Finding the optimal Bayesian network given a constraint graph

Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables. Fortunately, domain knowledge can frequently be exploited to achieve dramatic computational savings, and in many cases domain knowledge can even...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 3; p. e122
Main Authors Schreiber, Jacob M., Noble, William S.
Format Journal Article
LanguageEnglish
Published San Diego PeerJ. Ltd 03.07.2017
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text
ISSN2376-5992
2376-5992
DOI10.7717/peerj-cs.122

Cover

Loading…
Abstract Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables. Fortunately, domain knowledge can frequently be exploited to achieve dramatic computational savings, and in many cases domain knowledge can even make structure learning tractable. Several methods have previously been described for representing this type of structural prior knowledge, including global orderings, super-structures, and constraint rules. While super-structures and constraint rules are flexible in terms of what prior knowledge they can encode, they achieve savings in memory and computational time simply by avoiding considering invalid graphs. We introduce the concept of a “constraint graph” as an intuitive method for incorporating rich prior knowledge into the structure learning task. We describe how this graph can be used to reduce the memory cost and computational time required to find the optimal graph subject to the encoded constraints, beyond merely eliminating invalid graphs. In particular, we show that a constraint graph can break the structure learning task into independent subproblems even in the presence of cyclic prior knowledge. These subproblems are well suited to being solved in parallel on a single machine or distributed across many machines without excessive communication cost.
AbstractList Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables. Fortunately, domain knowledge can frequently be exploited to achieve dramatic computational savings, and in many cases domain knowledge can even make structure learning tractable. Several methods have previously been described for representing this type of structural prior knowledge, including global orderings, super-structures, and constraint rules. While super-structures and constraint rules are flexible in terms of what prior knowledge they can encode, they achieve savings in memory and computational time simply by avoiding considering invalid graphs. We introduce the concept of a “constraint graph” as an intuitive method for incorporating rich prior knowledge into the structure learning task. We describe how this graph can be used to reduce the memory cost and computational time required to find the optimal graph subject to the encoded constraints, beyond merely eliminating invalid graphs. In particular, we show that a constraint graph can break the structure learning task into independent subproblems even in the presence of cyclic prior knowledge. These subproblems are well suited to being solved in parallel on a single machine or distributed across many machines without excessive communication cost.
ArticleNumber e122
Audience Academic
Author Schreiber, Jacob M.
Noble, William S.
Author_xml – sequence: 1
  givenname: Jacob M.
  surname: Schreiber
  fullname: Schreiber, Jacob M.
  organization: Department of Computer Science, University of Washington, Seattle, WA, United States of America
– sequence: 2
  givenname: William S.
  surname: Noble
  fullname: Noble, William S.
  organization: Department of Genome Science, University of Washington, Seattle, WA, United States of America
BookMark eNptkU1PGzEQhq0KpFLg1h-wEiekbrC98e76wIFGfERCQgJ6tib27OI0sRfb4ePf4xDUNhXjg63R874z4_lGdpx3SMh3RkdNw5qTATHMSx1HjPMvZI9XTV0KKfnOP--v5DDGOaWUCZZD7pHTC-uMdX2RHrDwQ7JLWBQ_4RWjBVc4TM8-_C56-4SugEJ7F1MA61LRBxgeDshuB4uIhx_3Pvl1cX4_uSqvby6nk7PrUo_rNpUcBJu1zUxoDRK0lh22rUQpBBiKHKGVM7oOgQagqmdSoMgCI4CajrJqn0w3vsbDXA0hdxlelQer3hM-9ApCsnqBiumW41jzylRmbGoEThEr7FrApqs0Zq-jjdcQ_OMKY1Jzvwout6-YFLxuOGX0L9VDNrWu83luvbRRq7OxbGpW03ZNjT6h8jG4tPmzsLM5vyU43hJkJuFL6mEVo5re3W6zPzasDj7GgN2fwRlV65Wr95UrnRvnPOP8P1zbBMnmCnlji89FbxSyscM
CitedBy_id crossref_primary_10_1002_adts_202200330
crossref_primary_10_1007_s10584_024_03687_5
crossref_primary_10_1021_acs_chemmater_2c03435
crossref_primary_10_1109_TPDS_2024_3366471
crossref_primary_10_1016_j_knosys_2019_03_014
Cites_doi 10.1007/BF00994016
10.1613/jair.3744
10.1609/aaai.v25i1.8024
10.5539/emr.v1n2p46
10.1007/11552253_11
10.1007/s10994-006-6889-7
10.1109/MFI-2003.2003.1232636
10.1109/TIT.1968.1054142
10.1007/BF00994110
ContentType Journal Article
Copyright COPYRIGHT 2017 PeerJ. Ltd.
2017 Schreiber and and Noble. This is an open access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2017 PeerJ. Ltd.
– notice: 2017 Schreiber and and Noble. This is an open access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.7717/peerj-cs.122
DatabaseName CrossRef
Gale in Context: Science
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection‎ (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_1c82e4c23d3d4d6ea20ee3ef8ae7f3ce
A497616080
10_7717_peerj_cs_122
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
PMFND
3V.
7XB
8AL
8FK
JQ2
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c468t-2a51b87b5cca9acc9fe889e955ad0e2ea89b000005edaa36b95e5b87d5a0df013
IEDL.DBID BENPR
ISSN 2376-5992
IngestDate Wed Aug 27 01:23:14 EDT 2025
Sun Jul 13 04:33:50 EDT 2025
Tue Jun 17 21:35:07 EDT 2025
Tue Jun 10 20:14:11 EDT 2025
Fri Jun 27 04:53:36 EDT 2025
Tue Jul 01 02:04:51 EDT 2025
Thu Apr 24 23:02:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-2a51b87b5cca9acc9fe889e955ad0e2ea89b000005edaa36b95e5b87d5a0df013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/1952672010?pq-origsite=%requestingapplication%
PQID 1952672010
PQPubID 2045934
PageCount e122
ParticipantIDs doaj_primary_oai_doaj_org_article_1c82e4c23d3d4d6ea20ee3ef8ae7f3ce
proquest_journals_1952672010
gale_infotracmisc_A497616080
gale_infotracacademiconefile_A497616080
gale_incontextgauss_ISR_A497616080
crossref_primary_10_7717_peerj_cs_122
crossref_citationtrail_10_7717_peerj_cs_122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-03
PublicationDateYYYYMMDD 2017-07-03
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-03
  day: 03
PublicationDecade 2010
PublicationPlace San Diego
PublicationPlace_xml – name: San Diego
PublicationTitle PeerJ. Computer science
PublicationYear 2017
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Elidan (10.7717/peerj-cs.122/ref-5) 2001; vol. 13
Suzuki (10.7717/peerj-cs.122/ref-16) 1996
Zhou (10.7717/peerj-cs.122/ref-20) 2003
Schneiderman (10.7717/peerj-cs.122/ref-15) 2004
Zuo (10.7717/peerj-cs.122/ref-21) 2012; 1
Cooper (10.7717/peerj-cs.122/ref-3) 1992; 9
Elidan (10.7717/peerj-cs.122/ref-4) 2005; 6
Ordyniak (10.7717/peerj-cs.122/ref-13) 2013; 46
Malone (10.7717/peerj-cs.122/ref-11) 2011
Chow (10.7717/peerj-cs.122/ref-2) 1968; 14
Campos (10.7717/peerj-cs.122/ref-1) 2011; 12
Friedman (10.7717/peerj-cs.122/ref-7) 1997
Tsamardinos (10.7717/peerj-cs.122/ref-18) 2006; 65
Moore (10.7717/peerj-cs.122/ref-12) 2003
Gamberoni (10.7717/peerj-cs.122/ref-8) 2005
Yuan (10.7717/peerj-cs.122/ref-19) 2011
Heckerman (10.7717/peerj-cs.122/ref-9) 1995; 20
Jaakkola (10.7717/peerj-cs.122/ref-10) 2003
Tarjan (10.7717/peerj-cs.122/ref-17) 1971; 2
Perrier (10.7717/peerj-cs.122/ref-14) 2008; 9
Fan (10.7717/peerj-cs.122/ref-6) 2014
References_xml – volume: 12
  start-page: 663
  year: 2011
  ident: 10.7717/peerj-cs.122/ref-1
  article-title: Efficient structure learning of bayesian networks using constraints
  publication-title: Journal of Machine Learning Research
– start-page: 125
  year: 1997
  ident: 10.7717/peerj-cs.122/ref-7
  article-title: Learning belief networks in the presence of missing values and hidden variables
– start-page: 552
  year: 2003
  ident: 10.7717/peerj-cs.122/ref-12
  article-title: Optimal reinsertion: a new search operator for accelerated and more accurate bayesian network structure learning
– volume: vol. 13
  start-page: 479
  volume-title: Advances in neural information processing systems (NIPS)
  year: 2001
  ident: 10.7717/peerj-cs.122/ref-5
  article-title: Discovering hidden variables: a structure-based approach
– start-page: 358
  year: 2003
  ident: 10.7717/peerj-cs.122/ref-10
  article-title: Learning Bayesian network structure using LP relaxations
– volume: 2
  start-page: 146
  year: 1971
  ident: 10.7717/peerj-cs.122/ref-17
  article-title: Depth-first search and linear graph algorithms
  publication-title: SIAM Journal of Computing
– volume: 20
  start-page: 197
  year: 1995
  ident: 10.7717/peerj-cs.122/ref-9
  article-title: Learning Bayesian networks: the combination of knowledge and statistical data
  publication-title: Machine Learning
  doi: 10.1007/BF00994016
– volume: 9
  start-page: 2251
  year: 2008
  ident: 10.7717/peerj-cs.122/ref-14
  article-title: Finding optimal Bayesian network given a super-structure
  publication-title: Journal of Machine Learning Research
– start-page: 639
  year: 2004
  ident: 10.7717/peerj-cs.122/ref-15
  article-title: Learning a restricted Bayesian network for object detection
– volume-title: IJCAI proceedings-international joint conference on artificial intelligence
  year: 2011
  ident: 10.7717/peerj-cs.122/ref-19
  article-title: Learning optimal Bayesian networks using A* search
– volume: 46
  start-page: 263
  year: 2013
  ident: 10.7717/peerj-cs.122/ref-13
  article-title: Parameterized complexity results for exact Bayesian network structure learning
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.3744
– volume: 6
  start-page: 81
  year: 2005
  ident: 10.7717/peerj-cs.122/ref-4
  article-title: Learning hidden variable networks: the information bottleneck approach
  publication-title: Journal of Machine Learning Research
– year: 2011
  ident: 10.7717/peerj-cs.122/ref-11
  article-title: Memory-efficient dynamic programming for learning optimal Bayesian networks
  doi: 10.1609/aaai.v25i1.8024
– volume: 1
  start-page: 46
  year: 2012
  ident: 10.7717/peerj-cs.122/ref-21
  article-title: Up/down analysis of stock index by using Bayesian network
  publication-title: Engineering Management Research
  doi: 10.5539/emr.v1n2p46
– start-page: 109
  year: 2005
  ident: 10.7717/peerj-cs.122/ref-8
  article-title: Bayesian networks learning for gene expression datasets
  doi: 10.1007/11552253_11
– volume: 65
  start-page: 31
  year: 2006
  ident: 10.7717/peerj-cs.122/ref-18
  article-title: The max–min hill-climbing Bayesian network structure learning algorithm
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-6889-7
– year: 2003
  ident: 10.7717/peerj-cs.122/ref-20
  article-title: Learning Bayesian network structure from environment and sensor planning for mobile robot localization
  doi: 10.1109/MFI-2003.2003.1232636
– volume: 14
  start-page: 462
  issue: 3
  year: 1968
  ident: 10.7717/peerj-cs.122/ref-2
  article-title: Approximating discrete probability distributions with dependence trees
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1968.1054142
– start-page: 200
  year: 2014
  ident: 10.7717/peerj-cs.122/ref-6
  article-title: Finding optimal Bayesian network structures with constraints learned from data
– year: 1996
  ident: 10.7717/peerj-cs.122/ref-16
  article-title: Learning Bayesian belief networks based on the minimum description length principle: an efficient algorithm using the B & B Technique
– volume: 9
  start-page: 309
  year: 1992
  ident: 10.7717/peerj-cs.122/ref-3
  article-title: A Bayesian method for the induction of probabilistic networks from data
  publication-title: Machine Learning
  doi: 10.1007/BF00994110
SSID ssj0001511119
Score 2.046668
Snippet Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage e122
SubjectTerms Algorithms
Applied research
Artificial intelligence
Bayesian analysis
Bayesian network
Belief networks
Big data
Coding
Computation
Computer memory
Data analysis
Discrete optimization
Gene expression
Graphic methods
Graphs
International conferences
Knowledge
Learning
Machine learning
Methods
Optimization theory
Parallel processing
Parents & parenting
Random variables
Structure learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDI4QEwtvxPFShEAMqNCmSdqMgDgdDAw8JLYoSR0kBD3EHQP_Hrvtne4GxMLaOmryuba_tI7N2JFUzivpdKJ0LBIZQpYYBSHRVYmbg1yl4Jtsizs9eJK3z-p5ptUX5YS15YFb4M6zUAqQQeRVXslKgxMpQA6xdFDEPAB5X4x5M5up9nwwuQLTZroXuGU5_wD4fE3C6CwTYi4GNaX6f3PITZTpr7Lljh7yi3Zaa2wB6nW2Mmm9wDtL3GDUV5eiDkf-xodo9u846tJ9A52J5HWb281fyJVxxwORQOoFMeZNgepN9tS_frwaJF0nhCRIXY4T4VTmy8IrxNu4EEyEsjRglHJVCgJcaRq2lyqonMu1R7wVDqiUS6uILG-LLdbDGrYZD0KrSP-sdYzSm2i8BhCFznz0-JCix04n2NjQlQmnGb5Z3C4QkrZB0oaRRSR77Hgq_dGWx_hF7pJgnspQUevmAqradqq2f6m6xw5JSZbKVtSUF_PivkYje_Nwby8k0qpMI_3tsZNOKA5x3sF1xwxw9VTpak5yb04S7SrM3568C7aza1yKUUIXlEGw8x8r2mVLgmgCfS7O99ji-PML9pHkjP1B8z7_AOQz_lc
  priority: 102
  providerName: Directory of Open Access Journals
Title Finding the optimal Bayesian network given a constraint graph
URI https://www.proquest.com/docview/1952672010
https://doaj.org/article/1c82e4c23d3d4d6ea20ee3ef8ae7f3ce
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe-HCG7FQVhYCcUCmiRM79gl1UZfCoUKFSr1ZtjNeCUGybLYH_j0zWe-iPZRrPFbssWf8zXg8w9jrWvmgaq-F0qkRdYylsAqi0K1B46BSBYQx2uJCn1_VX67VdXa4DTmscqsTR0Xd9pF85CelVVI3dHf7YflbUNUoul3NJTQO2BGqYIPG19Hs7OLr5T8viyKVYDcR7w2aLidLgNUPEYf3pZR7Z9GYsv82xTyeNvMH7F6Gifx0s64P2R3oHrH72xIMPEvkY0b1den04YjjeI_i_wt7zfwfoLeRvNvEePMFqTTueSQwSDUh1nxMVP2EXc3Pvn88F7kigoi1NmshvSqDaYJCvlsfo01gjAWrlG8LkOCNHVFfoaD1vtIB-a6wQ6t80SZEe0_ZYdd38IzxKLVKdHetU6qDTTZoANnoMqSAP2km7N2WNy7mdOE0wp8OzQbipBs56eLgkJMT9mZHvdykybiFbkZs3tFQcuvxQ79auCwrroxGQh1l1VZt3WrwsgCoIBkPTaoiTNgrWiRH6Ss6io9Z-JthcJ-_XbrTGuFVqREGT9jbTJR6HHf0-bkBzp4yXu1RHu9RonzF_ebtXnBZvnEqu934_P_NL9hdSUCAHMLVMTtcr27gJcKYdZiyAzP_NM07djo6A_4CUv73FQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCFN2JLAQtRcUChiRM78QGhFlh2aekBWqk313bGKyGaLJutUP8Uv5GZPBbtodx6TcaJPZ4Zf2OPZxh7lUnrZGZVJFXIo8z7JNISfKTKAp2DVMbg2miLIzU5yb6cytMN9me4C0NhlYNNbA11WXvaI99NtBQqp7Pb9_NfEVWNotPVoYRGJxYHcPkbXbbm3fQjzu-OEONPxx8mUV9VIPKZKpaRsDJxRe4k9l1b73WAotCgpbRlDAJsoVvkFEsorU2Vw75LbFBKG5cBERN-9wa7maWpJo0qxp__7elIMkC6i6_P0VHanQMsfkS-eZsIsbbytQUCrloG2rVtfI_d6UEp3-uk6D7bgOoBuzsUfOC9_j9kVM2X1jqOqJHXaGzOsdW-vQS6icmrLqKcz8iAcss9QU-qQLHkbVrsR-zkWjj1mG1WdQVPGPdCyUAn5SqEzOmgnQIQuUpccPiTfMTeDLwxvk9OTj38adBJIU6alpPGNwY5OWI7K-p5l5TjCrp9YvOKhlJptw_qxcz0mmkSXwjIvEjLtMxKBVbEACmEwkIeUg8j9pImyVCyjIqicWb2omnM9Ps3s5chmEsUgu4Re90ThRr77W1_uQFHT_m11ii31yhRm_3660EWTG9NcCgr2d_6_-sX7Nbk-OuhOZweHTxltwVBENqKTrfZ5nJxAc8QQC3d81ZqOTu7bjX5C3P9Mmc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJyFe-I_oGGAhJh5QaOLETvKA0MpWrQxV02DS3jzHOVdCLClNJ7SvxqfjLnGK-jDe9hqfk_h8d_6dfb5j7G0iTSETowKpXBok1kZBLsEGqszQOYhlCEUbbTFTR2fJl3N5vsX-9HdhKKyyt4mtoS5rS3vkoyiXQqV0djtyPizi5GDyafEroApSdNLal9PoROQYrn-j-9Z8nB7gXO8JMTn8_vko8BUGApuobBUII6MiSwuJ48iNtbmDLMshl9KUIQgwWd6iqFBCaUysChyHxA6lNGHpED3he--w7RS9onDAtseHs5PTfzs8ksxR3kXbp-g2jRYAyx-BbT5EQmysg225gJsWhXalmzxk9z1E5fudTD1iW1A9Zg_68g_cW4MnjGr70srHEUPyGk3PJfYam2uge5m86uLL-ZzMKTfcEhClehQr3ibJfsrOboVXz9igqit4zrgVSjo6N1fOJUXu8kIBiFRFhSvwI-mQve95o61PVU5_-FOjy0Kc1C0ntW00cnLI9tbUiy5Fxw10Y2LzmoYSa7cP6uVcez3Vkc0EJFbEZVwmpQIjQoAYXGYgdbGFIXtDk6QpdUZFQjg3V02jp99O9X6C0C5SCMGH7J0ncjX-tzX-qgOOnrJtbVDublCibtvN5l4WtLctOJS1Juz8v_k1u4sqor9OZ8cv2D1BeIT2peNdNlgtr-AloqlV8cqLLWcXt60pfwF0Szf5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+the+optimal+Bayesian+network+given+a+constraint+graph&rft.jtitle=PeerJ.+Computer+science&rft.au=Schreiber%2C+Jacob+M&rft.au=Noble%2C+William+S&rft.date=2017-07-03&rft.pub=PeerJ%2C+Inc&rft.eissn=2376-5992&rft_id=info:doi/10.7717%2Fpeerj-cs.122&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon