Astrocyte Elevated Gene-1 is a Novel Prognostic Marker for Breast Cancer Progression and Overall Patient Survival
Purpose: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 ( AEG-1 ), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer. Experimental Design: The...
Saved in:
Published in | Clinical cancer research Vol. 14; no. 11; pp. 3319 - 3326 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.06.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 1078-0432 1557-3265 |
DOI | 10.1158/1078-0432.CCR-07-4054 |
Cover
Loading…
Abstract | Purpose: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 ( AEG-1 ), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including
the survival of patients with breast cancer.
Experimental Design: The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary
breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR
was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1
protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry.
Statistical analyses were applied to test for the prognostic and diagnostic associations.
Results: Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer
cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly
up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient.
Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer
biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients
with breast cancer ( P = 0.001), as well as with the tumor classification ( P = 0.004), node classification ( P = 0.026), and metastasis classification ( P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression
had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for
the survival of patients with breast cancer.
Conclusions: Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated
with poor overall survival in patients with breast cancer. |
---|---|
AbstractList | Purpose: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer.
Experimental Design: The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations.
Results: Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer (P = 0.001), as well as with the tumor classification (P = 0.004), node classification (P = 0.026), and metastasis classification (P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer.
Conclusions: Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer. The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer.PURPOSEThe present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer.The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations.EXPERIMENTAL DESIGNThe expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations.Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer (P = 0.001), as well as with the tumor classification (P = 0.004), node classification (P = 0.026), and metastasis classification (P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer.RESULTSWestern blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer (P = 0.001), as well as with the tumor classification (P = 0.004), node classification (P = 0.026), and metastasis classification (P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer.Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer.CONCLUSIONSOur results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer. The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer. The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations. Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer (P = 0.001), as well as with the tumor classification (P = 0.004), node classification (P = 0.026), and metastasis classification (P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer. Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer. Purpose: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 ( AEG-1 ), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer. Experimental Design: The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations. Results: Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer ( P = 0.001), as well as with the tumor classification ( P = 0.004), node classification ( P = 0.026), and metastasis classification ( P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer. Conclusions: Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer. PURPOSE: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer. Experimental Design: The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations. RESULTS: Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer (P = 0.001), as well as with the tumor classification (P = 0.004), node classification (P = 0.026), and metastasis classification (P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer. CONCLUSIONS: Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer. |
Author | Wen-Ting Liao Mengfeng Li Jun Li Hui-Zhong Zhang Nu Zhang Li-Yun Gong Jie Yuan Jueheng Wu Li-Li Jiang Li-Bing Song Mu-Sheng Zeng |
Author_xml | – sequence: 1 givenname: Jun surname: Li fullname: Li, Jun – sequence: 2 givenname: Nu surname: Zhang fullname: Zhang, Nu – sequence: 3 givenname: Li-Bing surname: Song fullname: Song, Li-Bing – sequence: 4 givenname: Wen-Ting surname: Liao fullname: Liao, Wen-Ting – sequence: 5 givenname: Li-Li surname: Jiang fullname: Jiang, Li-Li – sequence: 6 givenname: Li-Yun surname: Gong fullname: Gong, Li-Yun – sequence: 7 givenname: Jueheng surname: Wu fullname: Wu, Jueheng – sequence: 8 givenname: Jie surname: Yuan fullname: Yuan, Jie – sequence: 9 givenname: Hui-Zhong surname: Zhang fullname: Zhang, Hui-Zhong – sequence: 10 givenname: Mu-Sheng surname: Zeng fullname: Zeng, Mu-Sheng – sequence: 11 givenname: Mengfeng surname: Li fullname: Li, Mengfeng |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20491119$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18519759$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQQCNURD_gJ4B8AYlDiiex40Sc2qgtSIUi6N2aOJOuIRu3tjeo_x6nu-2BS0-2rPes0bzDbG9yE2XZW-DHALL-BFzVORdlcdy2P3OucsGleJEdgJQqL4tK7qX7I7OfHYbwm3MQwMWrbB9qCY2SzUF2dxKid-Y-EjsbacZIPbugiXJgNjBk391MI_vh3c3kQrSGfUP_hzwbnGennjBE1uJk0svCeArBuonh1LOrmTyOycVoaYrs18bPdsbxdfZywDHQm915lF2fn123X_LLq4uv7cllbkRVxxyIY9N1hajKXvQ19SVgicLwgfqmRJJcddj1WCgle0FYc1VWVQ8VNUoMUB5lH7bf3np3t6EQ9doGQ-OIE7lN0AoqqWpZPQsWvIGGV0UC3-3ATbemXt96u0Z_rx-XmYD3OwCDwXHwaTE2PHEFFw0ALNznLWe8C8HToI2NaUtuih7tqIHrJbFe8ukln06JNVd6SZxs-Z_9NMgz3sett7I3q7_WkzYP4VIzQm9WGkTSdVmmCf8B_8e39Q |
CitedBy_id | crossref_primary_10_1016_j_bbrc_2018_05_019 crossref_primary_10_18632_oncotarget_17020 crossref_primary_10_1186_s13000_014_0173_0 crossref_primary_10_1016_j_bihy_2008_10_016 crossref_primary_10_1016_j_tranon_2019_03_005 crossref_primary_10_1186_s12967_017_1275_8 crossref_primary_10_1186_1756_9966_28_19 crossref_primary_10_1002_cbin_10125 crossref_primary_10_1016_j_cellsig_2010_01_009 crossref_primary_10_1038_srep38365 crossref_primary_10_1186_1476_4598_13_106 crossref_primary_10_1177_1533033820920253 crossref_primary_10_2353_ajpath_2010_090502 crossref_primary_10_1007_s13277_014_1883_3 crossref_primary_10_3389_fonc_2020_01730 crossref_primary_10_1007_s12282_012_0398_2 crossref_primary_10_18632_oncotarget_6302 crossref_primary_10_3892_or_2015_4081 crossref_primary_10_1002_path_4767 crossref_primary_10_29252_mlj_12_3_6 crossref_primary_10_1016_j_lfs_2020_117342 crossref_primary_10_1038_onc_2013_286 crossref_primary_10_1111_j_1743_7563_2012_01541_x crossref_primary_10_1158_0008_5472_CAN_09_1846 crossref_primary_10_1186_1471_2407_10_495 crossref_primary_10_1016_j_cellsig_2013_03_001 crossref_primary_10_1097_MD_0000000000000423 crossref_primary_10_1002_1878_0261_12202 crossref_primary_10_3390_ijms24054694 crossref_primary_10_1080_21655979_2022_2064652 crossref_primary_10_1111_IGC_0b013e3181ef8e21 crossref_primary_10_1007_s10549_012_2080_y crossref_primary_10_1186_1471_2407_14_869 crossref_primary_10_3390_genes12020308 crossref_primary_10_1002_path_2595 crossref_primary_10_1038_s41467_023_37227_z crossref_primary_10_1016_j_cyto_2013_09_017 crossref_primary_10_31083_j_fbl2809212 crossref_primary_10_1016_j_jpurol_2013_09_010 crossref_primary_10_1038_s41419_018_1248_8 crossref_primary_10_1007_s11805_011_0568_6 crossref_primary_10_1007_s10620_016_4075_8 crossref_primary_10_18632_oncotarget_7536 crossref_primary_10_1186_2045_3701_3_16 crossref_primary_10_1186_s12885_015_2032_0 crossref_primary_10_1038_bjc_2014_250 crossref_primary_10_1002_jnr_24044 crossref_primary_10_18632_oncotarget_5351 crossref_primary_10_1111_j_1349_7006_2009_01325_x crossref_primary_10_3892_ijo_2019_4782 crossref_primary_10_1073_pnas_0901451106 crossref_primary_10_1080_21655979_2021_2015527 crossref_primary_10_1186_1479_5876_12_196 crossref_primary_10_1016_j_bbrc_2011_12_129 crossref_primary_10_1038_bjc_2015_206 crossref_primary_10_1186_1479_5876_10_109 crossref_primary_10_4236_abcr_2013_23014 crossref_primary_10_1016_j_tice_2017_09_005 crossref_primary_10_1007_s11010_022_04599_7 crossref_primary_10_1186_s12935_020_1136_z crossref_primary_10_1002_path_6059 crossref_primary_10_1158_0008_5472_CAN_09_3838 crossref_primary_10_1007_s11033_020_05334_5 crossref_primary_10_1007_s12032_014_0986_4 crossref_primary_10_1158_0008_5472_CAN_08_3810 crossref_primary_10_1158_1078_0432_CCR_08_0754 crossref_primary_10_25259_Cytojournal_44_2024 crossref_primary_10_1186_1471_2407_12_406 crossref_primary_10_3892_ol_2011_268 crossref_primary_10_1172_JCI58849 crossref_primary_10_1016_j_bbrc_2010_10_003 crossref_primary_10_1186_1471_2407_14_479 crossref_primary_10_3892_mmr_2021_12482 crossref_primary_10_1038_srep21549 crossref_primary_10_5301_JBM_2012_9769 crossref_primary_10_1186_s13046_016_0390_3 crossref_primary_10_1111_1440_1681_13185 crossref_primary_10_1097_MD_0000000000000502 crossref_primary_10_1002_ijc_31766 crossref_primary_10_1002_jbt_22028 crossref_primary_10_1074_jbc_M112_395913 crossref_primary_10_1111_1759_7714_13283 crossref_primary_10_18632_oncotarget_3089 crossref_primary_10_1002_path_3008 crossref_primary_10_1186_1746_1596_5_38 crossref_primary_10_1038_s43018_021_00299_1 crossref_primary_10_3390_cells10061497 crossref_primary_10_7314_APJCP_2012_13_6_2813 crossref_primary_10_1111_jcmm_14168 crossref_primary_10_1007_s13277_015_3760_0 crossref_primary_10_1371_journal_pone_0088796 crossref_primary_10_1111_j_1365_2567_2009_03063_x crossref_primary_10_1016_j_heliyon_2024_e33938 crossref_primary_10_1124_mol_116_107870 crossref_primary_10_1371_journal_pone_0121421 crossref_primary_10_3892_or_2012_1929 crossref_primary_10_3892_or_2014_3391 crossref_primary_10_1186_s12885_015_1124_1 crossref_primary_10_3892_etm_2017_5624 crossref_primary_10_1371_journal_pone_0040607 crossref_primary_10_1186_2045_3701_1_36 crossref_primary_10_1038_onc_2009_223 crossref_primary_10_18632_oncotarget_6483 crossref_primary_10_1021_pr4001527 crossref_primary_10_1158_0008_5472_CAN_14_0968 crossref_primary_10_3390_cancers13112842 crossref_primary_10_1007_s10585_014_9659_0 crossref_primary_10_1016_j_urolonc_2013_11_005 crossref_primary_10_1002_hep_28409 crossref_primary_10_1158_1078_0432_CCR_12_3794 crossref_primary_10_1007_s12032_012_0383_9 crossref_primary_10_4161_cc_28607 crossref_primary_10_1136_gutjnl_2013_306388 crossref_primary_10_1016_j_pharmthera_2019_02_006 crossref_primary_10_1155_2014_469358 crossref_primary_10_1186_1479_5876_11_190 crossref_primary_10_1158_1078_0432_CCR_08_2046 crossref_primary_10_1172_JCI62339 crossref_primary_10_1016_j_compbiolchem_2021_107478 crossref_primary_10_3892_mmr_2018_9292 crossref_primary_10_7314_APJCP_2012_13_6_2833 crossref_primary_10_3892_mmr_2018_9295 crossref_primary_10_1002_cam4_1053 crossref_primary_10_18632_oncotarget_5160 crossref_primary_10_3390_cancers13081792 crossref_primary_10_1186_1476_4598_13_195 crossref_primary_10_1038_onc_2009_93 crossref_primary_10_1111_j_1759_7714_2011_00064_x crossref_primary_10_1371_journal_pone_0148763 crossref_primary_10_15252_emmm_201910638 crossref_primary_10_1007_s10330_010_0607_4 crossref_primary_10_1186_1477_7819_11_297 crossref_primary_10_1371_journal_pone_0015797 crossref_primary_10_1007_s11684_016_0429_z crossref_primary_10_1016_j_bbrc_2017_03_090 crossref_primary_10_1016_j_ejmhg_2013_08_002 crossref_primary_10_1093_carcin_bgr321 crossref_primary_10_1016_j_gene_2016_11_046 crossref_primary_10_1007_s00384_010_1009_3 crossref_primary_10_1158_1078_0432_CCR_11_3156 crossref_primary_10_1158_1078_0432_CCR_09_0049 crossref_primary_10_1016_j_humpath_2011_08_017 crossref_primary_10_3892_mmr_2017_7829 crossref_primary_10_1073_pnas_1009479107 crossref_primary_10_1158_0008_5472_CAN_15_1770 crossref_primary_10_1016_j_canep_2012_10_007 crossref_primary_10_1371_journal_pone_0064709 crossref_primary_10_1016_j_pneurobio_2016_03_006 crossref_primary_10_1007_s12032_014_0361_5 crossref_primary_10_1371_journal_pone_0025454 crossref_primary_10_1016_j_biopha_2018_05_048 crossref_primary_10_3892_ijo_2017_3926 crossref_primary_10_1016_j_clineuro_2010_02_007 crossref_primary_10_1038_cddis_2013_256 crossref_primary_10_1038_cr_2012_174 crossref_primary_10_1038_onc_2013_559 crossref_primary_10_1002_path_2751 crossref_primary_10_1038_s41388_018_0484_9 crossref_primary_10_1093_carcin_bgq209 crossref_primary_10_2147_CMAR_S246166 crossref_primary_10_1186_s13058_014_0465_z crossref_primary_10_1038_nrclinonc_2013_4 crossref_primary_10_1186_s13046_017_0597_y crossref_primary_10_1158_1078_0432_CCR_10_0720 crossref_primary_10_1158_0008_5472_CAN_12_2651 crossref_primary_10_1097_CAD_0000000000000920 crossref_primary_10_1097_MD_0000000000000294 crossref_primary_10_3892_mmr_2017_8264 crossref_primary_10_3892_mmr_2019_9805 crossref_primary_10_3892_or_2015_4024 crossref_primary_10_1016_j_febslet_2012_08_003 crossref_primary_10_1016_j_ygyno_2016_09_010 crossref_primary_10_1038_s41598_017_15805_8 crossref_primary_10_1186_1471_2407_14_457 crossref_primary_10_1172_JCI65871 crossref_primary_10_1371_journal_pone_0029363 crossref_primary_10_1016_j_biopha_2018_04_123 crossref_primary_10_1002_biot_201300321 crossref_primary_10_1093_neuonc_now229 crossref_primary_10_1586_14737159_9_2_187 crossref_primary_10_1111_his_12720 crossref_primary_10_1091_mbc_E14_10_1443 crossref_primary_10_1097_MD_0000000000002228 crossref_primary_10_1016_j_radonc_2017_04_001 crossref_primary_10_1002_jso_21788 crossref_primary_10_3892_or_2017_5815 crossref_primary_10_1158_0008_5472_CAN_19_0376 crossref_primary_10_3389_fphar_2020_584450 crossref_primary_10_1111_jcmm_13258 crossref_primary_10_1002_cbin_10961 crossref_primary_10_1158_1535_7163_MCT_09_0752 crossref_primary_10_1097_CAD_0b013e328360093b crossref_primary_10_1038_ncomms5620 crossref_primary_10_1186_1476_4598_12_109 crossref_primary_10_3892_ol_2017_7053 crossref_primary_10_3892_or_2015_4396 crossref_primary_10_3892_or_2013_2598 crossref_primary_10_2147_OTT_S281328 crossref_primary_10_1371_journal_pone_0039449 crossref_primary_10_4161_cbt_11_1_13835 crossref_primary_10_1016_j_bbrc_2014_01_046 crossref_primary_10_1002_mc_23135 crossref_primary_10_1016_j_lfs_2018_07_034 crossref_primary_10_1186_s41016_015_0017_0 crossref_primary_10_1016_j_pharmthera_2011_01_008 crossref_primary_10_1007_s13277_014_2827_7 crossref_primary_10_1038_s41598_024_78413_3 crossref_primary_10_1042_BSR20193153 crossref_primary_10_1186_1471_2407_10_336 crossref_primary_10_1038_bjc_2013_829 crossref_primary_10_18632_oncotarget_8121 crossref_primary_10_18632_oncotarget_9572 crossref_primary_10_1158_1541_7786_MCR_18_0157 crossref_primary_10_1007_s12672_024_01112_y crossref_primary_10_3892_mmr_2017_7908 crossref_primary_10_3892_ol_2018_9013 crossref_primary_10_1111_j_1349_7006_2011_01919_x crossref_primary_10_3892_mmr_2015_3357 crossref_primary_10_1016_j_canlet_2013_09_033 crossref_primary_10_1158_1078_0432_CCR_10_3068 crossref_primary_10_1371_journal_pone_0051561 crossref_primary_10_3892_ol_2014_1950 crossref_primary_10_1002_ijc_29289 crossref_primary_10_1128_MCB_00456_16 crossref_primary_10_1016_j_carbpol_2016_06_046 crossref_primary_10_1186_1476_4598_14_2 crossref_primary_10_1002_ijc_28071 crossref_primary_10_1038_onc_2009_171 crossref_primary_10_1186_1479_5876_12_33 crossref_primary_10_1074_jbc_M115_649004 crossref_primary_10_1155_2018_3145689 crossref_primary_10_1016_j_ijbiomac_2013_11_034 crossref_primary_10_1007_s12032_014_0083_8 crossref_primary_10_1186_1475_2867_13_88 crossref_primary_10_3892_mmr_2014_3056 crossref_primary_10_1016_j_bbrc_2014_09_009 crossref_primary_10_1007_s13277_015_3739_x crossref_primary_10_1002_mc_21894 crossref_primary_10_1007_s13277_015_3582_0 crossref_primary_10_1038_s41388_019_1126_6 crossref_primary_10_1093_carcin_bgp064 crossref_primary_10_1186_1479_5876_9_205 crossref_primary_10_18632_oncotarget_8700 crossref_primary_10_3892_ijo_2015_2973 crossref_primary_10_1016_j_bbrc_2023_149420 crossref_primary_10_1038_onc_2011_500 crossref_primary_10_1371_journal_pone_0127599 crossref_primary_10_1016_j_molonc_2014_01_009 crossref_primary_10_1016_j_bbrc_2013_10_052 crossref_primary_10_1111_febs_13391 crossref_primary_10_3389_fonc_2019_00847 crossref_primary_10_1093_carcin_bgs320 crossref_primary_10_1371_journal_pone_0017582 |
Cites_doi | 10.1016/j.pharmthera.2007.01.010 10.1007/BF01840834 10.1016/S1470-2045(01)00486-7 10.1016/j.canlet.2005.11.013 10.1007/978-1-4757-3656-4 10.1101/sqb.2005.70.044 10.1016/S0197-0186(01)00137-1 10.1158/0008-5472.CAN-05-3029 10.5858/2000-124-0966-PFIBC 10.1016/j.gde.2006.12.004 10.1073/pnas.0608386103 10.1111/j.1365-2559.1991.tb00229.x 10.1038/sj.onc.1205445 10.1007/978-3-540-31209-3_8 10.1128/MCB.22.7.2111-2123.2002 10.1016/0046-8177(95)90010-1 10.1038/sj.onc.1210572 10.1038/nrc2109 10.1016/S0378-1119(03)00404-9 10.1016/j.gene.2005.04.006 10.1158/1078-0432.CCR-03-0489 10.1016/S1535-6108(04)00079-0 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 P64 RC3 7X8 |
DOI | 10.1158/1078-0432.CCR-07-4054 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 3326 |
ExternalDocumentID | 18519759 20491119 10_1158_1078_0432_CCR_07_4054 14_11_3319 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 08R 29B 2WC 34G 39C 3O- 4H- 53G 55 5GY 5RE 5VS AAPBV ABFLS ABOCM ACIWK ACPRK ADACO ADBBV ADBIT AENEX AETEA AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FH7 FRP GX1 H13 H~9 IH2 KQ8 L7B LSO MVM O0- OHT OK1 P0W P2P RCR RHF RHI RNS SJN UDS VH1 W2D WOQ X7M XFK XJT ZA5 ZCG --- .55 18M 2FS 6J9 AAFWJ AAJMC AAYXX ACGFO ACSVP ADCOW AFHIN AFOSN AFUMD AI. BR6 BTFSW CITATION QTD TR2 W8F YKV .GJ 1CY ADNWM IQODW J5H WHG ZGI CGR CUY CVF ECM EIF NPM VXZ 7TK 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c468t-1e0a9bb2463d4d8ed31a3a4c0fed93ae507babda2775d4ea807366d16e974f13 |
ISSN | 1078-0432 |
IngestDate | Fri Jul 11 00:52:46 EDT 2025 Fri Jul 11 15:42:04 EDT 2025 Wed Feb 19 01:45:23 EST 2025 Mon Jul 21 09:15:34 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Tue Jul 01 03:06:14 EDT 2025 Fri Jan 15 20:06:57 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Human Breast disease Prognosis Neuroglia Biological marker Breast cancer Malignant tumor Astrocyte Survival Mammary gland diseases Gene Tumor progression Genetics Cancer |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c468t-1e0a9bb2463d4d8ed31a3a4c0fed93ae507babda2775d4ea807366d16e974f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18519759 |
PQID | 20919062 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_71657856 proquest_miscellaneous_20919062 pubmed_primary_18519759 pascalfrancis_primary_20491119 crossref_citationtrail_10_1158_1078_0432_CCR_07_4054 crossref_primary_10_1158_1078_0432_CCR_07_4054 highwire_cancerresearch_14_11_3319 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-06-01 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2008 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061021414883200_B7 2022061021414883200_B8 2022061021414883200_B9 2022061021414883200_B14 2022061021414883200_B15 2022061021414883200_B12 2022061021414883200_B23 2022061021414883200_B13 2022061021414883200_B24 2022061021414883200_B18 2022061021414883200_B19 2022061021414883200_B16 2022061021414883200_B17 2022061021414883200_B1 2022061021414883200_B2 2022061021414883200_B3 2022061021414883200_B10 2022061021414883200_B21 2022061021414883200_B4 2022061021414883200_B11 2022061021414883200_B22 2022061021414883200_B5 2022061021414883200_B6 2022061021414883200_B20 |
References_xml | – ident: 2022061021414883200_B13 doi: 10.1016/j.pharmthera.2007.01.010 – ident: 2022061021414883200_B4 doi: 10.1007/BF01840834 – ident: 2022061021414883200_B1 doi: 10.1016/S1470-2045(01)00486-7 – ident: 2022061021414883200_B18 doi: 10.1016/j.canlet.2005.11.013 – ident: 2022061021414883200_B17 doi: 10.1007/978-1-4757-3656-4 – ident: 2022061021414883200_B23 doi: 10.1101/sqb.2005.70.044 – ident: 2022061021414883200_B15 doi: 10.1016/S0197-0186(01)00137-1 – ident: 2022061021414883200_B10 doi: 10.1158/0008-5472.CAN-05-3029 – ident: 2022061021414883200_B5 doi: 10.5858/2000-124-0966-PFIBC – ident: 2022061021414883200_B24 doi: 10.1016/j.gde.2006.12.004 – ident: 2022061021414883200_B11 doi: 10.1073/pnas.0608386103 – ident: 2022061021414883200_B3 doi: 10.1111/j.1365-2559.1991.tb00229.x – ident: 2022061021414883200_B7 doi: 10.1038/sj.onc.1205445 – ident: 2022061021414883200_B14 – ident: 2022061021414883200_B19 – ident: 2022061021414883200_B22 doi: 10.1007/978-3-540-31209-3_8 – ident: 2022061021414883200_B16 doi: 10.1128/MCB.22.7.2111-2123.2002 – ident: 2022061021414883200_B2 doi: 10.1016/0046-8177(95)90010-1 – ident: 2022061021414883200_B12 doi: 10.1038/sj.onc.1210572 – ident: 2022061021414883200_B21 doi: 10.1038/nrc2109 – ident: 2022061021414883200_B8 doi: 10.1016/S0378-1119(03)00404-9 – ident: 2022061021414883200_B9 doi: 10.1016/j.gene.2005.04.006 – ident: 2022061021414883200_B20 doi: 10.1158/1078-0432.CCR-03-0489 – ident: 2022061021414883200_B6 doi: 10.1016/S1535-6108(04)00079-0 |
SSID | ssj0014104 |
Score | 2.4298642 |
Snippet | Purpose: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 ( AEG-1 ), one of the target genes of oncogenic Ha-ras, in... Purpose: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast... The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer... PURPOSE: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast... |
SourceID | proquest pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3319 |
SubjectTerms | Adult Antineoplastic agents Astrocyte elevated gene-1 Biological and medical sciences Biomarker Biomarkers, Tumor - analysis Blotting, Western Breast cancer Breast Neoplasms - metabolism Breast Neoplasms - mortality Breast Neoplasms - pathology Cell Adhesion Molecules - biosynthesis Disease Progression Female Gene Expression Gynecology. Andrology. Obstetrics Humans Immunohistochemistry Kaplan-Meier Estimate Mammary gland diseases Medical sciences Middle Aged Pharmacology. Drug treatments Prognosis Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - analysis Tumors |
Title | Astrocyte Elevated Gene-1 is a Novel Prognostic Marker for Breast Cancer Progression and Overall Patient Survival |
URI | http://clincancerres.aacrjournals.org/content/14/11/3319.abstract https://www.ncbi.nlm.nih.gov/pubmed/18519759 https://www.proquest.com/docview/20919062 https://www.proquest.com/docview/71657856 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDflsViIW5USN47rHHerhRXaLRIqorfIThypUpVCm1aCn8MvZSZ-pAu7wHKp2siepJkv45nJN2NCXis2LgrGIcjJ4jjiUotICp5GZeuPVFUiC0zon0_F6Sf-fp7Oe70fe6ylbaOHxfdL60r-R6twDPSKVbLX0GwQCgfgO-gXPkHD8PlPOj7aNLD-fGvM4GRpdgqdR2wjHTHcplwNpqudWWIpAJLpsDErFuaYdcssPEYyejOYoNLX7RhLiLXc5A87TFUtsYE_1kuCeQGLsnOX4_sa-JrKwspwbYNCevlsYas-AvpCbnq6DXkdRwg-W0THfg1tp6o2g_vZ1NHMH_epCdlRqJw1jbF9L3cJTOMsbApWbWQ3iAgmmO9Dje0Z1CRxFtW4n7a-_nfDn8o2B-FOOJxMPmIGFtxR3q10_u3-LwtgoCW2AVEqcxSTo5gcxOTxOEcxN8jNEYQiuEvGu3mgESFNllteqz2zqxIDMW8uvZqL_o_vSY2UXLUBnVV2O5Wr453W75ndJXdcwEKPLPrukZ6p75Nb546S8YB8DSCkHoTUgpAuNlTRFoS0AyG1IKQAQmpBSC0I6R4IKYCQOhBSB0LqQfiQzN6ezCankdvHIyq4kE3ETKwyrUdcJCUvpSkTphLFi7gyZZYoAyGJVrpUcHvTkhslYdkRomTCQLBbseQROahXtXlCaKEhQtCghEpzLk0qRSJ4JVk1Bi-Uy7hPuL-5eeF63ONWK8v8j6rtk2GY9sU2efnbhFdec7l9yPwzBqE0zMsRtn1yeEGnQfQIonJwMWDAS6_kHIw6vqlTtVltNzAiY9hA_OoRYyawTZXok8cWHd2FS6xFT7On1_1Tz8jt7iF-Tg6a9da8AI-70Yct5H8CYA3M-g |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Astrocyte+Elevated+Gene-1+is+a+Novel+Prognostic+Marker+for+Breast+Cancer+Progression+and+Overall+Patient+Survival&rft.jtitle=Clinical+cancer+research&rft.au=Li%2C+Jun&rft.au=Zhang%2C+Nu&rft.au=Song%2C+Li-Bing&rft.au=Liao%2C+Wen-Ting&rft.date=2008-06-01&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=14&rft.issue=11&rft.spage=3319&rft.epage=3326&rft_id=info:doi/10.1158%2F1078-0432.CCR-07-4054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1078_0432_CCR_07_4054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |