Understanding the acceleration phenomenon via high-resolution differential equations

Gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs). Motivated by the fact that existing ODEs do not distinguish between two fundamentally different algorithms—Nesterov’s accelerated gradient method for strongly convex functio...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 195; no. 1-2; pp. 79 - 148
Main Authors Shi, Bin, Du, Simon S., Jordan, Michael I., Su, Weijie J.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs). Motivated by the fact that existing ODEs do not distinguish between two fundamentally different algorithms—Nesterov’s accelerated gradient method for strongly convex functions (NAG-SC) and Polyak’s heavy-ball method—we study an alternative limiting process that yields high-resolution ODEs . We show that these ODEs permit a general Lyapunov function framework for the analysis of convergence in both continuous and discrete time. We also show that these ODEs are more accurate surrogates for the underlying algorithms; in particular, they not only distinguish between NAG-SC and Polyak’s heavy-ball method, but they allow the identification of a term that we refer to as “gradient correction” that is present in NAG-SC but not in the heavy-ball method and is responsible for the qualitative difference in convergence of the two methods. We also use the high-resolution ODE framework to study Nesterov’s accelerated gradient method for (non-strongly) convex functions, uncovering a hitherto unknown result—that NAG-C minimizes the squared gradient norm at an inverse cubic rate. Finally, by modifying the high-resolution ODE of NAG-C, we obtain a family of new optimization methods that are shown to maintain the accelerated convergence rates of NAG-C for smooth convex functions.
AbstractList Gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs). Motivated by the fact that existing ODEs do not distinguish between two fundamentally different algorithms-Nesterov's accelerated gradient method for strongly convex functions (NAG-SC) and Polyak's heavy-ball method-we study an alternative limiting process that yields high-resolution ODEs. We show that these ODEs permit a general Lyapunov function framework for the analysis of convergence in both continuous and discrete time. We also show that these ODEs are more accurate surrogates for the underlying algorithms; in particular, they not only distinguish between NAG-SC and Polyak's heavy-ball method, but they allow the identification of a term that we refer to as "gradient correction" that is present in NAG-SC but not in the heavy-ball method and is responsible for the qualitative difference in convergence of the two methods. We also use the high-resolution ODE framework to study Nesterov's accelerated gradient method for (non-strongly) convex functions, uncovering a hitherto unknown result-that NAG-C minimizes the squared gradient norm at an inverse cubic rate. Finally, by modifying the high-resolution ODE of NAG-C, we obtain a family of new optimization methods that are shown to maintain the accelerated convergence rates of NAG-C for smooth convex functions.
Gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs). Motivated by the fact that existing ODEs do not distinguish between two fundamentally different algorithms—Nesterov’s accelerated gradient method for strongly convex functions (NAG-) and Polyak’s heavy-ball method—we study an alternative limiting process that yields high-resolution ODEs . We show that these ODEs permit a general Lyapunov function framework for the analysis of convergence in both continuous and discrete time. We also show that these ODEs are more accurate surrogates for the underlying algorithms; in particular, they not only distinguish between NAG- and Polyak’s heavy-ball method, but they allow the identification of a term that we refer to as “gradient correction” that is present in NAG- but not in the heavy-ball method and is responsible for the qualitative difference in convergence of the two methods. We also use the high-resolution ODE framework to study Nesterov’s accelerated gradient method for (non-strongly) convex functions, uncovering a hitherto unknown result—that NAG- minimizes the squared gradient norm at an inverse cubic rate. Finally, by modifying the high-resolution ODE of NAG-, we obtain a family of new optimization methods that are shown to maintain the accelerated convergence rates of NAG- for smooth convex functions.
Gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs). Motivated by the fact that existing ODEs do not distinguish between two fundamentally different algorithms—Nesterov’s accelerated gradient method for strongly convex functions (NAG-SC) and Polyak’s heavy-ball method—we study an alternative limiting process that yields high-resolution ODEs . We show that these ODEs permit a general Lyapunov function framework for the analysis of convergence in both continuous and discrete time. We also show that these ODEs are more accurate surrogates for the underlying algorithms; in particular, they not only distinguish between NAG-SC and Polyak’s heavy-ball method, but they allow the identification of a term that we refer to as “gradient correction” that is present in NAG-SC but not in the heavy-ball method and is responsible for the qualitative difference in convergence of the two methods. We also use the high-resolution ODE framework to study Nesterov’s accelerated gradient method for (non-strongly) convex functions, uncovering a hitherto unknown result—that NAG-C minimizes the squared gradient norm at an inverse cubic rate. Finally, by modifying the high-resolution ODE of NAG-C, we obtain a family of new optimization methods that are shown to maintain the accelerated convergence rates of NAG-C for smooth convex functions.
Audience Academic
Author Du, Simon S.
Jordan, Michael I.
Su, Weijie J.
Shi, Bin
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0003-2378-5333
  surname: Shi
  fullname: Shi, Bin
  email: shibin@lsec.cc.ac.cn
  organization: State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 2
  givenname: Simon S.
  surname: Du
  fullname: Du, Simon S.
  organization: University of Washington
– sequence: 3
  givenname: Michael I.
  surname: Jordan
  fullname: Jordan, Michael I.
  organization: University of California
– sequence: 4
  givenname: Weijie J.
  surname: Su
  fullname: Su, Weijie J.
  organization: University of Pennsylvania
BookMark eNp9kE1LAzEQhoMoWKt_wNOC59RJsrtJj6X4BYIXPYdsdtKmbLNtshX898auIHgoQxhI3mfCPFfkPPQBCbllMGMA8j4xYCApcEaB1YpRdUYmrBQ1LeuyPicTAF7RqmZwSa5S2gAAE0pNyPtHaDGmwYTWh1UxrLEw1mKH0Qy-D8VujaHf5hOKT2-KtV-tacTUd4fjc-udw4hh8KYrcH84QumaXDjTJbz57VPy8fjwvnymr29PL8vFK7VlrQbKBXMgnGht09iSOSVatEZaELVsHLTKzlsjsYbKVg1yVVlmDAK3wjnV5DYld-PcXez3B0yD3vSHGPKXmstcbM4qnlOzMbUyHWofXD9EY3O1uPU2e3Q-3y8kFxLEvJIZUCNgY59SRKetH46bZdB3moH-ka5H6TpL10fpWmWU_0N30W9N_DoNiRFKORxWGP_WOEF9A6GSmGw
CitedBy_id crossref_primary_10_22331_q_2023_06_02_1030
crossref_primary_10_1007_s10208_023_09636_5
crossref_primary_10_1007_s10957_024_02417_2
crossref_primary_10_1109_TAC_2023_3321901
crossref_primary_10_1080_02331934_2022_2119084
crossref_primary_10_14495_jsiaml_16_29
crossref_primary_10_1109_TPAMI_2024_3445666
crossref_primary_10_1007_s11075_024_02001_9
crossref_primary_10_1080_02331934_2024_2422563
crossref_primary_10_1007_s11228_024_00720_8
crossref_primary_10_1287_moor_2023_0186
crossref_primary_10_1137_24M1641440
crossref_primary_10_1109_LCSYS_2024_3354827
crossref_primary_10_1007_s10589_021_00332_0
crossref_primary_10_1109_TAC_2022_3152720
crossref_primary_10_1080_02331934_2021_2009828
crossref_primary_10_1109_TAC_2022_3171307
crossref_primary_10_1287_moor_2022_1343
crossref_primary_10_3934_eect_2025022
crossref_primary_10_12677_orf_2024_143248
crossref_primary_10_1016_j_cnsns_2024_108010
crossref_primary_10_1109_JOE_2023_3339800
crossref_primary_10_1007_s00211_025_01451_0
crossref_primary_10_1007_s00245_022_09846_3
crossref_primary_10_1080_02331934_2024_2407515
crossref_primary_10_1090_mcom_4063
crossref_primary_10_1007_s10957_023_02330_0
crossref_primary_10_1109_TAC_2022_3176527
crossref_primary_10_1007_s10957_023_02228_x
crossref_primary_10_1007_s00245_023_09997_x
crossref_primary_10_3934_eect_2021010
crossref_primary_10_3934_eect_2022022
crossref_primary_10_1007_s10589_023_00518_8
crossref_primary_10_1137_22M1474357
crossref_primary_10_1137_23M158111X
crossref_primary_10_1080_02331934_2024_2359540
crossref_primary_10_1109_JIOT_2023_3340014
crossref_primary_10_1007_s11590_023_02091_9
crossref_primary_10_1080_02331934_2023_2253813
crossref_primary_10_1137_22M1498486
crossref_primary_10_1016_j_jksuci_2024_102016
crossref_primary_10_1016_j_nahs_2023_101402
crossref_primary_10_1007_s00245_023_10055_9
crossref_primary_10_1007_s10107_023_01976_y
crossref_primary_10_1007_s00245_024_10163_0
crossref_primary_10_1051_cocv_2022028
crossref_primary_10_1137_21M1435665
crossref_primary_10_1038_s41467_024_54451_3
crossref_primary_10_1155_2024_5241035
crossref_primary_10_1137_23M1549675
crossref_primary_10_1007_s40305_024_00561_0
crossref_primary_10_1007_s40305_024_00542_3
crossref_primary_10_1016_j_cam_2024_116394
crossref_primary_10_1145_3708502
crossref_primary_10_1007_s10589_024_00620_5
crossref_primary_10_1007_s10915_023_02215_4
crossref_primary_10_1007_s11075_025_02010_2
crossref_primary_10_1109_TAC_2023_3238857
crossref_primary_10_1109_TSIPN_2023_3239698
crossref_primary_10_1007_s40305_023_00492_2
crossref_primary_10_1088_1742_5468_ad3194
Cites_doi 10.1137/15M1009597
10.1137/130910294
10.1016/0041-5553(64)90137-5
10.1137/17M1128642
10.1137/15M1046095
10.1137/S0363012998335802
10.1073/pnas.1614734113
10.1016/S0021-7824(01)01253-3
10.1016/j.jde.2016.08.020
10.1007/s10957-015-0746-4
10.1007/s10107-016-0992-8
10.1137/16M1072528
10.1137/17M1114739
10.1137/080716542
10.1561/2200000050
10.1007/s10107-015-0871-8
10.1007/s10208-013-9150-3
10.23919/ACC.2017.7963426
10.23919/ACC.2019.8814459
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2022 Springer
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10107-021-01681-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 148
ExternalDocumentID A723703957
10_1007_s10107_021_01681_8
GrantInformation_xml – fundername: Army Research Laboratory
  grantid: W911NF-17-1-0304
  funderid: http://dx.doi.org/10.13039/100006754
– fundername: National Science Foundation
  grantid: CCF-1763314
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
AEIIB
7SC
8FD
ABRTQ
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c468t-231f03f3dcbbc41f83deca7c0367bf0d8c9da7e605c5be285c1aae02c3ff8b2c3
IEDL.DBID C6C
ISSN 0025-5610
IngestDate Fri Jul 25 19:46:41 EDT 2025
Tue Jun 10 21:19:37 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
Tue Jul 01 02:15:13 EDT 2025
Fri Feb 21 02:47:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Nesterov’s accelerated gradient methods
65P10
34E10
Ordinary differential equation
First-order method
Polyak’s heavy ball method
90C30
93D05
Convex optimization
90C25
65L20
Gradient minimization
Lyapunov function
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-231f03f3dcbbc41f83deca7c0367bf0d8c9da7e605c5be285c1aae02c3ff8b2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2378-5333
OpenAccessLink https://doi.org/10.1007/s10107-021-01681-8
PQID 2727219152
PQPubID 25307
PageCount 70
ParticipantIDs proquest_journals_2727219152
gale_infotracacademiconefile_A723703957
crossref_citationtrail_10_1007_s10107_021_01681_8
crossref_primary_10_1007_s10107_021_01681_8
springer_journals_10_1007_s10107_021_01681_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Lin, Mairal, Harchaoui (CR32) 2018; 18
Nemirovsky, Yudin (CR33) 1983; 27
Pedlosky (CR38) 2013
Alvarez (CR1) 2000; 38
Attouch, Peypouquet (CR8) 2016; 26
Nesterov (CR35) 2012; 88
CR18
Polyak (CR39) 1964; 4
Beck, Teboulle (CR12) 2009; 2
CR16
CR15
Wibisono, Wilson, Jordan (CR43) 2016; 113
CR13
Gelfand, Tsetlin (CR22) 1962; 17
Lessard, Recht, Packard (CR31) 2016; 26
Alvarez, Attouch, Bolte, Redont (CR2) 2002; 81
CR11
Chambolle, Dossal (CR17) 2015; 166
Drusvyatskiy, Fazel, Roy (CR19) 2018; 28
CR30
Nesterov (CR34) 1983; 27
Bubeck (CR14) 2015; 8
Attouch, Peypouquet, Redont (CR9) 2014; 24
Attouch, Cabot (CR4) 2018; 28
Su, Boyd, Candès (CR41) 2016; 17
Attouch, Peypouquet, Redont (CR10) 2016; 261
CR6
Wilson, Recht, Jordan (CR44) 2021; 22
O’Donoghue, Candès (CR37) 2015; 15
CR29
CR28
CR27
CR26
Attouch, Maingé, Redont (CR7) 2012; 4
CR25
CR24
CR45
CR21
Nesterov (CR36) 2013
Arnold (CR3) 2013
CR20
Attouch, Chbani, Peypouquet, Redont (CR5) 2018; 168
CR40
Vassilis, Jean-François, Charles (CR42) 2018; 28
Ghadimi, Lan (CR23) 2016; 156
H Attouch (1681_CR7) 2012; 4
1681_CR40
1681_CR21
1681_CR20
BT Polyak (1681_CR39) 1964; 4
F Alvarez (1681_CR2) 2002; 81
L Lessard (1681_CR31) 2016; 26
A Wibisono (1681_CR43) 2016; 113
B O’Donoghue (1681_CR37) 2015; 15
Y Nesterov (1681_CR34) 1983; 27
J Pedlosky (1681_CR38) 2013
S Bubeck (1681_CR14) 2015; 8
H Attouch (1681_CR5) 2018; 168
1681_CR27
1681_CR26
1681_CR29
1681_CR28
1681_CR45
W Su (1681_CR41) 2016; 17
1681_CR6
1681_CR25
1681_CR24
AS Nemirovsky (1681_CR33) 1983; 27
1681_CR30
Y Nesterov (1681_CR36) 2013
F Alvarez (1681_CR1) 2000; 38
VI Arnold (1681_CR3) 2013
A Beck (1681_CR12) 2009; 2
IM Gelfand (1681_CR22) 1962; 17
H Lin (1681_CR32) 2018; 18
AC Wilson (1681_CR44) 2021; 22
Y Nesterov (1681_CR35) 2012; 88
A Vassilis (1681_CR42) 2018; 28
A Chambolle (1681_CR17) 2015; 166
H Attouch (1681_CR10) 2016; 261
D Drusvyatskiy (1681_CR19) 2018; 28
H Attouch (1681_CR8) 2016; 26
1681_CR16
1681_CR15
1681_CR18
H Attouch (1681_CR9) 2014; 24
S Ghadimi (1681_CR23) 2016; 156
1681_CR11
H Attouch (1681_CR4) 2018; 28
1681_CR13
References_xml – volume: 26
  start-page: 57
  issue: 1
  year: 2016
  end-page: 95
  ident: CR31
  article-title: Analysis and design of optimization algorithms via integral quadratic constraints
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1009597
– ident: CR45
– volume: 24
  start-page: 232
  issue: 1
  year: 2014
  end-page: 256
  ident: CR9
  article-title: A dynamical approach to an inertial forward-backward algorithm for convex minimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/130910294
– ident: CR18
– volume: 18
  start-page: 1
  issue: 212
  year: 2018
  end-page: 54
  ident: CR32
  article-title: Catalyst acceleration for first-order convex optimization: from theory to practice
  publication-title: J. Mach. Learn. Res.
– ident: CR16
– ident: CR30
– volume: 4
  start-page: 1
  issue: 5
  year: 1964
  end-page: 17
  ident: CR39
  article-title: Some methods of speeding up the convergence of iteration methods
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– volume: 4
  start-page: 27
  issue: 1
  year: 2012
  end-page: 65
  ident: CR7
  article-title: A second-order differential system with Hessian-driven damping; application to non-elastic shock laws
  publication-title: Differ. Equ. Appl.
– volume: 28
  start-page: 551
  issue: 1
  year: 2018
  end-page: 574
  ident: CR42
  article-title: The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1128642
– volume: 27
  start-page: 264
  issue: 2
  year: 1983
  end-page: 265
  ident: CR33
  article-title: Problem complexity and method efficiency in optimization
  publication-title: SIAM Rev.
– volume: 27
  start-page: 372
  issue: 2
  year: 1983
  end-page: 376
  ident: CR34
  article-title: A method of solving a convex programming problem with convergence rate
  publication-title: Sov. Math. Doklady
– volume: 26
  start-page: 1824
  issue: 3
  year: 2016
  end-page: 1834
  ident: CR8
  article-title: The rate of convergence of Nesterov’s accelerated forward-backward method is actually faster than
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1046095
– ident: CR6
– ident: CR29
– volume: 38
  start-page: 1102
  issue: 4
  year: 2000
  end-page: 1119
  ident: CR1
  article-title: On the minimizing property of a second order dissipative system in Hilbert spaces
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012998335802
– volume: 113
  start-page: E7351
  issue: 47
  year: 2016
  end-page: E7358
  ident: CR43
  article-title: A variational perspective on accelerated methods in optimization
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1614734113
– volume: 81
  start-page: 747
  issue: 8
  year: 2002
  end-page: 779
  ident: CR2
  article-title: A second-order gradient-like dissipative dynamical system with Hessian-driven damping: application to optimization and mechanics
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/S0021-7824(01)01253-3
– ident: CR40
– ident: CR25
– ident: CR27
– year: 2013
  ident: CR3
  publication-title: Mathematical Methods of Classical Mechanics
– ident: CR21
– volume: 261
  start-page: 5734
  issue: 10
  year: 2016
  end-page: 5783
  ident: CR10
  article-title: Fast convex optimization via inertial dynamics with Hessian driven damping
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2016.08.020
– volume: 22
  start-page: 1
  year: 2021
  end-page: 34
  ident: CR44
  article-title: A Lyapunov analysis of momentum methods in optimization
  publication-title: J. Mach. Learn. Res.
– volume: 166
  start-page: 968
  issue: 3
  year: 2015
  end-page: 982
  ident: CR17
  article-title: On the convergence of the iterates of the “fast iterative shrinkage/thresholding algorithm”
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0746-4
– ident: CR15
– volume: 88
  start-page: 10
  year: 2012
  end-page: 11
  ident: CR35
  article-title: How to make the gradients small
  publication-title: Optima
– volume: 168
  start-page: 123
  issue: 1–2
  year: 2018
  end-page: 175
  ident: CR5
  article-title: Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity
  publication-title: Math. Progr.
  doi: 10.1007/s10107-016-0992-8
– volume: 28
  start-page: 251
  issue: 1
  year: 2018
  end-page: 271
  ident: CR19
  article-title: An optimal first order method based on optimal quadratic averaging
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1072528
– volume: 17
  start-page: 1
  issue: 153
  year: 2016
  end-page: 43
  ident: CR41
  article-title: A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights
  publication-title: J. Mach. Learn. Res.
– ident: CR13
– year: 2013
  ident: CR36
  publication-title: Introductory Lectures on Convex Optimization: A Basic Course
– ident: CR11
– volume: 28
  start-page: 849
  issue: 1
  year: 2018
  end-page: 874
  ident: CR4
  article-title: Convergence rates of inertial forward-backward algorithms
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1114739
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  ident: CR12
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/080716542
– volume: 8
  start-page: 231
  issue: 3–4
  year: 2015
  end-page: 357
  ident: CR14
  article-title: Convex optimization: algorithms and complexity
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000050
– volume: 156
  start-page: 59
  issue: 1–2
  year: 2016
  end-page: 99
  ident: CR23
  article-title: Accelerated gradient methods for nonconvex nonlinear and stochastic programming
  publication-title: Math. Progr.
  doi: 10.1007/s10107-015-0871-8
– ident: CR28
– ident: CR26
– ident: CR24
– volume: 17
  start-page: 103
  year: 1962
  end-page: 131
  ident: CR22
  article-title: The method of“ ravines” (Russian)
  publication-title: Uspekhi Matematicheskikh Nauk (Progres in Mathematics)
– ident: CR20
– volume: 15
  start-page: 715
  issue: 3
  year: 2015
  end-page: 732
  ident: CR37
  article-title: Adaptive restart for accelerated gradient schemes
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-013-9150-3
– year: 2013
  ident: CR38
  publication-title: Geophysical Fluid Dynamics
– ident: 1681_CR24
  doi: 10.23919/ACC.2017.7963426
– volume: 4
  start-page: 1
  issue: 5
  year: 1964
  ident: 1681_CR39
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(64)90137-5
– ident: 1681_CR26
– ident: 1681_CR20
– ident: 1681_CR45
– volume: 261
  start-page: 5734
  issue: 10
  year: 2016
  ident: 1681_CR10
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2016.08.020
– ident: 1681_CR18
– volume: 28
  start-page: 849
  issue: 1
  year: 2018
  ident: 1681_CR4
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1114739
– volume: 15
  start-page: 715
  issue: 3
  year: 2015
  ident: 1681_CR37
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-013-9150-3
– volume: 38
  start-page: 1102
  issue: 4
  year: 2000
  ident: 1681_CR1
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012998335802
– volume: 81
  start-page: 747
  issue: 8
  year: 2002
  ident: 1681_CR2
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/S0021-7824(01)01253-3
– volume: 156
  start-page: 59
  issue: 1–2
  year: 2016
  ident: 1681_CR23
  publication-title: Math. Progr.
  doi: 10.1007/s10107-015-0871-8
– volume-title: Introductory Lectures on Convex Optimization: A Basic Course
  year: 2013
  ident: 1681_CR36
– volume: 17
  start-page: 1
  issue: 153
  year: 2016
  ident: 1681_CR41
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 232
  issue: 1
  year: 2014
  ident: 1681_CR9
  publication-title: SIAM J. Optim.
  doi: 10.1137/130910294
– volume: 166
  start-page: 968
  issue: 3
  year: 2015
  ident: 1681_CR17
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0746-4
– ident: 1681_CR13
– ident: 1681_CR15
– ident: 1681_CR40
– volume: 27
  start-page: 264
  issue: 2
  year: 1983
  ident: 1681_CR33
  publication-title: SIAM Rev.
– ident: 1681_CR29
– ident: 1681_CR30
– volume: 26
  start-page: 1824
  issue: 3
  year: 2016
  ident: 1681_CR8
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1046095
– volume: 28
  start-page: 551
  issue: 1
  year: 2018
  ident: 1681_CR42
  publication-title: SIAM J. Optim.
  doi: 10.1137/17M1128642
– volume: 27
  start-page: 372
  issue: 2
  year: 1983
  ident: 1681_CR34
  publication-title: Sov. Math. Doklady
– volume: 4
  start-page: 27
  issue: 1
  year: 2012
  ident: 1681_CR7
  publication-title: Differ. Equ. Appl.
– ident: 1681_CR21
– volume: 88
  start-page: 10
  year: 2012
  ident: 1681_CR35
  publication-title: Optima
– ident: 1681_CR6
– ident: 1681_CR27
– ident: 1681_CR25
– volume: 168
  start-page: 123
  issue: 1–2
  year: 2018
  ident: 1681_CR5
  publication-title: Math. Progr.
  doi: 10.1007/s10107-016-0992-8
– volume: 8
  start-page: 231
  issue: 3–4
  year: 2015
  ident: 1681_CR14
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000050
– volume: 113
  start-page: E7351
  issue: 47
  year: 2016
  ident: 1681_CR43
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1614734113
– ident: 1681_CR11
  doi: 10.23919/ACC.2019.8814459
– volume: 17
  start-page: 103
  year: 1962
  ident: 1681_CR22
  publication-title: Uspekhi Matematicheskikh Nauk (Progres in Mathematics)
– volume: 22
  start-page: 1
  year: 2021
  ident: 1681_CR44
  publication-title: J. Mach. Learn. Res.
– volume: 28
  start-page: 251
  issue: 1
  year: 2018
  ident: 1681_CR19
  publication-title: SIAM J. Optim.
  doi: 10.1137/16M1072528
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 1681_CR12
  publication-title: SIAM J. Imag. Sci.
  doi: 10.1137/080716542
– ident: 1681_CR16
– volume: 18
  start-page: 1
  issue: 212
  year: 2018
  ident: 1681_CR32
  publication-title: J. Mach. Learn. Res.
– volume-title: Geophysical Fluid Dynamics
  year: 2013
  ident: 1681_CR38
– volume: 26
  start-page: 57
  issue: 1
  year: 2016
  ident: 1681_CR31
  publication-title: SIAM J. Optim.
  doi: 10.1137/15M1009597
– ident: 1681_CR28
– volume-title: Mathematical Methods of Classical Mechanics
  year: 2013
  ident: 1681_CR3
SSID ssj0001388
Score 2.6474555
Snippet Gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs). Motivated by the fact that...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 79
SubjectTerms Algorithms
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Constraining
Convergence
Convex analysis
Differential equations
Full Length Paper
High resolution
Liapunov functions
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical optimization
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Optimization
Ordinary differential equations
Theoretical
Title Understanding the acceleration phenomenon via high-resolution differential equations
URI https://link.springer.com/article/10.1007/s10107-021-01681-8
https://www.proquest.com/docview/2727219152
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8AB8RTjpR6QOEClJmmb7DgGYwLBaZXgFCVpIiEhBGzw-7G7dsB4SFyaVknTyE5iu44_AxxKI20u8hAnwZGbMbGxCsrGiTKO_FZSlBQ7fH2TD4v08ja7rWFyKBZmzn9PIW6MfqZxMnpzxWK1CO2MCUlpGvp5f7brMqFUk56VdII6QObnPr4Iofmt-JtPtBI1g1VYqXXEqDdl6hos-Md1WP6EHIhP1zO41fEGjIrPISoR1kTGORQoU_ZGdI6LkBbw9u3eRARRHKOZXc-6qEmSgov9IfLPU_Dv8SYUg_NRfxjX6RJil-ZqEqOmFhIRROmsdSkLSpTeGelQRkkbklK5bmmkR_vFZdZzlTlmjE-4EwG5g8UWtHAgfhui0PWpsqg6CbQfy8BsGgy3ZeaZDMoo3wHW0E-7GkucUlo86A8UZKK5RprriuZadeB49s7TFEnjz9ZHxBZNywx7dqaOFsDxEWCV7kmOc4CcjB3Yazin6_U31pz8y2iKZrwDJw03P6p__-7O_5rvwhKneIjq0NketCYvr34ftZSJPYB27_TsdEDlxd3V-UE1XfFa8N47FK3hjw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90PqgP4idOp_ZB8EELbdI22eMQx9RtTxvsLSRpAoKI2unf713XbvMTfGpL0jTcJffRy_0O4FxoYTKe-TDylsKMkQmllyaMpLYUtxI8p9zhwTDrjZO7STqpksKK-rR7HZIsJfVSsltMv9UYub-ZjEO5CmtoDEhay2PWmcvfmEtZF2ol66BKlfl5jE_q6KtQ_hYdLZVOdxu2Kmsx6MzYuwMr7mkXNpcwBPFpMAdeLfZgNF5OVgmwJdDWomqZMTqgE12EuYC37w86ILDiEB3uav0FdbkU3PaPgXuZwYAX-zDu3oyue2FVOCG0SSanIdpsPuKe59YYm8Re8txZLSxqK2F8lEvbzrVw6MnY1DgmUxtr7SJmuUc-4eUAGjgRdwiBb7tEGjSiOHqSuY9N4jUzeepi4aWWrglxTT9lK1RxKm7xqBZ4yERzhTRXJc2VbMLl_J3nGabGn70viC2KNhyObHWVN4DzI-gq1RGMo9hqp6IJrZpzqtqJhWIUaUanNGVNuKq5uWj-_btH_-t-Buu90aCv-rfD-2PYYJQlUR5Fa0Fj-vrmTtB2mZrTcql-ANfD5Lc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBfOLqqj0IHrTYNG2TPS6ri8_Fwy7sLSRpAoKIuqu_35k-dtcneGpL0jTMJPPoZL4BOBJamIxnPoy8pTBjZELppQkjqS3FrQTPKXf4rpddDpLrYTqcyeIvTrvXIckyp4FQmp7GZ8-5P5tJfGP0iy0mVziTLJTzsIieCiP3q5N1JrKYcSnroq1kKVRpMz-P8Uk1fRXQ3yKlhQLqrsFqZTkG7ZLV6zDnnjZgZQZPEJ_uJiCso03oD2YTVwJsCbS1qGZKpgd0uovwF_D2_UEHBFwcovNdrcWgLp2CIuAxcC8lJPhoCwbdi37nMqyKKIQ2yeQ4RPvNR9zz3BpjE-Ylz53VwqLmEsZHubStXAuHXo1NjYtlapnWLoot98gzvGzDAk7E7UDgWy6RBg0qjl5l7plJvI5NnjomvNTSNYDV9FO2QhinQhePaoqNTDRXSHNV0FzJBpxM3nku8TX-7H1MbFG0-XBkq6scApwfwViptog5irBWKhrQrDmnql05UjFFndFBTeMGnNbcnDb__t3d_3U_hKX78666verd7MFyTAkTxam0JiyMX9_cPpoxY3NQrNQP9ino3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+acceleration+phenomenon+via+high-resolution+differential+equations&rft.jtitle=Mathematical+programming&rft.au=Shi%2C+Bin&rft.au=Du%2C+Simon+S.&rft.au=Jordan%2C+Michael+I.&rft.au=Su%2C+Weijie+J.&rft.date=2022-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=195&rft.issue=1-2&rft.spage=79&rft.epage=148&rft_id=info:doi/10.1007%2Fs10107-021-01681-8&rft.externalDocID=10_1007_s10107_021_01681_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon