Astrocyte Elevated Gene-1 is a Novel Prognostic Marker for Breast Cancer Progression and Overall Patient Survival

Purpose: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 ( AEG-1 ), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer. Experimental Design: The...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 14; no. 11; pp. 3319 - 3326
Main Authors Li, Jun, Zhang, Nu, Song, Li-Bing, Liao, Wen-Ting, Jiang, Li-Li, Gong, Li-Yun, Wu, Jueheng, Yuan, Jie, Zhang, Hui-Zhong, Zeng, Mu-Sheng, Li, Mengfeng
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 01.06.2008
Subjects
Online AccessGet full text
ISSN1078-0432
1557-3265
DOI10.1158/1078-0432.CCR-07-4054

Cover

Loading…
Abstract Purpose: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 ( AEG-1 ), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer. Experimental Design: The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations. Results: Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer ( P = 0.001), as well as with the tumor classification ( P = 0.004), node classification ( P = 0.026), and metastasis classification ( P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer. Conclusions: Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer.
AbstractList Purpose: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer. Experimental Design: The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations. Results: Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer (P = 0.001), as well as with the tumor classification (P = 0.004), node classification (P = 0.026), and metastasis classification (P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer. Conclusions: Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer.
The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer.PURPOSEThe present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer.The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations.EXPERIMENTAL DESIGNThe expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations.Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer (P = 0.001), as well as with the tumor classification (P = 0.004), node classification (P = 0.026), and metastasis classification (P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer.RESULTSWestern blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer (P = 0.001), as well as with the tumor classification (P = 0.004), node classification (P = 0.026), and metastasis classification (P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer.Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer.CONCLUSIONSOur results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer.
The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer. The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations. Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer (P = 0.001), as well as with the tumor classification (P = 0.004), node classification (P = 0.026), and metastasis classification (P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer. Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer.
Purpose: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 ( AEG-1 ), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer. Experimental Design: The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations. Results: Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer ( P = 0.001), as well as with the tumor classification ( P = 0.004), node classification ( P = 0.026), and metastasis classification ( P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer. Conclusions: Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer.
PURPOSE: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer and its correlation with clinicopathologic features, including the survival of patients with breast cancer. Experimental Design: The expression of AEG-1 in normal breast epithelial cells, breast cancer cell lines, and in four cases of paired primary breast tumor and normal breast tissue was examined using reverse transcription-PCR and Western blot. Real-time reverse transcription-PCR was applied to determine the mRNA level of AEG-1 in the four paired tissues, each from the same subject. Furthermore, AEG-1 protein expression was analyzed in 225 clinicopathologically characterized breast cancer cases using immunohistochemistry. Statistical analyses were applied to test for the prognostic and diagnostic associations. RESULTS: Western blot and reverse transcription-PCR showed that the expression level of AEG-1 was markedly higher in breast cancer cell lines than that in the normal breast epithelial cells at both mRNA and protein levels. AEG-1 expression levels were significantly up-regulated by up to 35-fold in primary breast tumors in comparison to the paired normal breast tissue from the same patient. Immunohistochemical analysis revealed high expression of AEG-1 in 100 of 225 (44.4%) paraffin-embedded archival breast cancer biopsies. Statistical analysis showed a significant correlation of AEG-1 expression with the clinical staging of the patients with breast cancer (P = 0.001), as well as with the tumor classification (P = 0.004), node classification (P = 0.026), and metastasis classification (P = 0.001). Patients with higher AEG-1 expression had shorter overall survival time, whereas patients with lower AEG-1 expression had better survival. Multivariate analysis suggested that AEG-1 expression might be an independent prognostic indicator for the survival of patients with breast cancer. CONCLUSIONS: Our results suggest that AEG-1 protein is a valuable marker of breast cancer progression. High AEG-1 expression is associated with poor overall survival in patients with breast cancer.
Author Wen-Ting Liao
Mengfeng Li
Jun Li
Hui-Zhong Zhang
Nu Zhang
Li-Yun Gong
Jie Yuan
Jueheng Wu
Li-Li Jiang
Li-Bing Song
Mu-Sheng Zeng
Author_xml – sequence: 1
  givenname: Jun
  surname: Li
  fullname: Li, Jun
– sequence: 2
  givenname: Nu
  surname: Zhang
  fullname: Zhang, Nu
– sequence: 3
  givenname: Li-Bing
  surname: Song
  fullname: Song, Li-Bing
– sequence: 4
  givenname: Wen-Ting
  surname: Liao
  fullname: Liao, Wen-Ting
– sequence: 5
  givenname: Li-Li
  surname: Jiang
  fullname: Jiang, Li-Li
– sequence: 6
  givenname: Li-Yun
  surname: Gong
  fullname: Gong, Li-Yun
– sequence: 7
  givenname: Jueheng
  surname: Wu
  fullname: Wu, Jueheng
– sequence: 8
  givenname: Jie
  surname: Yuan
  fullname: Yuan, Jie
– sequence: 9
  givenname: Hui-Zhong
  surname: Zhang
  fullname: Zhang, Hui-Zhong
– sequence: 10
  givenname: Mu-Sheng
  surname: Zeng
  fullname: Zeng, Mu-Sheng
– sequence: 11
  givenname: Mengfeng
  surname: Li
  fullname: Li, Mengfeng
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20491119$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18519759$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQQCNURD_gJ4B8AYlDiiex40Sc2qgtSIUi6N2aOJOuIRu3tjeo_x6nu-2BS0-2rPes0bzDbG9yE2XZW-DHALL-BFzVORdlcdy2P3OucsGleJEdgJQqL4tK7qX7I7OfHYbwm3MQwMWrbB9qCY2SzUF2dxKid-Y-EjsbacZIPbugiXJgNjBk391MI_vh3c3kQrSGfUP_hzwbnGennjBE1uJk0svCeArBuonh1LOrmTyOycVoaYrs18bPdsbxdfZywDHQm915lF2fn123X_LLq4uv7cllbkRVxxyIY9N1hajKXvQ19SVgicLwgfqmRJJcddj1WCgle0FYc1VWVQ8VNUoMUB5lH7bf3np3t6EQ9doGQ-OIE7lN0AoqqWpZPQsWvIGGV0UC3-3ATbemXt96u0Z_rx-XmYD3OwCDwXHwaTE2PHEFFw0ALNznLWe8C8HToI2NaUtuih7tqIHrJbFe8ukln06JNVd6SZxs-Z_9NMgz3sett7I3q7_WkzYP4VIzQm9WGkTSdVmmCf8B_8e39Q
CitedBy_id crossref_primary_10_1016_j_bbrc_2018_05_019
crossref_primary_10_18632_oncotarget_17020
crossref_primary_10_1186_s13000_014_0173_0
crossref_primary_10_1016_j_bihy_2008_10_016
crossref_primary_10_1016_j_tranon_2019_03_005
crossref_primary_10_1186_s12967_017_1275_8
crossref_primary_10_1186_1756_9966_28_19
crossref_primary_10_1002_cbin_10125
crossref_primary_10_1016_j_cellsig_2010_01_009
crossref_primary_10_1038_srep38365
crossref_primary_10_1186_1476_4598_13_106
crossref_primary_10_1177_1533033820920253
crossref_primary_10_2353_ajpath_2010_090502
crossref_primary_10_1007_s13277_014_1883_3
crossref_primary_10_3389_fonc_2020_01730
crossref_primary_10_1007_s12282_012_0398_2
crossref_primary_10_18632_oncotarget_6302
crossref_primary_10_3892_or_2015_4081
crossref_primary_10_1002_path_4767
crossref_primary_10_29252_mlj_12_3_6
crossref_primary_10_1016_j_lfs_2020_117342
crossref_primary_10_1038_onc_2013_286
crossref_primary_10_1111_j_1743_7563_2012_01541_x
crossref_primary_10_1158_0008_5472_CAN_09_1846
crossref_primary_10_1186_1471_2407_10_495
crossref_primary_10_1016_j_cellsig_2013_03_001
crossref_primary_10_1097_MD_0000000000000423
crossref_primary_10_1002_1878_0261_12202
crossref_primary_10_3390_ijms24054694
crossref_primary_10_1080_21655979_2022_2064652
crossref_primary_10_1111_IGC_0b013e3181ef8e21
crossref_primary_10_1007_s10549_012_2080_y
crossref_primary_10_1186_1471_2407_14_869
crossref_primary_10_3390_genes12020308
crossref_primary_10_1002_path_2595
crossref_primary_10_1038_s41467_023_37227_z
crossref_primary_10_1016_j_cyto_2013_09_017
crossref_primary_10_31083_j_fbl2809212
crossref_primary_10_1016_j_jpurol_2013_09_010
crossref_primary_10_1038_s41419_018_1248_8
crossref_primary_10_1007_s11805_011_0568_6
crossref_primary_10_1007_s10620_016_4075_8
crossref_primary_10_18632_oncotarget_7536
crossref_primary_10_1186_2045_3701_3_16
crossref_primary_10_1186_s12885_015_2032_0
crossref_primary_10_1038_bjc_2014_250
crossref_primary_10_1002_jnr_24044
crossref_primary_10_18632_oncotarget_5351
crossref_primary_10_1111_j_1349_7006_2009_01325_x
crossref_primary_10_3892_ijo_2019_4782
crossref_primary_10_1073_pnas_0901451106
crossref_primary_10_1080_21655979_2021_2015527
crossref_primary_10_1186_1479_5876_12_196
crossref_primary_10_1016_j_bbrc_2011_12_129
crossref_primary_10_1038_bjc_2015_206
crossref_primary_10_1186_1479_5876_10_109
crossref_primary_10_4236_abcr_2013_23014
crossref_primary_10_1016_j_tice_2017_09_005
crossref_primary_10_1007_s11010_022_04599_7
crossref_primary_10_1186_s12935_020_1136_z
crossref_primary_10_1002_path_6059
crossref_primary_10_1158_0008_5472_CAN_09_3838
crossref_primary_10_1007_s11033_020_05334_5
crossref_primary_10_1007_s12032_014_0986_4
crossref_primary_10_1158_0008_5472_CAN_08_3810
crossref_primary_10_1158_1078_0432_CCR_08_0754
crossref_primary_10_25259_Cytojournal_44_2024
crossref_primary_10_1186_1471_2407_12_406
crossref_primary_10_3892_ol_2011_268
crossref_primary_10_1172_JCI58849
crossref_primary_10_1016_j_bbrc_2010_10_003
crossref_primary_10_1186_1471_2407_14_479
crossref_primary_10_3892_mmr_2021_12482
crossref_primary_10_1038_srep21549
crossref_primary_10_5301_JBM_2012_9769
crossref_primary_10_1186_s13046_016_0390_3
crossref_primary_10_1111_1440_1681_13185
crossref_primary_10_1097_MD_0000000000000502
crossref_primary_10_1002_ijc_31766
crossref_primary_10_1002_jbt_22028
crossref_primary_10_1074_jbc_M112_395913
crossref_primary_10_1111_1759_7714_13283
crossref_primary_10_18632_oncotarget_3089
crossref_primary_10_1002_path_3008
crossref_primary_10_1186_1746_1596_5_38
crossref_primary_10_1038_s43018_021_00299_1
crossref_primary_10_3390_cells10061497
crossref_primary_10_7314_APJCP_2012_13_6_2813
crossref_primary_10_1111_jcmm_14168
crossref_primary_10_1007_s13277_015_3760_0
crossref_primary_10_1371_journal_pone_0088796
crossref_primary_10_1111_j_1365_2567_2009_03063_x
crossref_primary_10_1016_j_heliyon_2024_e33938
crossref_primary_10_1124_mol_116_107870
crossref_primary_10_1371_journal_pone_0121421
crossref_primary_10_3892_or_2012_1929
crossref_primary_10_3892_or_2014_3391
crossref_primary_10_1186_s12885_015_1124_1
crossref_primary_10_3892_etm_2017_5624
crossref_primary_10_1371_journal_pone_0040607
crossref_primary_10_1186_2045_3701_1_36
crossref_primary_10_1038_onc_2009_223
crossref_primary_10_18632_oncotarget_6483
crossref_primary_10_1021_pr4001527
crossref_primary_10_1158_0008_5472_CAN_14_0968
crossref_primary_10_3390_cancers13112842
crossref_primary_10_1007_s10585_014_9659_0
crossref_primary_10_1016_j_urolonc_2013_11_005
crossref_primary_10_1002_hep_28409
crossref_primary_10_1158_1078_0432_CCR_12_3794
crossref_primary_10_1007_s12032_012_0383_9
crossref_primary_10_4161_cc_28607
crossref_primary_10_1136_gutjnl_2013_306388
crossref_primary_10_1016_j_pharmthera_2019_02_006
crossref_primary_10_1155_2014_469358
crossref_primary_10_1186_1479_5876_11_190
crossref_primary_10_1158_1078_0432_CCR_08_2046
crossref_primary_10_1172_JCI62339
crossref_primary_10_1016_j_compbiolchem_2021_107478
crossref_primary_10_3892_mmr_2018_9292
crossref_primary_10_7314_APJCP_2012_13_6_2833
crossref_primary_10_3892_mmr_2018_9295
crossref_primary_10_1002_cam4_1053
crossref_primary_10_18632_oncotarget_5160
crossref_primary_10_3390_cancers13081792
crossref_primary_10_1186_1476_4598_13_195
crossref_primary_10_1038_onc_2009_93
crossref_primary_10_1111_j_1759_7714_2011_00064_x
crossref_primary_10_1371_journal_pone_0148763
crossref_primary_10_15252_emmm_201910638
crossref_primary_10_1007_s10330_010_0607_4
crossref_primary_10_1186_1477_7819_11_297
crossref_primary_10_1371_journal_pone_0015797
crossref_primary_10_1007_s11684_016_0429_z
crossref_primary_10_1016_j_bbrc_2017_03_090
crossref_primary_10_1016_j_ejmhg_2013_08_002
crossref_primary_10_1093_carcin_bgr321
crossref_primary_10_1016_j_gene_2016_11_046
crossref_primary_10_1007_s00384_010_1009_3
crossref_primary_10_1158_1078_0432_CCR_11_3156
crossref_primary_10_1158_1078_0432_CCR_09_0049
crossref_primary_10_1016_j_humpath_2011_08_017
crossref_primary_10_3892_mmr_2017_7829
crossref_primary_10_1073_pnas_1009479107
crossref_primary_10_1158_0008_5472_CAN_15_1770
crossref_primary_10_1016_j_canep_2012_10_007
crossref_primary_10_1371_journal_pone_0064709
crossref_primary_10_1016_j_pneurobio_2016_03_006
crossref_primary_10_1007_s12032_014_0361_5
crossref_primary_10_1371_journal_pone_0025454
crossref_primary_10_1016_j_biopha_2018_05_048
crossref_primary_10_3892_ijo_2017_3926
crossref_primary_10_1016_j_clineuro_2010_02_007
crossref_primary_10_1038_cddis_2013_256
crossref_primary_10_1038_cr_2012_174
crossref_primary_10_1038_onc_2013_559
crossref_primary_10_1002_path_2751
crossref_primary_10_1038_s41388_018_0484_9
crossref_primary_10_1093_carcin_bgq209
crossref_primary_10_2147_CMAR_S246166
crossref_primary_10_1186_s13058_014_0465_z
crossref_primary_10_1038_nrclinonc_2013_4
crossref_primary_10_1186_s13046_017_0597_y
crossref_primary_10_1158_1078_0432_CCR_10_0720
crossref_primary_10_1158_0008_5472_CAN_12_2651
crossref_primary_10_1097_CAD_0000000000000920
crossref_primary_10_1097_MD_0000000000000294
crossref_primary_10_3892_mmr_2017_8264
crossref_primary_10_3892_mmr_2019_9805
crossref_primary_10_3892_or_2015_4024
crossref_primary_10_1016_j_febslet_2012_08_003
crossref_primary_10_1016_j_ygyno_2016_09_010
crossref_primary_10_1038_s41598_017_15805_8
crossref_primary_10_1186_1471_2407_14_457
crossref_primary_10_1172_JCI65871
crossref_primary_10_1371_journal_pone_0029363
crossref_primary_10_1016_j_biopha_2018_04_123
crossref_primary_10_1002_biot_201300321
crossref_primary_10_1093_neuonc_now229
crossref_primary_10_1586_14737159_9_2_187
crossref_primary_10_1111_his_12720
crossref_primary_10_1091_mbc_E14_10_1443
crossref_primary_10_1097_MD_0000000000002228
crossref_primary_10_1016_j_radonc_2017_04_001
crossref_primary_10_1002_jso_21788
crossref_primary_10_3892_or_2017_5815
crossref_primary_10_1158_0008_5472_CAN_19_0376
crossref_primary_10_3389_fphar_2020_584450
crossref_primary_10_1111_jcmm_13258
crossref_primary_10_1002_cbin_10961
crossref_primary_10_1158_1535_7163_MCT_09_0752
crossref_primary_10_1097_CAD_0b013e328360093b
crossref_primary_10_1038_ncomms5620
crossref_primary_10_1186_1476_4598_12_109
crossref_primary_10_3892_ol_2017_7053
crossref_primary_10_3892_or_2015_4396
crossref_primary_10_3892_or_2013_2598
crossref_primary_10_2147_OTT_S281328
crossref_primary_10_1371_journal_pone_0039449
crossref_primary_10_4161_cbt_11_1_13835
crossref_primary_10_1016_j_bbrc_2014_01_046
crossref_primary_10_1002_mc_23135
crossref_primary_10_1016_j_lfs_2018_07_034
crossref_primary_10_1186_s41016_015_0017_0
crossref_primary_10_1016_j_pharmthera_2011_01_008
crossref_primary_10_1007_s13277_014_2827_7
crossref_primary_10_1038_s41598_024_78413_3
crossref_primary_10_1042_BSR20193153
crossref_primary_10_1186_1471_2407_10_336
crossref_primary_10_1038_bjc_2013_829
crossref_primary_10_18632_oncotarget_8121
crossref_primary_10_18632_oncotarget_9572
crossref_primary_10_1158_1541_7786_MCR_18_0157
crossref_primary_10_1007_s12672_024_01112_y
crossref_primary_10_3892_mmr_2017_7908
crossref_primary_10_3892_ol_2018_9013
crossref_primary_10_1111_j_1349_7006_2011_01919_x
crossref_primary_10_3892_mmr_2015_3357
crossref_primary_10_1016_j_canlet_2013_09_033
crossref_primary_10_1158_1078_0432_CCR_10_3068
crossref_primary_10_1371_journal_pone_0051561
crossref_primary_10_3892_ol_2014_1950
crossref_primary_10_1002_ijc_29289
crossref_primary_10_1128_MCB_00456_16
crossref_primary_10_1016_j_carbpol_2016_06_046
crossref_primary_10_1186_1476_4598_14_2
crossref_primary_10_1002_ijc_28071
crossref_primary_10_1038_onc_2009_171
crossref_primary_10_1186_1479_5876_12_33
crossref_primary_10_1074_jbc_M115_649004
crossref_primary_10_1155_2018_3145689
crossref_primary_10_1016_j_ijbiomac_2013_11_034
crossref_primary_10_1007_s12032_014_0083_8
crossref_primary_10_1186_1475_2867_13_88
crossref_primary_10_3892_mmr_2014_3056
crossref_primary_10_1016_j_bbrc_2014_09_009
crossref_primary_10_1007_s13277_015_3739_x
crossref_primary_10_1002_mc_21894
crossref_primary_10_1007_s13277_015_3582_0
crossref_primary_10_1038_s41388_019_1126_6
crossref_primary_10_1093_carcin_bgp064
crossref_primary_10_1186_1479_5876_9_205
crossref_primary_10_18632_oncotarget_8700
crossref_primary_10_3892_ijo_2015_2973
crossref_primary_10_1016_j_bbrc_2023_149420
crossref_primary_10_1038_onc_2011_500
crossref_primary_10_1371_journal_pone_0127599
crossref_primary_10_1016_j_molonc_2014_01_009
crossref_primary_10_1016_j_bbrc_2013_10_052
crossref_primary_10_1111_febs_13391
crossref_primary_10_3389_fonc_2019_00847
crossref_primary_10_1093_carcin_bgs320
crossref_primary_10_1371_journal_pone_0017582
Cites_doi 10.1016/j.pharmthera.2007.01.010
10.1007/BF01840834
10.1016/S1470-2045(01)00486-7
10.1016/j.canlet.2005.11.013
10.1007/978-1-4757-3656-4
10.1101/sqb.2005.70.044
10.1016/S0197-0186(01)00137-1
10.1158/0008-5472.CAN-05-3029
10.5858/2000-124-0966-PFIBC
10.1016/j.gde.2006.12.004
10.1073/pnas.0608386103
10.1111/j.1365-2559.1991.tb00229.x
10.1038/sj.onc.1205445
10.1007/978-3-540-31209-3_8
10.1128/MCB.22.7.2111-2123.2002
10.1016/0046-8177(95)90010-1
10.1038/sj.onc.1210572
10.1038/nrc2109
10.1016/S0378-1119(03)00404-9
10.1016/j.gene.2005.04.006
10.1158/1078-0432.CCR-03-0489
10.1016/S1535-6108(04)00079-0
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright_xml – notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
P64
RC3
7X8
DOI 10.1158/1078-0432.CCR-07-4054
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 3326
ExternalDocumentID 18519759
20491119
10_1158_1078_0432_CCR_07_4054
14_11_3319
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
08R
29B
2WC
34G
39C
3O-
4H-
53G
55
5GY
5RE
5VS
AAPBV
ABFLS
ABOCM
ACIWK
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AETEA
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FH7
FRP
GX1
H13
H~9
IH2
KQ8
L7B
LSO
MVM
O0-
OHT
OK1
P0W
P2P
RCR
RHF
RHI
RNS
SJN
UDS
VH1
W2D
WOQ
X7M
XFK
XJT
ZA5
ZCG
---
.55
18M
2FS
6J9
AAFWJ
AAJMC
AAYXX
ACGFO
ACSVP
ADCOW
AFHIN
AFOSN
AFUMD
AI.
BR6
BTFSW
CITATION
QTD
TR2
W8F
YKV
.GJ
1CY
ADNWM
IQODW
J5H
WHG
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7TK
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c468t-1e0a9bb2463d4d8ed31a3a4c0fed93ae507babda2775d4ea807366d16e974f13
ISSN 1078-0432
IngestDate Fri Jul 11 00:52:46 EDT 2025
Fri Jul 11 15:42:04 EDT 2025
Wed Feb 19 01:45:23 EST 2025
Mon Jul 21 09:15:34 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Tue Jul 01 03:06:14 EDT 2025
Fri Jan 15 20:06:57 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Human
Breast disease
Prognosis
Neuroglia
Biological marker
Breast cancer
Malignant tumor
Astrocyte
Survival
Mammary gland diseases
Gene
Tumor progression
Genetics
Cancer
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c468t-1e0a9bb2463d4d8ed31a3a4c0fed93ae507babda2775d4ea807366d16e974f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18519759
PQID 20919062
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_71657856
proquest_miscellaneous_20919062
pubmed_primary_18519759
pascalfrancis_primary_20491119
crossref_citationtrail_10_1158_1078_0432_CCR_07_4054
crossref_primary_10_1158_1078_0432_CCR_07_4054
highwire_cancerresearch_14_11_3319
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2008
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 2022061021414883200_B7
2022061021414883200_B8
2022061021414883200_B9
2022061021414883200_B14
2022061021414883200_B15
2022061021414883200_B12
2022061021414883200_B23
2022061021414883200_B13
2022061021414883200_B24
2022061021414883200_B18
2022061021414883200_B19
2022061021414883200_B16
2022061021414883200_B17
2022061021414883200_B1
2022061021414883200_B2
2022061021414883200_B3
2022061021414883200_B10
2022061021414883200_B21
2022061021414883200_B4
2022061021414883200_B11
2022061021414883200_B22
2022061021414883200_B5
2022061021414883200_B6
2022061021414883200_B20
References_xml – ident: 2022061021414883200_B13
  doi: 10.1016/j.pharmthera.2007.01.010
– ident: 2022061021414883200_B4
  doi: 10.1007/BF01840834
– ident: 2022061021414883200_B1
  doi: 10.1016/S1470-2045(01)00486-7
– ident: 2022061021414883200_B18
  doi: 10.1016/j.canlet.2005.11.013
– ident: 2022061021414883200_B17
  doi: 10.1007/978-1-4757-3656-4
– ident: 2022061021414883200_B23
  doi: 10.1101/sqb.2005.70.044
– ident: 2022061021414883200_B15
  doi: 10.1016/S0197-0186(01)00137-1
– ident: 2022061021414883200_B10
  doi: 10.1158/0008-5472.CAN-05-3029
– ident: 2022061021414883200_B5
  doi: 10.5858/2000-124-0966-PFIBC
– ident: 2022061021414883200_B24
  doi: 10.1016/j.gde.2006.12.004
– ident: 2022061021414883200_B11
  doi: 10.1073/pnas.0608386103
– ident: 2022061021414883200_B3
  doi: 10.1111/j.1365-2559.1991.tb00229.x
– ident: 2022061021414883200_B7
  doi: 10.1038/sj.onc.1205445
– ident: 2022061021414883200_B14
– ident: 2022061021414883200_B19
– ident: 2022061021414883200_B22
  doi: 10.1007/978-3-540-31209-3_8
– ident: 2022061021414883200_B16
  doi: 10.1128/MCB.22.7.2111-2123.2002
– ident: 2022061021414883200_B2
  doi: 10.1016/0046-8177(95)90010-1
– ident: 2022061021414883200_B12
  doi: 10.1038/sj.onc.1210572
– ident: 2022061021414883200_B21
  doi: 10.1038/nrc2109
– ident: 2022061021414883200_B8
  doi: 10.1016/S0378-1119(03)00404-9
– ident: 2022061021414883200_B9
  doi: 10.1016/j.gene.2005.04.006
– ident: 2022061021414883200_B20
  doi: 10.1158/1078-0432.CCR-03-0489
– ident: 2022061021414883200_B6
  doi: 10.1016/S1535-6108(04)00079-0
SSID ssj0014104
Score 2.4298642
Snippet Purpose: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 ( AEG-1 ), one of the target genes of oncogenic Ha-ras, in...
Purpose: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast...
The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast cancer...
PURPOSE: The present study was aimed at clarifying the expression of astrocyte elevated gene-1 (AEG-1), one of the target genes of oncogenic Ha-ras, in breast...
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3319
SubjectTerms Adult
Antineoplastic agents
Astrocyte elevated gene-1
Biological and medical sciences
Biomarker
Biomarkers, Tumor - analysis
Blotting, Western
Breast cancer
Breast Neoplasms - metabolism
Breast Neoplasms - mortality
Breast Neoplasms - pathology
Cell Adhesion Molecules - biosynthesis
Disease Progression
Female
Gene Expression
Gynecology. Andrology. Obstetrics
Humans
Immunohistochemistry
Kaplan-Meier Estimate
Mammary gland diseases
Medical sciences
Middle Aged
Pharmacology. Drug treatments
Prognosis
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - analysis
Tumors
Title Astrocyte Elevated Gene-1 is a Novel Prognostic Marker for Breast Cancer Progression and Overall Patient Survival
URI http://clincancerres.aacrjournals.org/content/14/11/3319.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18519759
https://www.proquest.com/docview/20919062
https://www.proquest.com/docview/71657856
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDflsViIW5USN47rHHerhRXaLRIqorfIThypUpVCm1aCn8MvZSZ-pAu7wHKp2siepJkv45nJN2NCXis2LgrGIcjJ4jjiUotICp5GZeuPVFUiC0zon0_F6Sf-fp7Oe70fe6ylbaOHxfdL60r-R6twDPSKVbLX0GwQCgfgO-gXPkHD8PlPOj7aNLD-fGvM4GRpdgqdR2wjHTHcplwNpqudWWIpAJLpsDErFuaYdcssPEYyejOYoNLX7RhLiLXc5A87TFUtsYE_1kuCeQGLsnOX4_sa-JrKwspwbYNCevlsYas-AvpCbnq6DXkdRwg-W0THfg1tp6o2g_vZ1NHMH_epCdlRqJw1jbF9L3cJTOMsbApWbWQ3iAgmmO9Dje0Z1CRxFtW4n7a-_nfDn8o2B-FOOJxMPmIGFtxR3q10_u3-LwtgoCW2AVEqcxSTo5gcxOTxOEcxN8jNEYQiuEvGu3mgESFNllteqz2zqxIDMW8uvZqL_o_vSY2UXLUBnVV2O5Wr453W75ndJXdcwEKPLPrukZ6p75Nb546S8YB8DSCkHoTUgpAuNlTRFoS0AyG1IKQAQmpBSC0I6R4IKYCQOhBSB0LqQfiQzN6ezCankdvHIyq4kE3ETKwyrUdcJCUvpSkTphLFi7gyZZYoAyGJVrpUcHvTkhslYdkRomTCQLBbseQROahXtXlCaKEhQtCghEpzLk0qRSJ4JVk1Bi-Uy7hPuL-5eeF63ONWK8v8j6rtk2GY9sU2efnbhFdec7l9yPwzBqE0zMsRtn1yeEGnQfQIonJwMWDAS6_kHIw6vqlTtVltNzAiY9hA_OoRYyawTZXok8cWHd2FS6xFT7On1_1Tz8jt7iF-Tg6a9da8AI-70Yct5H8CYA3M-g
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Astrocyte+Elevated+Gene-1+is+a+Novel+Prognostic+Marker+for+Breast+Cancer+Progression+and+Overall+Patient+Survival&rft.jtitle=Clinical+cancer+research&rft.au=Li%2C+Jun&rft.au=Zhang%2C+Nu&rft.au=Song%2C+Li-Bing&rft.au=Liao%2C+Wen-Ting&rft.date=2008-06-01&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=14&rft.issue=11&rft.spage=3319&rft.epage=3326&rft_id=info:doi/10.1158%2F1078-0432.CCR-07-4054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1078_0432_CCR_07_4054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon