The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation
Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we d...
Saved in:
Published in | Cell research Vol. 22; no. 8; pp. 1246 - 1257 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 transiocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2-/- mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Goigi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translo- cation. |
---|---|
AbstractList | Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2(-/-) mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation. Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2(-/-) mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation.Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2(-/-) mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation. Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 transiocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2-/- mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Goigi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translo- cation. Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 translocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2 −/− mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Golgi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translocation. |
Author | Hui-Ling Guo Cixiong Zhang Qi Liu Qinxi Li Guili Lian Di Wu Xuebin Li Wei Zhang Yuemao Shen Zhiyun Ye Slau-Yong Lin Sheng-Cai Lin |
AuthorAffiliation | State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, ChinaI StateKey Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China |
Author_xml | – sequence: 1 givenname: Hui-Ling surname: Guo fullname: Guo, Hui-Ling organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University – sequence: 2 givenname: Cixiong surname: Zhang fullname: Zhang, Cixiong organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University – sequence: 3 givenname: Qi surname: Liu fullname: Liu, Qi organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University – sequence: 4 givenname: Qinxi surname: Li fullname: Li, Qinxi organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University – sequence: 5 givenname: Guili surname: Lian fullname: Lian, Guili organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University – sequence: 6 givenname: Di surname: Wu fullname: Wu, Di organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University – sequence: 7 givenname: Xuebin surname: Li fullname: Li, Xuebin organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University – sequence: 8 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University – sequence: 9 givenname: Yuemao surname: Shen fullname: Shen, Yuemao organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University – sequence: 10 givenname: Zhiyun surname: Ye fullname: Ye, Zhiyun organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University – sequence: 11 givenname: Shu-Yong surname: Lin fullname: Lin, Shu-Yong organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University – sequence: 12 givenname: Sheng-Cai surname: Lin fullname: Lin, Sheng-Cai email: linsc@xmu.edu.cn organization: State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22473005$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtvEzEURkeoiD5gww9ARmwq0KR-27NBiipaqkawIF1bjseTuJqxE9sD7b_HIWlVqq5s2ecef773uDrwwduqeo_gBEEiz0ycYIjwhOFX1RESVNZCEnlQ9hCiGnKID6vjlG4hxIwy9KY6xJgKAiE7qux8ZcH0zvmz-Y_rX8CEYd3bO-B8tlGbnMAfl1fg-uqCTIH2LXAJRLsZXbQt6EIsYBp75-uU3TD2Opfjy9nNnIIctU99MDq74N9WrzvdJ_tuv55UNxff5uff69nPy6vz6aw2lMtcE4L0gneCIdMJYXljF3QBJZem5aJBQjZCGCREw6TsDDOys4Riw1vWNKQrvTipvu6863Ex2NZYX2L0ah3doOO9Ctqp_2-8W6ll-K0IRQhxUQSne0EMm9GmrAaXjO177W0YkypvIMS4RKygn56ht2GMvnxvS0GGOaFNoT48TfQY5WECBYA7wMSQUrSdMi7_a1oJ6Pri2uqkMlFth6wYLiWfn5U8WF-Ev-zgVCC_tPFpzBfoj3v1KvjlphQ8uiku7eeSkr9u-7_Z |
CitedBy_id | crossref_primary_10_1016_j_ejmech_2016_04_041 crossref_primary_10_1016_j_ijbiomac_2024_129634 crossref_primary_10_1073_pnas_2026494119 crossref_primary_10_1016_j_ajhg_2018_01_015 crossref_primary_10_1371_journal_pbio_3000444 crossref_primary_10_1371_journal_pone_0150484 crossref_primary_10_15616_BSL_2018_24_3_150 crossref_primary_10_1016_j_yexcr_2020_111935 crossref_primary_10_1016_j_bbrc_2018_06_143 crossref_primary_10_1074_jbc_RA118_003021 crossref_primary_10_1007_s00018_019_03366_0 crossref_primary_10_3892_ol_2021_12949 crossref_primary_10_1016_j_tem_2021_07_008 crossref_primary_10_1016_j_diff_2014_07_003 crossref_primary_10_1186_s12868_021_00666_9 crossref_primary_10_1007_s00210_023_02576_5 crossref_primary_10_1016_j_cellsig_2014_04_014 crossref_primary_10_1016_j_phymed_2021_153843 crossref_primary_10_1038_cddis_2016_217 crossref_primary_10_1021_acs_jmedchem_1c02139 crossref_primary_10_2174_1573394717666210628122306 crossref_primary_10_1371_journal_pone_0178485 crossref_primary_10_1016_j_bmcl_2015_12_018 crossref_primary_10_1074_jbc_M115_705970 crossref_primary_10_1111_febs_12320 crossref_primary_10_1016_j_cmet_2013_09_005 crossref_primary_10_1021_jm4000566 crossref_primary_10_1593_neo_13320 crossref_primary_10_1096_fj_15_271817 crossref_primary_10_1021_acs_jmedchem_6b01574 crossref_primary_10_1042_BCJ20220391 crossref_primary_10_1074_jbc_M112_339457 crossref_primary_10_1038_nrd3868 crossref_primary_10_1038_s41598_019_40596_5 crossref_primary_10_1371_journal_pone_0122948 crossref_primary_10_1007_s00044_020_02657_7 crossref_primary_10_1038_s41588_023_01408_9 crossref_primary_10_1042_BCJ20210073 crossref_primary_10_1152_ajpendo_00272_2019 crossref_primary_10_1002_cbin_11086 crossref_primary_10_1098_rsob_190041 crossref_primary_10_1007_s12013_022_01076_2 crossref_primary_10_1002_pro_2968 crossref_primary_10_1016_j_ejmech_2020_112712 crossref_primary_10_1016_j_tcb_2020_05_007 crossref_primary_10_7554_eLife_83338 crossref_primary_10_1016_j_jare_2024_07_012 crossref_primary_10_1016_j_celrep_2018_09_036 crossref_primary_10_1113_JP281187 crossref_primary_10_1007_s00125_015_3815_1 crossref_primary_10_1002_pro_3413 crossref_primary_10_3390_jdb7040020 crossref_primary_10_1096_fj_201601103R crossref_primary_10_3892_ol_2018_9551 crossref_primary_10_1016_j_brainres_2014_12_028 crossref_primary_10_1074_jbc_M114_603977 crossref_primary_10_1042_BST20180416 |
Cites_doi | 10.1074/jbc.M007610200 10.1128/MCB.23.14.4892-4900.2003 10.1139/H09-047 10.1677/JOE-09-0037 10.1016/j.cmet.2008.02.008 10.1074/jbc.270.40.23612 10.1128/MCB.26.6.2037-2043.2006 10.1074/jbc.M202037200 10.1074/jbc.M007635200 10.1016/j.devcel.2007.07.006 10.1091/mbc.e04-04-0333 10.1074/jbc.C200198200 10.1073/pnas.1332633100 10.1158/0008-5472.CAN-06-1671 10.1016/j.ceb.2007.04.018 10.1042/bj3520267 10.1371/journal.pone.0002639 10.1038/nature08356 10.1074/jbc.M010785200 10.1074/jbc.M510920200 10.1042/BJ20060793 10.1038/nrm782 10.1042/BJ20050887 10.1074/jbc.M605461200 10.1016/S0092-8674(00)80324-4 10.1074/jbc.C300063200 10.1074/jbc.M306782200 10.2337/db08-1781 10.1016/S0925-4773(02)00307-6 10.1038/sj.emboj.7600475 10.1091/mbc.e06-07-0585 10.1093/emboj/cdg237 10.1091/mbc.e10-02-0158 10.2337/diabetes.53.2.486 10.1038/ncb1927 10.1126/science.292.5522.1728 10.1074/jbc.M105452200 10.1042/bj3000631 10.1038/nrm2774 10.1271/bbb.70342 10.1074/jbc.271.30.17605 10.2337/db06-0900 |
ContentType | Journal Article |
Copyright | The Author(s) 2012 Copyright Nature Publishing Group Aug 2012 Copyright © 2012 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2012 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
Copyright_xml | – notice: The Author(s) 2012 – notice: Copyright Nature Publishing Group Aug 2012 – notice: Copyright © 2012 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2012 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
DBID | 2RA 92L CQIGP W94 WU4 ~WA C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/cr.2012.52 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation Axin/TNKS/KIF3A complex regulates GLUT4 translocation |
EISSN | 1748-7838 |
EndPage | 1257 |
ExternalDocumentID | PMC3411167 2726377411 22473005 10_1038_cr_2012_52 42897684 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -01 -0A -Q- -SA -S~ 0R~ 29B 2B. 2C. 2RA 2WC 36B 39C 3V. 4.4 406 53G 5GY 5VR 5XA 5XB 5XL 6J9 70F 7X7 88E 8FE 8FH 8FI 8FJ 92E 92I 92L 92M 92Q 93N 9D9 9DA AADWK AANZL AATNV AAWBL AAYFA AAYJO AAZLF ABAWZ ABGIJ ABJNI ABUWG ACAOD ACBMV ACBRV ACBYP ACGFO ACGFS ACIGE ACIWK ACKTT ACPRK ACRQY ACTTH ACVWB ACZOJ ADBBV ADFRT ADHDB ADMDM ADQMX ADYYL AEDAW AEFTE AEJRE AENEX AESKC AEVLU AEXYK AFKRA AFNRJ AFRAH AFSHS AFUIB AGEZK AGGBP AGHAI AHMBA AHSBF AILAN AJCLW AJDOV AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMRJV AMYLF AOIJS AXYYD BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C1A CAG CAJEA CAJUS CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CW9 DIK DNIVK DPUIP DU5 E3Z EBLON EBS EE. EIOEI EJD EMB EMOBN F5P FA0 FDQFY FERAY FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HYE HZ~ IWAJR JSO JUIAU JZLTJ KQ8 LK8 M1P M7P NAO NQJWS NXXTH NYICJ O9- OK1 P2P PQQKQ PROAC PSQYO Q-- Q-0 R-A RNS RNT RNTTT RPM RT1 S.. SNX SNYQT SOHCF SRMVM SV3 SWTZT T8Q TAOOD TBHMF TCJ TDRGL TGP TR2 U1F U1G U5A U5K UKHRP W94 WFFXF WU4 XSB ~88 ~WA AACDK AAHBH AASML AAXDM AAYZH ABAKF ABZZP ACMJI AEFQL AEMSY AEUYN AFBBN AGQEE AIGIU ALIPV C6C FIGPU LGEZI LOTEE NADUK ROL SOJ AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c468t-331ab6f751cf77e69eb4b0868cd679178977c1779588fc5c8fe342c6d5993f103 |
IEDL.DBID | C6C |
ISSN | 1001-0602 1748-7838 |
IngestDate | Thu Aug 21 14:11:38 EDT 2025 Fri Jul 11 04:08:56 EDT 2025 Fri Jul 25 08:54:54 EDT 2025 Thu Apr 03 06:55:50 EDT 2025 Tue Jul 01 03:41:30 EDT 2025 Thu Apr 24 23:12:34 EDT 2025 Fri Feb 21 02:38:11 EST 2025 Wed Feb 14 10:46:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | GLUT4 translocation Axin TNKS KIF3A |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/3.0 This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-331ab6f751cf77e69eb4b0868cd679178977c1779588fc5c8fe342c6d5993f103 |
Notes | Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type 2 diabetes. However, the molecular components and mechanisms regulating insulin-stimulated glucose uptake remain largely unclear. Here, we demonstrate that Axin interacts with the ADP-ribosylase tankyrase 2 (TNKS2) and the kinesin motor protein KIF3A, forming a ternary complex crucial for GLUT4 transiocation in response to insulin. Specific knockdown of the individual components of the complex attenuated insulin-stimulated GLUT4 translocation to the plasma membrane. Importantly, TNKS2-/- mice exhibit reduced insulin sensitivity and higher blood glucose levels when re-fed after fasting. Mechanistically, we demonstrate that in the absence of insulin, Axin, TNKS and KIF3A are co-localized with GLUT4 on the trans-Goigi network. Insulin treatment suppresses the ADP-ribosylase activity of TNKS, leading to a reduction in ADP ribosylation and ubiquitination of both Axin and TNKS, and a concurrent stabilization of the complex. Inhibition of Akt, the major effector kinase of insulin signaling, abrogates the insulin-mediated complex stabilization. We have thus elucidated a new protein complex that is directly associated with the motor protein kinesin in insulin-stimulated GLUT4 translo- cation. 31-1568/Q Axin; TNKS; KIF3A; GLUT4 translocation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These three authors contributed equally to this work. |
OpenAccessLink | https://www.nature.com/articles/cr.2012.52 |
PMID | 22473005 |
PQID | 1030526349 |
PQPubID | 536307 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3411167 proquest_miscellaneous_1031156815 proquest_journals_1030526349 pubmed_primary_22473005 crossref_citationtrail_10_1038_cr_2012_52 crossref_primary_10_1038_cr_2012_52 springer_journals_10_1038_cr_2012_52 chongqing_primary_42897684 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-01 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cell research |
PublicationTitleAbbrev | Cell Res |
PublicationTitleAlternate | Cell Research |
PublicationYear | 2012 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Kane, Sano, Liu (CR38) 2002; 277 Keller, Davis, Clairmont (CR22) 2002; 277 Li, Francois, Tong (CR28) 1997; 90 Huang, Mishina, Liu (CR34) 2009; 461 Cho, Mu, Kim, Thorvaldsen (CR9) 2001; 292 Emoto, Langille, Czech (CR13) 2001; 276 Imamura, Huang, Usui, Satoh, Bever, Olefsky (CR18) 2003; 23 Molero, Whitehead, Meerloo, James (CR16) 2001; 276 Li, Lin, Wang (CR32) 2009; 11 Gonzalez, McGraw (CR36) 2006; 17 Nishiumi, Ashida (CR43) 2007; 71 Keller, Scott, Mastick (CR21) 1995; 270 Li, Wang, Wu (CR31) 2007; 67 Yeh, Sbodio, Tsun, Luo, Chi (CR24) 2007; 402 Fletcher, Welsh, Oatery, Tavare (CR14) 2000; 352 Semiz, Park, Nicoloro (CR17) 2003; 22 Rui, Xu, Xiong (CR29) 2007; 13 Kramer, Witczak, Taylor, Fujii, Hirshman, Goodyear (CR41) 2006; 281 Martin, Haruta, Morris, Klippel, Williams, Olefsky (CR5) 1996; 271 Zeigerer, McBrayer, McGraw (CR39) 2004; 15 Fletcher, Welsh, Oatey, Tavare (CR10) 2000; 352(Part 2) Chi, Lodish (CR20) 2000; 275 Hirokawa, Noda, Tanaka, Niwa (CR12) 2009; 10 Chiang, Hsiao, Yver (CR19) 2008; 3 Bryant, Govers, James (CR1) 2002; 3 Klip (CR3) 2009; 34 Hou, Pessin (CR2) 2007; 19 Thong, Bilan, Klip (CR42) 2007; 56 Bae, Cho, Mu, Birnbaum (CR35) 2003; 278 Olson, Trumbly, Gibson (CR15) 2001; 276 Miinea, Sano, Kane (CR40) 2005; 391 Yamazaki, Nusse (CR33) 2002; 119 Sano, Kane, Sano (CR37) 2003; 278 Ng, Ramm, Lopez, James (CR7) 2008; 7 Huang, Imamura, Babendure, Lu, Olefsky (CR11) 2005; 280 Pezzolesi, Nam, Nagase (CR27) 2004; 53 Leney, Tavare (CR4) 2009; 203 Jiang, Zhou, Coleman, Chouinard, Boese, Czech (CR8) 2003; 100 Chiang, Nguyen, Gurunathan (CR26) 2006; 26 Jordens, Molle, Xiong, Keller, McGraw (CR23) 2010; 21 Rui, Xu, Lin (CR30) 2004; 23 Yeh, Beiswenger, Li (CR25) 2009; 58 Clarke, Young, Yonezawa, Kasuga, Holman (CR6) 1994; 300 SS Bae (BFcr201252_CR35) 2003; 278 JF Clarke (BFcr201252_CR6) 1994; 300 MG Pezzolesi (BFcr201252_CR27) 2004; 53 NW Chi (BFcr201252_CR20) 2000; 275 I Jordens (BFcr201252_CR23) 2010; 21 CP Miinea (BFcr201252_CR40) 2005; 391 S Semiz (BFcr201252_CR17) 2003; 22 FS Thong (BFcr201252_CR42) 2007; 56 E Gonzalez (BFcr201252_CR36) 2006; 17 M Emoto (BFcr201252_CR13) 2001; 276 SR Keller (BFcr201252_CR22) 2002; 277 S Kane (BFcr201252_CR38) 2002; 277 Q Li (BFcr201252_CR31) 2007; 67 LM Fletcher (BFcr201252_CR10) 2000; 352(Part 2) Y Ng (BFcr201252_CR7) 2008; 7 JC Hou (BFcr201252_CR2) 2007; 19 TY Yeh (BFcr201252_CR25) 2009; 58 SM Huang (BFcr201252_CR34) 2009; 461 T Imamura (BFcr201252_CR18) 2003; 23 YJ Chiang (BFcr201252_CR19) 2008; 3 A Zeigerer (BFcr201252_CR39) 2004; 15 Y Rui (BFcr201252_CR30) 2004; 23 H Sano (BFcr201252_CR37) 2003; 278 TY Yeh (BFcr201252_CR24) 2007; 402 J Huang (BFcr201252_CR11) 2005; 280 ZY Jiang (BFcr201252_CR8) 2003; 100 H Cho (BFcr201252_CR9) 2001; 292 SE Leney (BFcr201252_CR4) 2009; 203 SR Keller (BFcr201252_CR21) 1995; 270 HF Kramer (BFcr201252_CR41) 2006; 281 Y Rui (BFcr201252_CR29) 2007; 13 Q Li (BFcr201252_CR32) 2009; 11 AL Olson (BFcr201252_CR15) 2001; 276 S Martin (BFcr201252_CR5) 1996; 271 N Hirokawa (BFcr201252_CR12) 2009; 10 H Yamazaki (BFcr201252_CR33) 2002; 119 YJ Chiang (BFcr201252_CR26) 2006; 26 JC Molero (BFcr201252_CR16) 2001; 276 NJ Bryant (BFcr201252_CR1) 2002; 3 A Klip (BFcr201252_CR3) 2009; 34 S Nishiumi (BFcr201252_CR43) 2007; 71 LM Fletcher (BFcr201252_CR14) 2000; 352 Z Li (BFcr201252_CR28) 1997; 90 17210684 - Cancer Res. 2007 Jan 1;67(1):66-74 16507984 - Mol Cell Biol. 2006 Mar;26(6):2037-43 16935857 - J Biol Chem. 2006 Oct 20;281(42):31478-85 18612384 - PLoS One. 2008;3(7):e2639 16914513 - Mol Biol Cell. 2006 Oct;17(10):4484-93 12385759 - Mech Dev. 2002 Nov;119(1):115-9 9230313 - Cell. 1997 Jul 11;90(1):181-92 11085918 - Biochem J. 2000 Dec 1;352 Pt 2:267-76 17827673 - Biosci Biotechnol Biochem. 2007 Sep;71(9):2343-6 15254270 - Mol Biol Cell. 2004 Oct;15(10):4406-15 11571289 - J Biol Chem. 2001 Nov 23;276(47):43829-35 12637568 - J Biol Chem. 2003 Apr 25;278(17):14599-602 19389739 - J Endocrinol. 2009 Oct;203(1):1-18 11387480 - Science. 2001 Jun 1;292(5522):1728-31 11884418 - J Biol Chem. 2002 May 17;277(20):17677-86 16239226 - J Biol Chem. 2005 Dec 23;280(51):42300-6 19731416 - Nat Cell Biol. 2009 Sep;11(9):1128-34 11994271 - J Biol Chem. 2002 Jun 21;277(25):22115-8 14747302 - Diabetes. 2004 Feb;53(2):486-91 10988299 - J Biol Chem. 2000 Dec 8;275(49):38437-44 19773780 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):682-96 11278355 - J Biol Chem. 2001 Apr 6;276(14):10706-14 8010944 - Biochem J. 1994 Jun 15;300 ( Pt 3):631-5 19448718 - Appl Physiol Nutr Metab. 2009 Jun;34(3):481-7 17059388 - Biochem J. 2007 Mar 1;402(2):279-90 8663595 - J Biol Chem. 1996 Jul 26;271(30):17605-8 17259386 - Diabetes. 2007 Feb;56(2):414-23 17681137 - Dev Cell. 2007 Aug;13(2):268-82 19651815 - Diabetes. 2009 Nov;58(11):2476-85 20410133 - Mol Biol Cell. 2010 Jun 15;21(12):2034-44 18396141 - Cell Metab. 2008 Apr;7(4):348-56 17644329 - Curr Opin Cell Biol. 2007 Aug;19(4):466-73 15526030 - EMBO J. 2004 Nov 24;23(23):4583-94 14522993 - J Biol Chem. 2003 Dec 5;278(49):49530-6 11145966 - J Biol Chem. 2001 Apr 6;276(14):10677-82 11994746 - Nat Rev Mol Cell Biol. 2002 Apr;3(4):267-77 15971998 - Biochem J. 2005 Oct 1;391(Pt 1):87-93 12832475 - Mol Cell Biol. 2003 Jul;23(14):4892-900 12808134 - Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7569-74 7559527 - J Biol Chem. 1995 Oct 6;270(40):23612-8 19759537 - Nature. 2009 Oct 1;461(7264):614-20 12743033 - EMBO J. 2003 May 15;22(10):2387-99 |
References_xml | – volume: 276 start-page: 10706 year: 2001 end-page: 10714 ident: CR15 article-title: Insulin-mediated GLUT4 translocation is dependent on the microtubule network publication-title: J Biol Chem doi: 10.1074/jbc.M007610200 – volume: 23 start-page: 4892 year: 2003 end-page: 4900 ident: CR18 article-title: Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin publication-title: Mol Cell Biol doi: 10.1128/MCB.23.14.4892-4900.2003 – volume: 34 start-page: 481 year: 2009 end-page: 487 ident: CR3 article-title: The many ways to regulate glucose transporter 4 publication-title: Appl Physiol Nutr Metab doi: 10.1139/H09-047 – volume: 203 start-page: 1 year: 2009 end-page: 18 ident: CR4 article-title: The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets publication-title: J Endocrinol doi: 10.1677/JOE-09-0037 – volume: 7 start-page: 348 year: 2008 end-page: 356 ident: CR7 article-title: Rapid activation of Akt2 is sufficient to stimulate GLUT4 translocation in 3T3-L1 adipocytes publication-title: Cell Metab doi: 10.1016/j.cmet.2008.02.008 – volume: 270 start-page: 23612 year: 1995 end-page: 23618 ident: CR21 article-title: Cloning and characterizatin of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles publication-title: J Biol Chem doi: 10.1074/jbc.270.40.23612 – volume: 26 start-page: 2037 year: 2006 end-page: 2043 ident: CR26 article-title: Generation and characterization of telomere length maintenance in tankyrase 2-deficient mice publication-title: Mol Cell Biol doi: 10.1128/MCB.26.6.2037-2043.2006 – volume: 277 start-page: 17677 year: 2002 end-page: 17686 ident: CR22 article-title: Mice deficient in the insulin-regulated membrane aminopeptitase show substantial decreases in glucose transporter GLUT4 levels but maintain normal glucose homeostasis publication-title: J Biol Chem doi: 10.1074/jbc.M202037200 – volume: 275 start-page: 38437 year: 2000 end-page: 38444 ident: CR20 article-title: tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles publication-title: J Biol Chem doi: 10.1074/jbc.M007635200 – volume: 13 start-page: 268 year: 2007 end-page: 282 ident: CR29 article-title: A beta-catenin-independent dorsalization pathway activated by Axin/JNK signaling and antagonized by Aida publication-title: Dev Cell doi: 10.1016/j.devcel.2007.07.006 – volume: 15 start-page: 4406 year: 2004 end-page: 4415 ident: CR39 article-title: Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160 publication-title: Mol Biol Cell doi: 10.1091/mbc.e04-04-0333 – volume: 277 start-page: 22115 year: 2002 end-page: 22118 ident: CR38 article-title: Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain publication-title: J Biol Chem doi: 10.1074/jbc.C200198200 – volume: 100 start-page: 7569 year: 2003 end-page: 7574 ident: CR8 article-title: Insulin signaling through Akt/protein kinase B analyzed by small interfering RNA-mediated gene silencing publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1332633100 – volume: 67 start-page: 66 year: 2007 end-page: 74 ident: CR31 article-title: Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-1671 – volume: 19 start-page: 466 year: 2007 end-page: 473 ident: CR2 article-title: Ins (endocytosis) and outs (exocytosis) of GLUT4 trafficking publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2007.04.018 – volume: 352 start-page: 267 year: 2000 end-page: 276 ident: CR14 article-title: Role for the microtubule cytoskeleton in GLUT4 vesicle trafficking and in the regulation of insulin-stimulated glucose uptake publication-title: Biochem J doi: 10.1042/bj3520267 – volume: 3 start-page: e2639 year: 2008 ident: CR19 article-title: tankyrase 1 and tankyrase 2 are essential but redundant for mouse embryonic development publication-title: PLoS One doi: 10.1371/journal.pone.0002639 – volume: 461 start-page: 614 year: 2009 end-page: 620 ident: CR34 article-title: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling publication-title: Nature doi: 10.1038/nature08356 – volume: 276 start-page: 10677 year: 2001 end-page: 10682 ident: CR13 article-title: A role for kinesin in insulin-stimulated GLUT4 glucose transporter translocation in 3T3-L1 adipocytes publication-title: J Biol Chem doi: 10.1074/jbc.M010785200 – volume: 280 start-page: 42300 year: 2005 end-page: 42306 ident: CR11 article-title: Disruption of microtubules ablates the specificity of insulin signaling to GLUT4 translocation in 3T3-L1 adipocytes publication-title: J Biol Chem doi: 10.1074/jbc.M510920200 – volume: 402 start-page: 279 year: 2007 end-page: 290 ident: CR24 article-title: Insulin-stimulated exocytosis of GLUT4 is enhanced by IRAP and its partner tankyrase publication-title: Biochem J doi: 10.1042/BJ20060793 – volume: 3 start-page: 267 year: 2002 end-page: 277 ident: CR1 article-title: Regulated transport of the glucose transporter GLUT4 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm782 – volume: 391 start-page: 87 year: 2005 end-page: 93 ident: CR40 article-title: AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain publication-title: Biochem J doi: 10.1042/BJ20050887 – volume: 281 start-page: 31478 year: 2006 end-page: 31485 ident: CR41 article-title: AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle publication-title: J Biol Chem doi: 10.1074/jbc.M605461200 – volume: 90 start-page: 181 year: 1997 end-page: 192 ident: CR28 article-title: The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation publication-title: Cell doi: 10.1016/S0092-8674(00)80324-4 – volume: 278 start-page: 14599 year: 2003 end-page: 14602 ident: CR37 article-title: Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation publication-title: J Biol Chem doi: 10.1074/jbc.C300063200 – volume: 278 start-page: 49530 year: 2003 end-page: 49536 ident: CR35 article-title: Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B publication-title: J Biol Chem doi: 10.1074/jbc.M306782200 – volume: 352(Part 2) start-page: 267 year: 2000 end-page: 276 ident: CR10 article-title: Role for the microtubule cytoskeleton in GLUT4 vesicle trafficking and in the regulation of insulin-stimulated glucose uptake publication-title: Biochem J doi: 10.1042/bj3520267 – volume: 58 start-page: 2476 year: 2009 end-page: 2485 ident: CR25 article-title: Hypermetabolism, hyperphagia, and reduced adiposity in tankyrase-deficient mice publication-title: Diabetes doi: 10.2337/db08-1781 – volume: 119 start-page: 115 year: 2002 end-page: 119 ident: CR33 article-title: Identification of DCAP, a homolog of a glucose transport regulatory complex publication-title: Mech Dev doi: 10.1016/S0925-4773(02)00307-6 – volume: 23 start-page: 4583 year: 2004 end-page: 4594 ident: CR30 article-title: Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation publication-title: EMBO J doi: 10.1038/sj.emboj.7600475 – volume: 17 start-page: 4484 year: 2006 end-page: 4493 ident: CR36 article-title: Insulin signaling diverges into Akt-dependent and -independent signals to regulate the recruitment/docking and the fusion of GLUT4 vesicles to the PM publication-title: Mol Biol Cell doi: 10.1091/mbc.e06-07-0585 – volume: 22 start-page: 2387 year: 2003 end-page: 2399 ident: CR17 article-title: Conventional kinesin KIF5B mediates insulin-stimulated GLUT4 movements on microtubules publication-title: EMBO J doi: 10.1093/emboj/cdg237 – volume: 21 start-page: 2034 year: 2010 end-page: 2044 ident: CR23 article-title: Insulin-regulated aminopeptidase is a key regulator of GLUT4 trafficking by controlling the sorting of GLUT4 from endosomes to specialized insulin-regulated vesicles publication-title: Mol Biol Cell doi: 10.1091/mbc.e10-02-0158 – volume: 53 start-page: 486 year: 2004 end-page: 491 ident: CR27 article-title: Examination of candidate chromosomal regions for type 2 diabetes reveals a susceptibility locus on human chromosome 8p23.1 publication-title: Diabetes doi: 10.2337/diabetes.53.2.486 – volume: 11 start-page: 1128 year: 2009 end-page: 1134 ident: CR32 article-title: Axin determines cell fate by controlling the p53 activation threshold after DNA damage publication-title: Nat Cell Biol doi: 10.1038/ncb1927 – volume: 292 start-page: 1728 year: 2001 end-page: 1731 ident: CR9 article-title: Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta) publication-title: Science doi: 10.1126/science.292.5522.1728 – volume: 276 start-page: 43829 year: 2001 end-page: 43835 ident: CR16 article-title: Nocodazole inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes via a microtubule-independent mechanism publication-title: J Biol Chem doi: 10.1074/jbc.M105452200 – volume: 300 start-page: 631 year: 1994 end-page: 635 ident: CR6 article-title: Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin publication-title: Biochem J doi: 10.1042/bj3000631 – volume: 10 start-page: 682 year: 2009 end-page: 696 ident: CR12 article-title: Kinesin superfamily motor proteins and intracellular transport publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2774 – volume: 71 start-page: 2343 year: 2007 end-page: 2346 ident: CR43 article-title: Rapid preparation of a plasma membrane fraction from adipocytes and muscle cells: application to detection of translocated glucose transporter 4 on the plasma membrane publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.70342 – volume: 271 start-page: 17605 year: 1996 end-page: 17608 ident: CR5 article-title: Activated phosphatidylinositol 3-kinase is sufficient to mediate actin rearrangement and GLUT4 translocation in 3T3-L1 adipocytes publication-title: J Biol Chem doi: 10.1074/jbc.271.30.17605 – volume: 56 start-page: 414 year: 2007 end-page: 423 ident: CR42 article-title: The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, AMP-activated protein kinase signals regulating GLUT4 traffic publication-title: Diabetes doi: 10.2337/db06-0900 – volume: 67 start-page: 66 year: 2007 ident: BFcr201252_CR31 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-1671 – volume: 391 start-page: 87 year: 2005 ident: BFcr201252_CR40 publication-title: Biochem J doi: 10.1042/BJ20050887 – volume: 271 start-page: 17605 year: 1996 ident: BFcr201252_CR5 publication-title: J Biol Chem doi: 10.1074/jbc.271.30.17605 – volume: 276 start-page: 10677 year: 2001 ident: BFcr201252_CR13 publication-title: J Biol Chem doi: 10.1074/jbc.M010785200 – volume: 17 start-page: 4484 year: 2006 ident: BFcr201252_CR36 publication-title: Mol Biol Cell doi: 10.1091/mbc.e06-07-0585 – volume: 281 start-page: 31478 year: 2006 ident: BFcr201252_CR41 publication-title: J Biol Chem doi: 10.1074/jbc.M605461200 – volume: 19 start-page: 466 year: 2007 ident: BFcr201252_CR2 publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2007.04.018 – volume: 278 start-page: 14599 year: 2003 ident: BFcr201252_CR37 publication-title: J Biol Chem doi: 10.1074/jbc.C300063200 – volume: 56 start-page: 414 year: 2007 ident: BFcr201252_CR42 publication-title: Diabetes doi: 10.2337/db06-0900 – volume: 402 start-page: 279 year: 2007 ident: BFcr201252_CR24 publication-title: Biochem J doi: 10.1042/BJ20060793 – volume: 276 start-page: 10706 year: 2001 ident: BFcr201252_CR15 publication-title: J Biol Chem doi: 10.1074/jbc.M007610200 – volume: 90 start-page: 181 year: 1997 ident: BFcr201252_CR28 publication-title: Cell doi: 10.1016/S0092-8674(00)80324-4 – volume: 34 start-page: 481 year: 2009 ident: BFcr201252_CR3 publication-title: Appl Physiol Nutr Metab doi: 10.1139/H09-047 – volume: 352(Part 2) start-page: 267 year: 2000 ident: BFcr201252_CR10 publication-title: Biochem J doi: 10.1042/bj3520267 – volume: 100 start-page: 7569 year: 2003 ident: BFcr201252_CR8 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1332633100 – volume: 270 start-page: 23612 year: 1995 ident: BFcr201252_CR21 publication-title: J Biol Chem doi: 10.1074/jbc.270.40.23612 – volume: 10 start-page: 682 year: 2009 ident: BFcr201252_CR12 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2774 – volume: 352 start-page: 267 year: 2000 ident: BFcr201252_CR14 publication-title: Biochem J doi: 10.1042/bj3520267 – volume: 277 start-page: 17677 year: 2002 ident: BFcr201252_CR22 publication-title: J Biol Chem doi: 10.1074/jbc.M202037200 – volume: 119 start-page: 115 year: 2002 ident: BFcr201252_CR33 publication-title: Mech Dev doi: 10.1016/S0925-4773(02)00307-6 – volume: 15 start-page: 4406 year: 2004 ident: BFcr201252_CR39 publication-title: Mol Biol Cell doi: 10.1091/mbc.e04-04-0333 – volume: 280 start-page: 42300 year: 2005 ident: BFcr201252_CR11 publication-title: J Biol Chem doi: 10.1074/jbc.M510920200 – volume: 26 start-page: 2037 year: 2006 ident: BFcr201252_CR26 publication-title: Mol Cell Biol doi: 10.1128/MCB.26.6.2037-2043.2006 – volume: 278 start-page: 49530 year: 2003 ident: BFcr201252_CR35 publication-title: J Biol Chem doi: 10.1074/jbc.M306782200 – volume: 22 start-page: 2387 year: 2003 ident: BFcr201252_CR17 publication-title: EMBO J doi: 10.1093/emboj/cdg237 – volume: 13 start-page: 268 year: 2007 ident: BFcr201252_CR29 publication-title: Dev Cell doi: 10.1016/j.devcel.2007.07.006 – volume: 276 start-page: 43829 year: 2001 ident: BFcr201252_CR16 publication-title: J Biol Chem doi: 10.1074/jbc.M105452200 – volume: 3 start-page: 267 year: 2002 ident: BFcr201252_CR1 publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm782 – volume: 71 start-page: 2343 year: 2007 ident: BFcr201252_CR43 publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.70342 – volume: 275 start-page: 38437 year: 2000 ident: BFcr201252_CR20 publication-title: J Biol Chem doi: 10.1074/jbc.M007635200 – volume: 21 start-page: 2034 year: 2010 ident: BFcr201252_CR23 publication-title: Mol Biol Cell doi: 10.1091/mbc.e10-02-0158 – volume: 58 start-page: 2476 year: 2009 ident: BFcr201252_CR25 publication-title: Diabetes doi: 10.2337/db08-1781 – volume: 23 start-page: 4583 year: 2004 ident: BFcr201252_CR30 publication-title: EMBO J doi: 10.1038/sj.emboj.7600475 – volume: 203 start-page: 1 year: 2009 ident: BFcr201252_CR4 publication-title: J Endocrinol doi: 10.1677/JOE-09-0037 – volume: 11 start-page: 1128 year: 2009 ident: BFcr201252_CR32 publication-title: Nat Cell Biol doi: 10.1038/ncb1927 – volume: 7 start-page: 348 year: 2008 ident: BFcr201252_CR7 publication-title: Cell Metab doi: 10.1016/j.cmet.2008.02.008 – volume: 53 start-page: 486 year: 2004 ident: BFcr201252_CR27 publication-title: Diabetes doi: 10.2337/diabetes.53.2.486 – volume: 23 start-page: 4892 year: 2003 ident: BFcr201252_CR18 publication-title: Mol Cell Biol doi: 10.1128/MCB.23.14.4892-4900.2003 – volume: 3 start-page: e2639 year: 2008 ident: BFcr201252_CR19 publication-title: PLoS One doi: 10.1371/journal.pone.0002639 – volume: 292 start-page: 1728 year: 2001 ident: BFcr201252_CR9 publication-title: Science doi: 10.1126/science.292.5522.1728 – volume: 277 start-page: 22115 year: 2002 ident: BFcr201252_CR38 publication-title: J Biol Chem doi: 10.1074/jbc.C200198200 – volume: 300 start-page: 631 year: 1994 ident: BFcr201252_CR6 publication-title: Biochem J doi: 10.1042/bj3000631 – volume: 461 start-page: 614 year: 2009 ident: BFcr201252_CR34 publication-title: Nature doi: 10.1038/nature08356 – reference: 17681137 - Dev Cell. 2007 Aug;13(2):268-82 – reference: 8010944 - Biochem J. 1994 Jun 15;300 ( Pt 3):631-5 – reference: 12385759 - Mech Dev. 2002 Nov;119(1):115-9 – reference: 16935857 - J Biol Chem. 2006 Oct 20;281(42):31478-85 – reference: 11884418 - J Biol Chem. 2002 May 17;277(20):17677-86 – reference: 15254270 - Mol Biol Cell. 2004 Oct;15(10):4406-15 – reference: 11994271 - J Biol Chem. 2002 Jun 21;277(25):22115-8 – reference: 18396141 - Cell Metab. 2008 Apr;7(4):348-56 – reference: 19389739 - J Endocrinol. 2009 Oct;203(1):1-18 – reference: 16914513 - Mol Biol Cell. 2006 Oct;17(10):4484-93 – reference: 20410133 - Mol Biol Cell. 2010 Jun 15;21(12):2034-44 – reference: 11085918 - Biochem J. 2000 Dec 1;352 Pt 2:267-76 – reference: 15526030 - EMBO J. 2004 Nov 24;23(23):4583-94 – reference: 19773780 - Nat Rev Mol Cell Biol. 2009 Oct;10(10):682-96 – reference: 9230313 - Cell. 1997 Jul 11;90(1):181-92 – reference: 17644329 - Curr Opin Cell Biol. 2007 Aug;19(4):466-73 – reference: 12637568 - J Biol Chem. 2003 Apr 25;278(17):14599-602 – reference: 8663595 - J Biol Chem. 1996 Jul 26;271(30):17605-8 – reference: 11571289 - J Biol Chem. 2001 Nov 23;276(47):43829-35 – reference: 17827673 - Biosci Biotechnol Biochem. 2007 Sep;71(9):2343-6 – reference: 19731416 - Nat Cell Biol. 2009 Sep;11(9):1128-34 – reference: 14522993 - J Biol Chem. 2003 Dec 5;278(49):49530-6 – reference: 14747302 - Diabetes. 2004 Feb;53(2):486-91 – reference: 12808134 - Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7569-74 – reference: 10988299 - J Biol Chem. 2000 Dec 8;275(49):38437-44 – reference: 11994746 - Nat Rev Mol Cell Biol. 2002 Apr;3(4):267-77 – reference: 17210684 - Cancer Res. 2007 Jan 1;67(1):66-74 – reference: 17259386 - Diabetes. 2007 Feb;56(2):414-23 – reference: 16507984 - Mol Cell Biol. 2006 Mar;26(6):2037-43 – reference: 16239226 - J Biol Chem. 2005 Dec 23;280(51):42300-6 – reference: 11145966 - J Biol Chem. 2001 Apr 6;276(14):10677-82 – reference: 12743033 - EMBO J. 2003 May 15;22(10):2387-99 – reference: 12832475 - Mol Cell Biol. 2003 Jul;23(14):4892-900 – reference: 19651815 - Diabetes. 2009 Nov;58(11):2476-85 – reference: 19448718 - Appl Physiol Nutr Metab. 2009 Jun;34(3):481-7 – reference: 19759537 - Nature. 2009 Oct 1;461(7264):614-20 – reference: 11387480 - Science. 2001 Jun 1;292(5522):1728-31 – reference: 11278355 - J Biol Chem. 2001 Apr 6;276(14):10706-14 – reference: 18612384 - PLoS One. 2008;3(7):e2639 – reference: 15971998 - Biochem J. 2005 Oct 1;391(Pt 1):87-93 – reference: 7559527 - J Biol Chem. 1995 Oct 6;270(40):23612-8 – reference: 17059388 - Biochem J. 2007 Mar 1;402(2):279-90 |
SSID | ssj0025451 |
Score | 2.3183258 |
Snippet | Insulin-stimulated glucose uptake by the glucose transporter GLUT4 plays a central role in whole-body glucose homeostasis, dysregulation of which leads to type... |
SourceID | pubmedcentral proquest pubmed crossref springer chongqing |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1246 |
SubjectTerms | 2型糖尿病 3T3-L1 Cells 631/80/2023/2022 Adipocytes - drug effects Adipocytes - metabolism Animals Axi Axin Protein - genetics Axin Protein - metabolism Biomedical and Life Sciences Blood Blood Glucose - analysis Blood Glucose - drug effects Blood Glucose - metabolism Cell Biology Cell Membrane - genetics Cell Membrane - metabolism Enzyme Activation Glucose Glucose Transporter Type 4 - genetics Glucose Transporter Type 4 - metabolism HEK293 Cells Humans Insulin Insulin - administration & dosage Insulin - pharmacology Insulin Resistance Kinesin - genetics Kinesin - metabolism Life Sciences Male Mice Microscopy, Fluorescence n蛋白 Original original-article Protein Interaction Mapping Protein Stability Protein Transport RNA Interference Signal Transduction Tankyrases - genetics Tankyrases - metabolism trans-Golgi Network - metabolism Translocation Two-Hybrid System Techniques 交互 胰岛素 蛋白复合物 马达蛋白 驱动蛋白 |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEYIL4k1KQUb0wsGUxM-c0AqxFIp6YVfam5U4NlSCbLu7lcq_Z8Z5lG0R12SUWJ6x5xvP-BuAfRGV8ei6eIyx4NLmObelF7yOSup3TUHdHaja4lgfzuWXhVr0B27rvqxy2BPTRt0sPZ2RH1A7LFVoIcv3p2ecukZRdrVvoXETbhF1GVm1WVwGXIgOUsCVyoY0VfJ09KTCHnjiAs2Lt3Th6A5uNO33M3QV287pGuK8Xjh5JXuanNL0Ptzr0SSbdOp_ADdC-xBud_0lfz-CgEbAJhcY-86Oj76xVD4eLhhRRNDlqDWjU1h29HkqJqxqG3ayZqtApcGhYQhmWV-oznEb-EVtvvDxp6_zmWQb8nDkBkmtj2E-_Tj7cMj7vgrcS203XIi8qnU0KvfRmKDLUMsaQxvrG20wfLOICX1uTKmsjV55G4OQhdeNQjATcfqewE67bMMzYJXJm6rEyNbHWpqIvi7WxCDUeFFR7JPB7ji57rTjz3AY8ZSU_8vgzTDbzveM5NQY46dLmXFhnV850pJTRQavR9nhO_-S2huU5vq1uHaXlpPBq_E1riJKjVRtWJ4nGYTG2uY44qedjsffIMhJpP4ZmC3tjwLE0L39pj35kZi6ESJQniuD_cFO_h7W1dHv_n_0z-EuCXbVh3uws1mdhxeIiDb1y2T2fwAtgQh0 priority: 102 providerName: ProQuest |
Title | The Axin/TNKS complex interacts with KIF3A and is required for insulin-stimulated GLUT4 translocation |
URI | http://lib.cqvip.com/qk/85240X/201208/42897684.html https://link.springer.com/article/10.1038/cr.2012.52 https://www.ncbi.nlm.nih.gov/pubmed/22473005 https://www.proquest.com/docview/1030526349 https://www.proquest.com/docview/1031156815 https://pubmed.ncbi.nlm.nih.gov/PMC3411167 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2VVkhcEFA-3JZoEb1wMGDvp49p1NBSFFWQSLlZ9nqXVgKHJqlU_n1n1h9qWg7coniSrHaynvcyL28ADrmX2mLpir33aSxMksQmszwuvRTqc5XSdAdSW0zUyUx8nct5a5OzamWVjaVluE136rBPlrw7k_SjxNvtDlm2E9EaqVFPrhAJBHIVJEKKVDuNFSk3d15LBgoXi_rnFZaFzUL0AF0-FEne65SGAjR-Bk9b5MiGzVqfw5arX8DjZpbk311wmHA2vEGeO52c_WBBKu5uGNlB0B-hVox-cWVnp2M-ZEVdscsVWzqSAbuKIXBlrSg9xiP_m0Z64dNfvs2mgq2pmlHJoxS-hNn4eDo6idsZCrEVyqxjzpOiVF7LxHqtncpcKUqkMcZWSiNVM4j_bKJ1Jo3xVlrjHRepVZVE4OJx-17Bdr2o3RtghU6qIkMWa30ptMe65ktyC6osL4jnRLDXb27-p_HKyJHdZNTri-BDt9u5bd3HaQjGrzx0wbnJ7TKnLOUyjeB9H9u9z7-iDrqk5e25W1EMGdhwkUXwrr-MJ4baIEXtFtchBmGwMgmu-HWT4_5jENAEA_8I9Eb2-wBy4968Ul9eBFduhAPU04rgsPue3F3W_dXv_V_YPjyhR43i8AC218tr9xZR0LocwCM91wPYOTqenH8fhMNwC4NCBak |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NITReEL_JGGDEeOAhbIkT23lAqAJKS0tfaKW-mcSx2aSRbm0ntn-Kv5E7J-nohnjba-IkJ9_Z913u8x3ALnepNOi6QudcHCYqikKVGR4WLk3EfhlTdwdiW4xEb5J8mabTDfjdnoUhWmW7J_qNupwZ-ke-R-2w0ljwJHt_fBJS1yjKrrYtNGqzGNjzXxiyLd71P6J-X8dx99P4Qy9sugqEJhFqGXIe5YVwMo2Mk9KKzBZJgcBemVJIDF4UIiITSZmlSjmTGuUsT2IjyhRduUMx8L034CY63n0K9uT0IsBDNOIDPE9TEsQcqsuhcrVnqPZoFL-lA05buLFVP07QNa07wysI9ypR81K21jvB7l2406BX1qnN7R5s2Oo-3Kr7WZ4_AItGxzpnGGuPR4NvzNPV7RmjkhR0GGvB6K8vG_S7vMPyqmSHCza3REW2JUPwzBpifIjbzk9qK4aXPw8n44QtyaOS2yUzegiTa5nxR7BZzSr7BFguozLPMJI2rkikQ9_qCqpYVBqeU6wVwPZqcvVxXa9DY4SVUb4xgDftbGvTVECnRhxH2mfiudJmrklLOo0DeLUa277nX6N2WqXpZu0v9IWlBvBydRtXLaVi8srOTv0YhOJCRSjx41rHq88gqPJNBAKQa9pfDaCK4Ot3qsMDXxkcIQnl1QLYbe3kb7EuS7_9f-lfwFZv_HWoh_3R4Cncpodq5uMObC7np_YZorFl8dwvAQbfr3vN_QEN5kQV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTsBeEF-DjAFGjAceQpc4sZ0HhApbWelUTdBKezOJY8Mklm5tJ7Z_jb-Ou3xBN8TbXhMnsXznu9_lfr4D2OIulgZdl--cC_1IBYGvEsP9zMWR2M5D6u5AbIuR2JtEnw7jwxX41ZyFIVplYxNLQ51PDf0j71I7rDgUPEq6rqZFHOz0352c-tRBijKtTTuNSkWG9uInhm_zt4MdlPWrMOzvjj_s-XWHAd9EQi18zoM0E07GgXFSWpHYLMoQ5CuTC4mBjEJ0ZAIpk1gpZ2KjnOVRaEQeo1t3OCV87w1YlRQVdWD1_e7o4HMb7iE2KcO9krQkiEdUFUflqmuoEmkQvqHjTrfRzBXfTtFRLbvGK3j3Km3zUu62dIn9u3CnxrKsVynfPVixxX24WXW3vHgAFlWQ9c4x8h6Phl9YSV6354wKVNDRrDmjf8BsOOjzHkuLnB3N2cwSMdnmDKE0q2nyPhqhY2oyhpc_7k_GEVuQfyUnTEr1ECbXsubr0CmmhX0MLJVBniYYVxuXRdKhp3UZ1S_KDU8p8vJgo11cfVJV79AYbyWUffTgdbPa2tT10Kktxw9d5uW50mamSUo6Dj142Y5t3vOvUZuN0HRtCeb6j9568KK9jXuYEjNpYadn5RgE5kIFOONHlYzbzyDEKlsKeCCXpN8OoPrgy3eKo-9lnXAEKJRl82Cr0ZO_p3V59hv_n_1zuIX7Te8PRsMnsEbPVDTITegsZmf2KUKzRfas3gMMvl73tvsNzcZJsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Axin%2FTNKS+complex+interacts+with+KIF3A+and+is+required+for+insulin-stimulated+GLUT4+translocation&rft.jtitle=Cell+research&rft.au=Guo%2C+Hui-Ling&rft.au=Zhang%2C+Cixiong&rft.au=Liu%2C+Qi&rft.au=Li%2C+Qinxi&rft.date=2012-08-01&rft.issn=1748-7838&rft.eissn=1748-7838&rft.volume=22&rft.issue=8&rft.spage=1246&rft_id=info:doi/10.1038%2Fcr.2012.52&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg |