Accelerated cellulose depolymerization catalyzed by paired metal chlorides in ionic liquid solvent
The rate of cellulose hydrolysis is critically dependent on the ratio of CuCl 2/PdCl 2 in [EMIM]Cl solvent while the total catalyst loading (mol% CuCl 2 + mol% PdCl 2) is unchanged. The results of a combination of physical characterization methods for the catalytic system indicate that Cu(II) was re...
Saved in:
Published in | Applied catalysis. A, General Vol. 391; no. 1; pp. 436 - 442 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier B.V
04.01.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rate of cellulose hydrolysis is critically dependent on the ratio of CuCl
2/PdCl
2 in [EMIM]Cl solvent while the total catalyst loading (mol% CuCl
2
+
mol% PdCl
2) is unchanged. The results of a combination of physical characterization methods for the catalytic system indicate that Cu(II) was reduced during the course of the reaction to Cu(I) only in the presence of a second metal chloride and a carbohydrate source such as cellulose in the ionic liquid system.
[Display omitted]
▶ Paired metal chlorides in an ionic liquid effectively catalyzes low temperature cellulose conversion. ▶ Cellulose is depolymerized to monosaccharide under mild conditions in a single step. ▶ Copper (II) ion is reduced to Cu(I) in the presence of carbohydrates and PdCl
2 in alkylmethylimidazolium chloride ionic liquid. ▶ Ionic liquid solvent can be reused in multiple cycles for cellulose conversion.
Efficient hydrolytic depolymerization of crystalline cellulose to sugars is a critical step and has been a major barrier for improved economics in the utilization of cellulosic biomass. A novel catalytic system involving CuCl
2 (primary metal chloride) paired with a second metal chloride, such as CrCl
2, PdCl
2, CrCl
3 or FeCl
3 in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) ionic liquid solvent has been found to substantially accelerate the rate of cellulose depolymerization under mild conditions. These paired metal chlorides are particularly active for the hydrolytic cleavage of 1,4-glucosidic bonds when compared to the rates of acid-catalyzed hydrolysis at similar temperatures (80–120
°C). In contrast, single metal chlorides with the same total molar loading showed much lower activity under similar conditions. Experimental results illustrate the dramatic effect of the second metal chloride in the paired catalytic system. An array of characterization techniques, including electron paramagnetic resonance (EPR) spectroscopy, differential scanning calorimetry (DSC), X-ray absorption fine structure (XAFS) spectroscopy, and X-ray absorption near edge structure (XANES) spectroscopy, in combination with theoretical calculations at the DFT level, was used to reveal a preliminary understanding of possible mechanisms involved in the paired CuCl
2/PdCl
2 catalytic system. We discovered that Cu(II) was reduced during the course of the reaction to Cu(I) only in the presence of a second metal chloride and a carbohydrate source such as cellulose in the ionic liquid system. Our results suggest that Cu(II) generates protons by hydrolysis of water to catalyze the depolymerization step, and serves to regenerate Pd(II) reduced to Pd(0) by side reactions. Pd(II) likely facilitates the depolymerization step by coordinating the catalytic protons, and also promotes the formation of hydroxymethylfurfural (HMF). Our results also suggest that the C2-proton of the imidazolium ring is not activated by the paired metal-chloride catalysts. |
---|---|
AbstractList | Efficient hydrolytic depolymerization of crystalline cellulose to sugars is a critical step and has been a major barrier for improved economics in the utilization of cellulosic biomass. A novel catalytic system involving CuCl sub(2) (primary metal chloride) paired with a second metal chloride, such as CrCl sub(2), PdCl sub(2), CrCl sub(3) or FeCl sub(3) in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) ionic liquid solvent has been found to substantially accelerate the rate of cellulose depolymerization under mild conditions. These paired metal chlorides are particularly active for the hydrolytic cleavage of 1,4-glucosidic bonds when compared to the rates of acid-catalyzed hydrolysis at similar temperatures (80-120 degree C). In contrast, single metal chlorides with the same total molar loading showed much lower activity under similar conditions. Experimental results illustrate the dramatic effect of the second metal chloride in the paired catalytic system. An array of characterization techniques, including electron paramagnetic resonance (EPR) spectroscopy, differential scanning calorimetry (DSC), X-ray absorption fine structure (XAFS) spectroscopy, and X-ray absorption near edge structure (XANES) spectroscopy, in combination with theoretical calculations at the DFT level, was used to reveal a preliminary understanding of possible mechanisms involved in the paired CuCl sub(2)/PdCl sub(2) catalytic system. We discovered that Cu(II) was reduced during the course of the reaction to Cu(I) only in the presence of a second metal chloride and a carbohydrate source such as cellulose in the ionic liquid system. Our results suggest that Cu(II) generates protons by hydrolysis of water to catalyze the depolymerization step, and serves to regenerate Pd(II) reduced to Pd(0) by side reactions. Pd(II) likely facilitates the depolymerization step by coordinating the catalytic protons, and also promotes the formation of hydroxymethylfurfural (HMF). Our results also suggest that the C2-proton of the imidazolium ring is not activated by the paired metal-chloride catalysts. Efficient hydrolytic depolymerization of crystalline cellulose to sugars is a critical step and has been a major barrier for improved economics in the utilization of cellulosic biomass. We report a novel catalytic system involving paired metal chlorides in an ionic liquid that considerably accelerates the rate of cellulose depolymerization under mild conditions. Paired metal chlorides, consisting of CuCl2 (primary metal chloride) and a second metal chloride, such as CrCl2, PdCl2, CrCl3 or FeCl3 in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) solvent were found to substantially accelerate the hydrolytic cleavage of 1,4-glucosidic bonds as compared to known acid-catalyzed hydrolysis in similar temperature range (80-120°C). In contrast, single metal chlorides with the same total molar loading showed much lower activity under similar conditions. Experimental results illustrate the dramatic effect of the second metal chloride in the paired catalytic system. A combination of characterization techniques, including electron paramagnetic resonance (EPR) spectroscopy, differential scanning calorimetry (DSC), X-ray absorption fine structure (XAFS) spectroscopy, and X-ray absorption near edge structure (XANES) spectroscopy, were used to reveal a preliminary understanding of possible mechanisms involved in the paired CuCl2/PdCl2 catalytic system. Results suggest that the C2-proton of the imidazolium ring may be activated by the paired metal-chloride catalysts. The rate of cellulose hydrolysis is critically dependent on the ratio of CuCl 2/PdCl 2 in [EMIM]Cl solvent while the total catalyst loading (mol% CuCl 2 + mol% PdCl 2) is unchanged. The results of a combination of physical characterization methods for the catalytic system indicate that Cu(II) was reduced during the course of the reaction to Cu(I) only in the presence of a second metal chloride and a carbohydrate source such as cellulose in the ionic liquid system. [Display omitted] ▶ Paired metal chlorides in an ionic liquid effectively catalyzes low temperature cellulose conversion. ▶ Cellulose is depolymerized to monosaccharide under mild conditions in a single step. ▶ Copper (II) ion is reduced to Cu(I) in the presence of carbohydrates and PdCl 2 in alkylmethylimidazolium chloride ionic liquid. ▶ Ionic liquid solvent can be reused in multiple cycles for cellulose conversion. Efficient hydrolytic depolymerization of crystalline cellulose to sugars is a critical step and has been a major barrier for improved economics in the utilization of cellulosic biomass. A novel catalytic system involving CuCl 2 (primary metal chloride) paired with a second metal chloride, such as CrCl 2, PdCl 2, CrCl 3 or FeCl 3 in 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) ionic liquid solvent has been found to substantially accelerate the rate of cellulose depolymerization under mild conditions. These paired metal chlorides are particularly active for the hydrolytic cleavage of 1,4-glucosidic bonds when compared to the rates of acid-catalyzed hydrolysis at similar temperatures (80–120 °C). In contrast, single metal chlorides with the same total molar loading showed much lower activity under similar conditions. Experimental results illustrate the dramatic effect of the second metal chloride in the paired catalytic system. An array of characterization techniques, including electron paramagnetic resonance (EPR) spectroscopy, differential scanning calorimetry (DSC), X-ray absorption fine structure (XAFS) spectroscopy, and X-ray absorption near edge structure (XANES) spectroscopy, in combination with theoretical calculations at the DFT level, was used to reveal a preliminary understanding of possible mechanisms involved in the paired CuCl 2/PdCl 2 catalytic system. We discovered that Cu(II) was reduced during the course of the reaction to Cu(I) only in the presence of a second metal chloride and a carbohydrate source such as cellulose in the ionic liquid system. Our results suggest that Cu(II) generates protons by hydrolysis of water to catalyze the depolymerization step, and serves to regenerate Pd(II) reduced to Pd(0) by side reactions. Pd(II) likely facilitates the depolymerization step by coordinating the catalytic protons, and also promotes the formation of hydroxymethylfurfural (HMF). Our results also suggest that the C2-proton of the imidazolium ring is not activated by the paired metal-chloride catalysts. |
Author | Zhou, Xiao-dong Su, Yu Amonette, James E. Zhang, Z. Conrad Fulton, John L. Brown, Heather M. Li, Guosheng Camaioni, Donald M. |
Author_xml | – sequence: 1 givenname: Yu surname: Su fullname: Su, Yu – sequence: 2 givenname: Heather M. surname: Brown fullname: Brown, Heather M. – sequence: 3 givenname: Guosheng surname: Li fullname: Li, Guosheng – sequence: 4 givenname: Xiao-dong surname: Zhou fullname: Zhou, Xiao-dong – sequence: 5 givenname: James E. surname: Amonette fullname: Amonette, James E. – sequence: 6 givenname: John L. surname: Fulton fullname: Fulton, John L. – sequence: 7 givenname: Donald M. surname: Camaioni fullname: Camaioni, Donald M. – sequence: 8 givenname: Z. Conrad surname: Zhang fullname: Zhang, Z. Conrad email: zczhang@yahoo.com, conrad.zhang@kior.com |
BackLink | https://www.osti.gov/biblio/1009733$$D View this record in Osti.gov |
BookMark | eNqFkMGKFDEQhoOs4OzqG3gIXjz1bKXTSXd7EJZFXWHBi4K3kE6q2QyZpDfJLMw-vWnbkwc9VVF8_w_1XZKLEAMS8pbBngGT14e9Xowuet9CPcG4h5a9IDs29LzhQy8uyA7GVjaDhJ-vyGXOBwBou1HsyHRjDHpMuqCldfMnHzNSi0v05yMm96yLi4Gu9f78XKHpTBftUt2OWG_UPPiYnMVMXaAVdYZ693hylubonzCU1-TlrH3GN3_mFfnx-dP327vm_tuXr7c3943p5FCaVk56sHIcRC9naxnv53lGO2loeyEB-QBcdlLwaWK9tnbuZmE5Cjv2vBOi41fk3dYbc3EqG1fQPJgYApqiGEDleIXeb9CS4uMJc1FHl9e_dcB4ymoQooeOs7Xuw0aaFHNOOKva-FtGSdr52qhW-eqgNvlqla9gVFV-DXd_hZfkjjqd_xf7uMWwenpymNY3MBi0VXj9wkb374JfDSykOQ |
CitedBy_id | crossref_primary_10_1007_s13399_020_00811_0 crossref_primary_10_1016_j_fuel_2021_122804 crossref_primary_10_1039_c3gc42096e crossref_primary_10_1002_cssc_201500395 crossref_primary_10_1016_j_carbpol_2019_02_050 crossref_primary_10_1039_c2gc35811e crossref_primary_10_3390_molecules23081861 crossref_primary_10_1021_acs_chemrev_6b00457 crossref_primary_10_1039_D1CY02225C crossref_primary_10_1002_app_42228 crossref_primary_10_1016_j_energy_2022_125415 crossref_primary_10_1039_C8NJ03812K crossref_primary_10_1039_C4GC01062K crossref_primary_10_1002_apj_1910 crossref_primary_10_1016_j_cplett_2014_04_014 crossref_primary_10_1016_j_jaap_2017_12_003 crossref_primary_10_1016_j_jiec_2018_10_002 crossref_primary_10_1016_j_biortech_2013_09_096 crossref_primary_10_1039_D3SU00038A crossref_primary_10_1021_cr300182k crossref_primary_10_1016_j_apcata_2020_117951 crossref_primary_10_3390_catal7020043 crossref_primary_10_1016_j_indcrop_2015_03_044 crossref_primary_10_1021_cs5012684 crossref_primary_10_1002_adma_202002910 crossref_primary_10_1021_acs_iecr_5b00757 crossref_primary_10_1155_2015_369283 crossref_primary_10_1016_j_indcrop_2012_03_036 crossref_primary_10_1002_wene_67 crossref_primary_10_1016_j_jaap_2022_105659 crossref_primary_10_1021_jp5035689 crossref_primary_10_1016_j_biortech_2012_11_015 crossref_primary_10_1021_acs_energyfuels_8b00717 crossref_primary_10_1016_j_jaap_2017_10_003 crossref_primary_10_1002_jctb_4096 crossref_primary_10_1016_j_apcata_2011_06_018 crossref_primary_10_1002_tcr_202200269 crossref_primary_10_1039_D0GC03991H crossref_primary_10_1016_j_carbpol_2014_10_062 crossref_primary_10_1002_cssc_201402384 crossref_primary_10_5059_yukigoseikyokaishi_80_541 crossref_primary_10_1063_1_4868177 crossref_primary_10_1002_cssc_202201809 crossref_primary_10_1016_j_molcata_2012_01_008 crossref_primary_10_1007_s10570_021_04209_7 crossref_primary_10_1016_j_biortech_2014_03_081 crossref_primary_10_1080_13102818_2014_980049 crossref_primary_10_1039_c2jm35391a crossref_primary_10_1021_ef301231a crossref_primary_10_1016_j_biortech_2017_04_026 crossref_primary_10_1016_j_energy_2017_12_072 crossref_primary_10_1021_acscatal_1c03045 crossref_primary_10_1021_acssuschemeng_7b00875 crossref_primary_10_1039_C3CS60310E crossref_primary_10_1021_ie400571e crossref_primary_10_1002_cssc_201702016 crossref_primary_10_1016_j_cej_2013_11_060 crossref_primary_10_1107_S1600577518002576 crossref_primary_10_1021_acs_iecr_0c06196 crossref_primary_10_1021_jacs_8b11386 crossref_primary_10_1039_C5RA03300D crossref_primary_10_1016_j_chemosphere_2017_06_095 crossref_primary_10_1039_c3gc42018c crossref_primary_10_1155_2015_218743 crossref_primary_10_1007_s10934_014_9782_y |
Cites_doi | 10.1016/j.biortech.2004.06.025 10.1039/c39900000315 10.1063/1.467146 10.1016/j.apcata.2009.04.002 10.1021/jp106762b 10.1021/ja025790m 10.1016/S0360-0564(05)49003-3 10.1103/PhysRev.136.B864 10.1021/ja045992d 10.1002/jctb.1195 10.1021/cr9001947 10.1063/1.1362289 10.1016/0921-4526(94)00826-H 10.1016/0921-4526(94)00655-F 10.1126/science.1141199 10.1021/ja037055w 10.1016/j.biortech.2003.11.003 10.1063/1.1680483 10.1103/PhysRevB.47.14126 10.1002/ange.19590710503 10.1063/1.464913 10.1021/i560137a008 10.1103/PhysRev.140.A1133 10.1103/PhysRevB.52.2995 10.1021/ja00255a032 |
ContentType | Journal Article |
Copyright | 2010 Elsevier B.V. |
Copyright_xml | – notice: 2010 Elsevier B.V. |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M OTOTI |
DOI | 10.1016/j.apcata.2010.09.021 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Economics |
EISSN | 1873-3875 |
EndPage | 442 |
ExternalDocumentID | 1009733 10_1016_j_apcata_2010_09_021 S0926860X10006757 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCE SDF SDG SDP SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU BNPGV CITATION SSH 7SR 7U5 8BQ 8FD JG9 L7M AALMO ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c468t-26ba8d698576fdd137fffedba027560e380364653bb17addf4f5d3e5d97345543 |
IEDL.DBID | .~1 |
ISSN | 0926-860X |
IngestDate | Fri May 19 01:41:07 EDT 2023 Thu Jul 10 22:01:10 EDT 2025 Tue Jul 01 00:38:59 EDT 2025 Thu Apr 24 22:56:05 EDT 2025 Fri Feb 23 02:12:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 1-Alkyl-3-methylimidazolium chloride Cellulose CuCl 2 Biomass Glucose Maltose PdCl 2 Cellulose conversion Paired metal chlorides Ionic liquid Depolymerization Hydrolysis Cellobiose Bioenergy 1-Ethyl-3-methyl-imidazolium chloride Catalysis Catalyst |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-26ba8d698576fdd137fffedba027560e380364653bb17addf4f5d3e5d97345543 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 USDOE AC05-76RL01830 PNNL-SA-71427 |
PQID | 855704314 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1009733 proquest_miscellaneous_855704314 crossref_citationtrail_10_1016_j_apcata_2010_09_021 crossref_primary_10_1016_j_apcata_2010_09_021 elsevier_sciencedirect_doi_10_1016_j_apcata_2010_09_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01-04 |
PublicationDateYYYYMMDD | 2011-01-04 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Applied catalysis. A, General |
PublicationYear | 2011 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Newville, Ravel, Haskel, Rehr, Stern, Yacoby (bib0080) 1995; 208–209 Gan, Allen, Taylor (bib0015) 2005; 80 Swatloski, Spear, Holbrey, Rogers (bib0035) 2002; 124 Koningsberger, Prins (bib0060) 1988 Smidt (bib0125) 1959; 71 Pinkert, Marsh, Pang, Staiger (bib0040) 2009; 109 (bib0135) 2003; vol. 858 Kau, Spira-Solomon, Penner-Hahn, Hodgson, Solomon (bib0115) 1987; 109 Zabinsky, Rehr, Ankudinov, Albers, Eller (bib0075) 1995; 52 Newville, Livins, Yacoby, Rehr, Stern (bib0070) 1993; 47 Schafer, Huber, Ahlrichs (bib0105) 1994; 100 Mosier, Wyman, Dale, Elander, Lee, Holtzapple, Ladisch (bib0025) 2006; 96 Nishiyama, Sugiyama, Chanzy, Langan (bib0005) 2003; 125 Bylaska, de Jong, Govind, Kowalski, Straatsma, Valiev, Wang, Apra, Windus, Hammond, Nichols, Hirata, Hackler, Zhao, Fan, Harrison, Dupuis, Smith, Nieplocha, Tipparaju, Krishnan, Vazquez-Mayagoitia, Wu, Van Voorhis, Auer, Nooijen, Crosby, Brown, Cisneros, Fann, Fruchtl, Garza, Hirao, Kendall, Nichols, Tsemekhman, Wolinski, Anchell, Bernholdt, Borowski, Clark, Clerc, Dachsel, Deegan, Dyall, Elwood, Glendening, Gutowski, Hess, Jaffe, Johnson, Ju, Kobayashi, Kutteh, Lin, Littlefield, Long, Meng, Nakajima, Niu, Pollack, Rosing, Sandrone, Stave, Taylor, Thomas, van Lenthe, Wong, Zhang (bib0085) 2009 Stern, Newville, Ravel, Yacoby, Haskel (bib0065) 1995; 208–209 Dent, Seddon, Welton (bib0130) 1990 Notley, Pettersson, Wagberg (bib0010) 2004; 126 Zhang (bib0045) 2006; 49 Saeman (bib0020) 1945; 17 Zhao, Holladay, Brown, Zhang (bib0110) 2007; 316 Becke (bib0100) 1993; 98 Li, Camaioni, Amonette, Zhang, Johnson, Fulton (bib0140) 2010; 114 Kohn, Sham (bib0095) 1965; 140 Su, Brown, Huang, Zhou, Amonette, Zhang (bib0050) 2009; 361 Sanchez, Pilcher, Roslander, Modig, Galbe, Liden (bib0030) 2004; 93 Dalal, Kennedy, McDowell (bib0055) 1979; 59 Hohenberg, Kohn (bib0090) 1964; 136 Wang, Wang (bib0120) 2001 Becke (10.1016/j.apcata.2010.09.021_bib0100) 1993; 98 Sanchez (10.1016/j.apcata.2010.09.021_bib0030) 2004; 93 Su (10.1016/j.apcata.2010.09.021_bib0050) 2009; 361 Pinkert (10.1016/j.apcata.2010.09.021_bib0040) 2009; 109 (10.1016/j.apcata.2010.09.021_bib0135) 2003; vol. 858 Koningsberger (10.1016/j.apcata.2010.09.021_bib0060) 1988 Kohn (10.1016/j.apcata.2010.09.021_bib0095) 1965; 140 Newville (10.1016/j.apcata.2010.09.021_bib0070) 1993; 47 Kau (10.1016/j.apcata.2010.09.021_bib0115) 1987; 109 Li (10.1016/j.apcata.2010.09.021_bib0140) 2010; 114 Gan (10.1016/j.apcata.2010.09.021_bib0015) 2005; 80 Zhao (10.1016/j.apcata.2010.09.021_bib0110) 2007; 316 Newville (10.1016/j.apcata.2010.09.021_bib0080) 1995; 208–209 Smidt (10.1016/j.apcata.2010.09.021_bib0125) 1959; 71 Swatloski (10.1016/j.apcata.2010.09.021_bib0035) 2002; 124 Zabinsky (10.1016/j.apcata.2010.09.021_bib0075) 1995; 52 Bylaska (10.1016/j.apcata.2010.09.021_bib0085) 2009 Saeman (10.1016/j.apcata.2010.09.021_bib0020) 1945; 17 Zhang (10.1016/j.apcata.2010.09.021_bib0045) 2006; 49 Wang (10.1016/j.apcata.2010.09.021_bib0120) 2001 Hohenberg (10.1016/j.apcata.2010.09.021_bib0090) 1964; 136 Mosier (10.1016/j.apcata.2010.09.021_bib0025) 2006; 96 Schafer (10.1016/j.apcata.2010.09.021_bib0105) 1994; 100 Nishiyama (10.1016/j.apcata.2010.09.021_bib0005) 2003; 125 Stern (10.1016/j.apcata.2010.09.021_bib0065) 1995; 208–209 Notley (10.1016/j.apcata.2010.09.021_bib0010) 2004; 126 Dent (10.1016/j.apcata.2010.09.021_bib0130) 1990 Dalal (10.1016/j.apcata.2010.09.021_bib0055) 1979; 59 |
References_xml | – volume: 71 start-page: 176 year: 1959 ident: bib0125 publication-title: Angew. Chem. – start-page: 315 year: 1990 end-page: 316 ident: bib0130 publication-title: J. Chem. Soc., Chem. Commun. – volume: 140 start-page: 1133 year: 1965 ident: bib0095 publication-title: Phys. Rev. – volume: 52 start-page: 2995 year: 1995 end-page: 3009 ident: bib0075 publication-title: Phys. Rev. B – year: 1988 ident: bib0060 article-title: X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES – volume: 47 start-page: 14126 year: 1993 end-page: 14131 ident: bib0070 publication-title: Phys. Rev. B – volume: 109 start-page: 6712 year: 2009 end-page: 6728 ident: bib0040 publication-title: Chem. Rev. – volume: 100 start-page: 5829 year: 1994 ident: bib0105 publication-title: J. Chem. Phys. – start-page: 7388 year: 2001 end-page: 7395 ident: bib0120 publication-title: J. Chem. Phys. – volume: 93 start-page: 249 year: 2004 end-page: 256 ident: bib0030 publication-title: Bioresour. Technol. – volume: 361 start-page: 117 year: 2009 end-page: 122 ident: bib0050 publication-title: Appl. Catal. A – volume: 98 start-page: 5648 year: 1993 ident: bib0100 publication-title: J. Chem. Phys. – volume: 208–209 start-page: 154 year: 1995 end-page: 156 ident: bib0080 publication-title: Physica B – volume: 125 start-page: 14300 year: 2003 end-page: 16306 ident: bib0005 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 153 year: 2006 end-page: 237 ident: bib0045 publication-title: Adv. Catal. – volume: 136 start-page: B864 year: 1964 ident: bib0090 publication-title: Phys. Rev. B – volume: 316 start-page: 1597 year: 2007 end-page: 1600 ident: bib0110 publication-title: Science – volume: 96 start-page: 673 year: 2006 end-page: 686 ident: bib0025 publication-title: Bioresour. Technol. – volume: 109 start-page: 6433 year: 1987 end-page: 6442 ident: bib0115 publication-title: J. Am. Chem. Soc. – volume: vol. 858 year: 2003 ident: bib0135 publication-title: ACS Symposium Series – volume: 208–209 start-page: 117 year: 1995 end-page: 120 ident: bib0065 publication-title: Physica B – volume: 114 start-page: 12614 year: 2010 end-page: 12622 ident: bib0140 publication-title: J. Phys. Chem. B – volume: 59 start-page: 3403 year: 1979 end-page: 3410 ident: bib0055 publication-title: J. Chem. Phys. – volume: 124 start-page: 4974 year: 2002 end-page: 4975 ident: bib0035 publication-title: J. Am. Chem. Soc. – volume: 80 start-page: 688 year: 2005 end-page: 698 ident: bib0015 publication-title: J. Chem. Technol. Biotechnol. – volume: 17 start-page: 35 year: 1945 end-page: 37 ident: bib0020 publication-title: Ind. Eng. Chem. Anal. Ed. – year: 2009 ident: bib0085 article-title: NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.1.1 – volume: 126 start-page: 13930 year: 2004 end-page: 13931 ident: bib0010 publication-title: J. Am. Chem. Soc. – volume: 96 start-page: 673 year: 2006 ident: 10.1016/j.apcata.2010.09.021_bib0025 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2004.06.025 – start-page: 315 year: 1990 ident: 10.1016/j.apcata.2010.09.021_bib0130 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39900000315 – volume: 100 start-page: 5829 year: 1994 ident: 10.1016/j.apcata.2010.09.021_bib0105 publication-title: J. Chem. Phys. doi: 10.1063/1.467146 – volume: 361 start-page: 117 year: 2009 ident: 10.1016/j.apcata.2010.09.021_bib0050 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2009.04.002 – volume: 114 start-page: 12614 issue: 39 year: 2010 ident: 10.1016/j.apcata.2010.09.021_bib0140 publication-title: J. Phys. Chem. B doi: 10.1021/jp106762b – volume: 124 start-page: 4974 year: 2002 ident: 10.1016/j.apcata.2010.09.021_bib0035 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja025790m – volume: 49 start-page: 153 year: 2006 ident: 10.1016/j.apcata.2010.09.021_bib0045 publication-title: Adv. Catal. doi: 10.1016/S0360-0564(05)49003-3 – volume: 136 start-page: B864 year: 1964 ident: 10.1016/j.apcata.2010.09.021_bib0090 publication-title: Phys. Rev. B doi: 10.1103/PhysRev.136.B864 – volume: 126 start-page: 13930 year: 2004 ident: 10.1016/j.apcata.2010.09.021_bib0010 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja045992d – volume: 80 start-page: 688 year: 2005 ident: 10.1016/j.apcata.2010.09.021_bib0015 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1195 – volume: 109 start-page: 6712 year: 2009 ident: 10.1016/j.apcata.2010.09.021_bib0040 publication-title: Chem. Rev. doi: 10.1021/cr9001947 – year: 1988 ident: 10.1016/j.apcata.2010.09.021_bib0060 – start-page: 7388 year: 2001 ident: 10.1016/j.apcata.2010.09.021_bib0120 publication-title: J. Chem. Phys. doi: 10.1063/1.1362289 – year: 2009 ident: 10.1016/j.apcata.2010.09.021_bib0085 – volume: 208–209 start-page: 117 year: 1995 ident: 10.1016/j.apcata.2010.09.021_bib0065 publication-title: Physica B doi: 10.1016/0921-4526(94)00826-H – volume: 208–209 start-page: 154 year: 1995 ident: 10.1016/j.apcata.2010.09.021_bib0080 publication-title: Physica B doi: 10.1016/0921-4526(94)00655-F – volume: 316 start-page: 1597 year: 2007 ident: 10.1016/j.apcata.2010.09.021_bib0110 publication-title: Science doi: 10.1126/science.1141199 – volume: 125 start-page: 14300 year: 2003 ident: 10.1016/j.apcata.2010.09.021_bib0005 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja037055w – volume: 93 start-page: 249 year: 2004 ident: 10.1016/j.apcata.2010.09.021_bib0030 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2003.11.003 – volume: 59 start-page: 3403 year: 1979 ident: 10.1016/j.apcata.2010.09.021_bib0055 publication-title: J. Chem. Phys. doi: 10.1063/1.1680483 – volume: 47 start-page: 14126 year: 1993 ident: 10.1016/j.apcata.2010.09.021_bib0070 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.14126 – volume: 71 start-page: 176 year: 1959 ident: 10.1016/j.apcata.2010.09.021_bib0125 publication-title: Angew. Chem. doi: 10.1002/ange.19590710503 – volume: vol. 858 year: 2003 ident: 10.1016/j.apcata.2010.09.021_bib0135 – volume: 98 start-page: 5648 year: 1993 ident: 10.1016/j.apcata.2010.09.021_bib0100 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 17 start-page: 35 year: 1945 ident: 10.1016/j.apcata.2010.09.021_bib0020 publication-title: Ind. Eng. Chem. Anal. Ed. doi: 10.1021/i560137a008 – volume: 140 start-page: 1133 year: 1965 ident: 10.1016/j.apcata.2010.09.021_bib0095 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 52 start-page: 2995 year: 1995 ident: 10.1016/j.apcata.2010.09.021_bib0075 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.52.2995 – volume: 109 start-page: 6433 year: 1987 ident: 10.1016/j.apcata.2010.09.021_bib0115 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00255a032 |
SSID | ssj0002495 |
Score | 2.3151798 |
Snippet | The rate of cellulose hydrolysis is critically dependent on the ratio of CuCl
2/PdCl
2 in [EMIM]Cl solvent while the total catalyst loading (mol% CuCl
2
+
mol%... Efficient hydrolytic depolymerization of crystalline cellulose to sugars is a critical step and has been a major barrier for improved economics in the... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 436 |
SubjectTerms | 09 BIOMASS FUELS 1-Alkyl-3-methylimidazolium chloride 1-Ethyl-3-methyl-imidazolium chloride ABSORPTION Bioenergy BIOMASS CALORIMETRY Catalysis Catalyst CATALYSTS Cellobiose CELLULOSE Cellulose conversion CHLORIDES CLEAVAGE CuCl 2 CuCl2 DEPOLYMERIZATION ECONOMICS ELECTRON SPIN RESONANCE Environmental Molecular Sciences Laboratory FINE STRUCTURE Glucose HYDROLYSIS Ionic liquid Ionic liquids Maltose Metal chlorides Paired metal chlorides PdCl 2 PdCl2 SACCHARIDES SOLVENTS SPECTROSCOPY X-rays |
Title | Accelerated cellulose depolymerization catalyzed by paired metal chlorides in ionic liquid solvent |
URI | https://dx.doi.org/10.1016/j.apcata.2010.09.021 https://www.proquest.com/docview/855704314 https://www.osti.gov/biblio/1009733 |
Volume | 391 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5V4VA4ICgg0kK1h17deL3r9foYRVShqL2USrmtvC9hFJy0SQ7hwG9nxg8eQlUlJJ-sHdvab3Z2PDvzDcBZzKKzVeoSXqEGS2FxzYWoE5c71GktfWapUPjqWs1v5eUiXxzAbKiFobTK3vZ3Nr211v2dST-bk3VdT27SMlNapQvemtycKsqlLEjLz3_8TvOg3sot316mEho9lM-1OV7VmoIkfYJXeZ5m_KHtabTCFfePvW43oYsX8Lz3Htm0-8CXcBCaIzicDU3bjuDZH_yCr8BOncNthdggPKMQ_W652gTm0ele7umopqvBZG0MZ_8dB9k9W1c4I559C3iPuS-UoefDhtUNo9CtY8v6bld7hjpLqZKv4fbiw-fZPOmbKiROKr1NMmUr7VWp8Ucjes9FEWMMHvEiIvg0CE0nkyoX1vICjV-UMfci5L4shETfQ7yBUbNqwltgFcrkdJLKQyFtXunIrS3wOc6lVvE4BjHMpXE94zg1vliaIbXsq-kQMISASUuDCIwh-SW17hg3HhlfDDCZvzTH4KbwiOQJoUpSRJjrKLMIxXhLYSTGwAawDYJIIFVNWO02RhNtGTpe8vi_X30CT7vgNF7yHYy297vwHr2brT1t1fcUnkw_fppf_wTHnPts |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V5VA4oFJALC3gA9d049hxnGO1otpC2wuttDcrfomgbXZhdw_Lgd_OTB4UhFAlpJwiTxL5G48n45lvAN7FLDpbpS7hFWqwFBbXXIg6cblDndbSZ5YKhS-v1OxGfpjn8z2YDrUwlFbZ2_7OprfWur8z6Wdzsqrryae0zJRW6Zy3JjcvHsBDicuX2hic_LjL86Dmyi3hXqYSGj7Uz7VJXtWKoiR9hld5kmb8X_vTaIlL7i-D3e5CZwfwpHcf2Wn3hU9hLzSHsD8durYdwuPfCAafgT11DvcVooPwjGL028VyHZhHr3uxo7OargiTtUGc3XccZHdsVeGUeHYb8B5znylFz4c1qxtGsVvHFvXXbe0ZKi3lSj6Hm7P319NZ0ndVSJxUepNkylbaq1Ljn0b0nosixhg8AkZM8GkQmo4mVS6s5QVavyhj7kXIfVkIic6HeAGjZtmEl8AqlMnpKJWHQtq80pFbW-BznEut4nEMYphL43rKcep8sTBDbtkX0yFgCAGTlgYRGEPyS2rVUW7cM74YYDJ_qI7BXeEeySNClaSIMddRahGK8ZbDSIyBDWAbBJFAqpqw3K6NJt4y9Lzkq_9-9VvYn11fXpiL86uPR_Coi1TjJY9htPm2Da_R1dnYN60q_wR9Afz6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+cellulose+depolymerization+catalyzed+by+paired+metal+chlorides+in+ionic+liquid+solvent&rft.jtitle=Applied+catalysis.+A%2C+General&rft.au=Su%2C+Yu&rft.au=Brown%2C+Heather+M.&rft.au=Li%2C+Guosheng&rft.au=Zhou%2C+Xiao-dong&rft.date=2011-01-04&rft.issn=0926-860X&rft.volume=391&rft.issue=1-2&rft.spage=436&rft.epage=442&rft_id=info:doi/10.1016%2Fj.apcata.2010.09.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcata_2010_09_021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-860X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-860X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-860X&client=summon |