The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation

Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we d...

Full description

Saved in:
Bibliographic Details
Published inCell research Vol. 22; no. 8; pp. 1246 - 1257
Main Authors Guo, Hui-Ling, Zhang, Cixiong, Liu, Qi, Li, Qinxi, Lian, Guili, Wu, Di, Li, Xuebin, Zhang, Wei, Shen, Yuemao, Ye, Zhiyun, Lin, Shu-Yong, Lin, Sheng-Cai
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2012
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 transiocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2-/- mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Goigi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translo- cation.
AbstractList Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2(-/-) mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation.
Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2(-/-) mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation.Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2(-/-) mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation.
Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 transiocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2-/- mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Goigi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translo- cation.
Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2 −/− mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation.
Author Hui-Ling Guo Cixiong Zhang Qi Liu Qinxi Li Guili Lian Di Wu Xuebin Li Wei Zhang Yuemao Shen Zhiyun Ye Slau-Yong Lin Sheng-Cai Lin
AuthorAffiliation State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaI StateKey Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
Author_xml – sequence: 1
  givenname: Hui-Ling
  surname: Guo
  fullname: Guo, Hui-Ling
  organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University
– sequence: 2
  givenname: Cixiong
  surname: Zhang
  fullname: Zhang, Cixiong
  organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University
– sequence: 3
  givenname: Qi
  surname: Liu
  fullname: Liu, Qi
  organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University
– sequence: 4
  givenname: Qinxi
  surname: Li
  fullname: Li, Qinxi
  organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University
– sequence: 5
  givenname: Guili
  surname: Lian
  fullname: Lian, Guili
  organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University
– sequence: 6
  givenname: Di
  surname: Wu
  fullname: Wu, Di
  organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University
– sequence: 7
  givenname: Xuebin
  surname: Li
  fullname: Li, Xuebin
  organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University
– sequence: 8
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University
– sequence: 9
  givenname: Yuemao
  surname: Shen
  fullname: Shen, Yuemao
  organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University
– sequence: 10
  givenname: Zhiyun
  surname: Ye
  fullname: Ye, Zhiyun
  organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University
– sequence: 11
  givenname: Shu-Yong
  surname: Lin
  fullname: Lin, Shu-Yong
  organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University
– sequence: 12
  givenname: Sheng-Cai
  surname: Lin
  fullname: Lin, Sheng-Cai
  email: linsc@xmu.edu.cn
  organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22473005$$D View this record in MEDLINE/PubMed
BookMark eNptkUtvEzEURkeoiD5gww9ARmwq0KR-27NBiipaqkawIF1bjseTuJqxE9sD7b_HIWlVqq5s2ecef773uDrwwduqeo_gBEEiz0ycYIjwhOFX1RESVNZCEnlQ9hCiGnKID6vjlG4hxIwy9KY6xJgKAiE7qux8ZcH0zvmz-Y_rX8CEYd3bO-B8tlGbnMAfl1fg-uqCTIH2LXAJRLsZXbQt6EIsYBp75-uU3TD2Opfjy9nNnIIctU99MDq74N9WrzvdJ_tuv55UNxff5uff69nPy6vz6aw2lMtcE4L0gneCIdMJYXljF3QBJZem5aJBQjZCGCREw6TsDDOys4Riw1vWNKQrvTipvu6863Ex2NZYX2L0ah3doOO9Ctqp_2-8W6ll-K0IRQhxUQSne0EMm9GmrAaXjO177W0YkypvIMS4RKygn56ht2GMvnxvS0GGOaFNoT48TfQY5WECBYA7wMSQUrSdMi7_a1oJ6Pri2uqkMlFth6wYLiWfn5U8WF-Ev-zgVCC_tPFpzBfoj3v1KvjlphQ8uiku7eeSkr9u-7_Z
CitedBy_id crossref_primary_10_1016_j_ejmech_2016_04_041
crossref_primary_10_1016_j_ijbiomac_2024_129634
crossref_primary_10_1073_pnas_2026494119
crossref_primary_10_1016_j_ajhg_2018_01_015
crossref_primary_10_1371_journal_pbio_3000444
crossref_primary_10_1371_journal_pone_0150484
crossref_primary_10_15616_BSL_2018_24_3_150
crossref_primary_10_1016_j_yexcr_2020_111935
crossref_primary_10_1016_j_bbrc_2018_06_143
crossref_primary_10_1074_jbc_RA118_003021
crossref_primary_10_1007_s00018_019_03366_0
crossref_primary_10_3892_ol_2021_12949
crossref_primary_10_1016_j_tem_2021_07_008
crossref_primary_10_1016_j_diff_2014_07_003
crossref_primary_10_1186_s12868_021_00666_9
crossref_primary_10_1007_s00210_023_02576_5
crossref_primary_10_1016_j_cellsig_2014_04_014
crossref_primary_10_1016_j_phymed_2021_153843
crossref_primary_10_1038_cddis_2016_217
crossref_primary_10_1021_acs_jmedchem_1c02139
crossref_primary_10_2174_1573394717666210628122306
crossref_primary_10_1371_journal_pone_0178485
crossref_primary_10_1016_j_bmcl_2015_12_018
crossref_primary_10_1074_jbc_M115_705970
crossref_primary_10_1111_febs_12320
crossref_primary_10_1016_j_cmet_2013_09_005
crossref_primary_10_1021_jm4000566
crossref_primary_10_1593_neo_13320
crossref_primary_10_1096_fj_15_271817
crossref_primary_10_1021_acs_jmedchem_6b01574
crossref_primary_10_1042_BCJ20220391
crossref_primary_10_1074_jbc_M112_339457
crossref_primary_10_1038_nrd3868
crossref_primary_10_1038_s41598_019_40596_5
crossref_primary_10_1371_journal_pone_0122948
crossref_primary_10_1007_s00044_020_02657_7
crossref_primary_10_1038_s41588_023_01408_9
crossref_primary_10_1042_BCJ20210073
crossref_primary_10_1152_ajpendo_00272_2019
crossref_primary_10_1002_cbin_11086
crossref_primary_10_1098_rsob_190041
crossref_primary_10_1007_s12013_022_01076_2
crossref_primary_10_1002_pro_2968
crossref_primary_10_1016_j_ejmech_2020_112712
crossref_primary_10_1016_j_tcb_2020_05_007
crossref_primary_10_7554_eLife_83338
crossref_primary_10_1016_j_jare_2024_07_012
crossref_primary_10_1016_j_celrep_2018_09_036
crossref_primary_10_1113_JP281187
crossref_primary_10_1007_s00125_015_3815_1
crossref_primary_10_1002_pro_3413
crossref_primary_10_3390_jdb7040020
crossref_primary_10_1096_fj_201601103R
crossref_primary_10_3892_ol_2018_9551
crossref_primary_10_1016_j_brainres_2014_12_028
crossref_primary_10_1074_jbc_M114_603977
crossref_primary_10_1042_BST20180416
Cites_doi 10.1074/jbc.M007610200
10.1128/MCB.23.14.4892-4900.2003
10.1139/H09-047
10.1677/JOE-09-0037
10.1016/j.cmet.2008.02.008
10.1074/jbc.270.40.23612
10.1128/MCB.26.6.2037-2043.2006
10.1074/jbc.M202037200
10.1074/jbc.M007635200
10.1016/j.devcel.2007.07.006
10.1091/mbc.e04-04-0333
10.1074/jbc.C200198200
10.1073/pnas.1332633100
10.1158/0008-5472.CAN-06-1671
10.1016/j.ceb.2007.04.018
10.1042/bj3520267
10.1371/journal.pone.0002639
10.1038/nature08356
10.1074/jbc.M010785200
10.1074/jbc.M510920200
10.1042/BJ20060793
10.1038/nrm782
10.1042/BJ20050887
10.1074/jbc.M605461200
10.1016/S0092-8674(00)80324-4
10.1074/jbc.C300063200
10.1074/jbc.M306782200
10.2337/db08-1781
10.1016/S0925-4773(02)00307-6
10.1038/sj.emboj.7600475
10.1091/mbc.e06-07-0585
10.1093/emboj/cdg237
10.1091/mbc.e10-02-0158
10.2337/diabetes.53.2.486
10.1038/ncb1927
10.1126/science.292.5522.1728
10.1074/jbc.M105452200
10.1042/bj3000631
10.1038/nrm2774
10.1271/bbb.70342
10.1074/jbc.271.30.17605
10.2337/db06-0900
ContentType Journal Article
Copyright The Author(s) 2012
Copyright Nature Publishing Group Aug 2012
Copyright © 2012 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2012 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
Copyright_xml – notice: The Author(s) 2012
– notice: Copyright Nature Publishing Group Aug 2012
– notice: Copyright © 2012 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2012 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
DBID 2RA
92L
CQIGP
W94
WU4
~WA
C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/cr.2012.52
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation
Axin/TNKS/KIF3A complex regulates GLUT4 translocation
EISSN 1748-7838
EndPage 1257
ExternalDocumentID PMC3411167
2726377411
22473005
10_1038_cr_2012_52
42897684
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-01
-0A
-Q-
-SA
-S~
0R~
29B
2B.
2C.
2RA
2WC
36B
39C
3V.
4.4
406
53G
5GY
5VR
5XA
5XB
5XL
6J9
70F
7X7
88E
8FE
8FH
8FI
8FJ
92E
92I
92L
92M
92Q
93N
9D9
9DA
AADWK
AANZL
AATNV
AAWBL
AAYFA
AAYJO
AAZLF
ABAWZ
ABGIJ
ABJNI
ABUWG
ACAOD
ACBMV
ACBRV
ACBYP
ACGFO
ACGFS
ACIGE
ACIWK
ACKTT
ACPRK
ACRQY
ACTTH
ACVWB
ACZOJ
ADBBV
ADFRT
ADHDB
ADMDM
ADQMX
ADYYL
AEDAW
AEFTE
AEJRE
AENEX
AESKC
AEVLU
AEXYK
AFKRA
AFNRJ
AFRAH
AFSHS
AFUIB
AGEZK
AGGBP
AGHAI
AHMBA
AHSBF
AILAN
AJCLW
AJDOV
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMRJV
AMYLF
AOIJS
AXYYD
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C1A
CAG
CAJEA
CAJUS
CCEZO
CCPQU
CCVFK
CHBEP
COF
CQIGP
CS3
CW9
DIK
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMOBN
F5P
FA0
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HYE
HZ~
IWAJR
JSO
JUIAU
JZLTJ
KQ8
LK8
M1P
M7P
NAO
NQJWS
NXXTH
NYICJ
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q--
Q-0
R-A
RNS
RNT
RNTTT
RPM
RT1
S..
SNX
SNYQT
SOHCF
SRMVM
SV3
SWTZT
T8Q
TAOOD
TBHMF
TCJ
TDRGL
TGP
TR2
U1F
U1G
U5A
U5K
UKHRP
W94
WFFXF
WU4
XSB
~88
~WA
AACDK
AAHBH
AASML
AAXDM
AAYZH
ABAKF
ABZZP
ACMJI
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AIGIU
ALIPV
C6C
FIGPU
LGEZI
LOTEE
NADUK
ROL
SOJ
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c468t-331ab6f751cf77e69eb4b0868cd679178977c1779588fc5c8fe342c6d5993f103
IEDL.DBID C6C
ISSN 1001-0602
1748-7838
IngestDate Thu Aug 21 14:11:38 EDT 2025
Fri Jul 11 04:08:56 EDT 2025
Fri Jul 25 08:54:54 EDT 2025
Thu Apr 03 06:55:50 EDT 2025
Tue Jul 01 03:41:30 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
Fri Feb 21 02:38:11 EST 2025
Wed Feb 14 10:46:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords GLUT4 translocation
Axin
TNKS
KIF3A
Language English
License https://creativecommons.org/licenses/by-nc-nd/3.0
This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-331ab6f751cf77e69eb4b0868cd679178977c1779588fc5c8fe342c6d5993f103
Notes Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 transiocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2-/- mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Goigi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translo- cation.
31-1568/Q
Axin; TNKS; KIF3A; GLUT4 translocation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These three authors contributed equally to this work.
OpenAccessLink https://www.nature.com/articles/cr.2012.52
PMID 22473005
PQID 1030526349
PQPubID 536307
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3411167
proquest_miscellaneous_1031156815
proquest_journals_1030526349
pubmed_primary_22473005
crossref_citationtrail_10_1038_cr_2012_52
crossref_primary_10_1038_cr_2012_52
springer_journals_10_1038_cr_2012_52
chongqing_primary_42897684
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cell research
PublicationTitleAbbrev Cell Res
PublicationTitleAlternate Cell Research
PublicationYear 2012
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Kane, Sano, Liu (CR38) 2002; 277
Keller, Davis, Clairmont (CR22) 2002; 277
Li, Francois, Tong (CR28) 1997; 90
Huang, Mishina, Liu (CR34) 2009; 461
Cho, Mu, Kim, Thorvaldsen (CR9) 2001; 292
Emoto, Langille, Czech (CR13) 2001; 276
Imamura, Huang, Usui, Satoh, Bever, Olefsky (CR18) 2003; 23
Molero, Whitehead, Meerloo, James (CR16) 2001; 276
Li, Lin, Wang (CR32) 2009; 11
Gonzalez, McGraw (CR36) 2006; 17
Nishiumi, Ashida (CR43) 2007; 71
Keller, Scott, Mastick (CR21) 1995; 270
Li, Wang, Wu (CR31) 2007; 67
Yeh, Sbodio, Tsun, Luo, Chi (CR24) 2007; 402
Fletcher, Welsh, Oatery, Tavare (CR14) 2000; 352
Semiz, Park, Nicoloro (CR17) 2003; 22
Rui, Xu, Xiong (CR29) 2007; 13
Kramer, Witczak, Taylor, Fujii, Hirshman, Goodyear (CR41) 2006; 281
Martin, Haruta, Morris, Klippel, Williams, Olefsky (CR5) 1996; 271
Zeigerer, McBrayer, McGraw (CR39) 2004; 15
Fletcher, Welsh, Oatey, Tavare (CR10) 2000; 352(Part 2)
Chi, Lodish (CR20) 2000; 275
Hirokawa, Noda, Tanaka, Niwa (CR12) 2009; 10
Chiang, Hsiao, Yver (CR19) 2008; 3
Bryant, Govers, James (CR1) 2002; 3
Klip (CR3) 2009; 34
Hou, Pessin (CR2) 2007; 19
Thong, Bilan, Klip (CR42) 2007; 56
Bae, Cho, Mu, Birnbaum (CR35) 2003; 278
Olson, Trumbly, Gibson (CR15) 2001; 276
Miinea, Sano, Kane (CR40) 2005; 391
Yamazaki, Nusse (CR33) 2002; 119
Sano, Kane, Sano (CR37) 2003; 278
Ng, Ramm, Lopez, James (CR7) 2008; 7
Huang, Imamura, Babendure, Lu, Olefsky (CR11) 2005; 280
Pezzolesi, Nam, Nagase (CR27) 2004; 53
Leney, Tavare (CR4) 2009; 203
Jiang, Zhou, Coleman, Chouinard, Boese, Czech (CR8) 2003; 100
Chiang, Nguyen, Gurunathan (CR26) 2006; 26
Jordens, Molle, Xiong, Keller, McGraw (CR23) 2010; 21
Rui, Xu, Lin (CR30) 2004; 23
Yeh, Beiswenger, Li (CR25) 2009; 58
Clarke, Young, Yonezawa, Kasuga, Holman (CR6) 1994; 300
SS Bae (BFcr201252_CR35) 2003; 278
JF Clarke (BFcr201252_CR6) 1994; 300
MG Pezzolesi (BFcr201252_CR27) 2004; 53
NW Chi (BFcr201252_CR20) 2000; 275
I Jordens (BFcr201252_CR23) 2010; 21
CP Miinea (BFcr201252_CR40) 2005; 391
S Semiz (BFcr201252_CR17) 2003; 22
FS Thong (BFcr201252_CR42) 2007; 56
E Gonzalez (BFcr201252_CR36) 2006; 17
M Emoto (BFcr201252_CR13) 2001; 276
SR Keller (BFcr201252_CR22) 2002; 277
S Kane (BFcr201252_CR38) 2002; 277
Q Li (BFcr201252_CR31) 2007; 67
LM Fletcher (BFcr201252_CR10) 2000; 352(Part 2)
Y Ng (BFcr201252_CR7) 2008; 7
JC Hou (BFcr201252_CR2) 2007; 19
TY Yeh (BFcr201252_CR25) 2009; 58
SM Huang (BFcr201252_CR34) 2009; 461
T Imamura (BFcr201252_CR18) 2003; 23
YJ Chiang (BFcr201252_CR19) 2008; 3
A Zeigerer (BFcr201252_CR39) 2004; 15
Y Rui (BFcr201252_CR30) 2004; 23
H Sano (BFcr201252_CR37) 2003; 278
TY Yeh (BFcr201252_CR24) 2007; 402
J Huang (BFcr201252_CR11) 2005; 280
ZY Jiang (BFcr201252_CR8) 2003; 100
H Cho (BFcr201252_CR9) 2001; 292
SE Leney (BFcr201252_CR4) 2009; 203
SR Keller (BFcr201252_CR21) 1995; 270
HF Kramer (BFcr201252_CR41) 2006; 281
Y Rui (BFcr201252_CR29) 2007; 13
Q Li (BFcr201252_CR32) 2009; 11
AL Olson (BFcr201252_CR15) 2001; 276
S Martin (BFcr201252_CR5) 1996; 271
N Hirokawa (BFcr201252_CR12) 2009; 10
H Yamazaki (BFcr201252_CR33) 2002; 119
YJ Chiang (BFcr201252_CR26) 2006; 26
JC Molero (BFcr201252_CR16) 2001; 276
NJ Bryant (BFcr201252_CR1) 2002; 3
A Klip (BFcr201252_CR3) 2009; 34
S Nishiumi (BFcr201252_CR43) 2007; 71
LM Fletcher (BFcr201252_CR14) 2000; 352
Z Li (BFcr201252_CR28) 1997; 90
17210684 - Cancer Res. 2007 Jan 1;67(1):66-74
16507984 - Mol Cell Biol. 2006 Mar;26(6):2037-43
16935857 - J Biol Chem. 2006 Oct 20;281(42):31478-85
18612384 - PLoS One. 2008;3(7):e2639
16914513 - Mol Biol Cell. 2006 Oct;17(10):4484-93
12385759 - Mech Dev. 2002 Nov;119(1):115-9
9230313 - Cell. 1997 Jul 11;90(1):181-92
11085918 - Biochem J. 2000 Dec 1;352 Pt 2:267-76
17827673 - Biosci Biotechnol Biochem. 2007 Sep;71(9):2343-6
15254270 - Mol Biol Cell. 2004 Oct;15(10):4406-15
11571289 - J Biol Chem. 2001 Nov 23;276(47):43829-35
12637568 - J Biol Chem. 2003 Apr 25;278(17):14599-602
19389739 - J Endocrinol. 2009 Oct;203(1):1-18
11387480 - Science. 2001 Jun 1;292(5522):1728-31
11884418 - J Biol Chem. 2002 May 17;277(20):17677-86
16239226 - J Biol Chem. 2005 Dec 23;280(51):42300-6
19731416 - Nat Cell Biol. 2009 Sep;11(9):1128-34
11994271 - J Biol Chem. 2002 Jun 21;277(25):22115-8
14747302 - Diabetes. 2004 Feb;53(2):486-91
10988299 - J Biol Chem. 2000 Dec 8;275(49):38437-44
19773780 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):682-96
11278355 - J Biol Chem. 2001 Apr 6;276(14):10706-14
8010944 - Biochem J. 1994 Jun 15;300 ( Pt 3):631-5
19448718 - Appl Physiol Nutr Metab. 2009 Jun;34(3):481-7
17059388 - Biochem J. 2007 Mar 1;402(2):279-90
8663595 - J Biol Chem. 1996 Jul 26;271(30):17605-8
17259386 - Diabetes. 2007 Feb;56(2):414-23
17681137 - Dev Cell. 2007 Aug;13(2):268-82
19651815 - Diabetes. 2009 Nov;58(11):2476-85
20410133 - Mol Biol Cell. 2010 Jun 15;21(12):2034-44
18396141 - Cell Metab. 2008 Apr;7(4):348-56
17644329 - Curr Opin Cell Biol. 2007 Aug;19(4):466-73
15526030 - EMBO J. 2004 Nov 24;23(23):4583-94
14522993 - J Biol Chem. 2003 Dec 5;278(49):49530-6
11145966 - J Biol Chem. 2001 Apr 6;276(14):10677-82
11994746 - Nat Rev Mol Cell Biol. 2002 Apr;3(4):267-77
15971998 - Biochem J. 2005 Oct 1;391(Pt 1):87-93
12832475 - Mol Cell Biol. 2003 Jul;23(14):4892-900
12808134 - Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7569-74
7559527 - J Biol Chem. 1995 Oct 6;270(40):23612-8
19759537 - Nature. 2009 Oct 1;461(7264):614-20
12743033 - EMBO J. 2003 May 15;22(10):2387-99
References_xml – volume: 276
  start-page: 10706
  year: 2001
  end-page: 10714
  ident: CR15
  article-title: Insulin-mediated GLUT4 translocation is dependent on the microtubule network
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M007610200
– volume: 23
  start-page: 4892
  year: 2003
  end-page: 4900
  ident: CR18
  article-title: Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.23.14.4892-4900.2003
– volume: 34
  start-page: 481
  year: 2009
  end-page: 487
  ident: CR3
  article-title: The many ways to regulate glucose transporter 4
  publication-title: Appl Physiol Nutr Metab
  doi: 10.1139/H09-047
– volume: 203
  start-page: 1
  year: 2009
  end-page: 18
  ident: CR4
  article-title: The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets
  publication-title: J Endocrinol
  doi: 10.1677/JOE-09-0037
– volume: 7
  start-page: 348
  year: 2008
  end-page: 356
  ident: CR7
  article-title: Rapid activation of Akt2 is sufficient to stimulate GLUT4 translocation in 3T3-L1 adipocytes
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2008.02.008
– volume: 270
  start-page: 23612
  year: 1995
  end-page: 23618
  ident: CR21
  article-title: Cloning and characterizatin of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.40.23612
– volume: 26
  start-page: 2037
  year: 2006
  end-page: 2043
  ident: CR26
  article-title: Generation and characterization of telomere length maintenance in tankyrase 2-deficient mice
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.26.6.2037-2043.2006
– volume: 277
  start-page: 17677
  year: 2002
  end-page: 17686
  ident: CR22
  article-title: Mice deficient in the insulin-regulated membrane aminopeptitase show substantial decreases in glucose transporter GLUT4 levels but maintain normal glucose homeostasis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M202037200
– volume: 275
  start-page: 38437
  year: 2000
  end-page: 38444
  ident: CR20
  article-title: tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M007635200
– volume: 13
  start-page: 268
  year: 2007
  end-page: 282
  ident: CR29
  article-title: A beta-catenin-independent dorsalization pathway activated by Axin/JNK signaling and antagonized by Aida
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2007.07.006
– volume: 15
  start-page: 4406
  year: 2004
  end-page: 4415
  ident: CR39
  article-title: Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e04-04-0333
– volume: 277
  start-page: 22115
  year: 2002
  end-page: 22118
  ident: CR38
  article-title: Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C200198200
– volume: 100
  start-page: 7569
  year: 2003
  end-page: 7574
  ident: CR8
  article-title: Insulin signaling through Akt/protein kinase B analyzed by small interfering RNA-mediated gene silencing
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1332633100
– volume: 67
  start-page: 66
  year: 2007
  end-page: 74
  ident: CR31
  article-title: Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-1671
– volume: 19
  start-page: 466
  year: 2007
  end-page: 473
  ident: CR2
  article-title: Ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2007.04.018
– volume: 352
  start-page: 267
  year: 2000
  end-page: 276
  ident: CR14
  article-title: Role for the microtubule cytoskeleton in GLUT4 vesicle trafficking and in the regulation of insulin-stimulated glucose uptake
  publication-title: Biochem J
  doi: 10.1042/bj3520267
– volume: 3
  start-page: e2639
  year: 2008
  ident: CR19
  article-title: tankyrase 1 and tankyrase 2 are essential but redundant for mouse embryonic development
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002639
– volume: 461
  start-page: 614
  year: 2009
  end-page: 620
  ident: CR34
  article-title: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling
  publication-title: Nature
  doi: 10.1038/nature08356
– volume: 276
  start-page: 10677
  year: 2001
  end-page: 10682
  ident: CR13
  article-title: A role for kinesin in insulin-stimulated GLUT4 glucose transporter translocation in 3T3-L1 adipocytes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M010785200
– volume: 280
  start-page: 42300
  year: 2005
  end-page: 42306
  ident: CR11
  article-title: Disruption of microtubules ablates the specificity of insulin signaling to GLUT4 translocation in 3T3-L1 adipocytes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M510920200
– volume: 402
  start-page: 279
  year: 2007
  end-page: 290
  ident: CR24
  article-title: Insulin-stimulated exocytosis of GLUT4 is enhanced by IRAP and its partner tankyrase
  publication-title: Biochem J
  doi: 10.1042/BJ20060793
– volume: 3
  start-page: 267
  year: 2002
  end-page: 277
  ident: CR1
  article-title: Regulated transport of the glucose transporter GLUT4
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm782
– volume: 391
  start-page: 87
  year: 2005
  end-page: 93
  ident: CR40
  article-title: AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain
  publication-title: Biochem J
  doi: 10.1042/BJ20050887
– volume: 281
  start-page: 31478
  year: 2006
  end-page: 31485
  ident: CR41
  article-title: AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M605461200
– volume: 90
  start-page: 181
  year: 1997
  end-page: 192
  ident: CR28
  article-title: The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80324-4
– volume: 278
  start-page: 14599
  year: 2003
  end-page: 14602
  ident: CR37
  article-title: Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C300063200
– volume: 278
  start-page: 49530
  year: 2003
  end-page: 49536
  ident: CR35
  article-title: Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M306782200
– volume: 352(Part 2)
  start-page: 267
  year: 2000
  end-page: 276
  ident: CR10
  article-title: Role for the microtubule cytoskeleton in GLUT4 vesicle trafficking and in the regulation of insulin-stimulated glucose uptake
  publication-title: Biochem J
  doi: 10.1042/bj3520267
– volume: 58
  start-page: 2476
  year: 2009
  end-page: 2485
  ident: CR25
  article-title: Hypermetabolism, hyperphagia, and reduced adiposity in tankyrase-deficient mice
  publication-title: Diabetes
  doi: 10.2337/db08-1781
– volume: 119
  start-page: 115
  year: 2002
  end-page: 119
  ident: CR33
  article-title: Identification of DCAP, a homolog of a glucose transport regulatory complex
  publication-title: Mech Dev
  doi: 10.1016/S0925-4773(02)00307-6
– volume: 23
  start-page: 4583
  year: 2004
  end-page: 4594
  ident: CR30
  article-title: Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600475
– volume: 17
  start-page: 4484
  year: 2006
  end-page: 4493
  ident: CR36
  article-title: Insulin signaling diverges into Akt-dependent and -independent signals to regulate the recruitment/docking and the fusion of GLUT4 vesicles to the PM
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e06-07-0585
– volume: 22
  start-page: 2387
  year: 2003
  end-page: 2399
  ident: CR17
  article-title: Conventional kinesin KIF5B mediates insulin-stimulated GLUT4 movements on microtubules
  publication-title: EMBO J
  doi: 10.1093/emboj/cdg237
– volume: 21
  start-page: 2034
  year: 2010
  end-page: 2044
  ident: CR23
  article-title: Insulin-regulated aminopeptidase is a key regulator of GLUT4 trafficking by controlling the sorting of GLUT4 from endosomes to specialized insulin-regulated vesicles
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e10-02-0158
– volume: 53
  start-page: 486
  year: 2004
  end-page: 491
  ident: CR27
  article-title: Examination of candidate chromosomal regions for type 2 diabetes reveals a susceptibility locus on human chromosome 8p23.1
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.2.486
– volume: 11
  start-page: 1128
  year: 2009
  end-page: 1134
  ident: CR32
  article-title: Axin determines cell fate by controlling the p53 activation threshold after DNA damage
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1927
– volume: 292
  start-page: 1728
  year: 2001
  end-page: 1731
  ident: CR9
  article-title: Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta)
  publication-title: Science
  doi: 10.1126/science.292.5522.1728
– volume: 276
  start-page: 43829
  year: 2001
  end-page: 43835
  ident: CR16
  article-title: Nocodazole inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes via a microtubule-independent mechanism
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M105452200
– volume: 300
  start-page: 631
  year: 1994
  end-page: 635
  ident: CR6
  article-title: Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin
  publication-title: Biochem J
  doi: 10.1042/bj3000631
– volume: 10
  start-page: 682
  year: 2009
  end-page: 696
  ident: CR12
  article-title: Kinesin superfamily motor proteins and intracellular transport
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2774
– volume: 71
  start-page: 2343
  year: 2007
  end-page: 2346
  ident: CR43
  article-title: Rapid preparation of a plasma membrane fraction from adipocytes and muscle cells: application to detection of translocated glucose transporter 4 on the plasma membrane
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1271/bbb.70342
– volume: 271
  start-page: 17605
  year: 1996
  end-page: 17608
  ident: CR5
  article-title: Activated phosphatidylinositol 3-kinase is sufficient to mediate actin rearrangement and GLUT4 translocation in 3T3-L1 adipocytes
  publication-title: J Biol Chem
  doi: 10.1074/jbc.271.30.17605
– volume: 56
  start-page: 414
  year: 2007
  end-page: 423
  ident: CR42
  article-title: The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, AMP-activated protein kinase signals regulating GLUT4 traffic
  publication-title: Diabetes
  doi: 10.2337/db06-0900
– volume: 67
  start-page: 66
  year: 2007
  ident: BFcr201252_CR31
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-1671
– volume: 391
  start-page: 87
  year: 2005
  ident: BFcr201252_CR40
  publication-title: Biochem J
  doi: 10.1042/BJ20050887
– volume: 271
  start-page: 17605
  year: 1996
  ident: BFcr201252_CR5
  publication-title: J Biol Chem
  doi: 10.1074/jbc.271.30.17605
– volume: 276
  start-page: 10677
  year: 2001
  ident: BFcr201252_CR13
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M010785200
– volume: 17
  start-page: 4484
  year: 2006
  ident: BFcr201252_CR36
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e06-07-0585
– volume: 281
  start-page: 31478
  year: 2006
  ident: BFcr201252_CR41
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M605461200
– volume: 19
  start-page: 466
  year: 2007
  ident: BFcr201252_CR2
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2007.04.018
– volume: 278
  start-page: 14599
  year: 2003
  ident: BFcr201252_CR37
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C300063200
– volume: 56
  start-page: 414
  year: 2007
  ident: BFcr201252_CR42
  publication-title: Diabetes
  doi: 10.2337/db06-0900
– volume: 402
  start-page: 279
  year: 2007
  ident: BFcr201252_CR24
  publication-title: Biochem J
  doi: 10.1042/BJ20060793
– volume: 276
  start-page: 10706
  year: 2001
  ident: BFcr201252_CR15
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M007610200
– volume: 90
  start-page: 181
  year: 1997
  ident: BFcr201252_CR28
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80324-4
– volume: 34
  start-page: 481
  year: 2009
  ident: BFcr201252_CR3
  publication-title: Appl Physiol Nutr Metab
  doi: 10.1139/H09-047
– volume: 352(Part 2)
  start-page: 267
  year: 2000
  ident: BFcr201252_CR10
  publication-title: Biochem J
  doi: 10.1042/bj3520267
– volume: 100
  start-page: 7569
  year: 2003
  ident: BFcr201252_CR8
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1332633100
– volume: 270
  start-page: 23612
  year: 1995
  ident: BFcr201252_CR21
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.40.23612
– volume: 10
  start-page: 682
  year: 2009
  ident: BFcr201252_CR12
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm2774
– volume: 352
  start-page: 267
  year: 2000
  ident: BFcr201252_CR14
  publication-title: Biochem J
  doi: 10.1042/bj3520267
– volume: 277
  start-page: 17677
  year: 2002
  ident: BFcr201252_CR22
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M202037200
– volume: 119
  start-page: 115
  year: 2002
  ident: BFcr201252_CR33
  publication-title: Mech Dev
  doi: 10.1016/S0925-4773(02)00307-6
– volume: 15
  start-page: 4406
  year: 2004
  ident: BFcr201252_CR39
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e04-04-0333
– volume: 280
  start-page: 42300
  year: 2005
  ident: BFcr201252_CR11
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M510920200
– volume: 26
  start-page: 2037
  year: 2006
  ident: BFcr201252_CR26
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.26.6.2037-2043.2006
– volume: 278
  start-page: 49530
  year: 2003
  ident: BFcr201252_CR35
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M306782200
– volume: 22
  start-page: 2387
  year: 2003
  ident: BFcr201252_CR17
  publication-title: EMBO J
  doi: 10.1093/emboj/cdg237
– volume: 13
  start-page: 268
  year: 2007
  ident: BFcr201252_CR29
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2007.07.006
– volume: 276
  start-page: 43829
  year: 2001
  ident: BFcr201252_CR16
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M105452200
– volume: 3
  start-page: 267
  year: 2002
  ident: BFcr201252_CR1
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm782
– volume: 71
  start-page: 2343
  year: 2007
  ident: BFcr201252_CR43
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1271/bbb.70342
– volume: 275
  start-page: 38437
  year: 2000
  ident: BFcr201252_CR20
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M007635200
– volume: 21
  start-page: 2034
  year: 2010
  ident: BFcr201252_CR23
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e10-02-0158
– volume: 58
  start-page: 2476
  year: 2009
  ident: BFcr201252_CR25
  publication-title: Diabetes
  doi: 10.2337/db08-1781
– volume: 23
  start-page: 4583
  year: 2004
  ident: BFcr201252_CR30
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600475
– volume: 203
  start-page: 1
  year: 2009
  ident: BFcr201252_CR4
  publication-title: J Endocrinol
  doi: 10.1677/JOE-09-0037
– volume: 11
  start-page: 1128
  year: 2009
  ident: BFcr201252_CR32
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1927
– volume: 7
  start-page: 348
  year: 2008
  ident: BFcr201252_CR7
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2008.02.008
– volume: 53
  start-page: 486
  year: 2004
  ident: BFcr201252_CR27
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.2.486
– volume: 23
  start-page: 4892
  year: 2003
  ident: BFcr201252_CR18
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.23.14.4892-4900.2003
– volume: 3
  start-page: e2639
  year: 2008
  ident: BFcr201252_CR19
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002639
– volume: 292
  start-page: 1728
  year: 2001
  ident: BFcr201252_CR9
  publication-title: Science
  doi: 10.1126/science.292.5522.1728
– volume: 277
  start-page: 22115
  year: 2002
  ident: BFcr201252_CR38
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C200198200
– volume: 300
  start-page: 631
  year: 1994
  ident: BFcr201252_CR6
  publication-title: Biochem J
  doi: 10.1042/bj3000631
– volume: 461
  start-page: 614
  year: 2009
  ident: BFcr201252_CR34
  publication-title: Nature
  doi: 10.1038/nature08356
– reference: 17681137 - Dev Cell. 2007 Aug;13(2):268-82
– reference: 8010944 - Biochem J. 1994 Jun 15;300 ( Pt 3):631-5
– reference: 12385759 - Mech Dev. 2002 Nov;119(1):115-9
– reference: 16935857 - J Biol Chem. 2006 Oct 20;281(42):31478-85
– reference: 11884418 - J Biol Chem. 2002 May 17;277(20):17677-86
– reference: 15254270 - Mol Biol Cell. 2004 Oct;15(10):4406-15
– reference: 11994271 - J Biol Chem. 2002 Jun 21;277(25):22115-8
– reference: 18396141 - Cell Metab. 2008 Apr;7(4):348-56
– reference: 19389739 - J Endocrinol. 2009 Oct;203(1):1-18
– reference: 16914513 - Mol Biol Cell. 2006 Oct;17(10):4484-93
– reference: 20410133 - Mol Biol Cell. 2010 Jun 15;21(12):2034-44
– reference: 11085918 - Biochem J. 2000 Dec 1;352 Pt 2:267-76
– reference: 15526030 - EMBO J. 2004 Nov 24;23(23):4583-94
– reference: 19773780 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):682-96
– reference: 9230313 - Cell. 1997 Jul 11;90(1):181-92
– reference: 17644329 - Curr Opin Cell Biol. 2007 Aug;19(4):466-73
– reference: 12637568 - J Biol Chem. 2003 Apr 25;278(17):14599-602
– reference: 8663595 - J Biol Chem. 1996 Jul 26;271(30):17605-8
– reference: 11571289 - J Biol Chem. 2001 Nov 23;276(47):43829-35
– reference: 17827673 - Biosci Biotechnol Biochem. 2007 Sep;71(9):2343-6
– reference: 19731416 - Nat Cell Biol. 2009 Sep;11(9):1128-34
– reference: 14522993 - J Biol Chem. 2003 Dec 5;278(49):49530-6
– reference: 14747302 - Diabetes. 2004 Feb;53(2):486-91
– reference: 12808134 - Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7569-74
– reference: 10988299 - J Biol Chem. 2000 Dec 8;275(49):38437-44
– reference: 11994746 - Nat Rev Mol Cell Biol. 2002 Apr;3(4):267-77
– reference: 17210684 - Cancer Res. 2007 Jan 1;67(1):66-74
– reference: 17259386 - Diabetes. 2007 Feb;56(2):414-23
– reference: 16507984 - Mol Cell Biol. 2006 Mar;26(6):2037-43
– reference: 16239226 - J Biol Chem. 2005 Dec 23;280(51):42300-6
– reference: 11145966 - J Biol Chem. 2001 Apr 6;276(14):10677-82
– reference: 12743033 - EMBO J. 2003 May 15;22(10):2387-99
– reference: 12832475 - Mol Cell Biol. 2003 Jul;23(14):4892-900
– reference: 19651815 - Diabetes. 2009 Nov;58(11):2476-85
– reference: 19448718 - Appl Physiol Nutr Metab. 2009 Jun;34(3):481-7
– reference: 19759537 - Nature. 2009 Oct 1;461(7264):614-20
– reference: 11387480 - Science. 2001 Jun 1;292(5522):1728-31
– reference: 11278355 - J Biol Chem. 2001 Apr 6;276(14):10706-14
– reference: 18612384 - PLoS One. 2008;3(7):e2639
– reference: 15971998 - Biochem J. 2005 Oct 1;391(Pt 1):87-93
– reference: 7559527 - J Biol Chem. 1995 Oct 6;270(40):23612-8
– reference: 17059388 - Biochem J. 2007 Mar 1;402(2):279-90
SSID ssj0025451
Score 2.3183258
Snippet Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
chongqing
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1246
SubjectTerms 2型糖尿病
3T3-L1 Cells
631/80/2023/2022
Adipocytes - drug effects
Adipocytes - metabolism
Animals
Axi
Axin Protein - genetics
Axin Protein - metabolism
Biomedical and Life Sciences
Blood
Blood Glucose - analysis
Blood Glucose - drug effects
Blood Glucose - metabolism
Cell Biology
Cell Membrane - genetics
Cell Membrane - metabolism
Enzyme Activation
Glucose
Glucose Transporter Type 4 - genetics
Glucose Transporter Type 4 - metabolism
HEK293 Cells
Humans
Insulin
Insulin - administration & dosage
Insulin - pharmacology
Insulin Resistance
Kinesin - genetics
Kinesin - metabolism
Life Sciences
Male
Mice
Microscopy, Fluorescence
n蛋白
Original
original-article
Protein Interaction Mapping
Protein Stability
Protein Transport
RNA Interference
Signal Transduction
Tankyrases - genetics
Tankyrases - metabolism
trans-Golgi Network - metabolism
Translocation
Two-Hybrid System Techniques
交互
胰岛素
蛋白复合物
马达蛋白
驱动蛋白
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEYIL4k1KQUb0wsGUxM-c0AqxFIp6YVfam5U4NlSCbLu7lcq_Z8Z5lG0R12SUWJ6x5xvP-BuAfRGV8ei6eIyx4NLmObelF7yOSup3TUHdHaja4lgfzuWXhVr0B27rvqxy2BPTRt0sPZ2RH1A7LFVoIcv3p2ecukZRdrVvoXETbhF1GVm1WVwGXIgOUsCVyoY0VfJ09KTCHnjiAs2Lt3Th6A5uNO33M3QV287pGuK8Xjh5JXuanNL0Ptzr0SSbdOp_ADdC-xBud_0lfz-CgEbAJhcY-86Oj76xVD4eLhhRRNDlqDWjU1h29HkqJqxqG3ayZqtApcGhYQhmWV-oznEb-EVtvvDxp6_zmWQb8nDkBkmtj2E-_Tj7cMj7vgrcS203XIi8qnU0KvfRmKDLUMsaQxvrG20wfLOICX1uTKmsjV55G4OQhdeNQjATcfqewE67bMMzYJXJm6rEyNbHWpqIvi7WxCDUeFFR7JPB7ji57rTjz3AY8ZSU_8vgzTDbzveM5NQY46dLmXFhnV850pJTRQavR9nhO_-S2huU5vq1uHaXlpPBq_E1riJKjVRtWJ4nGYTG2uY44qedjsffIMhJpP4ZmC3tjwLE0L39pj35kZi6ESJQniuD_cFO_h7W1dHv_n_0z-EuCXbVh3uws1mdhxeIiDb1y2T2fwAtgQh0
  priority: 102
  providerName: ProQuest
Title The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation
URI http://lib.cqvip.com/qk/85240X/201208/42897684.html
https://link.springer.com/article/10.1038/cr.2012.52
https://www.ncbi.nlm.nih.gov/pubmed/22473005
https://www.proquest.com/docview/1030526349
https://www.proquest.com/docview/1031156815
https://pubmed.ncbi.nlm.nih.gov/PMC3411167
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2VVkhcEFA-3JZoEb1wMGDvp49p1NBSFFWQSLlZ9nqXVgKHJqlU_n1n1h9qWg7coniSrHaynvcyL28ADrmX2mLpir33aSxMksQmszwuvRTqc5XSdAdSW0zUyUx8nct5a5OzamWVjaVluE136rBPlrw7k_SjxNvtDlm2E9EaqVFPrhAJBHIVJEKKVDuNFSk3d15LBgoXi_rnFZaFzUL0AF0-FEne65SGAjR-Bk9b5MiGzVqfw5arX8DjZpbk311wmHA2vEGeO52c_WBBKu5uGNlB0B-hVox-cWVnp2M-ZEVdscsVWzqSAbuKIXBlrSg9xiP_m0Z64dNfvs2mgq2pmlHJoxS-hNn4eDo6idsZCrEVyqxjzpOiVF7LxHqtncpcKUqkMcZWSiNVM4j_bKJ1Jo3xVlrjHRepVZVE4OJx-17Bdr2o3RtghU6qIkMWa30ptMe65ktyC6osL4jnRLDXb27-p_HKyJHdZNTri-BDt9u5bd3HaQjGrzx0wbnJ7TKnLOUyjeB9H9u9z7-iDrqk5e25W1EMGdhwkUXwrr-MJ4baIEXtFtchBmGwMgmu-HWT4_5jENAEA_8I9Eb2-wBy4968Ul9eBFduhAPU04rgsPue3F3W_dXv_V_YPjyhR43i8AC218tr9xZR0LocwCM91wPYOTqenH8fhMNwC4NCBak
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NITReEL_JGGDEeOAhbIkT23lAqAJKS0tfaKW-mcSx2aSRbm0ntn-Kv5E7J-nohnjba-IkJ9_Z913u8x3ALnepNOi6QudcHCYqikKVGR4WLk3EfhlTdwdiW4xEb5J8mabTDfjdnoUhWmW7J_qNupwZ-ke-R-2w0ljwJHt_fBJS1yjKrrYtNGqzGNjzXxiyLd71P6J-X8dx99P4Qy9sugqEJhFqGXIe5YVwMo2Mk9KKzBZJgcBemVJIDF4UIiITSZmlSjmTGuUsT2IjyhRduUMx8L034CY63n0K9uT0IsBDNOIDPE9TEsQcqsuhcrVnqPZoFL-lA05buLFVP07QNa07wysI9ypR81K21jvB7l2406BX1qnN7R5s2Oo-3Kr7WZ4_AItGxzpnGGuPR4NvzNPV7RmjkhR0GGvB6K8vG_S7vMPyqmSHCza3REW2JUPwzBpifIjbzk9qK4aXPw8n44QtyaOS2yUzegiTa5nxR7BZzSr7BFguozLPMJI2rkikQ9_qCqpYVBqeU6wVwPZqcvVxXa9DY4SVUb4xgDftbGvTVECnRhxH2mfiudJmrklLOo0DeLUa277nX6N2WqXpZu0v9IWlBvBydRtXLaVi8srOTv0YhOJCRSjx41rHq88gqPJNBAKQa9pfDaCK4Ot3qsMDXxkcIQnl1QLYbe3kb7EuS7_9f-lfwFZv_HWoh_3R4Cncpodq5uMObC7np_YZorFl8dwvAQbfr3vN_QEN5kQV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTsBeEF-DjAFGjAceQpc4sZ0HhApbWelUTdBKezOJY8Mklm5tJ7Z_jb-Ou3xBN8TbXhMnsXznu9_lfr4D2OIulgZdl--cC_1IBYGvEsP9zMWR2M5D6u5AbIuR2JtEnw7jwxX41ZyFIVplYxNLQ51PDf0j71I7rDgUPEq6rqZFHOz0352c-tRBijKtTTuNSkWG9uInhm_zt4MdlPWrMOzvjj_s-XWHAd9EQi18zoM0E07GgXFSWpHYLMoQ5CuTC4mBjEJ0ZAIpk1gpZ2KjnOVRaEQeo1t3OCV87w1YlRQVdWD1_e7o4HMb7iE2KcO9krQkiEdUFUflqmuoEmkQvqHjTrfRzBXfTtFRLbvGK3j3Km3zUu62dIn9u3CnxrKsVynfPVixxX24WXW3vHgAFlWQ9c4x8h6Phl9YSV6354wKVNDRrDmjf8BsOOjzHkuLnB3N2cwSMdnmDKE0q2nyPhqhY2oyhpc_7k_GEVuQfyUnTEr1ECbXsubr0CmmhX0MLJVBniYYVxuXRdKhp3UZ1S_KDU8p8vJgo11cfVJV79AYbyWUffTgdbPa2tT10Kktxw9d5uW50mamSUo6Dj142Y5t3vOvUZuN0HRtCeb6j9568KK9jXuYEjNpYadn5RgE5kIFOONHlYzbzyDEKlsKeCCXpN8OoPrgy3eKo-9lnXAEKJRl82Cr0ZO_p3V59hv_n_1zuIX7Te8PRsMnsEbPVDTITegsZmf2KUKzRfas3gMMvl73tvsNzcZJsA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Axin%2FTNKS+complex+interacts+with+KIF3A+and+is+required+for+insulin-stimulated+GLUT4+translocation&rft.jtitle=Cell+research&rft.au=Guo%2C+Hui-Ling&rft.au=Zhang%2C+Cixiong&rft.au=Liu%2C+Qi&rft.au=Li%2C+Qinxi&rft.date=2012-08-01&rft.issn=1748-7838&rft.eissn=1748-7838&rft.volume=22&rft.issue=8&rft.spage=1246&rft_id=info:doi/10.1038%2Fcr.2012.52&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg