Origins of the machinery of recombination and sex

Mutation plays the primary role in evolution that Weismann mistakenly attributed to sex. Homologous recombination, as in sex, is important for population genetics – shuffling of minor variants, but relatively insignificant for large-scale evolution. Major evolutionary innovations depend much more on...

Full description

Saved in:
Bibliographic Details
Published inHeredity Vol. 88; no. 2; pp. 125 - 141
Main Author Cavalier-smith, T
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2002
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0018-067X
1365-2540
DOI10.1038/sj.hdy.6800034

Cover

Abstract Mutation plays the primary role in evolution that Weismann mistakenly attributed to sex. Homologous recombination, as in sex, is important for population genetics – shuffling of minor variants, but relatively insignificant for large-scale evolution. Major evolutionary innovations depend much more on illegitimate recombination, which makes novel genes by gene duplication and by gene chimaerisation – essentially mutational forces. The machinery of recombination and sex evolved in two distinct bouts of quantum evolution separated by nearly 3 Gy of stasis; I discuss their nature and causes. The dominant selective force in the evolution of recombination and sex has been selection for replicational fidelity and viability; without the recombination machinery, accurate reproduction, stasis, resistance to radical deleterious evolutionary change and preservation of evolutionary innovations would be impossible. Recombination proteins betray in their phylogeny and domain structure a key role for gene duplication and chimaerisation in their own origin. They arose about 3.8 Gy ago to enable faithful replication and segregation of the first circular DNA genomes in precellular ancestors of Gram-negative eubacteria. Then they were recruited and modified by selfish genetic parasites (viruses; transposons) to help them spread from host to host. Bacteria differ fundamentally from eukaryotes in that gene transfer between cells, whether incidental to their absorptive feeding on DNA and virus infection or directly by plasmids, involves only genomic fragments. This was radically changed by the neomuran revolution about 850 million years ago when a posibacterium evolved into the thermophilic cenancestor of eukaryotes and archaebacteria (jointly called neomurans), radically modifying or substituting its DNA-handling enzymes (those responsible for transcription as well as for replication, repair and recombination) as a coadaptive consequence of the origin of core histones to stabilise its chromosome. Substitution of glycoprotein for peptidoglycan walls in the neomuran ancestor and the evolution of an endoskeleton and endomembrane system in eukaryotes alone required the origin of nuclei, mitosis and novel cell cycle controls and enabled them to evolve cell fusion and thereby the combination of whole genomes from different cells. Meiosis evolved because of resulting selection for periodic ploidy reduction, with incidental consequences for intrapopulation genetic exchange. Little modification was needed to recombination enzymes or to the ancient bacterial catalysts of homology search by spontaneous base pairing to mediate chromosome pairing. The key innovation was the origin of meiotic cohesins delaying centromere splitting to allow two successive divisions before reversion to vegetative growth and replication, necessarily yielding two-step meiosis. Also significant was the evolution of synaptonemal complexes to stabilise bivalents and of monopolins to orient sister centromeres to one spindle pole. The primary significance of sex was not to promote evolutionary change but to limit it by facilitating ploidy cycles to balance the conflicting selective forces acting on rapidly growing phagotrophic protozoa and starved dormant cysts subject to radiation and other damage.
AbstractList Mutation plays the primary role in evolution that Weismann mistakenly attributed to sex. Homologous recombination, as in sex, is important for population genetics – shuffling of minor variants, but relatively insignificant for large-scale evolution. Major evolutionary innovations depend much more on illegitimate recombination, which makes novel genes by gene duplication and by gene chimaerisation – essentially mutational forces. The machinery of recombination and sex evolved in two distinct bouts of quantum evolution separated by nearly 3 Gy of stasis; I discuss their nature and causes. The dominant selective force in the evolution of recombination and sex has been selection for replicational fidelity and viability; without the recombination machinery, accurate reproduction, stasis, resistance to radical deleterious evolutionary change and preservation of evolutionary innovations would be impossible. Recombination proteins betray in their phylogeny and domain structure a key role for gene duplication and chimaerisation in their own origin. They arose about 3.8 Gy ago to enable faithful replication and segregation of the first circular DNA genomes in precellular ancestors of Gram-negative eubacteria. Then they were recruited and modified by selfish genetic parasites (viruses; transposons) to help them spread from host to host. Bacteria differ fundamentally from eukaryotes in that gene transfer between cells, whether incidental to their absorptive feeding on DNA and virus infection or directly by plasmids, involves only genomic fragments. This was radically changed by the neomuran revolution about 850 million years ago when a posibacterium evolved into the thermophilic cenancestor of eukaryotes and archaebacteria (jointly called neomurans), radically modifying or substituting its DNA-handling enzymes (those responsible for transcription as well as for replication, repair and recombination) as a coadaptive consequence of the origin of core histones to stabilise its chromosome. Substitution of glycoprotein for peptidoglycan walls in the neomuran ancestor and the evolution of an endoskeleton and endomembrane system in eukaryotes alone required the origin of nuclei, mitosis and novel cell cycle controls and enabled them to evolve cell fusion and thereby the combination of whole genomes from different cells. Meiosis evolved because of resulting selection for periodic ploidy reduction, with incidental consequences for intrapopulation genetic exchange. Little modification was needed to recombination enzymes or to the ancient bacterial catalysts of homology search by spontaneous base pairing to mediate chromosome pairing. The key innovation was the origin of meiotic cohesins delaying centromere splitting to allow two successive divisions before reversion to vegetative growth and replication, necessarily yielding two-step meiosis. Also significant was the evolution of synaptonemal complexes to stabilise bivalents and of monopolins to orient sister centromeres to one spindle pole. The primary significance of sex was not to promote evolutionary change but to limit it by facilitating ploidy cycles to balance the conflicting selective forces acting on rapidly growing phagotrophic protozoa and starved dormant cysts subject to radiation and other damage.
Mutation plays the primary role in evolution that Weismann mistakenly attributed to sex. Homologous recombination, as in sex, is important for population genetics--shuffling of minor variants, but relatively insignificant for large-scale evolution. Major evolutionary innovations depend much more on illegitimate recombination, which makes novel genes by gene duplication and by gene chimaerisation--essentially mutational forces. The machinery of recombination and sex evolved in two distinct bouts of quantum evolution separated by nearly 3 Gy of stasis; I discuss their nature and causes. The dominant selective force in the evolution of recombination and sex has been selection for replicational fidelity and viability; without the recombination machinery, accurate reproduction, stasis, resistance to radical deleterious evolutionary change and preservation of evolutionary innovations would be impossible. Recombination proteins betray in their phylogeny and domain structure a key role for gene duplication and chimaerisation in their own origin. They arose about 3.8 Gy ago to enable faithful replication and segregation of the first circular DNA genomes in precellular ancestors of Gram-negative eubacteria. Then they were recruited and modified by selfish genetic parasites (viruses; transposons) to help them spread from host to host. Bacteria differ fundamentally from eukaryotes in that gene transfer between cells, whether incidental to their absorptive feeding on DNA and virus infection or directly by plasmids, involves only genomic fragments. This was radically changed by the neomuran revolution about 850 million years ago when a posibacterium evolved into the thermophilic cenancestor of eukaryotes and archaebacteria (jointly called neomurans), radically modifying or substituting its DNA-handling enzymes (those responsible for transcription as well as for replication, repair and recombination) as a coadaptive consequence of the origin of core histones to stabilise its chromosome. Substitution of glycoprotein for peptidoglycan walls in the neomuran ancestor and the evolution of an endoskeleton and endomembrane system in eukaryotes alone required the origin of nuclei, mitosis and novel cell cycle controls and enabled them to evolve cell fusion and thereby the combination of whole genomes from different cells. Meiosis evolved because of resulting selection for periodic ploidy reduction, with incidental consequences for intrapopulation genetic exchange. Little modification was needed to recombination enzymes or to the ancient bacterial catalysts of homology search by spontaneous base pairing to mediate chromosome pairing. The key innovation was the origin of meiotic cohesins delaying centromere splitting to allow two successive divisions before reversion to vegetative growth and replication, necessarily yielding two-step meiosis. Also significant was the evolution of synaptonemal complexes to stabilise bivalents and of monopolins to orient sister centromeres to one spindle pole. The primary significance of sex was not to promote evolutionary change but to limit it by facilitating ploidy cycles to balance the conflicting selective forces acting on rapidly growing phagotrophic protozoa and starved dormant cysts subject to radiation and other damage.Mutation plays the primary role in evolution that Weismann mistakenly attributed to sex. Homologous recombination, as in sex, is important for population genetics--shuffling of minor variants, but relatively insignificant for large-scale evolution. Major evolutionary innovations depend much more on illegitimate recombination, which makes novel genes by gene duplication and by gene chimaerisation--essentially mutational forces. The machinery of recombination and sex evolved in two distinct bouts of quantum evolution separated by nearly 3 Gy of stasis; I discuss their nature and causes. The dominant selective force in the evolution of recombination and sex has been selection for replicational fidelity and viability; without the recombination machinery, accurate reproduction, stasis, resistance to radical deleterious evolutionary change and preservation of evolutionary innovations would be impossible. Recombination proteins betray in their phylogeny and domain structure a key role for gene duplication and chimaerisation in their own origin. They arose about 3.8 Gy ago to enable faithful replication and segregation of the first circular DNA genomes in precellular ancestors of Gram-negative eubacteria. Then they were recruited and modified by selfish genetic parasites (viruses; transposons) to help them spread from host to host. Bacteria differ fundamentally from eukaryotes in that gene transfer between cells, whether incidental to their absorptive feeding on DNA and virus infection or directly by plasmids, involves only genomic fragments. This was radically changed by the neomuran revolution about 850 million years ago when a posibacterium evolved into the thermophilic cenancestor of eukaryotes and archaebacteria (jointly called neomurans), radically modifying or substituting its DNA-handling enzymes (those responsible for transcription as well as for replication, repair and recombination) as a coadaptive consequence of the origin of core histones to stabilise its chromosome. Substitution of glycoprotein for peptidoglycan walls in the neomuran ancestor and the evolution of an endoskeleton and endomembrane system in eukaryotes alone required the origin of nuclei, mitosis and novel cell cycle controls and enabled them to evolve cell fusion and thereby the combination of whole genomes from different cells. Meiosis evolved because of resulting selection for periodic ploidy reduction, with incidental consequences for intrapopulation genetic exchange. Little modification was needed to recombination enzymes or to the ancient bacterial catalysts of homology search by spontaneous base pairing to mediate chromosome pairing. The key innovation was the origin of meiotic cohesins delaying centromere splitting to allow two successive divisions before reversion to vegetative growth and replication, necessarily yielding two-step meiosis. Also significant was the evolution of synaptonemal complexes to stabilise bivalents and of monopolins to orient sister centromeres to one spindle pole. The primary significance of sex was not to promote evolutionary change but to limit it by facilitating ploidy cycles to balance the conflicting selective forces acting on rapidly growing phagotrophic protozoa and starved dormant cysts subject to radiation and other damage.
Author Cavalier-smith, T
Author_xml – sequence: 1
  givenname: T
  surname: Cavalier-smith
  fullname: Cavalier-smith, T
  email: tom.cavalier-smith@zoo.ox.ac.uk
  organization: Department of Zoology, University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11932771$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtrAjEURkOx1Ee77bIMXXQ3evNwJrMs0hcIblroLmTijUacjE1GqP--Y7UUBFeBcM7H5fRJx9ceCbmlMKTA5Siuhsv5bphJAODigvQoz8YpGwvokB4AlSlk-WeX9GNc7ZGcFVekS2nBWZ7THqGz4BbOx6S2SbPEpNJm6TyG3f4joKmr0nnduNon2s-TiN_X5NLqdcSb4zsgH89P75PXdDp7eZs8TlMjMtmkXFgGYAqGlmmuLTfcMKqptqUsrTSZzBCE4KaEsWQIFiQHinmBpdVjzPmAPBx2N6H-2mJsVOWiwfVae6y3UeU0g0JQ3oL3J-Cq3gbf3qYYK4q8kGK_dneEtmWFc7UJrtJhp_5KtMDwAJhQxxjQ_iOg9qlVXKk2tTqmbgVxIhjX_JZqgnbr89rooMV23y8w_F97xvgB4kCR5g
CODEN HDTYAT
CitedBy_id crossref_primary_10_1111_j_1558_5646_2010_01173_x
crossref_primary_10_1534_genetics_106_056150
crossref_primary_10_3390_life6030025
crossref_primary_10_1098_rsob_200357
crossref_primary_10_1016_j_ejop_2004_01_002
crossref_primary_10_1371_journal_pone_0235725
crossref_primary_10_1038_sj_hdy_6801053
crossref_primary_10_1111_j_1095_8312_2009_01334_x
crossref_primary_10_17816_ecogen2113_26
crossref_primary_10_1016_j_cub_2017_01_049
crossref_primary_10_1111_mec_12872
crossref_primary_10_1134_S1022795416050033
crossref_primary_10_1016_j_ygcen_2015_12_016
crossref_primary_10_1093_nar_gkw1228
crossref_primary_10_1515_bot_2016_0091
crossref_primary_10_1371_journal_pone_0013241
crossref_primary_10_1186_s12864_015_1983_5
crossref_primary_10_1038_nrg964
crossref_primary_10_1134_S1022795410110013
crossref_primary_10_1371_journal_pone_0002879
crossref_primary_10_1111_brv_12338
crossref_primary_10_1098_rstb_2006_1842
crossref_primary_10_3390_biology10060471
crossref_primary_10_1016_j_watbs_2023_100201
crossref_primary_10_3390_ani11102891
crossref_primary_10_1002_bies_20264
crossref_primary_10_1016_j_ucl_2008_01_015
crossref_primary_10_1017_S0031182014001693
crossref_primary_10_1016_j_biocel_2008_10_002
crossref_primary_10_1091_mbc_e17_02_0101
crossref_primary_10_1007_s11802_023_5289_y
crossref_primary_10_1016_j_physa_2004_08_067
crossref_primary_10_1093_jhered_esaa031
crossref_primary_10_1098_rsbl_2018_0871
crossref_primary_10_1007_s12064_021_00359_1
crossref_primary_10_1111_j_1365_294X_2008_03992_x
crossref_primary_10_3389_fevo_2021_711556
crossref_primary_10_1093_jxb_erq191
crossref_primary_10_1007_s10539_012_9354_y
crossref_primary_10_3390_microorganisms2010011
crossref_primary_10_1016_j_cub_2007_10_020
crossref_primary_10_1016_j_resmic_2015_09_009
crossref_primary_10_1128_ecosalplus_2_2_3
crossref_primary_10_1371_journal_pone_0273736
crossref_primary_10_1038_embor_2012_131
crossref_primary_10_1055_s_2005_865655
crossref_primary_10_1007_s11692_012_9219_y
crossref_primary_10_1098_rstb_2016_0001
crossref_primary_10_1139_G07_039
crossref_primary_10_3389_fpls_2015_00011
crossref_primary_10_1093_jxb_eraa207
crossref_primary_10_1016_S1074_5521_03_00027_9
crossref_primary_10_1002_yea_3512
crossref_primary_10_1038_s41467_024_47017_w
crossref_primary_10_1111_j_1550_7408_2009_00450_x
crossref_primary_10_1534_genetics_108_099762
crossref_primary_10_1016_j_cub_2008_05_007
crossref_primary_10_1134_S0031030110070117
crossref_primary_10_1002_bies_20764
crossref_primary_10_1016_S0092_8674_03_00083_7
crossref_primary_10_1007_s11427_015_4811_x
crossref_primary_10_1093_jhered_esq009
crossref_primary_10_1016_S0960_9822_03_00008_3
crossref_primary_10_3732_ajb_1500196
crossref_primary_10_3390_cancers12123794
crossref_primary_10_4161_cib_1_1_6349
crossref_primary_10_1111_mec_14454
crossref_primary_10_3390_genes11010079
crossref_primary_10_1093_gbe_evw136
crossref_primary_10_1038_hdy_2010_171
crossref_primary_10_1093_gbe_evad122
crossref_primary_10_1080_01490451_2019_1611975
crossref_primary_10_1134_S0031030106100017
crossref_primary_10_1007_s00497_010_0158_4
crossref_primary_10_1186_1471_2164_14_909
crossref_primary_10_1146_annurev_biophys_33_110502_140357
crossref_primary_10_1111_nph_13284
crossref_primary_10_1016_S1534_5807_03_00336_8
crossref_primary_10_1016_j_resmic_2010_10_002
crossref_primary_10_1016_j_jtbi_2006_05_015
crossref_primary_10_1016_j_cub_2007_11_019
crossref_primary_10_1186_s12864_024_10462_4
crossref_primary_10_1016_j_tplants_2016_02_004
crossref_primary_10_1002_bies_20344
crossref_primary_10_1016_j_tree_2011_09_016
crossref_primary_10_1093_gbe_evaa182
crossref_primary_10_3390_cancers15184439
crossref_primary_10_1038_s41576_020_0240_1
crossref_primary_10_1093_carcin_bgu177
crossref_primary_10_1007_s00239_004_2642_7
crossref_primary_10_1111_j_1440_169X_2011_01255_x
crossref_primary_10_1111_j_1558_5646_2012_01589_x
crossref_primary_10_1007_s00709_019_01442_7
crossref_primary_10_1016_j_cub_2005_01_003
crossref_primary_10_1038_jhg_2013_86
crossref_primary_10_1002_bies_20578
crossref_primary_10_1098_rspb_2004_2747
crossref_primary_10_1007_s00294_011_0357_z
crossref_primary_10_3390_mps2030074
crossref_primary_10_1016_j_hal_2021_102050
crossref_primary_10_1111_j_1420_9101_2006_01183_x
Cites_doi 10.1073/pnas.131004998
10.1093/emboj/19.17.4513
10.1017/S0305004100015644
10.1126/science.285.5430.1033
10.1186/gb-2001-2-1-reviews3001
10.1016/S1357-2725(01)00060-7
10.1099/00207713-52-1-7
10.1073/pnas.121046198
10.1128/JB.180.12.3137-3143.1998
10.1093/nar/26.18.4205
10.1016/S0960-9822(01)00026-4
10.1093/oxfordjournals.jhered.a111357
10.1016/S0092-8674(00)00217-8
10.1073/pnas.97.4.1400
10.1016/S0168-9525(98)01494-2
10.1073/pnas.191387498
10.1016/S0020-7519(97)00167-7
10.1101/SQB.1987.052.01.098
10.1074/jbc.M103397200
10.1099/00207713-52-2-297
10.1016/S0960-9822(01)00040-9
10.1073/pnas.93.25.14416
10.1016/S0092-8674(00)00131-8
10.1146/annurev.biochem.70.1.39
10.1073/pnas.111005398
10.1046/j.1365-2958.2001.02277.x
10.1146/annurev.bi.63.070194.004021
10.1017/S0006323198005167
10.1242/jcs.34.1.247
10.1016/S1360-1385(00)01598-3
10.1666/0094-8373(2000)026<0360:TAITNE>2.0.CO;2
10.1073/pnas.121007798
10.1038/370213a0
10.1007/BF02956156
10.1111/j.1550-7408.1956.tb02452.x
10.1016/0092-8674(86)90315-6
10.1073/pnas.111005198
10.1007/978-4-431-68302-5_18
10.1093/genetics/156.1.423
10.1093/genetics/155.4.1505
10.1128/MCB.21.16.5667-5677.2001
10.1016/S0065-2660(08)60012-7
10.1101/SQB.1987.052.01.089
10.1111/j.1749-6632.1987.tb40596.x
10.1038/35084593
10.1073/pnas.171579898
10.1017/CBO9780511525704
10.1038/256463a0
10.1073/pnas.121005298
10.5962/bhl.title.2022
10.1146/annurev.biochem.69.1.115
10.1046/j.1365-2958.2001.02542.x
10.1007/s002390010245
10.1006/jmbi.2001.4753
10.1016/S0960-9822(01)00119-1
10.1093/emboj/19.12.3110
10.1128/AEM.66.9.3856-3867.2000
10.1126/science.105.2724.287
10.1038/35053103
10.1038/228333a0
ContentType Journal Article
Copyright The Genetical Society of Great Britain 2002
Copyright Nature Publishing Group Feb 2002
Copyright_xml – notice: The Genetical Society of Great Britain 2002
– notice: Copyright Nature Publishing Group Feb 2002
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7SS
7T7
7TK
7U9
7X7
7XB
88A
88E
88I
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/sj.hdy.6800034
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Research Library Prep
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-2540
EndPage 141
ExternalDocumentID 998258881
11932771
10_1038_sj_hdy_6800034
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-ET
-Q-
-~X
0R~
1OC
29I
2WC
31~
36B
39C
3O-
4.4
406
53G
5GY
5RE
7X7
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAHBH
AAKAB
AANZL
AASML
AAYZH
ABAKF
ABAWZ
ABBRH
ABCQX
ABDBE
ABDBF
ABFSG
ABJNI
ABLJU
ABRTQ
ABUWG
ABZZP
ACAOD
ACGFS
ACGOD
ACKTT
ACNCT
ACPRK
ACRQY
ACSTC
ACUHS
ACZOJ
ADBBV
AEFQL
AEJRE
AEMSY
AENEX
AESKC
AEUYN
AEVLU
AEZWR
AFBBN
AFDZB
AFFNX
AFHIU
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AHWEU
AI.
AIGIU
AIXLP
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B0M
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DNIVK
DPUIP
DWQXO
E3Z
EAD
EAP
EBC
EBD
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESX
F5P
FDQFY
FEDTE
FERAY
FIZPM
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
H~9
IWAJR
JSO
JZLTJ
KQ8
L7B
LK8
M1P
M2O
M2P
M7P
NQJWS
OK1
P2P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RNS
RNT
RNTTT
ROL
RPM
SNX
SNYQT
SOHCF
SOJ
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TN5
TR2
TUS
UKHRP
VH1
WH7
~8M
~KM
AAYXX
CITATION
3V.
70F
8-1
88A
AACDK
AAOIN
AATNV
AAZLF
ABTAH
ACXQS
ADHDB
AEXYK
AFZJQ
AILAN
AJAOE
AOIJS
CGR
CUY
CVF
ECM
EIF
FIGPU
HYE
IHE
LH4
LW6
M0L
MVM
NAO
NPM
OVD
TEORI
VXZ
WHG
X7L
ZGI
ZXP
ZY4
7QL
7SN
7SS
7T7
7TK
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ESTFP
PUEGO
ID FETCH-LOGICAL-c468t-34f200c92ef2a3af3c3c21a1afb8bf8c686e0443cb0582e0f08301e79ebfa5e73
IEDL.DBID 7X7
ISSN 0018-067X
IngestDate Fri Sep 05 09:28:49 EDT 2025
Fri Jul 25 08:50:58 EDT 2025
Wed Feb 19 01:33:47 EST 2025
Tue Jul 01 02:16:30 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Mon Jul 21 06:08:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords DNA ligase
meiosis
syngamy
resolvase
DNA topoisomerase
RecA
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-34f200c92ef2a3af3c3c21a1afb8bf8c686e0443cb0582e0f08301e79ebfa5e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.nature.com/articles/6800034.pdf
PMID 11932771
PQID 229979847
PQPubID 36536
PageCount 17
ParticipantIDs proquest_miscellaneous_71609413
proquest_journals_229979847
pubmed_primary_11932771
crossref_primary_10_1038_sj_hdy_6800034
crossref_citationtrail_10_1038_sj_hdy_6800034
springer_journals_10_1038_sj_hdy_6800034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-02-01
PublicationDateYYYYMMDD 2002-02-01
PublicationDate_xml – month: 02
  year: 2002
  text: 2002-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: Cardiff
PublicationTitle Heredity
PublicationTitleAbbrev Heredity
PublicationTitleAlternate Heredity (Edinb)
PublicationYear 2002
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References T Cavalier-Smith (BF6800034_CR19) 2000; 4
SL Gasior (BF6800034_CR35) 2001; 98
T Lenormand (BF6800034_CR50) 2000; 156
T Cavalier-Smith (BF6800034_CR15) 1991
T Cavalier-Smith (BF6800034_CR20) 2001; 53
T Cavalier-Smith (BF6800034_CR14) 1987; 52
J Pelttari (BF6800034_CR58) 2001; 21
C Darwin (BF6800034_CR27) 1868
RJ Redfield (BF6800034_CR62) 2001; 2
A Kornberg (BF6800034_CR48) 1992
BJ Finlay (BF6800034_CR32) 1998; 28
T Cavalier-Smith (BF6800034_CR13) 1987; 503
T Cavalier-Smith (BF6800034_CR9) 1970; 228
DD Leipe (BF6800034_CR49) 2000; 10
EH Egelman (BF6800034_CR31) 2001; 11
J Maynard Smith (BF6800034_CR51) 1995
M Iwabuchi (BF6800034_CR43) 2000; 19
A Weismann (BF6800034_CR70) 1886
BF6800034_CR22
S Porter (BF6800034_CR60) 2000; 26
AS Kondrashov (BF6800034_CR47) 1994; 370
RE Michod (BF6800034_CR55) 1993; 84
CM Joyce (BF6800034_CR44) 1994; 63
GG Simpson (BF6800034_CR66) 1944
AA Bocquier (BF6800034_CR5) 2001; 11
G Frank (BF6800034_CR33) 2001; 276
II Schmalhausen (BF6800034_CR63) 1949
MM Cox (BF6800034_CR26) 2001; 98
CT Bergstrom (BF6800034_CR3) 2000; 155
SB Buonomo (BF6800034_CR8) 2000; 103
BF6800034_CR7
Q Huai (BF6800034_CR42) 2000; 19
P McGlynn (BF6800034_CR52) 2001; 98
T Shibata (BF6800034_CR65) 2001; 98
H Bernstein (BF6800034_CR4) 1987; 24
T Cavalier-Smith (BF6800034_CR10) 1975; 256
T Cavalier-Smith (BF6800034_CR11) 1978; 34
LR Cleveland (BF6800034_CR24) 1947; 105
S Ramirez-Arcos (BF6800034_CR61) 1998; 180
Q Zhu (BF6800034_CR73) 2001; 98
T Cavalier-Smith (BF6800034_CR17) 1995; 145
NR Pace (BF6800034_CR56) 1986; 45
T Hirano (BF6800034_CR41) 2000; 69
X Yu (BF6800034_CR71) 2001; 98
F Matsunaga (BF6800034_CR53) 2001; 98
T Cavalier-Smith (BF6800034_CR12) 1981
WF Doolittle (BF6800034_CR30) 1998; 14
LN Seravin (BF6800034_CR64) 1999
W Gilbert (BF6800034_CR36) 1987; 52
R Meima (BF6800034_CR54) 2000; 66
Y Watanabe (BF6800034_CR69) 2001; 409
T Cavalier-Smith (BF6800034_CR21) 2002; 52
T Cavalier-Smith (BF6800034_CR16) 1993
BF6800034_CR2
Z Zhang (BF6800034_CR72) 2001; 309
DN Frick (BF6800034_CR34) 2001; 69
L Cienkowsky (BF6800034_CR23) 1873; 9
H de Vries (BF6800034_CR28) 1889
JBS Haldane (BF6800034_CR40) 1932
KN Smith (BF6800034_CR67) 2001; 11
JBS Haldane (BF6800034_CR39) 1927; 23
L Aravind (BF6800034_CR1) 1998; 26
K Perals (BF6800034_CR59) 2001; 39
N Patenge (BF6800034_CR57) 2001; 41
H de Vries (BF6800034_CR29) 1912
RC Gupta (BF6800034_CR38) 2001; 98
SC Kampranis (BF6800034_CR45) 1996; 93
JL Kirschvink (BF6800034_CR46) 2000; 97
LR Cleveland (BF6800034_CR25) 1956; 3
FX Gomis-Ruth (BF6800034_CR37) 2001; 33
A Toth (BF6800034_CR68) 2000; 103
T Cavalier-Smith (BF6800034_CR18) 1998; 73
JJ Brocks (BF6800034_CR6) 1999; 285
References_xml – volume: 98
  start-page: 8173
  year: 2001
  ident: BF6800034_CR26
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.131004998
– volume: 19
  start-page: 4513
  year: 2000
  ident: BF6800034_CR43
  publication-title: EMBO J
  doi: 10.1093/emboj/19.17.4513
– volume: 23
  start-page: 838
  year: 1927
  ident: BF6800034_CR39
  publication-title: Proc Camb Phil Soc (Biol Sci)
  doi: 10.1017/S0305004100015644
– volume: 285
  start-page: 1033
  year: 1999
  ident: BF6800034_CR6
  publication-title: Science
  doi: 10.1126/science.285.5430.1033
– ident: BF6800034_CR7
  doi: 10.1186/gb-2001-2-1-reviews3001
– volume: 33
  start-page: 839
  year: 2001
  ident: BF6800034_CR37
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/S1357-2725(01)00060-7
– volume: 52
  start-page: 7
  year: 2002
  ident: BF6800034_CR21
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/00207713-52-1-7
– volume-title: Factors of Evolution, the Theory of Stabilizing Selection
  year: 1949
  ident: BF6800034_CR63
– volume-title: Species and Varieties: Their Origin by Mutation
  year: 1912
  ident: BF6800034_CR29
– volume-title: Agamic Fusions of Protists and the Origin of the Sexual Process
  year: 1999
  ident: BF6800034_CR64
– volume: 98
  start-page: 8411
  year: 2001
  ident: BF6800034_CR35
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.121046198
– volume: 180
  start-page: 3137
  year: 1998
  ident: BF6800034_CR61
  publication-title: J Bacteriol
  doi: 10.1128/JB.180.12.3137-3143.1998
– volume: 26
  start-page: 4205
  year: 1998
  ident: BF6800034_CR1
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/26.18.4205
– volume: 11
  start-page: 88
  year: 2001
  ident: BF6800034_CR67
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(01)00026-4
– volume: 84
  start-page: 360
  year: 1993
  ident: BF6800034_CR55
  publication-title: J Hered
  doi: 10.1093/oxfordjournals.jhered.a111357
– volume: 103
  start-page: 1155
  year: 2000
  ident: BF6800034_CR68
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00217-8
– volume: 97
  start-page: 1400
  year: 2000
  ident: BF6800034_CR46
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.4.1400
– volume: 14
  start-page: 307
  year: 1998
  ident: BF6800034_CR30
  publication-title: Trends Genet
  doi: 10.1016/S0168-9525(98)01494-2
– start-page: 257
  volume-title: Essays in Heredity and Kindred Problems
  year: 1886
  ident: BF6800034_CR70
– volume: 98
  start-page: 11152
  year: 2001
  ident: BF6800034_CR53
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.191387498
– volume: 28
  start-page: 29
  year: 1998
  ident: BF6800034_CR32
  publication-title: Int J Parasitol
  doi: 10.1016/S0020-7519(97)00167-7
– volume: 52
  start-page: 901
  year: 1987
  ident: BF6800034_CR36
  publication-title: Cold Spring Harbor Symp Quant Biol
  doi: 10.1101/SQB.1987.052.01.098
– volume-title: The Causes of Evolution
  year: 1932
  ident: BF6800034_CR40
– volume: 276
  start-page: 36295
  year: 2001
  ident: BF6800034_CR33
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M103397200
– ident: BF6800034_CR22
  doi: 10.1099/00207713-52-2-297
– volume: 11
  start-page: R103
  year: 2001
  ident: BF6800034_CR31
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(01)00040-9
– volume: 93
  start-page: 14416
  year: 1996
  ident: BF6800034_CR45
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.93.25.14416
– volume: 103
  start-page: 387
  year: 2000
  ident: BF6800034_CR8
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)00131-8
– volume: 69
  start-page: 39
  year: 2001
  ident: BF6800034_CR34
  publication-title: Ann Rev Biochem
  doi: 10.1146/annurev.biochem.70.1.39
– volume: 98
  start-page: 8419
  year: 2001
  ident: BF6800034_CR71
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.111005398
– volume: 39
  start-page: 904
  year: 2001
  ident: BF6800034_CR59
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2001.02277.x
– volume: 63
  start-page: 777
  year: 1994
  ident: BF6800034_CR44
  publication-title: Ann Rev Biochem
  doi: 10.1146/annurev.bi.63.070194.004021
– volume: 73
  start-page: 203
  year: 1998
  ident: BF6800034_CR18
  publication-title: Biol Rev
  doi: 10.1017/S0006323198005167
– volume: 34
  start-page: 247
  year: 1978
  ident: BF6800034_CR11
  publication-title: J Cell Sci
  doi: 10.1242/jcs.34.1.247
– start-page: 33
  volume-title: Molecular and Cellular Aspects of Microbial Evolution
  year: 1981
  ident: BF6800034_CR12
– volume: 145
  start-page: 198
  year: 1995
  ident: BF6800034_CR17
  publication-title: Arch Protistenk
– volume: 4
  start-page: 174
  year: 2000
  ident: BF6800034_CR19
  publication-title: Trends Plant Sci
  doi: 10.1016/S1360-1385(00)01598-3
– volume: 26
  start-page: 360
  year: 2000
  ident: BF6800034_CR60
  publication-title: Palaeobiology
  doi: 10.1666/0094-8373(2000)026<0360:TAITNE>2.0.CO;2
– volume: 98
  start-page: 8235
  year: 2001
  ident: BF6800034_CR52
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.121007798
– start-page: 333
  volume-title: The Eukaryotic Genome
  year: 1993
  ident: BF6800034_CR16
– volume: 370
  start-page: 213
  year: 1994
  ident: BF6800034_CR47
  publication-title: Nature
  doi: 10.1038/370213a0
– volume: 9
  start-page: 47
  year: 1873
  ident: BF6800034_CR23
  publication-title: Arch Mikr Anat
  doi: 10.1007/BF02956156
– volume: 3
  start-page: 161
  year: 1956
  ident: BF6800034_CR25
  publication-title: J Protozool
  doi: 10.1111/j.1550-7408.1956.tb02452.x
– volume: 45
  start-page: 325
  year: 1986
  ident: BF6800034_CR56
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90315-6
– volume: 98
  start-page: 8425
  year: 2001
  ident: BF6800034_CR65
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.111005198
– start-page: 271
  volume-title: Evolution of Life
  year: 1991
  ident: BF6800034_CR15
  doi: 10.1007/978-4-431-68302-5_18
– volume-title: The Major Transitions in Evolution
  year: 1995
  ident: BF6800034_CR51
– volume: 156
  start-page: 423
  year: 2000
  ident: BF6800034_CR50
  publication-title: Genetics
  doi: 10.1093/genetics/156.1.423
– volume: 155
  start-page: 1505
  year: 2000
  ident: BF6800034_CR3
  publication-title: Genetics
  doi: 10.1093/genetics/155.4.1505
– volume-title: The Variation of Animals and Plants Under Domestication
  year: 1868
  ident: BF6800034_CR27
– volume: 21
  start-page: 5667
  year: 2001
  ident: BF6800034_CR58
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.21.16.5667-5677.2001
– volume: 24
  start-page: 323
  year: 1987
  ident: BF6800034_CR4
  publication-title: Adv Genet
  doi: 10.1016/S0065-2660(08)60012-7
– volume: 52
  start-page: 805
  year: 1987
  ident: BF6800034_CR14
  publication-title: Cold Spring Harbor Symp Quant Biol
  doi: 10.1101/SQB.1987.052.01.089
– volume-title: DNA Replication
  year: 1992
  ident: BF6800034_CR48
– volume-title: Tempo and Mode in Evolution
  year: 1944
  ident: BF6800034_CR66
– volume: 503
  start-page: 17
  year: 1987
  ident: BF6800034_CR13
  publication-title: Ann NY Acad Sci
  doi: 10.1111/j.1749-6632.1987.tb40596.x
– volume: 2
  start-page: 634
  year: 2001
  ident: BF6800034_CR62
  publication-title: Nat Rev Genet
  doi: 10.1038/35084593
– volume: 98
  start-page: 9766
  year: 2001
  ident: BF6800034_CR73
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.171579898
– ident: BF6800034_CR2
  doi: 10.1017/CBO9780511525704
– volume: 256
  start-page: 463
  year: 1975
  ident: BF6800034_CR10
  publication-title: Nature
  doi: 10.1038/256463a0
– volume: 10
  start-page: 5
  year: 2000
  ident: BF6800034_CR49
  publication-title: Genome Res
– volume: 98
  start-page: 8433
  year: 2001
  ident: BF6800034_CR38
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.121005298
– volume-title: Intracellular Pangenesis
  year: 1889
  ident: BF6800034_CR28
  doi: 10.5962/bhl.title.2022
– volume: 69
  start-page: 115
  year: 2000
  ident: BF6800034_CR41
  publication-title: Ann Rev Biochem
  doi: 10.1146/annurev.biochem.69.1.115
– volume: 41
  start-page: 653
  year: 2001
  ident: BF6800034_CR57
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2001.02542.x
– volume: 53
  start-page: 555
  year: 2001
  ident: BF6800034_CR20
  publication-title: J Mol Evol
  doi: 10.1007/s002390010245
– volume: 309
  start-page: 29
  year: 2001
  ident: BF6800034_CR72
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.4753
– volume: 11
  start-page: 452
  year: 2001
  ident: BF6800034_CR5
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(01)00119-1
– volume: 19
  start-page: 3110
  year: 2000
  ident: BF6800034_CR42
  publication-title: EMBO J
  doi: 10.1093/emboj/19.12.3110
– volume: 66
  start-page: 856
  year: 2000
  ident: BF6800034_CR54
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.9.3856-3867.2000
– volume: 105
  start-page: 287
  year: 1947
  ident: BF6800034_CR24
  publication-title: Science
  doi: 10.1126/science.105.2724.287
– volume: 409
  start-page: 359
  year: 2001
  ident: BF6800034_CR69
  publication-title: Nature
  doi: 10.1038/35053103
– volume: 228
  start-page: 333
  year: 1970
  ident: BF6800034_CR9
  publication-title: Nature
  doi: 10.1038/228333a0
SSID ssj0003729
Score 2.031773
SecondaryResourceType review_article
Snippet Mutation plays the primary role in evolution that Weismann mistakenly attributed to sex. Homologous recombination, as in sex, is important for population...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125
SubjectTerms Animals
Archaea - physiology
Bacterial Physiological Phenomena
Biological Evolution
Biomedical and Life Sciences
Biomedicine
Conjugation, Genetic
Cytogenetics
Deoxyribonucleic acid
DNA
DNA Topoisomerases - physiology
Ecology
Endodeoxyribonucleases - physiology
Eukaryotic Cells - physiology
Evolutionary Biology
Genetics
Holliday Junction Resolvases
Human Genetics
Innovations
Meiosis - physiology
Mutation
Parasites
Phylogeny
Plant Genetics and Genomics
Plasmids - physiology
Population genetics
Recombination, Genetic - physiology
Reproduction - physiology
research-article
Sex Determination Processes
Transduction, Genetic
Transformation, Genetic
Title Origins of the machinery of recombination and sex
URI https://link.springer.com/article/10.1038/sj.hdy.6800034
https://www.ncbi.nlm.nih.gov/pubmed/11932771
https://www.proquest.com/docview/229979847
https://www.proquest.com/docview/71609413
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB58IHgR38ZHzUHQy2r20WR7EhVFBB-IQm9hs9lFik2rqWD_vbObpCJVLzkkS7LMTGa-yUzmAzigGNJV5rrELWcEvaQmimaMxAgV4pxFSsTuR-Hbu_j6Wdx02926N6es2yobn-gddT7Q7hv5CUO_mXTQl54O34gjjXLF1ZpBYxbm_eQyNOekO8m3IleRqhyxJOiUu83MRi5Pyt7xSz4-jqUf0PIzJk0BzakiqY89V8uwVIPG8KzS8grMmGIVFioayfEa0HvPblWGAxsingv7vkHSvI_dCZfx9jH99RoIVZGHpflch-ery6eLa1JTIRAtYjkiXFg0Z91hxjLFleWaa0YVVTaTmZU6lrGJhOA6i9qSmcgisoqoSToms6ptEr4Bc8WgMFsQ5ophmBdJkueOfqytLGbHwiBSEYbrjgiANMJIdT0n3NFVvKa-Xs1lWvZSFF5aCy-Aw8n6YTUh48-VO41s0_pNKdOJXgPYn1xFE3d1C1WYwUeZYkqHSSjlAWxWCvl-joOfSUIDOGo09H3n3zex_e8mdmDR0734tuxdmBu9f5g9RB2jrOVtC4_ygrZg_vzy7uHxC-F-1jI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swED6xoml7QRtjEBgjD6DxYprYbuI-IMQ2UPnVTRNIfTOOY2tCI-2aIugfxf_I2UmKJra98ZpYjnV3Pn-XO98HsBnjka4yVyVuGSXoJTVRcUZJglAhyWmkeOIuCp_1k94FPx50BnNw39yFcWWVjU_0jjofavePvE3Rb6Zd9KV7o9_EkUa55GrDoFFZxYmZ3mLEVu4efUX1blF6eHD-pUdqUgGieSImhHGLhqG71FiqmLJMM01jFSubicwKnYjERJwznUUdQU1kEaNEsUm7JrOqY1KG876Aee4utLZg_vNB__uPmet3ObDK9QuCx8Cg6RLJRLu82vmZT3cS4VvC_HkKPoG2T9Ky_rQ7fAMLNUwN9yu7egtzpliElxVx5fQdxN88n1YZDm2ICDK89iWZZjx1D1yMfY0Bt9d5qIo8LM3dElw8i5zeQ6sYFmYFwlxRBBY8TfPcEZ51lMV4nBvERtww3eUBkEYYUtedyR1Bxi_pM-RMyPJKovBkLbwAPs3Gj6qeHP8cudbIVtZ7s5QzSwpgY_YWN5XLlKjCDG9KiUEkhr0xC2C5UsjjdxzgTdM4gO1GQ48z_30Rq_9dxAa86p2fncrTo_7JGrz2ZDO-KPwDtCbjG7OOmGeSfawtLYTL5zbuBxcEEus
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RUKteqvJRSCklh6JyMZvY3th7qBBiu9ot7bYHkPbmOo4thEqWkkXt_rT-u46dZFEF5cY1sRxrZjzzJjP2A3iXYkjXue8Sd4wS9JKG6DSnJEOokBU00TzzB4W_jLPhGf806U6W4E97Fsa3VbY-MTjqYmr8P_IORb8peuhLO67pivjWHxxe_SSeQMoXWls2jdpCTuz8F2Zv1YdRH1W9R-ng4-nxkDQEA8TwTM4I4w6NxPSodVQz7ZhhhqY61S6XuZMmk5lNOGcmT7qS2sQhXklSK3o2d7prBcN5n8CKYAiqcCuJySLXS3w1rA4CkmBAmLT3RTLZqS4Ozov5QSbD5TD_xsM7IPdOgTbEvcFLeNEA1viotrBVWLLlGjytKSzn65B-DcxaVTx1MWLJ-DI0Z9rruX_gs-1LTL2D9mNdFnFlf2_A2aNI6RUsl9PSbkFcaIoQgwtRFJ76rKsdZubcIkrilpkej4C0wlCmuaPcU2X8UKFWzqSqLhQKTzXCi-D9YvxVfTvHf0dut7JVzS6t1MKmIthdvMXt5WsmurTTm0phOokJcMoi2KwVcvsdD32FSCPYbzV0O_P9i3j94CJ24RmatPo8Gp9sw_PAOhO6w9_A8uz6xu4g-Jnlb4OZxfD9se36L-ETFbI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Origins+of+the+machinery+of+recombination+and+sex&rft.jtitle=Heredity&rft.au=Cavalier-smith%2C+T&rft.date=2002-02-01&rft.issn=0018-067X&rft.eissn=1365-2540&rft.volume=88&rft.issue=2&rft.spage=125&rft.epage=141&rft_id=info:doi/10.1038%2Fsj.hdy.6800034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_sj_hdy_6800034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-067X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-067X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-067X&client=summon