Understanding the acceleration phenomenon via high-resolution differential equations
Gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs). Motivated by the fact that existing ODEs do not distinguish between two fundamentally different algorithms—Nesterov’s accelerated gradient method for strongly convex functio...
Saved in:
Published in | Mathematical programming Vol. 195; no. 1-2; pp. 79 - 148 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs). Motivated by the fact that existing ODEs do not distinguish between two fundamentally different algorithms—Nesterov’s accelerated gradient method for strongly convex functions (NAG-SC) and Polyak’s heavy-ball method—we study an alternative limiting process that yields
high-resolution ODEs
. We show that these ODEs permit a general Lyapunov function framework for the analysis of convergence in both continuous and discrete time. We also show that these ODEs are more accurate surrogates for the underlying algorithms; in particular, they not only distinguish between NAG-SC and Polyak’s heavy-ball method, but they allow the identification of a term that we refer to as “gradient correction” that is present in NAG-SC but not in the heavy-ball method and is responsible for the qualitative difference in convergence of the two methods. We also use the high-resolution ODE framework to study Nesterov’s accelerated gradient method for (non-strongly) convex functions, uncovering a hitherto unknown result—that NAG-C minimizes the squared gradient norm at an inverse cubic rate. Finally, by modifying the high-resolution ODE of NAG-C, we obtain a family of new optimization methods that are shown to maintain the accelerated convergence rates of NAG-C for smooth convex functions. |
---|---|
AbstractList | Gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs). Motivated by the fact that existing ODEs do not distinguish between two fundamentally different algorithms-Nesterov's accelerated gradient method for strongly convex functions (NAG-SC) and Polyak's heavy-ball method-we study an alternative limiting process that yields high-resolution ODEs. We show that these ODEs permit a general Lyapunov function framework for the analysis of convergence in both continuous and discrete time. We also show that these ODEs are more accurate surrogates for the underlying algorithms; in particular, they not only distinguish between NAG-SC and Polyak's heavy-ball method, but they allow the identification of a term that we refer to as "gradient correction" that is present in NAG-SC but not in the heavy-ball method and is responsible for the qualitative difference in convergence of the two methods. We also use the high-resolution ODE framework to study Nesterov's accelerated gradient method for (non-strongly) convex functions, uncovering a hitherto unknown result-that NAG-C minimizes the squared gradient norm at an inverse cubic rate. Finally, by modifying the high-resolution ODE of NAG-C, we obtain a family of new optimization methods that are shown to maintain the accelerated convergence rates of NAG-C for smooth convex functions. Gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs). Motivated by the fact that existing ODEs do not distinguish between two fundamentally different algorithms—Nesterov’s accelerated gradient method for strongly convex functions (NAG-) and Polyak’s heavy-ball method—we study an alternative limiting process that yields high-resolution ODEs . We show that these ODEs permit a general Lyapunov function framework for the analysis of convergence in both continuous and discrete time. We also show that these ODEs are more accurate surrogates for the underlying algorithms; in particular, they not only distinguish between NAG- and Polyak’s heavy-ball method, but they allow the identification of a term that we refer to as “gradient correction” that is present in NAG- but not in the heavy-ball method and is responsible for the qualitative difference in convergence of the two methods. We also use the high-resolution ODE framework to study Nesterov’s accelerated gradient method for (non-strongly) convex functions, uncovering a hitherto unknown result—that NAG- minimizes the squared gradient norm at an inverse cubic rate. Finally, by modifying the high-resolution ODE of NAG-, we obtain a family of new optimization methods that are shown to maintain the accelerated convergence rates of NAG- for smooth convex functions. Gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs). Motivated by the fact that existing ODEs do not distinguish between two fundamentally different algorithms—Nesterov’s accelerated gradient method for strongly convex functions (NAG-SC) and Polyak’s heavy-ball method—we study an alternative limiting process that yields high-resolution ODEs . We show that these ODEs permit a general Lyapunov function framework for the analysis of convergence in both continuous and discrete time. We also show that these ODEs are more accurate surrogates for the underlying algorithms; in particular, they not only distinguish between NAG-SC and Polyak’s heavy-ball method, but they allow the identification of a term that we refer to as “gradient correction” that is present in NAG-SC but not in the heavy-ball method and is responsible for the qualitative difference in convergence of the two methods. We also use the high-resolution ODE framework to study Nesterov’s accelerated gradient method for (non-strongly) convex functions, uncovering a hitherto unknown result—that NAG-C minimizes the squared gradient norm at an inverse cubic rate. Finally, by modifying the high-resolution ODE of NAG-C, we obtain a family of new optimization methods that are shown to maintain the accelerated convergence rates of NAG-C for smooth convex functions. |
Audience | Academic |
Author | Du, Simon S. Jordan, Michael I. Su, Weijie J. Shi, Bin |
Author_xml | – sequence: 1 givenname: Bin orcidid: 0000-0003-2378-5333 surname: Shi fullname: Shi, Bin email: shibin@lsec.cc.ac.cn organization: State Key Laboratory of Scientific and Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences – sequence: 2 givenname: Simon S. surname: Du fullname: Du, Simon S. organization: University of Washington – sequence: 3 givenname: Michael I. surname: Jordan fullname: Jordan, Michael I. organization: University of California – sequence: 4 givenname: Weijie J. surname: Su fullname: Su, Weijie J. organization: University of Pennsylvania |
BookMark | eNp9kE1LAzEQhoMoWKt_wNOC59RJsrtJj6X4BYIXPYdsdtKmbLNtshX898auIHgoQxhI3mfCPFfkPPQBCbllMGMA8j4xYCApcEaB1YpRdUYmrBQ1LeuyPicTAF7RqmZwSa5S2gAAE0pNyPtHaDGmwYTWh1UxrLEw1mKH0Qy-D8VujaHf5hOKT2-KtV-tacTUd4fjc-udw4hh8KYrcH84QumaXDjTJbz57VPy8fjwvnymr29PL8vFK7VlrQbKBXMgnGht09iSOSVatEZaELVsHLTKzlsjsYbKVg1yVVlmDAK3wjnV5DYld-PcXez3B0yD3vSHGPKXmstcbM4qnlOzMbUyHWofXD9EY3O1uPU2e3Q-3y8kFxLEvJIZUCNgY59SRKetH46bZdB3moH-ka5H6TpL10fpWmWU_0N30W9N_DoNiRFKORxWGP_WOEF9A6GSmGw |
CitedBy_id | crossref_primary_10_22331_q_2023_06_02_1030 crossref_primary_10_1007_s10208_023_09636_5 crossref_primary_10_1007_s10957_024_02417_2 crossref_primary_10_1109_TAC_2023_3321901 crossref_primary_10_1080_02331934_2022_2119084 crossref_primary_10_14495_jsiaml_16_29 crossref_primary_10_1109_TPAMI_2024_3445666 crossref_primary_10_1007_s11075_024_02001_9 crossref_primary_10_1080_02331934_2024_2422563 crossref_primary_10_1007_s11228_024_00720_8 crossref_primary_10_1287_moor_2023_0186 crossref_primary_10_1137_24M1641440 crossref_primary_10_1109_LCSYS_2024_3354827 crossref_primary_10_1007_s10589_021_00332_0 crossref_primary_10_1109_TAC_2022_3152720 crossref_primary_10_1080_02331934_2021_2009828 crossref_primary_10_1109_TAC_2022_3171307 crossref_primary_10_1287_moor_2022_1343 crossref_primary_10_3934_eect_2025022 crossref_primary_10_12677_orf_2024_143248 crossref_primary_10_1016_j_cnsns_2024_108010 crossref_primary_10_1109_JOE_2023_3339800 crossref_primary_10_1007_s00211_025_01451_0 crossref_primary_10_1007_s00245_022_09846_3 crossref_primary_10_1080_02331934_2024_2407515 crossref_primary_10_1090_mcom_4063 crossref_primary_10_1007_s10957_023_02330_0 crossref_primary_10_1109_TAC_2022_3176527 crossref_primary_10_1007_s10957_023_02228_x crossref_primary_10_1007_s00245_023_09997_x crossref_primary_10_3934_eect_2021010 crossref_primary_10_3934_eect_2022022 crossref_primary_10_1007_s10589_023_00518_8 crossref_primary_10_1137_22M1474357 crossref_primary_10_1137_23M158111X crossref_primary_10_1080_02331934_2024_2359540 crossref_primary_10_1109_JIOT_2023_3340014 crossref_primary_10_1007_s11590_023_02091_9 crossref_primary_10_1080_02331934_2023_2253813 crossref_primary_10_1137_22M1498486 crossref_primary_10_1016_j_jksuci_2024_102016 crossref_primary_10_1016_j_nahs_2023_101402 crossref_primary_10_1007_s00245_023_10055_9 crossref_primary_10_1007_s10107_023_01976_y crossref_primary_10_1007_s00245_024_10163_0 crossref_primary_10_1051_cocv_2022028 crossref_primary_10_1137_21M1435665 crossref_primary_10_1038_s41467_024_54451_3 crossref_primary_10_1155_2024_5241035 crossref_primary_10_1137_23M1549675 crossref_primary_10_1007_s40305_024_00561_0 crossref_primary_10_1007_s40305_024_00542_3 crossref_primary_10_1016_j_cam_2024_116394 crossref_primary_10_1145_3708502 crossref_primary_10_1007_s10589_024_00620_5 crossref_primary_10_1007_s10915_023_02215_4 crossref_primary_10_1007_s11075_025_02010_2 crossref_primary_10_1109_TAC_2023_3238857 crossref_primary_10_1109_TSIPN_2023_3239698 crossref_primary_10_1007_s40305_023_00492_2 crossref_primary_10_1088_1742_5468_ad3194 |
Cites_doi | 10.1137/15M1009597 10.1137/130910294 10.1016/0041-5553(64)90137-5 10.1137/17M1128642 10.1137/15M1046095 10.1137/S0363012998335802 10.1073/pnas.1614734113 10.1016/S0021-7824(01)01253-3 10.1016/j.jde.2016.08.020 10.1007/s10957-015-0746-4 10.1007/s10107-016-0992-8 10.1137/16M1072528 10.1137/17M1114739 10.1137/080716542 10.1561/2200000050 10.1007/s10107-015-0871-8 10.1007/s10208-013-9150-3 10.23919/ACC.2017.7963426 10.23919/ACC.2019.8814459 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 COPYRIGHT 2022 Springer The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s10107-021-01681-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1436-4646 |
EndPage | 148 |
ExternalDocumentID | A723703957 10_1007_s10107_021_01681_8 |
GrantInformation_xml | – fundername: Army Research Laboratory grantid: W911NF-17-1-0304 funderid: http://dx.doi.org/10.13039/100006754 – fundername: National Science Foundation grantid: CCF-1763314 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT AEIIB 7SC 8FD ABRTQ JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c468t-231f03f3dcbbc41f83deca7c0367bf0d8c9da7e605c5be285c1aae02c3ff8b2c3 |
IEDL.DBID | C6C |
ISSN | 0025-5610 |
IngestDate | Fri Jul 25 19:46:41 EDT 2025 Tue Jun 10 21:19:37 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 Tue Jul 01 02:15:13 EDT 2025 Fri Feb 21 02:47:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Nesterov’s accelerated gradient methods 65P10 34E10 Ordinary differential equation First-order method Polyak’s heavy ball method 90C30 93D05 Convex optimization 90C25 65L20 Gradient minimization Lyapunov function |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-231f03f3dcbbc41f83deca7c0367bf0d8c9da7e605c5be285c1aae02c3ff8b2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2378-5333 |
OpenAccessLink | https://doi.org/10.1007/s10107-021-01681-8 |
PQID | 2727219152 |
PQPubID | 25307 |
PageCount | 70 |
ParticipantIDs | proquest_journals_2727219152 gale_infotracacademiconefile_A723703957 crossref_citationtrail_10_1007_s10107_021_01681_8 crossref_primary_10_1007_s10107_021_01681_8 springer_journals_10_1007_s10107_021_01681_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Publication of the Mathematical Optimization Society |
PublicationTitle | Mathematical programming |
PublicationTitleAbbrev | Math. Program |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | Lin, Mairal, Harchaoui (CR32) 2018; 18 Nemirovsky, Yudin (CR33) 1983; 27 Pedlosky (CR38) 2013 Alvarez (CR1) 2000; 38 Attouch, Peypouquet (CR8) 2016; 26 Nesterov (CR35) 2012; 88 CR18 Polyak (CR39) 1964; 4 Beck, Teboulle (CR12) 2009; 2 CR16 CR15 Wibisono, Wilson, Jordan (CR43) 2016; 113 CR13 Gelfand, Tsetlin (CR22) 1962; 17 Lessard, Recht, Packard (CR31) 2016; 26 Alvarez, Attouch, Bolte, Redont (CR2) 2002; 81 CR11 Chambolle, Dossal (CR17) 2015; 166 Drusvyatskiy, Fazel, Roy (CR19) 2018; 28 CR30 Nesterov (CR34) 1983; 27 Bubeck (CR14) 2015; 8 Attouch, Peypouquet, Redont (CR9) 2014; 24 Attouch, Cabot (CR4) 2018; 28 Su, Boyd, Candès (CR41) 2016; 17 Attouch, Peypouquet, Redont (CR10) 2016; 261 CR6 Wilson, Recht, Jordan (CR44) 2021; 22 O’Donoghue, Candès (CR37) 2015; 15 CR29 CR28 CR27 CR26 Attouch, Maingé, Redont (CR7) 2012; 4 CR25 CR24 CR45 CR21 Nesterov (CR36) 2013 Arnold (CR3) 2013 CR20 Attouch, Chbani, Peypouquet, Redont (CR5) 2018; 168 CR40 Vassilis, Jean-François, Charles (CR42) 2018; 28 Ghadimi, Lan (CR23) 2016; 156 H Attouch (1681_CR7) 2012; 4 1681_CR40 1681_CR21 1681_CR20 BT Polyak (1681_CR39) 1964; 4 F Alvarez (1681_CR2) 2002; 81 L Lessard (1681_CR31) 2016; 26 A Wibisono (1681_CR43) 2016; 113 B O’Donoghue (1681_CR37) 2015; 15 Y Nesterov (1681_CR34) 1983; 27 J Pedlosky (1681_CR38) 2013 S Bubeck (1681_CR14) 2015; 8 H Attouch (1681_CR5) 2018; 168 1681_CR27 1681_CR26 1681_CR29 1681_CR28 1681_CR45 W Su (1681_CR41) 2016; 17 1681_CR6 1681_CR25 1681_CR24 AS Nemirovsky (1681_CR33) 1983; 27 1681_CR30 Y Nesterov (1681_CR36) 2013 F Alvarez (1681_CR1) 2000; 38 VI Arnold (1681_CR3) 2013 A Beck (1681_CR12) 2009; 2 IM Gelfand (1681_CR22) 1962; 17 H Lin (1681_CR32) 2018; 18 AC Wilson (1681_CR44) 2021; 22 Y Nesterov (1681_CR35) 2012; 88 A Vassilis (1681_CR42) 2018; 28 A Chambolle (1681_CR17) 2015; 166 H Attouch (1681_CR10) 2016; 261 D Drusvyatskiy (1681_CR19) 2018; 28 H Attouch (1681_CR8) 2016; 26 1681_CR16 1681_CR15 1681_CR18 H Attouch (1681_CR9) 2014; 24 S Ghadimi (1681_CR23) 2016; 156 1681_CR11 H Attouch (1681_CR4) 2018; 28 1681_CR13 |
References_xml | – volume: 26 start-page: 57 issue: 1 year: 2016 end-page: 95 ident: CR31 article-title: Analysis and design of optimization algorithms via integral quadratic constraints publication-title: SIAM J. Optim. doi: 10.1137/15M1009597 – ident: CR45 – volume: 24 start-page: 232 issue: 1 year: 2014 end-page: 256 ident: CR9 article-title: A dynamical approach to an inertial forward-backward algorithm for convex minimization publication-title: SIAM J. Optim. doi: 10.1137/130910294 – ident: CR18 – volume: 18 start-page: 1 issue: 212 year: 2018 end-page: 54 ident: CR32 article-title: Catalyst acceleration for first-order convex optimization: from theory to practice publication-title: J. Mach. Learn. Res. – ident: CR16 – ident: CR30 – volume: 4 start-page: 1 issue: 5 year: 1964 end-page: 17 ident: CR39 article-title: Some methods of speeding up the convergence of iteration methods publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – volume: 4 start-page: 27 issue: 1 year: 2012 end-page: 65 ident: CR7 article-title: A second-order differential system with Hessian-driven damping; application to non-elastic shock laws publication-title: Differ. Equ. Appl. – volume: 28 start-page: 551 issue: 1 year: 2018 end-page: 574 ident: CR42 article-title: The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case publication-title: SIAM J. Optim. doi: 10.1137/17M1128642 – volume: 27 start-page: 264 issue: 2 year: 1983 end-page: 265 ident: CR33 article-title: Problem complexity and method efficiency in optimization publication-title: SIAM Rev. – volume: 27 start-page: 372 issue: 2 year: 1983 end-page: 376 ident: CR34 article-title: A method of solving a convex programming problem with convergence rate publication-title: Sov. Math. Doklady – volume: 26 start-page: 1824 issue: 3 year: 2016 end-page: 1834 ident: CR8 article-title: The rate of convergence of Nesterov’s accelerated forward-backward method is actually faster than publication-title: SIAM J. Optim. doi: 10.1137/15M1046095 – ident: CR6 – ident: CR29 – volume: 38 start-page: 1102 issue: 4 year: 2000 end-page: 1119 ident: CR1 article-title: On the minimizing property of a second order dissipative system in Hilbert spaces publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012998335802 – volume: 113 start-page: E7351 issue: 47 year: 2016 end-page: E7358 ident: CR43 article-title: A variational perspective on accelerated methods in optimization publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1614734113 – volume: 81 start-page: 747 issue: 8 year: 2002 end-page: 779 ident: CR2 article-title: A second-order gradient-like dissipative dynamical system with Hessian-driven damping: application to optimization and mechanics publication-title: J. Math. Pures Appl. doi: 10.1016/S0021-7824(01)01253-3 – ident: CR40 – ident: CR25 – ident: CR27 – year: 2013 ident: CR3 publication-title: Mathematical Methods of Classical Mechanics – ident: CR21 – volume: 261 start-page: 5734 issue: 10 year: 2016 end-page: 5783 ident: CR10 article-title: Fast convex optimization via inertial dynamics with Hessian driven damping publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2016.08.020 – volume: 22 start-page: 1 year: 2021 end-page: 34 ident: CR44 article-title: A Lyapunov analysis of momentum methods in optimization publication-title: J. Mach. Learn. Res. – volume: 166 start-page: 968 issue: 3 year: 2015 end-page: 982 ident: CR17 article-title: On the convergence of the iterates of the “fast iterative shrinkage/thresholding algorithm” publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0746-4 – ident: CR15 – volume: 88 start-page: 10 year: 2012 end-page: 11 ident: CR35 article-title: How to make the gradients small publication-title: Optima – volume: 168 start-page: 123 issue: 1–2 year: 2018 end-page: 175 ident: CR5 article-title: Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity publication-title: Math. Progr. doi: 10.1007/s10107-016-0992-8 – volume: 28 start-page: 251 issue: 1 year: 2018 end-page: 271 ident: CR19 article-title: An optimal first order method based on optimal quadratic averaging publication-title: SIAM J. Optim. doi: 10.1137/16M1072528 – volume: 17 start-page: 1 issue: 153 year: 2016 end-page: 43 ident: CR41 article-title: A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights publication-title: J. Mach. Learn. Res. – ident: CR13 – year: 2013 ident: CR36 publication-title: Introductory Lectures on Convex Optimization: A Basic Course – ident: CR11 – volume: 28 start-page: 849 issue: 1 year: 2018 end-page: 874 ident: CR4 article-title: Convergence rates of inertial forward-backward algorithms publication-title: SIAM J. Optim. doi: 10.1137/17M1114739 – volume: 2 start-page: 183 issue: 1 year: 2009 end-page: 202 ident: CR12 article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems publication-title: SIAM J. Imag. Sci. doi: 10.1137/080716542 – volume: 8 start-page: 231 issue: 3–4 year: 2015 end-page: 357 ident: CR14 article-title: Convex optimization: algorithms and complexity publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000050 – volume: 156 start-page: 59 issue: 1–2 year: 2016 end-page: 99 ident: CR23 article-title: Accelerated gradient methods for nonconvex nonlinear and stochastic programming publication-title: Math. Progr. doi: 10.1007/s10107-015-0871-8 – ident: CR28 – ident: CR26 – ident: CR24 – volume: 17 start-page: 103 year: 1962 end-page: 131 ident: CR22 article-title: The method of“ ravines” (Russian) publication-title: Uspekhi Matematicheskikh Nauk (Progres in Mathematics) – ident: CR20 – volume: 15 start-page: 715 issue: 3 year: 2015 end-page: 732 ident: CR37 article-title: Adaptive restart for accelerated gradient schemes publication-title: Found. Comput. Math. doi: 10.1007/s10208-013-9150-3 – year: 2013 ident: CR38 publication-title: Geophysical Fluid Dynamics – ident: 1681_CR24 doi: 10.23919/ACC.2017.7963426 – volume: 4 start-page: 1 issue: 5 year: 1964 ident: 1681_CR39 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(64)90137-5 – ident: 1681_CR26 – ident: 1681_CR20 – ident: 1681_CR45 – volume: 261 start-page: 5734 issue: 10 year: 2016 ident: 1681_CR10 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2016.08.020 – ident: 1681_CR18 – volume: 28 start-page: 849 issue: 1 year: 2018 ident: 1681_CR4 publication-title: SIAM J. Optim. doi: 10.1137/17M1114739 – volume: 15 start-page: 715 issue: 3 year: 2015 ident: 1681_CR37 publication-title: Found. Comput. Math. doi: 10.1007/s10208-013-9150-3 – volume: 38 start-page: 1102 issue: 4 year: 2000 ident: 1681_CR1 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012998335802 – volume: 81 start-page: 747 issue: 8 year: 2002 ident: 1681_CR2 publication-title: J. Math. Pures Appl. doi: 10.1016/S0021-7824(01)01253-3 – volume: 156 start-page: 59 issue: 1–2 year: 2016 ident: 1681_CR23 publication-title: Math. Progr. doi: 10.1007/s10107-015-0871-8 – volume-title: Introductory Lectures on Convex Optimization: A Basic Course year: 2013 ident: 1681_CR36 – volume: 17 start-page: 1 issue: 153 year: 2016 ident: 1681_CR41 publication-title: J. Mach. Learn. Res. – volume: 24 start-page: 232 issue: 1 year: 2014 ident: 1681_CR9 publication-title: SIAM J. Optim. doi: 10.1137/130910294 – volume: 166 start-page: 968 issue: 3 year: 2015 ident: 1681_CR17 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0746-4 – ident: 1681_CR13 – ident: 1681_CR15 – ident: 1681_CR40 – volume: 27 start-page: 264 issue: 2 year: 1983 ident: 1681_CR33 publication-title: SIAM Rev. – ident: 1681_CR29 – ident: 1681_CR30 – volume: 26 start-page: 1824 issue: 3 year: 2016 ident: 1681_CR8 publication-title: SIAM J. Optim. doi: 10.1137/15M1046095 – volume: 28 start-page: 551 issue: 1 year: 2018 ident: 1681_CR42 publication-title: SIAM J. Optim. doi: 10.1137/17M1128642 – volume: 27 start-page: 372 issue: 2 year: 1983 ident: 1681_CR34 publication-title: Sov. Math. Doklady – volume: 4 start-page: 27 issue: 1 year: 2012 ident: 1681_CR7 publication-title: Differ. Equ. Appl. – ident: 1681_CR21 – volume: 88 start-page: 10 year: 2012 ident: 1681_CR35 publication-title: Optima – ident: 1681_CR6 – ident: 1681_CR27 – ident: 1681_CR25 – volume: 168 start-page: 123 issue: 1–2 year: 2018 ident: 1681_CR5 publication-title: Math. Progr. doi: 10.1007/s10107-016-0992-8 – volume: 8 start-page: 231 issue: 3–4 year: 2015 ident: 1681_CR14 publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000050 – volume: 113 start-page: E7351 issue: 47 year: 2016 ident: 1681_CR43 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1614734113 – ident: 1681_CR11 doi: 10.23919/ACC.2019.8814459 – volume: 17 start-page: 103 year: 1962 ident: 1681_CR22 publication-title: Uspekhi Matematicheskikh Nauk (Progres in Mathematics) – volume: 22 start-page: 1 year: 2021 ident: 1681_CR44 publication-title: J. Mach. Learn. Res. – volume: 28 start-page: 251 issue: 1 year: 2018 ident: 1681_CR19 publication-title: SIAM J. Optim. doi: 10.1137/16M1072528 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 1681_CR12 publication-title: SIAM J. Imag. Sci. doi: 10.1137/080716542 – ident: 1681_CR16 – volume: 18 start-page: 1 issue: 212 year: 2018 ident: 1681_CR32 publication-title: J. Mach. Learn. Res. – volume-title: Geophysical Fluid Dynamics year: 2013 ident: 1681_CR38 – volume: 26 start-page: 57 issue: 1 year: 2016 ident: 1681_CR31 publication-title: SIAM J. Optim. doi: 10.1137/15M1009597 – ident: 1681_CR28 – volume-title: Mathematical Methods of Classical Mechanics year: 2013 ident: 1681_CR3 |
SSID | ssj0001388 |
Score | 2.6474555 |
Snippet | Gradient-based optimization algorithms can be studied from the perspective of limiting ordinary differential equations (ODEs). Motivated by the fact that... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 79 |
SubjectTerms | Algorithms Calculus of Variations and Optimal Control; Optimization Combinatorics Constraining Convergence Convex analysis Differential equations Full Length Paper High resolution Liapunov functions Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical optimization Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Optimization Ordinary differential equations Theoretical |
Title | Understanding the acceleration phenomenon via high-resolution differential equations |
URI | https://link.springer.com/article/10.1007/s10107-021-01681-8 https://www.proquest.com/docview/2727219152 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8AB8RTjpR6QOEClJmmb7DgGYwLBaZXgFCVpIiEhBGzw-7G7dsB4SFyaVknTyE5iu44_AxxKI20u8hAnwZGbMbGxCsrGiTKO_FZSlBQ7fH2TD4v08ja7rWFyKBZmzn9PIW6MfqZxMnpzxWK1CO2MCUlpGvp5f7brMqFUk56VdII6QObnPr4Iofmt-JtPtBI1g1VYqXXEqDdl6hos-Md1WP6EHIhP1zO41fEGjIrPISoR1kTGORQoU_ZGdI6LkBbw9u3eRARRHKOZXc-6qEmSgov9IfLPU_Dv8SYUg_NRfxjX6RJil-ZqEqOmFhIRROmsdSkLSpTeGelQRkkbklK5bmmkR_vFZdZzlTlmjE-4EwG5g8UWtHAgfhui0PWpsqg6CbQfy8BsGgy3ZeaZDMoo3wHW0E-7GkucUlo86A8UZKK5RprriuZadeB49s7TFEnjz9ZHxBZNywx7dqaOFsDxEWCV7kmOc4CcjB3Yazin6_U31pz8y2iKZrwDJw03P6p__-7O_5rvwhKneIjq0NketCYvr34ftZSJPYB27_TsdEDlxd3V-UE1XfFa8N47FK3hjw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90PqgP4idOp_ZB8EELbdI22eMQx9RtTxvsLSRpAoKI2unf713XbvMTfGpL0jTcJffRy_0O4FxoYTKe-TDylsKMkQmllyaMpLYUtxI8p9zhwTDrjZO7STqpksKK-rR7HZIsJfVSsltMv9UYub-ZjEO5CmtoDEhay2PWmcvfmEtZF2ol66BKlfl5jE_q6KtQ_hYdLZVOdxu2Kmsx6MzYuwMr7mkXNpcwBPFpMAdeLfZgNF5OVgmwJdDWomqZMTqgE12EuYC37w86ILDiEB3uav0FdbkU3PaPgXuZwYAX-zDu3oyue2FVOCG0SSanIdpsPuKe59YYm8Re8txZLSxqK2F8lEvbzrVw6MnY1DgmUxtr7SJmuUc-4eUAGjgRdwiBb7tEGjSiOHqSuY9N4jUzeepi4aWWrglxTT9lK1RxKm7xqBZ4yERzhTRXJc2VbMLl_J3nGabGn70viC2KNhyObHWVN4DzI-gq1RGMo9hqp6IJrZpzqtqJhWIUaUanNGVNuKq5uWj-_btH_-t-Buu90aCv-rfD-2PYYJQlUR5Fa0Fj-vrmTtB2mZrTcql-ANfD5Lc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOhBfOLqqj0IHrTYNG2TPS6ri8_Fwy7sLSRpAoKIuqu_35k-dtcneGpL0jTMJPPoZL4BOBJamIxnPoy8pTBjZELppQkjqS3FrQTPKXf4rpddDpLrYTqcyeIvTrvXIckyp4FQmp7GZ8-5P5tJfGP0iy0mVziTLJTzsIieCiP3q5N1JrKYcSnroq1kKVRpMz-P8Uk1fRXQ3yKlhQLqrsFqZTkG7ZLV6zDnnjZgZQZPEJ_uJiCso03oD2YTVwJsCbS1qGZKpgd0uovwF_D2_UEHBFwcovNdrcWgLp2CIuAxcC8lJPhoCwbdi37nMqyKKIQ2yeQ4RPvNR9zz3BpjE-Ylz53VwqLmEsZHubStXAuHXo1NjYtlapnWLoot98gzvGzDAk7E7UDgWy6RBg0qjl5l7plJvI5NnjomvNTSNYDV9FO2QhinQhePaoqNTDRXSHNV0FzJBpxM3nku8TX-7H1MbFG0-XBkq6scApwfwViptog5irBWKhrQrDmnql05UjFFndFBTeMGnNbcnDb__t3d_3U_hKX78666verd7MFyTAkTxam0JiyMX9_cPpoxY3NQrNQP9ino3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+acceleration+phenomenon+via+high-resolution+differential+equations&rft.jtitle=Mathematical+programming&rft.au=Shi%2C+Bin&rft.au=Du%2C+Simon+S.&rft.au=Jordan%2C+Michael+I.&rft.au=Su%2C+Weijie+J.&rft.date=2022-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=195&rft.issue=1-2&rft.spage=79&rft.epage=148&rft_id=info:doi/10.1007%2Fs10107-021-01681-8&rft.externalDocID=10_1007_s10107_021_01681_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |