Four RNA families with functional transient structures
Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a f...
Saved in:
Published in | RNA biology Vol. 12; no. 1; pp. 5 - 20 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5′ flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5′ UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here. |
---|---|
AbstractList | Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5′ flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5′ UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here. Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam . For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5′ flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5′ UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here. |
Author | Meyer, Irmtraud M Zhu, Jing Yun A |
Author_xml | – sequence: 1 givenname: Jing Yun A surname: Zhu fullname: Zhu, Jing Yun A email: irmtraud.meyer@cantab.net organization: Centre for High-Throughput Biology and Department of Computer Science and Department of Medical Genetics; University of British Columbia – sequence: 2 givenname: Irmtraud M surname: Meyer fullname: Meyer, Irmtraud M organization: Centre for High-Throughput Biology and Department of Computer Science and Department of Medical Genetics; University of British Columbia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25751035$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kF1PFTEQhhuDkQ_9CZC95Gax0-9zYyAE1IRoYvS66ZltpWS3xbYL4d-7J-dA8MaraabPvDN5DsleyskTcgz0DKihH0EKrZhRZ4yCXFrUcM3fkAOQUvZGGrG3eQvdb6B9cljrHaVcmZV8R_aZ1BIolwdEXee5dD--XXTBTXGMvnaPsd12YU7YYk5u7FpxqUafWldbmbHNxdf35G1wY_UfdvWI_Lq--nn5pb_5_vnr5cVNj0KZ1sMAK-YVaAjo2KAAqVtjMAL5oB1dS6bZgBzDWmmJDBBkYKAHJVBoNIwfkU_b3Pt5PfkBlyuKG-19iZMrTza7aP_9SfHW_s4PViiQDMQScLoLKPnP7GuzU6zox9Eln-dqQamVkFRQvqByi2LJtRYfXtYAtRvn9tm53Ti3O-fL3MnrG1-mniUvwPkWiCnkMrnHXMbBNvc05hIWuRir5f_f8ReNv5NQ |
CitedBy_id | crossref_primary_10_1093_nar_gkac405 crossref_primary_10_3390_v12121398 crossref_primary_10_1093_nar_gkaa900 crossref_primary_10_1016_j_celrep_2018_02_101 crossref_primary_10_3389_fmicb_2017_02582 crossref_primary_10_1016_j_ymeth_2017_04_009 crossref_primary_10_1002_wrna_1649 crossref_primary_10_1016_j_nbd_2016_12_020 crossref_primary_10_7554_eLife_47549 crossref_primary_10_1002_wrna_1696 crossref_primary_10_1093_nar_gkz364 crossref_primary_10_1021_acscatal_5b02158 crossref_primary_10_1021_acs_jpclett_2c01778 |
Cites_doi | 10.1038/220031a0 10.1093/nar/gkt319 10.1021/bi100434c 10.1006/jmbi.1996.0064 10.1128/JVI.62.6.1855-1861.1988 10.1093/nar/19.19.5409 10.1007/978-1-4684-5424-6_4 10.1093/nar/gks241 10.1093/bioinformatics/btt509 10.1016/S1074-5521(02)00224-7 10.1093/nar/gks1005 10.1093/nar/gkn723 10.1016/S0022-2836(78)80004-7 10.1093/bioinformatics/btq461 10.1073/pnas.0705038104 10.1001/jama.1971.03190200058012 10.1017/S1355838201001984 10.1038/newbio245133a0 10.1073/pnas.94.19.10110 10.1016/S0092-8674(02)01134-0 10.1073/pnas.75.12.5988 10.1016/j.tibs.2003.11.004 10.1073/pnas.71.8.3134 10.1038/298038a0 10.1146/annurev.ge.16.120182.000553 10.1073/pnas.212628899 10.1016/0022-2836(80)90210-7 10.1073/pnas.70.8.2335 10.1093/bioinformatics/bth489 10.1093/nar/27.3.795 10.1016/0022-2836(90)90364-R 10.1038/nsb967 10.1038/newbio231042a0 10.1073/pnas.76.11.5524 10.1038/nature01145 10.1038/418214a 10.1021/bi9916372 10.1016/0042-6822(64)90063-7 10.1016/S0960-9822(00)00109-3 10.1038/298034a0 10.1038/276684a0 10.1073/pnas.74.10.4365 10.1016/0092-8674(80)90320-7 10.1016/0022-2836(76)90317-X 10.1007/978-3-7091-6607-9 10.1016/S0022-2836(78)80005-9 10.1006/jmbi.1999.3083 10.1073/pnas.68.9.2022 10.1093/nar/24.7.1314 10.1016/0022-2836(73)90082-X 10.1093/nar/18.23.6821 10.1093/nar/21.8.1713 10.1073/pnas.87.19.7668 10.1038/323508a0 10.1016/0022-2836(80)90029-7 10.1016/0022-2836(76)90315-6 10.1093/nar/20.15.4027 10.1073/pnas.86.18.7054 10.1146/annurev.bi.64.070195.001355 10.1016/0022-2836(77)90032-8 10.1016/0022-2836(76)90318-1 10.1073/pnas.79.4.998 10.1002/j.1460-2075.1994.tb06556.x 10.1038/289751a0 10.1038/329343a0 10.1038/nature04819 10.1073/pnas.67.2.710 10.1016/j.jmb.2008.02.064 10.1261/rna.037390.112 10.1038/nchembio.562 10.1021/bi00222a006 10.1016/0022-2836(73)90010-7 10.1073/pnas.75.10.4833 10.1046/j.1365-2958.1998.01105.x 10.1099/00221287-72-2-303 10.1038/26912 10.1073/pnas.75.11.5580 10.1006/jmbi.1999.2700 10.1093/bioinformatics/btp250 10.1006/jmbi.2000.3953 10.1038/323558a0 10.1007/s002390010140 10.1038/350434a0 10.1128/JB.133.3.1457-1466.1978 10.1073/pnas.79.7.2181 10.1006/jmbi.1996.0745 10.1016/0022-2836(76)90316-8 10.3109/13813457509069523 10.1073/pnas.0531307100 10.1016/0022-2836(77)90229-7 10.1006/jmbi.1999.2955 10.1006/jmbi.2002.5434 |
ContentType | Journal Article |
Copyright | 2015 The Author(s). Published with license by Taylor & Francis Group, LLC © Jing Yun A Zhu and Irmtraud M Meyer 2015 2015 The Author(s). Published with license by Taylor & Francis Group, LLC © Jing Yun A Zhu and Irmtraud M Meyer 2015 The Author(s) |
Copyright_xml | – notice: 2015 The Author(s). Published with license by Taylor & Francis Group, LLC © Jing Yun A Zhu and Irmtraud M Meyer 2015 – notice: 2015 The Author(s). Published with license by Taylor & Francis Group, LLC © Jing Yun A Zhu and Irmtraud M Meyer 2015 The Author(s) |
DBID | 0YH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1080/15476286.2015.1008373 |
DatabaseName | Taylor & Francis (Open access) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 0YH name: Taylor & Francis (Open access) url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1555-8584 |
EndPage | 20 |
ExternalDocumentID | 10_1080_15476286_2015_1008373 25751035 1008373 |
Genre | RNA Family Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 0YH 123 30N 4.4 53G AAAVI AAJMT ABBKH ABCCY ABFIM ABJVF ABPEM ABQHQ ABTAI ACGFO ACGFS ACTIO ADBBV ADCVX AEGYZ AEISY AENEX AEYOC AFOLD AHDLD AIJEM AIRXU ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AVBZW BAWUL BLEHA BOHLJ C1A CCCUG DGEBU DIK DKSSO E3Z EBS EJD EMOBN F5P FRP FUNRP FVPDL GTTXZ GX1 H13 HYE KYCEM M4Z O9- OK1 P2P RPM SNACF SV3 TEI TFL TFT TFW TR2 TTHFI V1K 0VX AAHBH ACZPZ ADOPC AHDZW AURDB BFWEY CGR CUY CVF CWRZV ECM EIF GROUPED_DOAJ IPNFZ LJTGL NPM OVD PCLFJ RIG TDBHL TEORI AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c468t-1d192e6171fca2d61c0abcf84c3d7a0b5272dc3cfb675c21c15f217d64c47c823 |
IEDL.DBID | RPM |
ISSN | 1547-6286 |
IngestDate | Tue Sep 17 21:27:40 EDT 2024 Fri Oct 25 04:32:50 EDT 2024 Fri Aug 23 00:42:34 EDT 2024 Sat Sep 28 08:05:45 EDT 2024 Tue Jul 04 18:16:21 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | SAM riboswitch HDV ribozyme Levivirus regulatory RNA structures transient RNA structures trp operon leader mutually exclusive RNA structures co-transcriptional RNA folding gene expression |
Language | English |
License | open-access: http://creativecommons.org/licenses/by-nc/3.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted. This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-1d192e6171fca2d61c0abcf84c3d7a0b5272dc3cfb675c21c15f217d64c47c823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615214/ |
PMID | 25751035 |
PQID | 1669450403 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4615214 crossref_primary_10_1080_15476286_2015_1008373 informaworld_taylorfrancis_310_1080_15476286_2015_1008373 pubmed_primary_25751035 proquest_miscellaneous_1669450403 |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | RNA biology |
PublicationTitleAlternate | RNA Biol |
PublicationYear | 2015 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1 12410317 - Nature. 2002 Oct 31;419(6910):952-6 9034357 - J Mol Biol. 1997 Jan 31;265(4):372-84 7922369 - Curr Biol. 1994 Jun 1;4(6):488-98 1923826 - Nucleic Acids Res. 1991 Oct 11;19(19):5409-16 8614636 - Nucleic Acids Res. 1996 Apr 1;24(7):1314-21 12110897 - Nature. 2002 Jul 11;418(6894):214-21 3762705 - Nature. 1986 Oct 9-15;323(6088):508-14 7574482 - Annu Rev Biochem. 1995;64:259-86 7014917 - J Mol Biol. 1980 Dec 5;144(2):133-42 7041118 - Proc Natl Acad Sci U S A. 1982 Feb;79(4):998-1002 2407856 - J Mol Biol. 1990 Jan 20;211(2):447-63 2263447 - Nucleic Acids Res. 1990 Dec 11;18(23):6821-7 23125362 - Nucleic Acids Res. 2013 Jan;41(Database issue):D226-32 7489492 - RNA. 1995 Mar;1(1):79-88 366432 - Nature. 1978 Dec 14;276(5689):684-9 11333027 - RNA. 2001 Mar;7(3):483-94 16810258 - Nature. 2006 Jun 29;441(7097):1172-5 12464185 - Cell. 2002 Nov 27;111(5):747-56 9889275 - Nucleic Acids Res. 1999 Feb 1;27(3):795-802 2217199 - Proc Natl Acad Sci U S A. 1990 Oct;87(19):7668-72 7007895 - Nature. 1981 Feb 26;289(5800):751-8 1998665 - Biochemistry. 1991 Feb 26;30(8):2042-50 4627885 - J Gen Microbiol. 1972 Sep;72(2):303-19 351194 - J Mol Biol. 1978 May 15;121(2):179-92 22434875 - Nucleic Acids Res. 2012 Jul;40(12):e95 340702 - J Mol Biol. 1977 Nov 25;117(1):227-47 364484 - Proc Natl Acad Sci U S A. 1978 Nov;75(11):5580-4 24008419 - Bioinformatics. 2013 Nov 15;29(22):2933-5 4528605 - Proc Natl Acad Sci U S A. 1974 Aug;71(8):3134-8 5289017 - Proc Natl Acad Sci U S A. 1970 Oct;67(2):710-6 781271 - J Mol Biol. 1976 May 15;103(2):351-81 346574 - J Bacteriol. 1978 Mar;133(3):1457-66 6159477 - J Mol Biol. 1980 Sep 5;142(1):123-9 10329189 - J Mol Biol. 1999 May 21;288(5):911-40 10625466 - Biochemistry. 1999 Nov 30;38(48):15986-93 337297 - Proc Natl Acad Sci U S A. 1977 Oct;74(10):4365-9 9288893 - Eur J Biochem. 1997 Aug 1;247(3):741-53 18940867 - Nucleic Acids Res. 2009 Jan;37(Database issue):D26-31 12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13 12323379 - Chem Biol. 2002 Sep;9(9):1043 4582892 - Nat New Biol. 1973 Oct 3;245(144):133-7 3627276 - Nature. 1987 Sep 24-30;329(6137):343-6 8013465 - EMBO J. 1994 Jun 1;13(11):2660-8 6179092 - Proc Natl Acad Sci U S A. 1982 Apr;79(7):2181-5 5283386 - Nat New Biol. 1971 May 12;231(19):42-6 10926514 - J Mol Biol. 2000 Aug 11;301(2):349-67 10094622 - Mol Microbiol. 1998 Nov;30(4):737-49 6186194 - Annu Rev Genet. 1982;16:113-34 2011192 - Nature. 1991 Apr 4;350(6317):434-6 781270 - J Mol Biol. 1976 May 15;103(2):339-49 12702767 - Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5052-6 4940311 - JAMA. 1971 Nov 15;218(7):1026-35 6998564 - Cell. 1980 Jul;20(3):739-48 12910260 - Nat Struct Biol. 2003 Sep;10(9):701-7 14729327 - Trends Biochem Sci. 2004 Jan;29(1):11-7 17986617 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):17995-8000 11955009 - J Mol Biol. 2002 Apr 5;317(4):559-75 9783582 - Nature. 1998 Oct 8;395(6702):567-74 10497021 - J Mol Biol. 1999 Sep 24;292(3):557-67 4578102 - J Mol Biol. 1973 May 5;76(1):89-101 4586412 - J Mol Biol. 1973 Sep 15;79(2):339-49 7045685 - Nature. 1982 Jul 1;298(5869):34-8 21532598 - Nat Chem Biol. 2011 Jun;7(6):393-400 1508687 - Nucleic Acids Res. 1992 Aug 11;20(15):4027-32 4599621 - Proc Natl Acad Sci U S A. 1973 Aug;70(8):2335-9 330867 - J Mol Biol. 1977 Jul 15;113(4):663-77 366606 - Proc Natl Acad Sci U S A. 1978 Dec;75(12):5988-92 368800 - Proc Natl Acad Sci U S A. 1978 Oct;75(10):4833-7 24131802 - RNA. 2013 Nov;19(11):1461-73 351195 - J Mol Biol. 1978 May 15;121(2):193-217 3367426 - J Virol. 1988 Jun;62(6):1855-61 8493088 - Nucleic Acids Res. 1993 Apr 25;21(8):1713-7 11231891 - J Mol Evol. 2001 Feb;52(2):117-28 19398448 - Bioinformatics. 2009 Aug 1;25(15):1974-5 7489495 - RNA. 1995 May;1(3):225-33 5289361 - Proc Natl Acad Sci U S A. 1971 Sep;68(9):2022-4 15377506 - Bioinformatics. 2005 Jan 15;21(2):257-9 781272 - J Mol Biol. 1976 May 15;103(2):383-93 20524672 - Biochemistry. 2010 Jun 29;49(25):5321-30 2429192 - Nature. 1986 Oct 9-15;323(6088):558-60 2476811 - Proc Natl Acad Sci U S A. 1989 Sep;86(18):7054-8 18440024 - J Mol Biol. 2008 May 23;379(1):160-73 6283368 - Nature. 1982 Jul 1;298(5869):38-41 781269 - J Mol Biol. 1976 May 15;103(2):319-37 10438621 - J Mol Biol. 1999 Aug 13;291(2):283-94 58611 - Arch Int Physiol Biochim. 1975 Dec;83(5):909-48 9294171 - Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10110-5 118451 - Proc Natl Acad Sci U S A. 1979 Nov;76(11):5524-8 23625966 - Nucleic Acids Res. 2013 Jul;41(12):6273-85 4877920 - Nature. 1968 Oct 5;220(5162):31-4 8609616 - J Mol Biol. 1996 Feb 16;256(1):8-19 cit0077 cit0078 cit0075 cit0076 cit0073 cit0074 cit0071 cit0072 Zuker M. (cit0082) 1999 cit0079 cit0066 cit0067 cit0064 cit0065 cit0062 cit0063 cit0060 cit0061 Lazinski D. (cit0069) 1995; 1 Groeneveld H. (cit0008) 1995; 1 cit0011 cit0012 cit0097 cit0010 cit0098 cit0095 cit0096 cit0093 cit0094 cit0091 cit0092 cit0090 Shapiro L. (cit0048) 1975 Been M. D. (cit0070) 1997 cit0019 cit0017 cit0018 cit0015 cit0016 cit0013 cit0014 cit0088 cit0001 cit0089 cit0086 cit0087 cit0084 cit0085 cit0083 cit0080 cit0081 cit0009 cit0006 cit0007 cit0004 cit0005 cit0002 cit0003 cit0033 cit0034 cit0031 cit0032 cit0030 Olsthoorn R. C. (cit0059) 1994; 13 Miozzari G. F. (cit0029) 1978; 133 cit0039 cit0037 cit0038 cit0035 cit0036 cit0022 cit0023 cit0020 cit0021 Kuo M. Y. (cit0068) 1988; 62 cit0028 cit0026 cit0027 cit0024 cit0025 cit0055 cit0056 cit0053 cit0054 cit0051 Bollback J. P. (cit0044) 2001; 52 cit0052 cit0050 cit0057 cit0058 cit0045 cit0042 cit0043 cit0040 cit0041 cit0049 cit0046 cit0047 |
References_xml | – ident: cit0023 doi: 10.1038/220031a0 – ident: cit0014 doi: 10.1093/nar/gkt319 – ident: cit0013 doi: 10.1021/bi100434c – ident: cit0057 doi: 10.1006/jmbi.1996.0064 – volume: 62 start-page: 1855 year: 1988 ident: cit0068 publication-title: J Virol doi: 10.1128/JVI.62.6.1855-1861.1988 contributor: fullname: Kuo M. Y. – ident: cit0072 doi: 10.1093/nar/19.19.5409 – ident: cit0056 doi: 10.1007/978-1-4684-5424-6_4 – ident: cit0096 doi: 10.1093/nar/gks241 – ident: cit0092 doi: 10.1093/bioinformatics/btt509 – ident: cit0002 doi: 10.1016/S1074-5521(02)00224-7 – ident: cit0001 doi: 10.1093/nar/gks1005 – ident: cit0093 doi: 10.1093/nar/gkn723 – ident: cit0016 doi: 10.1016/S0022-2836(78)80004-7 – ident: cit0095 doi: 10.1093/bioinformatics/btq461 – ident: cit0006 doi: 10.1073/pnas.0705038104 – ident: cit0017 doi: 10.1001/jama.1971.03190200058012 – ident: cit0007 doi: 10.1017/S1355838201001984 – ident: cit0022 doi: 10.1038/newbio245133a0 – ident: cit0060 doi: 10.1073/pnas.94.19.10110 – ident: cit0087 doi: 10.1016/S0092-8674(02)01134-0 – ident: cit0031 doi: 10.1073/pnas.75.12.5988 – ident: cit0090 doi: 10.1016/j.tibs.2003.11.004 – ident: cit0015 doi: 10.1073/pnas.71.8.3134 – ident: cit0018 doi: 10.1038/298038a0 – volume-title: RNA phages year: 1975 ident: cit0048 contributor: fullname: Shapiro L. – ident: cit0009 doi: 10.1146/annurev.ge.16.120182.000553 – ident: cit0004 doi: 10.1073/pnas.212628899 – ident: cit0040 doi: 10.1016/0022-2836(80)90210-7 – ident: cit0028 doi: 10.1073/pnas.70.8.2335 – ident: cit0094 doi: 10.1093/bioinformatics/bth489 – ident: cit0080 doi: 10.1093/nar/27.3.795 – ident: cit0058 doi: 10.1016/0022-2836(90)90364-R – ident: cit0011 doi: 10.1038/nsb967 – ident: cit0053 doi: 10.1038/newbio231042a0 – volume: 1 start-page: 225 year: 1995 ident: cit0069 publication-title: RNA contributor: fullname: Lazinski D. – ident: cit0033 doi: 10.1073/pnas.76.11.5524 – ident: cit0003 doi: 10.1038/nature01145 – ident: cit0086 doi: 10.1038/418214a – ident: cit0083 doi: 10.1021/bi9916372 – ident: cit0046 doi: 10.1016/0042-6822(64)90063-7 – ident: cit0077 doi: 10.1016/S0960-9822(00)00109-3 – ident: cit0042 doi: 10.1038/298034a0 – ident: cit0036 doi: 10.1038/276684a0 – ident: cit0032 doi: 10.1073/pnas.74.10.4365 – ident: cit0038 doi: 10.1016/0092-8674(80)90320-7 – ident: cit0019 doi: 10.1016/0022-2836(76)90317-X – ident: cit0050 doi: 10.1007/978-3-7091-6607-9 – ident: cit0035 doi: 10.1016/S0022-2836(78)80005-9 – ident: cit0075 doi: 10.1006/jmbi.1999.3083 – ident: cit0049 doi: 10.1073/pnas.68.9.2022 – ident: cit0078 doi: 10.1093/nar/24.7.1314 – ident: cit0025 doi: 10.1016/0022-2836(73)90082-X – ident: cit0071 doi: 10.1093/nar/18.23.6821 – ident: cit0052 doi: 10.1093/nar/21.8.1713 – ident: cit0061 doi: 10.1073/pnas.87.19.7668 – ident: cit0065 doi: 10.1038/323508a0 – ident: cit0021 doi: 10.1016/0022-2836(80)90029-7 – volume-title: NATO ASI Series year: 1999 ident: cit0082 contributor: fullname: Zuker M. – ident: cit0026 doi: 10.1016/0022-2836(76)90315-6 – ident: cit0074 doi: 10.1093/nar/20.15.4027 – year: 1997 ident: cit0070 publication-title: Eur. J.Biochem contributor: fullname: Been M. D. – ident: cit0085 doi: 10.1073/pnas.86.18.7054 – ident: cit0063 doi: 10.1146/annurev.bi.64.070195.001355 – ident: cit0020 doi: 10.1016/0022-2836(77)90032-8 – ident: cit0027 doi: 10.1016/0022-2836(76)90318-1 – ident: cit0039 doi: 10.1073/pnas.79.4.998 – ident: cit0045 – volume: 13 start-page: 2660 year: 1994 ident: cit0059 publication-title: EMBO J doi: 10.1002/j.1460-2075.1994.tb06556.x contributor: fullname: Olsthoorn R. C. – ident: cit0010 doi: 10.1038/289751a0 – ident: cit0067 doi: 10.1038/329343a0 – ident: cit0097 doi: 10.1038/nature04819 – ident: cit0055 doi: 10.1073/pnas.67.2.710 – ident: cit0051 doi: 10.1016/j.jmb.2008.02.064 – ident: cit0005 doi: 10.1261/rna.037390.112 – ident: cit0088 doi: 10.1038/nchembio.562 – ident: cit0073 doi: 10.1021/bi00222a006 – ident: cit0024 doi: 10.1016/0022-2836(73)90010-7 – ident: cit0041 doi: 10.1073/pnas.75.10.4833 – ident: cit0089 doi: 10.1046/j.1365-2958.1998.01105.x – ident: cit0047 doi: 10.1099/00221287-72-2-303 – ident: cit0064 doi: 10.1038/26912 – ident: cit0037 doi: 10.1073/pnas.75.11.5580 – ident: cit0081 doi: 10.1006/jmbi.1999.2700 – ident: cit0098 doi: 10.1093/bioinformatics/btp250 – ident: cit0012 doi: 10.1006/jmbi.2000.3953 – volume: 1 start-page: 79 year: 1995 ident: cit0008 publication-title: RNA contributor: fullname: Groeneveld H. – ident: cit0066 doi: 10.1038/323558a0 – volume: 52 start-page: 117 year: 2001 ident: cit0044 publication-title: J Mol Evol doi: 10.1007/s002390010140 contributor: fullname: Bollback J. P. – ident: cit0076 doi: 10.1038/350434a0 – volume: 133 start-page: 1457 year: 1978 ident: cit0029 publication-title: J.Bact doi: 10.1128/JB.133.3.1457-1466.1978 contributor: fullname: Miozzari G. F. – ident: cit0043 doi: 10.1073/pnas.79.7.2181 – ident: cit0054 doi: 10.1006/jmbi.1996.0745 – ident: cit0034 doi: 10.1016/0022-2836(76)90316-8 – ident: cit0062 doi: 10.3109/13813457509069523 – ident: cit0091 doi: 10.1073/pnas.0531307100 – ident: cit0030 doi: 10.1016/0022-2836(77)90229-7 – ident: cit0079 doi: 10.1006/jmbi.1999.2955 – ident: cit0084 doi: 10.1006/jmbi.2002.5434 |
SSID | ssj0036895 |
Score | 2.1819568 |
Snippet | Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are... |
SourceID | pubmedcentral proquest crossref pubmed informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 5 |
SubjectTerms | 5' Untranslated Regions co-transcriptional RNA folding gene expression Gram-Negative Bacteria - classification Gram-Negative Bacteria - genetics Gram-Negative Bacteria - virology HDV ribozyme Levivirus Levivirus - genetics mutually exclusive RNA structures Nucleic Acid Conformation regulatory RNA structures Riboswitch RNA - chemistry RNA - metabolism RNA Family RNA, Catalytic - metabolism RNA, Viral - chemistry RNA, Viral - metabolism SAM riboswitch Sequence Alignment transient RNA structures trp operon leader Tryptophan - genetics |
SummonAdditionalLinks | – databaseName: Taylor & Francis (Open access) dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66XryIuj7WFxHEWzWvpu1xEZdFcA_igp5KmibowSps9-C_dyZtl11RPHgsTUKYSWbm-zKZEHKhCjB7jpmIaVdGCnxgZKQTkS5KlTKbGRZ4yPuJHk_V3VPcZRPO2rRKxNC-KRQRbDVublPMuoy4a_D6Cd6oxMSsGI_5AWTJdbIhEvD-sKTZ87gzxlKn4eEV7BJhn-4Sz2_DrLinleKlP4Wg3zMpl1zTaJtstTElHTaLYIesuWqX9IcV4Om3T3pJQ5ZnoM_7RI-gNX2YDGmgNgAnU6RiKfq3hhakNbovvCZJm-Kyc0Dke2Q6un28GUft2wmRVTqtI15C6OYgPOHeGlFqbpkprE-VlWViWBGLRJRWWl8AYrCCWx57QCelVlYlNhVyn_Sq98odEiqlNVowD6aIK6N45jzPvMlMkapSpH5ArjqR5R9NiYyct5VHOxnnKOO8lfGAZMuCzevATfjmIZFc_tH3vNNCDhsBTzdM5d7ns5xrnakYbBK0OWi0spiOwNMlJuMBSVb0tWiARbZX_1SvL6HYttIY4aijf8z5mGziZ0PcnJAe6M6dQihTF2dhsX4BYE3pYw priority: 102 providerName: Taylor & Francis |
Title | Four RNA families with functional transient structures |
URI | https://www.tandfonline.com/doi/abs/10.1080/15476286.2015.1008373 https://www.ncbi.nlm.nih.gov/pubmed/25751035 https://search.proquest.com/docview/1669450403 https://pubmed.ncbi.nlm.nih.gov/PMC4615214 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD64-eKLqPMyLyOC-NYtSdO0fRzTMQSHiOLlpaRpgoKrgvPBf-9J2qoTQfC1TSA95_RcvpwLwJHIUe0ZqgIqTREItIGBCg0PZF6IhOpUUY9Dnk_l5Fqc3Ua3SxA1tTA-aV_nj_3yadYvHx98buXLTA-aPLHBxflISGd1xKAFLRTQJkSv1G8oEz9qBV2DOHB1l03ZTkIH7pl75DK6IpcfgNGZG6TD3eUD9RPfvmzTQufS3_zPn2mU3-zSeA1Wa4eSDKuDr8OSKTegMywxmJ69k2PiUzw9dt4BOcbV5HI6JB7XwCCZOByWOONWYYJk7myXq5EkVWfZNwzHN-F6fHo1mgT14IRAC5nMA1ag32bQN2FWK15IpqnKtU2EDotY0TziMS90qG2O4YLmTLPIYmhSSKFFrBMebkG7fC7NDpAw1EpyalEPMaEES41lqVWpyhNR8MR2od-QLHup-mNkrG472pA7c-TOanJ3If1O2GzugQlbTRHJwj_2HjZcyPAvcFcbqjTPb68ZkzIVESokXLNdceXzOA13uxAv8OtzgeuwvfgGBc932q4FbfffO_dgxX1AhdnsQxs5Zw7Qi5nnPWjRu0kPloeTk_ubnpfhD4un73c |
link.rule.ids | 230,315,730,783,787,888,27514,27936,27937,53804,53806,59471,59472,60214,61003 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFH907aG7jG7Z1mxdp0HZzYkky7J9DKEh_UgYpYXehCxLtNA4gbmH_vd9ku00KYNBr7IE8nvS-_jpfQCciALFnqU6otKWkUAdGOnY8kgWpcioyTUNOORsLqc34vw2ud2BpMuFCUH7prgfVA-LQXV_F2IrVwsz7OLEhn9mYyG91hHDd7CH95WKzklvBHAss9BsBY2DNPKZl13iTkaHfswP-ZiuxEcIoH_mW-lw__xAQ8-3F-20Vbv0Xxbo60DKDc00OYAPrUlJRs3WP8KOrT5Bb1ShO714Ir9JCPIM6HkP5ARnk6v5iARkA91k4pFY4tVbgwqS2msvnyVJmtqyj-iQf4abyen1eBq1rRMiI2RWR6xEy82idcKc0byUzFBdGJcJE5eppkXCU16a2LgCHQbDmWGJQ-eklMKI1GQ8_gK71bKyh0Di2GjJqUNJxIQWLLeO5U7nushEyTPXh0FHMrVqKmQo1hYe7citPLlVS-4-5JuEVXWAJlzTR0TF_1n7q-OCwnvgHzd0ZZePfxWTMhcJiiSc87Xhyno7HXf7kG7xaz3B19je_oJHL9Tabo_atzev_An70-vZpbo8m198h_f-ZxoE5wh2kYv2B9o0dXEcTvAzLWHwOg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA4eIL6It-sZQXzrNknTtH1c1MVzEVHwLaQ5UHDrguuD_95J2uquCIKvaQLpzGSOL5MZhI54CWrPEhURYU3EwQZGKrEsEqXhOdGFIgGHvBmI8wd--Zg-TrT6Ckn7unzuVi_DbvX8FHIrR0Mdt3li8e3NCRfe6vB4ZFw8i-bhzBLRBuq1Ek5EHhqugIOQRf71Zft4JyexH_NDPq8r9VkCEKP5djrMX0GQ0Pft20JN1S_9zQv9mUw5YZ36y2ipcStxr97-Cpqx1Spa61UQUg8_8DEOiZ4BQV9Dog-z8d2ghwO6AaEy9mgs9iauRgbx2Fsw_1IS1_Vl3yEoX0cP_bP7k_OoaZ8QaS7ycUQNeG8WPBTqtGJGUE1UqV3OdWIyRcqUZczoRLsSggbNqKapgwDFCK55pnOWbKC56rWyWwgniVaCEQfaiHLFaWEdLZwqVJlzw3LXQd2WZHJUV8mQtCk-2pJbenLLhtwdVEwSVo4DPOHqXiIy-WPtYcsFCWfBX3Coyr6-v0kqRMFTUEswZ7Pmytd2Wu52UDbFr68Jvs729BcQv1BvuxG37X-vPEALt6d9eX0xuNpBi_5fahBnF80BE-0euDXjcj8I8Ce80PFN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four+RNA+families+with+functional+transient+structures&rft.jtitle=RNA+biology&rft.au=Zhu%2C+Jing+Yun+A&rft.au=Meyer%2C+Irmtraud+M&rft.date=2015-01-01&rft.eissn=1555-8584&rft.volume=12&rft.issue=1&rft.spage=5&rft_id=info:doi/10.1080%2F15476286.2015.1008373&rft_id=info%3Apmid%2F25751035&rft.externalDocID=25751035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-6286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-6286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-6286&client=summon |