs0hcIblroLmTijUacjE1GqP--Y7UUBFeBcM7H5fRJx9ceCbmlMKTA5Siuhsv5bphJAODigvQoz8YpGwvokB4AlSlk-WeX9GNc7ZGcFVekS2nBWZ7THqGz4BbOx6S2SbPEpNJm6TyG3f4joKmr0nnduNon2s-TiN_X5NLqdcSb4zsgH89P75PXdDp7eZs8TlMjMtmkXFgGYAqGlmmuLTfcMKqptqUsrTSZzBCE4KaEsWQIFiQHinmBpdVjzPmAPBx2N6H-2mJsVOWiwfVae6y3UeU0g0JQ3oL3J-Cq3gbf3qYYK4q8kGK_dneEtmWFc7UJrtJhp_5KtMDwAJhQxxjQ_iOg9qlVXKk2tTqmbgVxIhjX_JZqgnbr89rooMV23y8w_F97xvgB4kCR5g |
CODEN | HDTYAT |
CitedBy_id | crossref_primary_10_1111_j_1558_5646_2010_01173_x crossref_primary_10_1534_genetics_106_056150 crossref_primary_10_3390_life6030025 crossref_primary_10_1098_rsob_200357 crossref_primary_10_1016_j_ejop_2004_01_002 crossref_primary_10_1371_journal_pone_0235725 crossref_primary_10_1038_sj_hdy_6801053 crossref_primary_10_1111_j_1095_8312_2009_01334_x crossref_primary_10_17816_ecogen2113_26 crossref_primary_10_1016_j_cub_2017_01_049 crossref_primary_10_1111_mec_12872 crossref_primary_10_1134_S1022795416050033 crossref_primary_10_1016_j_ygcen_2015_12_016 crossref_primary_10_1093_nar_gkw1228 crossref_primary_10_1515_bot_2016_0091 crossref_primary_10_1371_journal_pone_0013241 crossref_primary_10_1186_s12864_015_1983_5 crossref_primary_10_1038_nrg964 crossref_primary_10_1134_S1022795410110013 crossref_primary_10_1371_journal_pone_0002879 crossref_primary_10_1111_brv_12338 crossref_primary_10_1098_rstb_2006_1842 crossref_primary_10_3390_biology10060471 crossref_primary_10_1016_j_watbs_2023_100201 crossref_primary_10_3390_ani11102891 crossref_primary_10_1002_bies_20264 crossref_primary_10_1016_j_ucl_2008_01_015 crossref_primary_10_1017_S0031182014001693 crossref_primary_10_1016_j_biocel_2008_10_002 crossref_primary_10_1091_mbc_e17_02_0101 crossref_primary_10_1007_s11802_023_5289_y crossref_primary_10_1016_j_physa_2004_08_067 crossref_primary_10_1093_jhered_esaa031 crossref_primary_10_1098_rsbl_2018_0871 crossref_primary_10_1007_s12064_021_00359_1 crossref_primary_10_1111_j_1365_294X_2008_03992_x crossref_primary_10_3389_fevo_2021_711556 crossref_primary_10_1093_jxb_erq191 crossref_primary_10_1007_s10539_012_9354_y crossref_primary_10_3390_microorganisms2010011 crossref_primary_10_1016_j_cub_2007_10_020 crossref_primary_10_1016_j_resmic_2015_09_009 crossref_primary_10_1128_ecosalplus_2_2_3 crossref_primary_10_1371_journal_pone_0273736 crossref_primary_10_1038_embor_2012_131 crossref_primary_10_1055_s_2005_865655 crossref_primary_10_1007_s11692_012_9219_y crossref_primary_10_1098_rstb_2016_0001 crossref_primary_10_1139_G07_039 crossref_primary_10_3389_fpls_2015_00011 crossref_primary_10_1093_jxb_eraa207 crossref_primary_10_1016_S1074_5521_03_00027_9 crossref_primary_10_1002_yea_3512 crossref_primary_10_1038_s41467_024_47017_w crossref_primary_10_1111_j_1550_7408_2009_00450_x crossref_primary_10_1534_genetics_108_099762 crossref_primary_10_1016_j_cub_2008_05_007 crossref_primary_10_1134_S0031030110070117 crossref_primary_10_1002_bies_20764 crossref_primary_10_1016_S0092_8674_03_00083_7 crossref_primary_10_1007_s11427_015_4811_x crossref_primary_10_1093_jhered_esq009 crossref_primary_10_1016_S0960_9822_03_00008_3 crossref_primary_10_3732_ajb_1500196 crossref_primary_10_3390_cancers12123794 crossref_primary_10_4161_cib_1_1_6349 crossref_primary_10_1111_mec_14454 crossref_primary_10_3390_genes11010079 crossref_primary_10_1093_gbe_evw136 crossref_primary_10_1038_hdy_2010_171 crossref_primary_10_1093_gbe_evad122 crossref_primary_10_1080_01490451_2019_1611975 crossref_primary_10_1134_S0031030106100017 crossref_primary_10_1007_s00497_010_0158_4 crossref_primary_10_1186_1471_2164_14_909 crossref_primary_10_1146_annurev_biophys_33_110502_140357 crossref_primary_10_1111_nph_13284 crossref_primary_10_1016_S1534_5807_03_00336_8 crossref_primary_10_1016_j_resmic_2010_10_002 crossref_primary_10_1016_j_jtbi_2006_05_015 crossref_primary_10_1016_j_cub_2007_11_019 crossref_primary_10_1186_s12864_024_10462_4 crossref_primary_10_1016_j_tplants_2016_02_004 crossref_primary_10_1002_bies_20344 crossref_primary_10_1016_j_tree_2011_09_016 crossref_primary_10_1093_gbe_evaa182 crossref_primary_10_3390_cancers15184439 crossref_primary_10_1038_s41576_020_0240_1 crossref_primary_10_1093_carcin_bgu177 crossref_primary_10_1007_s00239_004_2642_7 crossref_primary_10_1111_j_1440_169X_2011_01255_x crossref_primary_10_1111_j_1558_5646_2012_01589_x crossref_primary_10_1007_s00709_019_01442_7 crossref_primary_10_1016_j_cub_2005_01_003 crossref_primary_10_1038_jhg_2013_86 crossref_primary_10_1002_bies_20578 crossref_primary_10_1098_rspb_2004_2747 crossref_primary_10_1007_s00294_011_0357_z crossref_primary_10_3390_mps2030074 crossref_primary_10_1016_j_hal_2021_102050 crossref_primary_10_1111_j_1420_9101_2006_01183_x |
Cites_doi | 10.1073/pnas.131004998 10.1093/emboj/19.17.4513 10.1017/S0305004100015644 10.1126/science.285.5430.1033 10.1186/gb-2001-2-1-reviews3001 10.1016/S1357-2725(01)00060-7 10.1099/00207713-52-1-7 10.1073/pnas.121046198 10.1128/JB.180.12.3137-3143.1998 10.1093/nar/26.18.4205 10.1016/S0960-9822(01)00026-4 10.1093/oxfordjournals.jhered.a111357 10.1016/S0092-8674(00)00217-8 10.1073/pnas.97.4.1400 10.1016/S0168-9525(98)01494-2 10.1073/pnas.191387498 10.1016/S0020-7519(97)00167-7 10.1101/SQB.1987.052.01.098 10.1074/jbc.M103397200 10.1099/00207713-52-2-297 10.1016/S0960-9822(01)00040-9 10.1073/pnas.93.25.14416 10.1016/S0092-8674(00)00131-8 10.1146/annurev.biochem.70.1.39 10.1073/pnas.111005398 10.1046/j.1365-2958.2001.02277.x 10.1146/annurev.bi.63.070194.004021 10.1017/S0006323198005167 10.1242/jcs.34.1.247 10.1016/S1360-1385(00)01598-3 10.1666/0094-8373(2000)026<0360:TAITNE>2.0.CO;2 10.1073/pnas.121007798 10.1038/370213a0 10.1007/BF02956156 10.1111/j.1550-7408.1956.tb02452.x 10.1016/0092-8674(86)90315-6 10.1073/pnas.111005198 10.1007/978-4-431-68302-5_18 10.1093/genetics/156.1.423 10.1093/genetics/155.4.1505 10.1128/MCB.21.16.5667-5677.2001 10.1016/S0065-2660(08)60012-7 10.1101/SQB.1987.052.01.089 10.1111/j.1749-6632.1987.tb40596.x 10.1038/35084593 10.1073/pnas.171579898 10.1017/CBO9780511525704 10.1038/256463a0 10.1073/pnas.121005298 10.5962/bhl.title.2022 10.1146/annurev.biochem.69.1.115 10.1046/j.1365-2958.2001.02542.x 10.1007/s002390010245 10.1006/jmbi.2001.4753 10.1016/S0960-9822(01)00119-1 10.1093/emboj/19.12.3110 10.1128/AEM.66.9.3856-3867.2000 10.1126/science.105.2724.287 10.1038/35053103 10.1038/228333a0 |
ContentType | Journal Article |
Copyright | The Genetical Society of Great Britain 2002 Copyright Nature Publishing Group Feb 2002 |
Copyright_xml | – notice: The Genetical Society of Great Britain 2002 – notice: Copyright Nature Publishing Group Feb 2002 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7SS 7T7 7TK 7U9 7X7 7XB 88A 88E 88I 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 |
DOI | 10.1038/sj.hdy.6800034 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-2540 |
EndPage | 141 |
ExternalDocumentID | 998258881 11932771 10_1038_sj_hdy_6800034 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -ET -Q- -~X 0R~ 1OC 29I 2WC 31~ 36B 39C 3O- 4.4 406 53G 5GY 5RE 7X7 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAHBH AAKAB AANZL AASML AAYZH ABAKF ABAWZ ABBRH ABCQX ABDBE ABDBF ABFSG ABJNI ABLJU ABRTQ ABUWG ABZZP ACAOD ACGFS ACGOD ACKTT ACNCT ACPRK ACRQY ACSTC ACUHS ACZOJ ADBBV AEFQL AEJRE AEMSY AENEX AESKC AEUYN AEVLU AEZWR AFBBN AFDZB AFFNX AFHIU AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AHWEU AI. AIGIU AIXLP AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC B0M BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CAG CCPQU COF CS3 DIK DNIVK DPUIP DWQXO E3Z EAD EAP EBC EBD EBLON EBS EE. EIOEI EJD EMB EMK EMOBN EPL ESX F5P FDQFY FEDTE FERAY FIZPM FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF H~9 IWAJR JSO JZLTJ KQ8 L7B LK8 M1P M2O M2P M7P NQJWS OK1 P2P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RNS RNT RNTTT ROL RPM SNX SNYQT SOHCF SOJ SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TN5 TR2 TUS UKHRP VH1 WH7 ~8M ~KM AAYXX CITATION 3V. 70F 8-1 88A AACDK AAOIN AATNV AAZLF ABTAH ACXQS ADHDB AEXYK AFZJQ AILAN AJAOE AOIJS CGR CUY CVF ECM EIF FIGPU HYE IHE LH4 LW6 M0L MVM NAO NPM OVD TEORI VXZ WHG X7L ZGI ZXP ZY4 7QL 7SN 7SS 7T7 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 ESTFP PUEGO |
ID | FETCH-LOGICAL-c468t-34f200c92ef2a3af3c3c21a1afb8bf8c686e0443cb0582e0f08301e79ebfa5e73 |
IEDL.DBID | 7X7 |
ISSN | 0018-067X |
IngestDate | Fri Sep 05 09:28:49 EDT 2025 Fri Jul 25 08:50:58 EDT 2025 Wed Feb 19 01:33:47 EST 2025 Tue Jul 01 02:16:30 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Mon Jul 21 06:08:18 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | DNA ligase meiosis syngamy resolvase DNA topoisomerase RecA |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-34f200c92ef2a3af3c3c21a1afb8bf8c686e0443cb0582e0f08301e79ebfa5e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/6800034.pdf |
PMID | 11932771 |
PQID | 229979847 |
PQPubID | 36536 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_71609413 proquest_journals_229979847 pubmed_primary_11932771 crossref_primary_10_1038_sj_hdy_6800034 crossref_citationtrail_10_1038_sj_hdy_6800034 springer_journals_10_1038_sj_hdy_6800034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-02-01 |
PublicationDateYYYYMMDD | 2002-02-01 |
PublicationDate_xml | – month: 02 year: 2002 text: 2002-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: England – name: Cardiff |
PublicationTitle | Heredity |
PublicationTitleAbbrev | Heredity |
PublicationTitleAlternate | Heredity (Edinb) |
PublicationYear | 2002 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | T Cavalier-Smith (BF6800034_CR19) 2000; 4 SL Gasior (BF6800034_CR35) 2001; 98 T Lenormand (BF6800034_CR50) 2000; 156 T Cavalier-Smith (BF6800034_CR15) 1991 T Cavalier-Smith (BF6800034_CR20) 2001; 53 T Cavalier-Smith (BF6800034_CR14) 1987; 52 J Pelttari (BF6800034_CR58) 2001; 21 C Darwin (BF6800034_CR27) 1868 RJ Redfield (BF6800034_CR62) 2001; 2 A Kornberg (BF6800034_CR48) 1992 BJ Finlay (BF6800034_CR32) 1998; 28 T Cavalier-Smith (BF6800034_CR13) 1987; 503 T Cavalier-Smith (BF6800034_CR9) 1970; 228 DD Leipe (BF6800034_CR49) 2000; 10 EH Egelman (BF6800034_CR31) 2001; 11 J Maynard Smith (BF6800034_CR51) 1995 M Iwabuchi (BF6800034_CR43) 2000; 19 A Weismann (BF6800034_CR70) 1886 BF6800034_CR22 S Porter (BF6800034_CR60) 2000; 26 AS Kondrashov (BF6800034_CR47) 1994; 370 RE Michod (BF6800034_CR55) 1993; 84 CM Joyce (BF6800034_CR44) 1994; 63 GG Simpson (BF6800034_CR66) 1944 AA Bocquier (BF6800034_CR5) 2001; 11 G Frank (BF6800034_CR33) 2001; 276 II Schmalhausen (BF6800034_CR63) 1949 MM Cox (BF6800034_CR26) 2001; 98 CT Bergstrom (BF6800034_CR3) 2000; 155 SB Buonomo (BF6800034_CR8) 2000; 103 BF6800034_CR7 Q Huai (BF6800034_CR42) 2000; 19 P McGlynn (BF6800034_CR52) 2001; 98 T Shibata (BF6800034_CR65) 2001; 98 H Bernstein (BF6800034_CR4) 1987; 24 T Cavalier-Smith (BF6800034_CR10) 1975; 256 T Cavalier-Smith (BF6800034_CR11) 1978; 34 LR Cleveland (BF6800034_CR24) 1947; 105 S Ramirez-Arcos (BF6800034_CR61) 1998; 180 Q Zhu (BF6800034_CR73) 2001; 98 T Cavalier-Smith (BF6800034_CR17) 1995; 145 NR Pace (BF6800034_CR56) 1986; 45 T Hirano (BF6800034_CR41) 2000; 69 X Yu (BF6800034_CR71) 2001; 98 F Matsunaga (BF6800034_CR53) 2001; 98 T Cavalier-Smith (BF6800034_CR12) 1981 WF Doolittle (BF6800034_CR30) 1998; 14 LN Seravin (BF6800034_CR64) 1999 W Gilbert (BF6800034_CR36) 1987; 52 R Meima (BF6800034_CR54) 2000; 66 Y Watanabe (BF6800034_CR69) 2001; 409 T Cavalier-Smith (BF6800034_CR21) 2002; 52 T Cavalier-Smith (BF6800034_CR16) 1993 BF6800034_CR2 Z Zhang (BF6800034_CR72) 2001; 309 DN Frick (BF6800034_CR34) 2001; 69 L Cienkowsky (BF6800034_CR23) 1873; 9 H de Vries (BF6800034_CR28) 1889 JBS Haldane (BF6800034_CR40) 1932 KN Smith (BF6800034_CR67) 2001; 11 JBS Haldane (BF6800034_CR39) 1927; 23 L Aravind (BF6800034_CR1) 1998; 26 K Perals (BF6800034_CR59) 2001; 39 N Patenge (BF6800034_CR57) 2001; 41 H de Vries (BF6800034_CR29) 1912 RC Gupta (BF6800034_CR38) 2001; 98 SC Kampranis (BF6800034_CR45) 1996; 93 JL Kirschvink (BF6800034_CR46) 2000; 97 LR Cleveland (BF6800034_CR25) 1956; 3 FX Gomis-Ruth (BF6800034_CR37) 2001; 33 A Toth (BF6800034_CR68) 2000; 103 T Cavalier-Smith (BF6800034_CR18) 1998; 73 JJ Brocks (BF6800034_CR6) 1999; 285 |
References_xml | – volume: 98 start-page: 8173 year: 2001 ident: BF6800034_CR26 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.131004998 – volume: 19 start-page: 4513 year: 2000 ident: BF6800034_CR43 publication-title: EMBO J doi: 10.1093/emboj/19.17.4513 – volume: 23 start-page: 838 year: 1927 ident: BF6800034_CR39 publication-title: Proc Camb Phil Soc (Biol Sci) doi: 10.1017/S0305004100015644 – volume: 285 start-page: 1033 year: 1999 ident: BF6800034_CR6 publication-title: Science doi: 10.1126/science.285.5430.1033 – ident: BF6800034_CR7 doi: 10.1186/gb-2001-2-1-reviews3001 – volume: 33 start-page: 839 year: 2001 ident: BF6800034_CR37 publication-title: Int J Biochem Cell Biol doi: 10.1016/S1357-2725(01)00060-7 – volume: 52 start-page: 7 year: 2002 ident: BF6800034_CR21 publication-title: Int J Syst Evol Microbiol doi: 10.1099/00207713-52-1-7 – volume-title: Factors of Evolution, the Theory of Stabilizing Selection year: 1949 ident: BF6800034_CR63 – volume-title: Species and Varieties: Their Origin by Mutation year: 1912 ident: BF6800034_CR29 – volume-title: Agamic Fusions of Protists and the Origin of the Sexual Process year: 1999 ident: BF6800034_CR64 – volume: 98 start-page: 8411 year: 2001 ident: BF6800034_CR35 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.121046198 – volume: 180 start-page: 3137 year: 1998 ident: BF6800034_CR61 publication-title: J Bacteriol doi: 10.1128/JB.180.12.3137-3143.1998 – volume: 26 start-page: 4205 year: 1998 ident: BF6800034_CR1 publication-title: Nucleic Acids Res doi: 10.1093/nar/26.18.4205 – volume: 11 start-page: 88 year: 2001 ident: BF6800034_CR67 publication-title: Curr Biol doi: 10.1016/S0960-9822(01)00026-4 – volume: 84 start-page: 360 year: 1993 ident: BF6800034_CR55 publication-title: J Hered doi: 10.1093/oxfordjournals.jhered.a111357 – volume: 103 start-page: 1155 year: 2000 ident: BF6800034_CR68 publication-title: Cell doi: 10.1016/S0092-8674(00)00217-8 – volume: 97 start-page: 1400 year: 2000 ident: BF6800034_CR46 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.4.1400 – volume: 14 start-page: 307 year: 1998 ident: BF6800034_CR30 publication-title: Trends Genet doi: 10.1016/S0168-9525(98)01494-2 – start-page: 257 volume-title: Essays in Heredity and Kindred Problems year: 1886 ident: BF6800034_CR70 – volume: 98 start-page: 11152 year: 2001 ident: BF6800034_CR53 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.191387498 – volume: 28 start-page: 29 year: 1998 ident: BF6800034_CR32 publication-title: Int J Parasitol doi: 10.1016/S0020-7519(97)00167-7 – volume: 52 start-page: 901 year: 1987 ident: BF6800034_CR36 publication-title: Cold Spring Harbor Symp Quant Biol doi: 10.1101/SQB.1987.052.01.098 – volume-title: The Causes of Evolution year: 1932 ident: BF6800034_CR40 – volume: 276 start-page: 36295 year: 2001 ident: BF6800034_CR33 publication-title: J Biol Chem doi: 10.1074/jbc.M103397200 – ident: BF6800034_CR22 doi: 10.1099/00207713-52-2-297 – volume: 11 start-page: R103 year: 2001 ident: BF6800034_CR31 publication-title: Curr Biol doi: 10.1016/S0960-9822(01)00040-9 – volume: 93 start-page: 14416 year: 1996 ident: BF6800034_CR45 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.25.14416 – volume: 103 start-page: 387 year: 2000 ident: BF6800034_CR8 publication-title: Cell doi: 10.1016/S0092-8674(00)00131-8 – volume: 69 start-page: 39 year: 2001 ident: BF6800034_CR34 publication-title: Ann Rev Biochem doi: 10.1146/annurev.biochem.70.1.39 – volume: 98 start-page: 8419 year: 2001 ident: BF6800034_CR71 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.111005398 – volume: 39 start-page: 904 year: 2001 ident: BF6800034_CR59 publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2001.02277.x – volume: 63 start-page: 777 year: 1994 ident: BF6800034_CR44 publication-title: Ann Rev Biochem doi: 10.1146/annurev.bi.63.070194.004021 – volume: 73 start-page: 203 year: 1998 ident: BF6800034_CR18 publication-title: Biol Rev doi: 10.1017/S0006323198005167 – volume: 34 start-page: 247 year: 1978 ident: BF6800034_CR11 publication-title: J Cell Sci doi: 10.1242/jcs.34.1.247 – start-page: 33 volume-title: Molecular and Cellular Aspects of Microbial Evolution year: 1981 ident: BF6800034_CR12 – volume: 145 start-page: 198 year: 1995 ident: BF6800034_CR17 publication-title: Arch Protistenk – volume: 4 start-page: 174 year: 2000 ident: BF6800034_CR19 publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(00)01598-3 – volume: 26 start-page: 360 year: 2000 ident: BF6800034_CR60 publication-title: Palaeobiology doi: 10.1666/0094-8373(2000)026<0360:TAITNE>2.0.CO;2 – volume: 98 start-page: 8235 year: 2001 ident: BF6800034_CR52 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.121007798 – start-page: 333 volume-title: The Eukaryotic Genome year: 1993 ident: BF6800034_CR16 – volume: 370 start-page: 213 year: 1994 ident: BF6800034_CR47 publication-title: Nature doi: 10.1038/370213a0 – volume: 9 start-page: 47 year: 1873 ident: BF6800034_CR23 publication-title: Arch Mikr Anat doi: 10.1007/BF02956156 – volume: 3 start-page: 161 year: 1956 ident: BF6800034_CR25 publication-title: J Protozool doi: 10.1111/j.1550-7408.1956.tb02452.x – volume: 45 start-page: 325 year: 1986 ident: BF6800034_CR56 publication-title: Cell doi: 10.1016/0092-8674(86)90315-6 – volume: 98 start-page: 8425 year: 2001 ident: BF6800034_CR65 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.111005198 – start-page: 271 volume-title: Evolution of Life year: 1991 ident: BF6800034_CR15 doi: 10.1007/978-4-431-68302-5_18 – volume-title: The Major Transitions in Evolution year: 1995 ident: BF6800034_CR51 – volume: 156 start-page: 423 year: 2000 ident: BF6800034_CR50 publication-title: Genetics doi: 10.1093/genetics/156.1.423 – volume: 155 start-page: 1505 year: 2000 ident: BF6800034_CR3 publication-title: Genetics doi: 10.1093/genetics/155.4.1505 – volume-title: The Variation of Animals and Plants Under Domestication year: 1868 ident: BF6800034_CR27 – volume: 21 start-page: 5667 year: 2001 ident: BF6800034_CR58 publication-title: Mol Cell Biol doi: 10.1128/MCB.21.16.5667-5677.2001 – volume: 24 start-page: 323 year: 1987 ident: BF6800034_CR4 publication-title: Adv Genet doi: 10.1016/S0065-2660(08)60012-7 – volume: 52 start-page: 805 year: 1987 ident: BF6800034_CR14 publication-title: Cold Spring Harbor Symp Quant Biol doi: 10.1101/SQB.1987.052.01.089 – volume-title: DNA Replication year: 1992 ident: BF6800034_CR48 – volume-title: Tempo and Mode in Evolution year: 1944 ident: BF6800034_CR66 – volume: 503 start-page: 17 year: 1987 ident: BF6800034_CR13 publication-title: Ann NY Acad Sci doi: 10.1111/j.1749-6632.1987.tb40596.x – volume: 2 start-page: 634 year: 2001 ident: BF6800034_CR62 publication-title: Nat Rev Genet doi: 10.1038/35084593 – volume: 98 start-page: 9766 year: 2001 ident: BF6800034_CR73 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.171579898 – ident: BF6800034_CR2 doi: 10.1017/CBO9780511525704 – volume: 256 start-page: 463 year: 1975 ident: BF6800034_CR10 publication-title: Nature doi: 10.1038/256463a0 – volume: 10 start-page: 5 year: 2000 ident: BF6800034_CR49 publication-title: Genome Res – volume: 98 start-page: 8433 year: 2001 ident: BF6800034_CR38 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.121005298 – volume-title: Intracellular Pangenesis year: 1889 ident: BF6800034_CR28 doi: 10.5962/bhl.title.2022 – volume: 69 start-page: 115 year: 2000 ident: BF6800034_CR41 publication-title: Ann Rev Biochem doi: 10.1146/annurev.biochem.69.1.115 – volume: 41 start-page: 653 year: 2001 ident: BF6800034_CR57 publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2001.02542.x – volume: 53 start-page: 555 year: 2001 ident: BF6800034_CR20 publication-title: J Mol Evol doi: 10.1007/s002390010245 – volume: 309 start-page: 29 year: 2001 ident: BF6800034_CR72 publication-title: J Mol Biol doi: 10.1006/jmbi.2001.4753 – volume: 11 start-page: 452 year: 2001 ident: BF6800034_CR5 publication-title: Curr Biol doi: 10.1016/S0960-9822(01)00119-1 – volume: 19 start-page: 3110 year: 2000 ident: BF6800034_CR42 publication-title: EMBO J doi: 10.1093/emboj/19.12.3110 – volume: 66 start-page: 856 year: 2000 ident: BF6800034_CR54 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.9.3856-3867.2000 – volume: 105 start-page: 287 year: 1947 ident: BF6800034_CR24 publication-title: Science doi: 10.1126/science.105.2724.287 – volume: 409 start-page: 359 year: 2001 ident: BF6800034_CR69 publication-title: Nature doi: 10.1038/35053103 – volume: 228 start-page: 333 year: 1970 ident: BF6800034_CR9 publication-title: Nature doi: 10.1038/228333a0 |
SSID | ssj0003729 |
Score | 2.031773 |
SecondaryResourceType | review_article |
Snippet | Mutation plays the primary role in evolution that Weismann mistakenly attributed to sex. Homologous recombination, as in sex, is important for population... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 125 |
SubjectTerms | Animals Archaea - physiology Bacterial Physiological Phenomena Biological Evolution Biomedical and Life Sciences Biomedicine Conjugation, Genetic Cytogenetics Deoxyribonucleic acid DNA DNA Topoisomerases - physiology Ecology Endodeoxyribonucleases - physiology Eukaryotic Cells - physiology Evolutionary Biology Genetics Holliday Junction Resolvases Human Genetics Innovations Meiosis - physiology Mutation Parasites Phylogeny Plant Genetics and Genomics Plasmids - physiology Population genetics Recombination, Genetic - physiology Reproduction - physiology research-article Sex Determination Processes Transduction, Genetic Transformation, Genetic |
Title | Origins of the machinery of recombination and sex |
URI | https://link.springer.com/article/10.1038/sj.hdy.6800034 https://www.ncbi.nlm.nih.gov/pubmed/11932771 https://www.proquest.com/docview/229979847 https://www.proquest.com/docview/71609413 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB58IHgR38ZHzUHQy2r20WR7EhVFBB-IQm9hs9lFik2rqWD_vbObpCJVLzkkS7LMTGa-yUzmAzigGNJV5rrELWcEvaQmimaMxAgV4pxFSsTuR-Hbu_j6Wdx02926N6es2yobn-gddT7Q7hv5CUO_mXTQl54O34gjjXLF1ZpBYxbm_eQyNOekO8m3IleRqhyxJOiUu83MRi5Pyt7xSz4-jqUf0PIzJk0BzakiqY89V8uwVIPG8KzS8grMmGIVFioayfEa0HvPblWGAxsingv7vkHSvI_dCZfx9jH99RoIVZGHpflch-ery6eLa1JTIRAtYjkiXFg0Z91hxjLFleWaa0YVVTaTmZU6lrGJhOA6i9qSmcgisoqoSToms6ptEr4Bc8WgMFsQ5ophmBdJkueOfqytLGbHwiBSEYbrjgiANMJIdT0n3NFVvKa-Xs1lWvZSFF5aCy-Aw8n6YTUh48-VO41s0_pNKdOJXgPYn1xFE3d1C1WYwUeZYkqHSSjlAWxWCvl-joOfSUIDOGo09H3n3zex_e8mdmDR0734tuxdmBu9f5g9RB2jrOVtC4_ygrZg_vzy7uHxC-F-1jI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED6xoml7QRtjEBgjD6DxYprYbuI-IMQ2UPnVTRNIfTOOY2tCI-2aIugfxf_I2UmKJra98ZpYjnV3Pn-XO98HsBnjka4yVyVuGSXoJTVRcUZJglAhyWmkeOIuCp_1k94FPx50BnNw39yFcWWVjU_0jjofavePvE3Rb6Zd9KV7o9_EkUa55GrDoFFZxYmZ3mLEVu4efUX1blF6eHD-pUdqUgGieSImhHGLhqG71FiqmLJMM01jFSubicwKnYjERJwznUUdQU1kEaNEsUm7JrOqY1KG876Aee4utLZg_vNB__uPmet3ObDK9QuCx8Cg6RLJRLu82vmZT3cS4VvC_HkKPoG2T9Ky_rQ7fAMLNUwN9yu7egtzpliElxVx5fQdxN88n1YZDm2ICDK89iWZZjx1D1yMfY0Bt9d5qIo8LM3dElw8i5zeQ6sYFmYFwlxRBBY8TfPcEZ51lMV4nBvERtww3eUBkEYYUtedyR1Bxi_pM-RMyPJKovBkLbwAPs3Gj6qeHP8cudbIVtZ7s5QzSwpgY_YWN5XLlKjCDG9KiUEkhr0xC2C5UsjjdxzgTdM4gO1GQ48z_30Rq_9dxAa86p2fncrTo_7JGrz2ZDO-KPwDtCbjG7OOmGeSfawtLYTL5zbuBxcEEus |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RUKteqvJRSCklh6JyMZvY3th7qBBiu9ot7bYHkPbmOo4thEqWkkXt_rT-u46dZFEF5cY1sRxrZjzzJjP2A3iXYkjXue8Sd4wS9JKG6DSnJEOokBU00TzzB4W_jLPhGf806U6W4E97Fsa3VbY-MTjqYmr8P_IORb8peuhLO67pivjWHxxe_SSeQMoXWls2jdpCTuz8F2Zv1YdRH1W9R-ng4-nxkDQEA8TwTM4I4w6NxPSodVQz7ZhhhqY61S6XuZMmk5lNOGcmT7qS2sQhXklSK3o2d7prBcN5n8CKYAiqcCuJySLXS3w1rA4CkmBAmLT3RTLZqS4Ozov5QSbD5TD_xsM7IPdOgTbEvcFLeNEA1viotrBVWLLlGjytKSzn65B-DcxaVTx1MWLJ-DI0Z9rruX_gs-1LTL2D9mNdFnFlf2_A2aNI6RUsl9PSbkFcaIoQgwtRFJ76rKsdZubcIkrilpkej4C0wlCmuaPcU2X8UKFWzqSqLhQKTzXCi-D9YvxVfTvHf0dut7JVzS6t1MKmIthdvMXt5WsmurTTm0phOokJcMoi2KwVcvsdD32FSCPYbzV0O_P9i3j94CJ24RmatPo8Gp9sw_PAOhO6w9_A8uz6xu4g-Jnlb4OZxfD9se36L-ETFbI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Origins+of+the+machinery+of+recombination+and+sex&rft.jtitle=Heredity&rft.au=Cavalier-smith%2C+T&rft.date=2002-02-01&rft.issn=0018-067X&rft.eissn=1365-2540&rft.volume=88&rft.issue=2&rft.spage=125&rft.epage=141&rft_id=info:doi/10.1038%2Fsj.hdy.6800034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_sj_hdy_6800034 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-067X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-067X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-067X&client=summon |