Finding the optimal Bayesian network given a constraint graph
Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables. Fortunately, domain knowledge can frequently be exploited to achieve dramatic computational savings, and in many cases domain knowledge can even...
Saved in:
Published in | PeerJ. Computer science Vol. 3; p. e122 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
San Diego
PeerJ. Ltd
03.07.2017
PeerJ, Inc PeerJ Inc |
Subjects | |
Online Access | Get full text |
ISSN | 2376-5992 2376-5992 |
DOI | 10.7717/peerj-cs.122 |
Cover
Loading…
Abstract | Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables. Fortunately, domain knowledge can frequently be exploited to achieve dramatic computational savings, and in many cases domain knowledge can even make structure learning tractable. Several methods have previously been described for representing this type of structural prior knowledge, including global orderings, super-structures, and constraint rules. While super-structures and constraint rules are flexible in terms of what prior knowledge they can encode, they achieve savings in memory and computational time simply by avoiding considering invalid graphs. We introduce the concept of a “constraint graph” as an intuitive method for incorporating rich prior knowledge into the structure learning task. We describe how this graph can be used to reduce the memory cost and computational time required to find the optimal graph subject to the encoded constraints, beyond merely eliminating invalid graphs. In particular, we show that a constraint graph can break the structure learning task into independent subproblems even in the presence of cyclic prior knowledge. These subproblems are well suited to being solved in parallel on a single machine or distributed across many machines without excessive communication cost. |
---|---|
AbstractList | Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables. Fortunately, domain knowledge can frequently be exploited to achieve dramatic computational savings, and in many cases domain knowledge can even make structure learning tractable. Several methods have previously been described for representing this type of structural prior knowledge, including global orderings, super-structures, and constraint rules. While super-structures and constraint rules are flexible in terms of what prior knowledge they can encode, they achieve savings in memory and computational time simply by avoiding considering invalid graphs. We introduce the concept of a “constraint graph” as an intuitive method for incorporating rich prior knowledge into the structure learning task. We describe how this graph can be used to reduce the memory cost and computational time required to find the optimal graph subject to the encoded constraints, beyond merely eliminating invalid graphs. In particular, we show that a constraint graph can break the structure learning task into independent subproblems even in the presence of cyclic prior knowledge. These subproblems are well suited to being solved in parallel on a single machine or distributed across many machines without excessive communication cost. |
ArticleNumber | e122 |
Audience | Academic |
Author | Schreiber, Jacob M. Noble, William S. |
Author_xml | – sequence: 1 givenname: Jacob M. surname: Schreiber fullname: Schreiber, Jacob M. organization: Department of Computer Science, University of Washington, Seattle, WA, United States of America – sequence: 2 givenname: William S. surname: Noble fullname: Noble, William S. organization: Department of Genome Science, University of Washington, Seattle, WA, United States of America |
BookMark | eNptkU1PGzEQhq0KpFLg1h-wEiekbrC98e76wIFGfERCQgJ6tib27OI0sRfb4ePf4xDUNhXjg63R874z4_lGdpx3SMh3RkdNw5qTATHMSx1HjPMvZI9XTV0KKfnOP--v5DDGOaWUCZZD7pHTC-uMdX2RHrDwQ7JLWBQ_4RWjBVc4TM8-_C56-4SugEJ7F1MA61LRBxgeDshuB4uIhx_3Pvl1cX4_uSqvby6nk7PrUo_rNpUcBJu1zUxoDRK0lh22rUQpBBiKHKGVM7oOgQagqmdSoMgCI4CajrJqn0w3vsbDXA0hdxlelQer3hM-9ApCsnqBiumW41jzylRmbGoEThEr7FrApqs0Zq-jjdcQ_OMKY1Jzvwout6-YFLxuOGX0L9VDNrWu83luvbRRq7OxbGpW03ZNjT6h8jG4tPmzsLM5vyU43hJkJuFL6mEVo5re3W6zPzasDj7GgN2fwRlV65Wr95UrnRvnPOP8P1zbBMnmCnlji89FbxSyscM |
CitedBy_id | crossref_primary_10_1002_adts_202200330 crossref_primary_10_1007_s10584_024_03687_5 crossref_primary_10_1021_acs_chemmater_2c03435 crossref_primary_10_1109_TPDS_2024_3366471 crossref_primary_10_1016_j_knosys_2019_03_014 |
Cites_doi | 10.1007/BF00994016 10.1613/jair.3744 10.1609/aaai.v25i1.8024 10.5539/emr.v1n2p46 10.1007/11552253_11 10.1007/s10994-006-6889-7 10.1109/MFI-2003.2003.1232636 10.1109/TIT.1968.1054142 10.1007/BF00994110 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 PeerJ. Ltd. 2017 Schreiber and and Noble. This is an open access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2017 PeerJ. Ltd. – notice: 2017 Schreiber and and Noble. This is an open access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.7717/peerj-cs.122 |
DatabaseName | CrossRef Gale in Context: Science ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Computing Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2376-5992 |
ExternalDocumentID | oai_doaj_org_article_1c82e4c23d3d4d6ea20ee3ef8ae7f3ce A497616080 10_7717_peerj_cs_122 |
GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC RPM PMFND 3V. 7XB 8AL 8FK JQ2 M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c468t-2a51b87b5cca9acc9fe889e955ad0e2ea89b000005edaa36b95e5b87d5a0df013 |
IEDL.DBID | BENPR |
ISSN | 2376-5992 |
IngestDate | Wed Aug 27 01:23:14 EDT 2025 Sun Jul 13 04:33:50 EDT 2025 Tue Jun 17 21:35:07 EDT 2025 Tue Jun 10 20:14:11 EDT 2025 Fri Jun 27 04:53:36 EDT 2025 Tue Jul 01 02:04:51 EDT 2025 Thu Apr 24 23:02:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-2a51b87b5cca9acc9fe889e955ad0e2ea89b000005edaa36b95e5b87d5a0df013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/1952672010?pq-origsite=%requestingapplication% |
PQID | 1952672010 |
PQPubID | 2045934 |
PageCount | e122 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1c82e4c23d3d4d6ea20ee3ef8ae7f3ce proquest_journals_1952672010 gale_infotracmisc_A497616080 gale_infotracacademiconefile_A497616080 gale_incontextgauss_ISR_A497616080 crossref_primary_10_7717_peerj_cs_122 crossref_citationtrail_10_7717_peerj_cs_122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-03 |
PublicationDateYYYYMMDD | 2017-07-03 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | San Diego |
PublicationPlace_xml | – name: San Diego |
PublicationTitle | PeerJ. Computer science |
PublicationYear | 2017 |
Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
References | Elidan (10.7717/peerj-cs.122/ref-5) 2001; vol. 13 Suzuki (10.7717/peerj-cs.122/ref-16) 1996 Zhou (10.7717/peerj-cs.122/ref-20) 2003 Schneiderman (10.7717/peerj-cs.122/ref-15) 2004 Zuo (10.7717/peerj-cs.122/ref-21) 2012; 1 Cooper (10.7717/peerj-cs.122/ref-3) 1992; 9 Elidan (10.7717/peerj-cs.122/ref-4) 2005; 6 Ordyniak (10.7717/peerj-cs.122/ref-13) 2013; 46 Malone (10.7717/peerj-cs.122/ref-11) 2011 Chow (10.7717/peerj-cs.122/ref-2) 1968; 14 Campos (10.7717/peerj-cs.122/ref-1) 2011; 12 Friedman (10.7717/peerj-cs.122/ref-7) 1997 Tsamardinos (10.7717/peerj-cs.122/ref-18) 2006; 65 Moore (10.7717/peerj-cs.122/ref-12) 2003 Gamberoni (10.7717/peerj-cs.122/ref-8) 2005 Yuan (10.7717/peerj-cs.122/ref-19) 2011 Heckerman (10.7717/peerj-cs.122/ref-9) 1995; 20 Jaakkola (10.7717/peerj-cs.122/ref-10) 2003 Tarjan (10.7717/peerj-cs.122/ref-17) 1971; 2 Perrier (10.7717/peerj-cs.122/ref-14) 2008; 9 Fan (10.7717/peerj-cs.122/ref-6) 2014 |
References_xml | – volume: 12 start-page: 663 year: 2011 ident: 10.7717/peerj-cs.122/ref-1 article-title: Efficient structure learning of bayesian networks using constraints publication-title: Journal of Machine Learning Research – start-page: 125 year: 1997 ident: 10.7717/peerj-cs.122/ref-7 article-title: Learning belief networks in the presence of missing values and hidden variables – start-page: 552 year: 2003 ident: 10.7717/peerj-cs.122/ref-12 article-title: Optimal reinsertion: a new search operator for accelerated and more accurate bayesian network structure learning – volume: vol. 13 start-page: 479 volume-title: Advances in neural information processing systems (NIPS) year: 2001 ident: 10.7717/peerj-cs.122/ref-5 article-title: Discovering hidden variables: a structure-based approach – start-page: 358 year: 2003 ident: 10.7717/peerj-cs.122/ref-10 article-title: Learning Bayesian network structure using LP relaxations – volume: 2 start-page: 146 year: 1971 ident: 10.7717/peerj-cs.122/ref-17 article-title: Depth-first search and linear graph algorithms publication-title: SIAM Journal of Computing – volume: 20 start-page: 197 year: 1995 ident: 10.7717/peerj-cs.122/ref-9 article-title: Learning Bayesian networks: the combination of knowledge and statistical data publication-title: Machine Learning doi: 10.1007/BF00994016 – volume: 9 start-page: 2251 year: 2008 ident: 10.7717/peerj-cs.122/ref-14 article-title: Finding optimal Bayesian network given a super-structure publication-title: Journal of Machine Learning Research – start-page: 639 year: 2004 ident: 10.7717/peerj-cs.122/ref-15 article-title: Learning a restricted Bayesian network for object detection – volume-title: IJCAI proceedings-international joint conference on artificial intelligence year: 2011 ident: 10.7717/peerj-cs.122/ref-19 article-title: Learning optimal Bayesian networks using A* search – volume: 46 start-page: 263 year: 2013 ident: 10.7717/peerj-cs.122/ref-13 article-title: Parameterized complexity results for exact Bayesian network structure learning publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.3744 – volume: 6 start-page: 81 year: 2005 ident: 10.7717/peerj-cs.122/ref-4 article-title: Learning hidden variable networks: the information bottleneck approach publication-title: Journal of Machine Learning Research – year: 2011 ident: 10.7717/peerj-cs.122/ref-11 article-title: Memory-efficient dynamic programming for learning optimal Bayesian networks doi: 10.1609/aaai.v25i1.8024 – volume: 1 start-page: 46 year: 2012 ident: 10.7717/peerj-cs.122/ref-21 article-title: Up/down analysis of stock index by using Bayesian network publication-title: Engineering Management Research doi: 10.5539/emr.v1n2p46 – start-page: 109 year: 2005 ident: 10.7717/peerj-cs.122/ref-8 article-title: Bayesian networks learning for gene expression datasets doi: 10.1007/11552253_11 – volume: 65 start-page: 31 year: 2006 ident: 10.7717/peerj-cs.122/ref-18 article-title: The max–min hill-climbing Bayesian network structure learning algorithm publication-title: Machine Learning doi: 10.1007/s10994-006-6889-7 – year: 2003 ident: 10.7717/peerj-cs.122/ref-20 article-title: Learning Bayesian network structure from environment and sensor planning for mobile robot localization doi: 10.1109/MFI-2003.2003.1232636 – volume: 14 start-page: 462 issue: 3 year: 1968 ident: 10.7717/peerj-cs.122/ref-2 article-title: Approximating discrete probability distributions with dependence trees publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1968.1054142 – start-page: 200 year: 2014 ident: 10.7717/peerj-cs.122/ref-6 article-title: Finding optimal Bayesian network structures with constraints learned from data – year: 1996 ident: 10.7717/peerj-cs.122/ref-16 article-title: Learning Bayesian belief networks based on the minimum description length principle: an efficient algorithm using the B & B Technique – volume: 9 start-page: 309 year: 1992 ident: 10.7717/peerj-cs.122/ref-3 article-title: A Bayesian method for the induction of probabilistic networks from data publication-title: Machine Learning doi: 10.1007/BF00994110 |
SSID | ssj0001511119 |
Score | 2.046668 |
Snippet | Despite recent algorithmic improvements, learning the optimal structure of a Bayesian network from data is typically infeasible past a few dozen variables.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | e122 |
SubjectTerms | Algorithms Applied research Artificial intelligence Bayesian analysis Bayesian network Belief networks Big data Coding Computation Computer memory Data analysis Discrete optimization Gene expression Graphic methods Graphs International conferences Knowledge Learning Machine learning Methods Optimization theory Parallel processing Parents & parenting Random variables Structure learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8QwDI4QEwtvxPFShEAMqNCmSdqMgDgdDAw8JLYoSR0kBD3EHQP_Hrvtne4GxMLaOmryuba_tI7N2JFUzivpdKJ0LBIZQpYYBSHRVYmbg1yl4Jtsizs9eJK3z-p5ptUX5YS15YFb4M6zUAqQQeRVXslKgxMpQA6xdFDEPAB5X4x5M5up9nwwuQLTZroXuGU5_wD4fE3C6CwTYi4GNaX6f3PITZTpr7Lljh7yi3Zaa2wB6nW2Mmm9wDtL3GDUV5eiDkf-xodo9u846tJ9A52J5HWb281fyJVxxwORQOoFMeZNgepN9tS_frwaJF0nhCRIXY4T4VTmy8IrxNu4EEyEsjRglHJVCgJcaRq2lyqonMu1R7wVDqiUS6uILG-LLdbDGrYZD0KrSP-sdYzSm2i8BhCFznz0-JCix04n2NjQlQmnGb5Z3C4QkrZB0oaRRSR77Hgq_dGWx_hF7pJgnspQUevmAqradqq2f6m6xw5JSZbKVtSUF_PivkYje_Nwby8k0qpMI_3tsZNOKA5x3sF1xwxw9VTpak5yb04S7SrM3568C7aza1yKUUIXlEGw8x8r2mVLgmgCfS7O99ji-PML9pHkjP1B8z7_AOQz_lc priority: 102 providerName: Directory of Open Access Journals |
Title | Finding the optimal Bayesian network given a constraint graph |
URI | https://www.proquest.com/docview/1952672010 https://doaj.org/article/1c82e4c23d3d4d6ea20ee3ef8ae7f3ce |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe-HCG7FQVhYCcUCmiRM79gl1UZfCoUKFSr1ZtjNeCUGybLYH_j0zWe-iPZRrPFbssWf8zXg8w9jrWvmgaq-F0qkRdYylsAqi0K1B46BSBYQx2uJCn1_VX67VdXa4DTmscqsTR0Xd9pF85CelVVI3dHf7YflbUNUoul3NJTQO2BGqYIPG19Hs7OLr5T8viyKVYDcR7w2aLidLgNUPEYf3pZR7Z9GYsv82xTyeNvMH7F6Gifx0s64P2R3oHrH72xIMPEvkY0b1den04YjjeI_i_wt7zfwfoLeRvNvEePMFqTTueSQwSDUh1nxMVP2EXc3Pvn88F7kigoi1NmshvSqDaYJCvlsfo01gjAWrlG8LkOCNHVFfoaD1vtIB-a6wQ6t80SZEe0_ZYdd38IzxKLVKdHetU6qDTTZoANnoMqSAP2km7N2WNy7mdOE0wp8OzQbipBs56eLgkJMT9mZHvdykybiFbkZs3tFQcuvxQ79auCwrroxGQh1l1VZt3WrwsgCoIBkPTaoiTNgrWiRH6Ss6io9Z-JthcJ-_XbrTGuFVqREGT9jbTJR6HHf0-bkBzp4yXu1RHu9RonzF_ebtXnBZvnEqu934_P_NL9hdSUCAHMLVMTtcr27gJcKYdZiyAzP_NM07djo6A_4CUv73FQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcCFN2JLAQtRcUChiRM78QGhFlh2aekBWqk313bGKyGaLJutUP8Uv5GZPBbtodx6TcaJPZ4Zf2OPZxh7lUnrZGZVJFXIo8z7JNISfKTKAp2DVMbg2miLIzU5yb6cytMN9me4C0NhlYNNbA11WXvaI99NtBQqp7Pb9_NfEVWNotPVoYRGJxYHcPkbXbbm3fQjzu-OEONPxx8mUV9VIPKZKpaRsDJxRe4k9l1b73WAotCgpbRlDAJsoVvkFEsorU2Vw75LbFBKG5cBERN-9wa7maWpJo0qxp__7elIMkC6i6_P0VHanQMsfkS-eZsIsbbytQUCrloG2rVtfI_d6UEp3-uk6D7bgOoBuzsUfOC9_j9kVM2X1jqOqJHXaGzOsdW-vQS6icmrLqKcz8iAcss9QU-qQLHkbVrsR-zkWjj1mG1WdQVPGPdCyUAn5SqEzOmgnQIQuUpccPiTfMTeDLwxvk9OTj38adBJIU6alpPGNwY5OWI7K-p5l5TjCrp9YvOKhlJptw_qxcz0mmkSXwjIvEjLtMxKBVbEACmEwkIeUg8j9pImyVCyjIqicWb2omnM9Ps3s5chmEsUgu4Re90ThRr77W1_uQFHT_m11ii31yhRm_3660EWTG9NcCgr2d_6_-sX7Nbk-OuhOZweHTxltwVBENqKTrfZ5nJxAc8QQC3d81ZqOTu7bjX5C3P9Mmc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJyFe-I_oGGAhJh5QaOLETvKA0MpWrQxV02DS3jzHOVdCLClNJ7SvxqfjLnGK-jDe9hqfk_h8d_6dfb5j7G0iTSETowKpXBok1kZBLsEGqszQOYhlCEUbbTFTR2fJl3N5vsX-9HdhKKyyt4mtoS5rS3vkoyiXQqV0djtyPizi5GDyafEroApSdNLal9PoROQYrn-j-9Z8nB7gXO8JMTn8_vko8BUGApuobBUII6MiSwuJ48iNtbmDLMshl9KUIQgwWd6iqFBCaUysChyHxA6lNGHpED3he--w7RS9onDAtseHs5PTfzs8ksxR3kXbp-g2jRYAyx-BbT5EQmysg225gJsWhXalmzxk9z1E5fudTD1iW1A9Zg_68g_cW4MnjGr70srHEUPyGk3PJfYam2uge5m86uLL-ZzMKTfcEhClehQr3ibJfsrOboVXz9igqit4zrgVSjo6N1fOJUXu8kIBiFRFhSvwI-mQve95o61PVU5_-FOjy0Kc1C0ntW00cnLI9tbUiy5Fxw10Y2LzmoYSa7cP6uVcez3Vkc0EJFbEZVwmpQIjQoAYXGYgdbGFIXtDk6QpdUZFQjg3V02jp99O9X6C0C5SCMGH7J0ncjX-tzX-qgOOnrJtbVDublCibtvN5l4WtLctOJS1Juz8v_k1u4sqor9OZ8cv2D1BeIT2peNdNlgtr-AloqlV8cqLLWcXt60pfwF0Szf5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+the+optimal+Bayesian+network+given+a+constraint+graph&rft.jtitle=PeerJ.+Computer+science&rft.au=Schreiber%2C+Jacob+M&rft.au=Noble%2C+William+S&rft.date=2017-07-03&rft.pub=PeerJ%2C+Inc&rft.eissn=2376-5992&rft_id=info:doi/10.7717%2Fpeerj-cs.122&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |