Four RNA families with functional transient structures

Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a f...

Full description

Saved in:
Bibliographic Details
Published inRNA biology Vol. 12; no. 1; pp. 5 - 20
Main Authors Zhu, Jing Yun A, Meyer, Irmtraud M
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5′ flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5′ UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here.
AbstractList Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5′ flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5′ UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here.
Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam . For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5′ flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5′ UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here.
Author Meyer, Irmtraud M
Zhu, Jing Yun A
Author_xml – sequence: 1
  givenname: Jing Yun A
  surname: Zhu
  fullname: Zhu, Jing Yun A
  email: irmtraud.meyer@cantab.net
  organization: Centre for High-Throughput Biology and Department of Computer Science and Department of Medical Genetics; University of British Columbia
– sequence: 2
  givenname: Irmtraud M
  surname: Meyer
  fullname: Meyer, Irmtraud M
  organization: Centre for High-Throughput Biology and Department of Computer Science and Department of Medical Genetics; University of British Columbia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25751035$$D View this record in MEDLINE/PubMed
BookMark eNp9kF1PFTEQhhuDkQ_9CZC95Gax0-9zYyAE1IRoYvS66ZltpWS3xbYL4d-7J-dA8MaraabPvDN5DsleyskTcgz0DKihH0EKrZhRZ4yCXFrUcM3fkAOQUvZGGrG3eQvdb6B9cljrHaVcmZV8R_aZ1BIolwdEXee5dD--XXTBTXGMvnaPsd12YU7YYk5u7FpxqUafWldbmbHNxdf35G1wY_UfdvWI_Lq--nn5pb_5_vnr5cVNj0KZ1sMAK-YVaAjo2KAAqVtjMAL5oB1dS6bZgBzDWmmJDBBkYKAHJVBoNIwfkU_b3Pt5PfkBlyuKG-19iZMrTza7aP_9SfHW_s4PViiQDMQScLoLKPnP7GuzU6zox9Eln-dqQamVkFRQvqByi2LJtRYfXtYAtRvn9tm53Ti3O-fL3MnrG1-mniUvwPkWiCnkMrnHXMbBNvc05hIWuRir5f_f8ReNv5NQ
CitedBy_id crossref_primary_10_1093_nar_gkac405
crossref_primary_10_3390_v12121398
crossref_primary_10_1093_nar_gkaa900
crossref_primary_10_1016_j_celrep_2018_02_101
crossref_primary_10_3389_fmicb_2017_02582
crossref_primary_10_1016_j_ymeth_2017_04_009
crossref_primary_10_1002_wrna_1649
crossref_primary_10_1016_j_nbd_2016_12_020
crossref_primary_10_7554_eLife_47549
crossref_primary_10_1002_wrna_1696
crossref_primary_10_1093_nar_gkz364
crossref_primary_10_1021_acscatal_5b02158
crossref_primary_10_1021_acs_jpclett_2c01778
Cites_doi 10.1038/220031a0
10.1093/nar/gkt319
10.1021/bi100434c
10.1006/jmbi.1996.0064
10.1128/JVI.62.6.1855-1861.1988
10.1093/nar/19.19.5409
10.1007/978-1-4684-5424-6_4
10.1093/nar/gks241
10.1093/bioinformatics/btt509
10.1016/S1074-5521(02)00224-7
10.1093/nar/gks1005
10.1093/nar/gkn723
10.1016/S0022-2836(78)80004-7
10.1093/bioinformatics/btq461
10.1073/pnas.0705038104
10.1001/jama.1971.03190200058012
10.1017/S1355838201001984
10.1038/newbio245133a0
10.1073/pnas.94.19.10110
10.1016/S0092-8674(02)01134-0
10.1073/pnas.75.12.5988
10.1016/j.tibs.2003.11.004
10.1073/pnas.71.8.3134
10.1038/298038a0
10.1146/annurev.ge.16.120182.000553
10.1073/pnas.212628899
10.1016/0022-2836(80)90210-7
10.1073/pnas.70.8.2335
10.1093/bioinformatics/bth489
10.1093/nar/27.3.795
10.1016/0022-2836(90)90364-R
10.1038/nsb967
10.1038/newbio231042a0
10.1073/pnas.76.11.5524
10.1038/nature01145
10.1038/418214a
10.1021/bi9916372
10.1016/0042-6822(64)90063-7
10.1016/S0960-9822(00)00109-3
10.1038/298034a0
10.1038/276684a0
10.1073/pnas.74.10.4365
10.1016/0092-8674(80)90320-7
10.1016/0022-2836(76)90317-X
10.1007/978-3-7091-6607-9
10.1016/S0022-2836(78)80005-9
10.1006/jmbi.1999.3083
10.1073/pnas.68.9.2022
10.1093/nar/24.7.1314
10.1016/0022-2836(73)90082-X
10.1093/nar/18.23.6821
10.1093/nar/21.8.1713
10.1073/pnas.87.19.7668
10.1038/323508a0
10.1016/0022-2836(80)90029-7
10.1016/0022-2836(76)90315-6
10.1093/nar/20.15.4027
10.1073/pnas.86.18.7054
10.1146/annurev.bi.64.070195.001355
10.1016/0022-2836(77)90032-8
10.1016/0022-2836(76)90318-1
10.1073/pnas.79.4.998
10.1002/j.1460-2075.1994.tb06556.x
10.1038/289751a0
10.1038/329343a0
10.1038/nature04819
10.1073/pnas.67.2.710
10.1016/j.jmb.2008.02.064
10.1261/rna.037390.112
10.1038/nchembio.562
10.1021/bi00222a006
10.1016/0022-2836(73)90010-7
10.1073/pnas.75.10.4833
10.1046/j.1365-2958.1998.01105.x
10.1099/00221287-72-2-303
10.1038/26912
10.1073/pnas.75.11.5580
10.1006/jmbi.1999.2700
10.1093/bioinformatics/btp250
10.1006/jmbi.2000.3953
10.1038/323558a0
10.1007/s002390010140
10.1038/350434a0
10.1128/JB.133.3.1457-1466.1978
10.1073/pnas.79.7.2181
10.1006/jmbi.1996.0745
10.1016/0022-2836(76)90316-8
10.3109/13813457509069523
10.1073/pnas.0531307100
10.1016/0022-2836(77)90229-7
10.1006/jmbi.1999.2955
10.1006/jmbi.2002.5434
ContentType Journal Article
Copyright 2015 The Author(s). Published with license by Taylor & Francis Group, LLC © Jing Yun A Zhu and Irmtraud M Meyer 2015
2015 The Author(s). Published with license by Taylor & Francis Group, LLC © Jing Yun A Zhu and Irmtraud M Meyer 2015 The Author(s)
Copyright_xml – notice: 2015 The Author(s). Published with license by Taylor & Francis Group, LLC © Jing Yun A Zhu and Irmtraud M Meyer 2015
– notice: 2015 The Author(s). Published with license by Taylor & Francis Group, LLC © Jing Yun A Zhu and Irmtraud M Meyer 2015 The Author(s)
DBID 0YH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1080/15476286.2015.1008373
DatabaseName Taylor & Francis (Open access)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 0YH
  name: Taylor & Francis (Open access)
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1555-8584
EndPage 20
ExternalDocumentID 10_1080_15476286_2015_1008373
25751035
1008373
Genre RNA Family
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
0YH
123
30N
4.4
53G
AAAVI
AAJMT
ABBKH
ABCCY
ABFIM
ABJVF
ABPEM
ABQHQ
ABTAI
ACGFO
ACGFS
ACTIO
ADBBV
ADCVX
AEGYZ
AEISY
AENEX
AEYOC
AFOLD
AHDLD
AIJEM
AIRXU
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AVBZW
BAWUL
BLEHA
BOHLJ
C1A
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EJD
EMOBN
F5P
FRP
FUNRP
FVPDL
GTTXZ
GX1
H13
HYE
KYCEM
M4Z
O9-
OK1
P2P
RPM
SNACF
SV3
TEI
TFL
TFT
TFW
TR2
TTHFI
V1K
0VX
AAHBH
ACZPZ
ADOPC
AHDZW
AURDB
BFWEY
CGR
CUY
CVF
CWRZV
ECM
EIF
GROUPED_DOAJ
IPNFZ
LJTGL
NPM
OVD
PCLFJ
RIG
TDBHL
TEORI
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c468t-1d192e6171fca2d61c0abcf84c3d7a0b5272dc3cfb675c21c15f217d64c47c823
IEDL.DBID RPM
ISSN 1547-6286
IngestDate Tue Sep 17 21:27:40 EDT 2024
Fri Oct 25 04:32:50 EDT 2024
Fri Aug 23 00:42:34 EDT 2024
Sat Sep 28 08:05:45 EDT 2024
Tue Jul 04 18:16:21 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords SAM riboswitch
HDV ribozyme
Levivirus
regulatory RNA structures
transient RNA structures
trp operon leader
mutually exclusive RNA structures
co-transcriptional RNA folding
gene expression
Language English
License open-access: http://creativecommons.org/licenses/by-nc/3.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c468t-1d192e6171fca2d61c0abcf84c3d7a0b5272dc3cfb675c21c15f217d64c47c823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615214/
PMID 25751035
PQID 1669450403
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4615214
crossref_primary_10_1080_15476286_2015_1008373
informaworld_taylorfrancis_310_1080_15476286_2015_1008373
pubmed_primary_25751035
proquest_miscellaneous_1669450403
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle RNA biology
PublicationTitleAlternate RNA Biol
PublicationYear 2015
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References 20709691 - Bioinformatics. 2010 Oct 1;26(19):2460-1
12410317 - Nature. 2002 Oct 31;419(6910):952-6
9034357 - J Mol Biol. 1997 Jan 31;265(4):372-84
7922369 - Curr Biol. 1994 Jun 1;4(6):488-98
1923826 - Nucleic Acids Res. 1991 Oct 11;19(19):5409-16
8614636 - Nucleic Acids Res. 1996 Apr 1;24(7):1314-21
12110897 - Nature. 2002 Jul 11;418(6894):214-21
3762705 - Nature. 1986 Oct 9-15;323(6088):508-14
7574482 - Annu Rev Biochem. 1995;64:259-86
7014917 - J Mol Biol. 1980 Dec 5;144(2):133-42
7041118 - Proc Natl Acad Sci U S A. 1982 Feb;79(4):998-1002
2407856 - J Mol Biol. 1990 Jan 20;211(2):447-63
2263447 - Nucleic Acids Res. 1990 Dec 11;18(23):6821-7
23125362 - Nucleic Acids Res. 2013 Jan;41(Database issue):D226-32
7489492 - RNA. 1995 Mar;1(1):79-88
366432 - Nature. 1978 Dec 14;276(5689):684-9
11333027 - RNA. 2001 Mar;7(3):483-94
16810258 - Nature. 2006 Jun 29;441(7097):1172-5
12464185 - Cell. 2002 Nov 27;111(5):747-56
9889275 - Nucleic Acids Res. 1999 Feb 1;27(3):795-802
2217199 - Proc Natl Acad Sci U S A. 1990 Oct;87(19):7668-72
7007895 - Nature. 1981 Feb 26;289(5800):751-8
1998665 - Biochemistry. 1991 Feb 26;30(8):2042-50
4627885 - J Gen Microbiol. 1972 Sep;72(2):303-19
351194 - J Mol Biol. 1978 May 15;121(2):179-92
22434875 - Nucleic Acids Res. 2012 Jul;40(12):e95
340702 - J Mol Biol. 1977 Nov 25;117(1):227-47
364484 - Proc Natl Acad Sci U S A. 1978 Nov;75(11):5580-4
24008419 - Bioinformatics. 2013 Nov 15;29(22):2933-5
4528605 - Proc Natl Acad Sci U S A. 1974 Aug;71(8):3134-8
5289017 - Proc Natl Acad Sci U S A. 1970 Oct;67(2):710-6
781271 - J Mol Biol. 1976 May 15;103(2):351-81
346574 - J Bacteriol. 1978 Mar;133(3):1457-66
6159477 - J Mol Biol. 1980 Sep 5;142(1):123-9
10329189 - J Mol Biol. 1999 May 21;288(5):911-40
10625466 - Biochemistry. 1999 Nov 30;38(48):15986-93
337297 - Proc Natl Acad Sci U S A. 1977 Oct;74(10):4365-9
9288893 - Eur J Biochem. 1997 Aug 1;247(3):741-53
18940867 - Nucleic Acids Res. 2009 Jan;37(Database issue):D26-31
12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13
12323379 - Chem Biol. 2002 Sep;9(9):1043
4582892 - Nat New Biol. 1973 Oct 3;245(144):133-7
3627276 - Nature. 1987 Sep 24-30;329(6137):343-6
8013465 - EMBO J. 1994 Jun 1;13(11):2660-8
6179092 - Proc Natl Acad Sci U S A. 1982 Apr;79(7):2181-5
5283386 - Nat New Biol. 1971 May 12;231(19):42-6
10926514 - J Mol Biol. 2000 Aug 11;301(2):349-67
10094622 - Mol Microbiol. 1998 Nov;30(4):737-49
6186194 - Annu Rev Genet. 1982;16:113-34
2011192 - Nature. 1991 Apr 4;350(6317):434-6
781270 - J Mol Biol. 1976 May 15;103(2):339-49
12702767 - Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5052-6
4940311 - JAMA. 1971 Nov 15;218(7):1026-35
6998564 - Cell. 1980 Jul;20(3):739-48
12910260 - Nat Struct Biol. 2003 Sep;10(9):701-7
14729327 - Trends Biochem Sci. 2004 Jan;29(1):11-7
17986617 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):17995-8000
11955009 - J Mol Biol. 2002 Apr 5;317(4):559-75
9783582 - Nature. 1998 Oct 8;395(6702):567-74
10497021 - J Mol Biol. 1999 Sep 24;292(3):557-67
4578102 - J Mol Biol. 1973 May 5;76(1):89-101
4586412 - J Mol Biol. 1973 Sep 15;79(2):339-49
7045685 - Nature. 1982 Jul 1;298(5869):34-8
21532598 - Nat Chem Biol. 2011 Jun;7(6):393-400
1508687 - Nucleic Acids Res. 1992 Aug 11;20(15):4027-32
4599621 - Proc Natl Acad Sci U S A. 1973 Aug;70(8):2335-9
330867 - J Mol Biol. 1977 Jul 15;113(4):663-77
366606 - Proc Natl Acad Sci U S A. 1978 Dec;75(12):5988-92
368800 - Proc Natl Acad Sci U S A. 1978 Oct;75(10):4833-7
24131802 - RNA. 2013 Nov;19(11):1461-73
351195 - J Mol Biol. 1978 May 15;121(2):193-217
3367426 - J Virol. 1988 Jun;62(6):1855-61
8493088 - Nucleic Acids Res. 1993 Apr 25;21(8):1713-7
11231891 - J Mol Evol. 2001 Feb;52(2):117-28
19398448 - Bioinformatics. 2009 Aug 1;25(15):1974-5
7489495 - RNA. 1995 May;1(3):225-33
5289361 - Proc Natl Acad Sci U S A. 1971 Sep;68(9):2022-4
15377506 - Bioinformatics. 2005 Jan 15;21(2):257-9
781272 - J Mol Biol. 1976 May 15;103(2):383-93
20524672 - Biochemistry. 2010 Jun 29;49(25):5321-30
2429192 - Nature. 1986 Oct 9-15;323(6088):558-60
2476811 - Proc Natl Acad Sci U S A. 1989 Sep;86(18):7054-8
18440024 - J Mol Biol. 2008 May 23;379(1):160-73
6283368 - Nature. 1982 Jul 1;298(5869):38-41
781269 - J Mol Biol. 1976 May 15;103(2):319-37
10438621 - J Mol Biol. 1999 Aug 13;291(2):283-94
58611 - Arch Int Physiol Biochim. 1975 Dec;83(5):909-48
9294171 - Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10110-5
118451 - Proc Natl Acad Sci U S A. 1979 Nov;76(11):5524-8
23625966 - Nucleic Acids Res. 2013 Jul;41(12):6273-85
4877920 - Nature. 1968 Oct 5;220(5162):31-4
8609616 - J Mol Biol. 1996 Feb 16;256(1):8-19
cit0077
cit0078
cit0075
cit0076
cit0073
cit0074
cit0071
cit0072
Zuker M. (cit0082) 1999
cit0079
cit0066
cit0067
cit0064
cit0065
cit0062
cit0063
cit0060
cit0061
Lazinski D. (cit0069) 1995; 1
Groeneveld H. (cit0008) 1995; 1
cit0011
cit0012
cit0097
cit0010
cit0098
cit0095
cit0096
cit0093
cit0094
cit0091
cit0092
cit0090
Shapiro L. (cit0048) 1975
Been M. D. (cit0070) 1997
cit0019
cit0017
cit0018
cit0015
cit0016
cit0013
cit0014
cit0088
cit0001
cit0089
cit0086
cit0087
cit0084
cit0085
cit0083
cit0080
cit0081
cit0009
cit0006
cit0007
cit0004
cit0005
cit0002
cit0003
cit0033
cit0034
cit0031
cit0032
cit0030
Olsthoorn R. C. (cit0059) 1994; 13
Miozzari G. F. (cit0029) 1978; 133
cit0039
cit0037
cit0038
cit0035
cit0036
cit0022
cit0023
cit0020
cit0021
Kuo M. Y. (cit0068) 1988; 62
cit0028
cit0026
cit0027
cit0024
cit0025
cit0055
cit0056
cit0053
cit0054
cit0051
Bollback J. P. (cit0044) 2001; 52
cit0052
cit0050
cit0057
cit0058
cit0045
cit0042
cit0043
cit0040
cit0041
cit0049
cit0046
cit0047
References_xml – ident: cit0023
  doi: 10.1038/220031a0
– ident: cit0014
  doi: 10.1093/nar/gkt319
– ident: cit0013
  doi: 10.1021/bi100434c
– ident: cit0057
  doi: 10.1006/jmbi.1996.0064
– volume: 62
  start-page: 1855
  year: 1988
  ident: cit0068
  publication-title: J Virol
  doi: 10.1128/JVI.62.6.1855-1861.1988
  contributor:
    fullname: Kuo M. Y.
– ident: cit0072
  doi: 10.1093/nar/19.19.5409
– ident: cit0056
  doi: 10.1007/978-1-4684-5424-6_4
– ident: cit0096
  doi: 10.1093/nar/gks241
– ident: cit0092
  doi: 10.1093/bioinformatics/btt509
– ident: cit0002
  doi: 10.1016/S1074-5521(02)00224-7
– ident: cit0001
  doi: 10.1093/nar/gks1005
– ident: cit0093
  doi: 10.1093/nar/gkn723
– ident: cit0016
  doi: 10.1016/S0022-2836(78)80004-7
– ident: cit0095
  doi: 10.1093/bioinformatics/btq461
– ident: cit0006
  doi: 10.1073/pnas.0705038104
– ident: cit0017
  doi: 10.1001/jama.1971.03190200058012
– ident: cit0007
  doi: 10.1017/S1355838201001984
– ident: cit0022
  doi: 10.1038/newbio245133a0
– ident: cit0060
  doi: 10.1073/pnas.94.19.10110
– ident: cit0087
  doi: 10.1016/S0092-8674(02)01134-0
– ident: cit0031
  doi: 10.1073/pnas.75.12.5988
– ident: cit0090
  doi: 10.1016/j.tibs.2003.11.004
– ident: cit0015
  doi: 10.1073/pnas.71.8.3134
– ident: cit0018
  doi: 10.1038/298038a0
– volume-title: RNA phages
  year: 1975
  ident: cit0048
  contributor:
    fullname: Shapiro L.
– ident: cit0009
  doi: 10.1146/annurev.ge.16.120182.000553
– ident: cit0004
  doi: 10.1073/pnas.212628899
– ident: cit0040
  doi: 10.1016/0022-2836(80)90210-7
– ident: cit0028
  doi: 10.1073/pnas.70.8.2335
– ident: cit0094
  doi: 10.1093/bioinformatics/bth489
– ident: cit0080
  doi: 10.1093/nar/27.3.795
– ident: cit0058
  doi: 10.1016/0022-2836(90)90364-R
– ident: cit0011
  doi: 10.1038/nsb967
– ident: cit0053
  doi: 10.1038/newbio231042a0
– volume: 1
  start-page: 225
  year: 1995
  ident: cit0069
  publication-title: RNA
  contributor:
    fullname: Lazinski D.
– ident: cit0033
  doi: 10.1073/pnas.76.11.5524
– ident: cit0003
  doi: 10.1038/nature01145
– ident: cit0086
  doi: 10.1038/418214a
– ident: cit0083
  doi: 10.1021/bi9916372
– ident: cit0046
  doi: 10.1016/0042-6822(64)90063-7
– ident: cit0077
  doi: 10.1016/S0960-9822(00)00109-3
– ident: cit0042
  doi: 10.1038/298034a0
– ident: cit0036
  doi: 10.1038/276684a0
– ident: cit0032
  doi: 10.1073/pnas.74.10.4365
– ident: cit0038
  doi: 10.1016/0092-8674(80)90320-7
– ident: cit0019
  doi: 10.1016/0022-2836(76)90317-X
– ident: cit0050
  doi: 10.1007/978-3-7091-6607-9
– ident: cit0035
  doi: 10.1016/S0022-2836(78)80005-9
– ident: cit0075
  doi: 10.1006/jmbi.1999.3083
– ident: cit0049
  doi: 10.1073/pnas.68.9.2022
– ident: cit0078
  doi: 10.1093/nar/24.7.1314
– ident: cit0025
  doi: 10.1016/0022-2836(73)90082-X
– ident: cit0071
  doi: 10.1093/nar/18.23.6821
– ident: cit0052
  doi: 10.1093/nar/21.8.1713
– ident: cit0061
  doi: 10.1073/pnas.87.19.7668
– ident: cit0065
  doi: 10.1038/323508a0
– ident: cit0021
  doi: 10.1016/0022-2836(80)90029-7
– volume-title: NATO ASI Series
  year: 1999
  ident: cit0082
  contributor:
    fullname: Zuker M.
– ident: cit0026
  doi: 10.1016/0022-2836(76)90315-6
– ident: cit0074
  doi: 10.1093/nar/20.15.4027
– year: 1997
  ident: cit0070
  publication-title: Eur. J.Biochem
  contributor:
    fullname: Been M. D.
– ident: cit0085
  doi: 10.1073/pnas.86.18.7054
– ident: cit0063
  doi: 10.1146/annurev.bi.64.070195.001355
– ident: cit0020
  doi: 10.1016/0022-2836(77)90032-8
– ident: cit0027
  doi: 10.1016/0022-2836(76)90318-1
– ident: cit0039
  doi: 10.1073/pnas.79.4.998
– ident: cit0045
– volume: 13
  start-page: 2660
  year: 1994
  ident: cit0059
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1994.tb06556.x
  contributor:
    fullname: Olsthoorn R. C.
– ident: cit0010
  doi: 10.1038/289751a0
– ident: cit0067
  doi: 10.1038/329343a0
– ident: cit0097
  doi: 10.1038/nature04819
– ident: cit0055
  doi: 10.1073/pnas.67.2.710
– ident: cit0051
  doi: 10.1016/j.jmb.2008.02.064
– ident: cit0005
  doi: 10.1261/rna.037390.112
– ident: cit0088
  doi: 10.1038/nchembio.562
– ident: cit0073
  doi: 10.1021/bi00222a006
– ident: cit0024
  doi: 10.1016/0022-2836(73)90010-7
– ident: cit0041
  doi: 10.1073/pnas.75.10.4833
– ident: cit0089
  doi: 10.1046/j.1365-2958.1998.01105.x
– ident: cit0047
  doi: 10.1099/00221287-72-2-303
– ident: cit0064
  doi: 10.1038/26912
– ident: cit0037
  doi: 10.1073/pnas.75.11.5580
– ident: cit0081
  doi: 10.1006/jmbi.1999.2700
– ident: cit0098
  doi: 10.1093/bioinformatics/btp250
– ident: cit0012
  doi: 10.1006/jmbi.2000.3953
– volume: 1
  start-page: 79
  year: 1995
  ident: cit0008
  publication-title: RNA
  contributor:
    fullname: Groeneveld H.
– ident: cit0066
  doi: 10.1038/323558a0
– volume: 52
  start-page: 117
  year: 2001
  ident: cit0044
  publication-title: J Mol Evol
  doi: 10.1007/s002390010140
  contributor:
    fullname: Bollback J. P.
– ident: cit0076
  doi: 10.1038/350434a0
– volume: 133
  start-page: 1457
  year: 1978
  ident: cit0029
  publication-title: J.Bact
  doi: 10.1128/JB.133.3.1457-1466.1978
  contributor:
    fullname: Miozzari G. F.
– ident: cit0043
  doi: 10.1073/pnas.79.7.2181
– ident: cit0054
  doi: 10.1006/jmbi.1996.0745
– ident: cit0034
  doi: 10.1016/0022-2836(76)90316-8
– ident: cit0062
  doi: 10.3109/13813457509069523
– ident: cit0091
  doi: 10.1073/pnas.0531307100
– ident: cit0030
  doi: 10.1016/0022-2836(77)90229-7
– ident: cit0079
  doi: 10.1006/jmbi.1999.2955
– ident: cit0084
  doi: 10.1006/jmbi.2002.5434
SSID ssj0036895
Score 2.1819568
Snippet Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are...
SourceID pubmedcentral
proquest
crossref
pubmed
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5
SubjectTerms 5' Untranslated Regions
co-transcriptional RNA folding
gene expression
Gram-Negative Bacteria - classification
Gram-Negative Bacteria - genetics
Gram-Negative Bacteria - virology
HDV ribozyme
Levivirus
Levivirus - genetics
mutually exclusive RNA structures
Nucleic Acid Conformation
regulatory RNA structures
Riboswitch
RNA - chemistry
RNA - metabolism
RNA Family
RNA, Catalytic - metabolism
RNA, Viral - chemistry
RNA, Viral - metabolism
SAM riboswitch
Sequence Alignment
transient RNA structures
trp operon leader
Tryptophan - genetics
SummonAdditionalLinks – databaseName: Taylor & Francis (Open access)
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66XryIuj7WFxHEWzWvpu1xEZdFcA_igp5KmibowSps9-C_dyZtl11RPHgsTUKYSWbm-zKZEHKhCjB7jpmIaVdGCnxgZKQTkS5KlTKbGRZ4yPuJHk_V3VPcZRPO2rRKxNC-KRQRbDVublPMuoy4a_D6Cd6oxMSsGI_5AWTJdbIhEvD-sKTZ87gzxlKn4eEV7BJhn-4Sz2_DrLinleKlP4Wg3zMpl1zTaJtstTElHTaLYIesuWqX9IcV4Om3T3pJQ5ZnoM_7RI-gNX2YDGmgNgAnU6RiKfq3hhakNbovvCZJm-Kyc0Dke2Q6un28GUft2wmRVTqtI15C6OYgPOHeGlFqbpkprE-VlWViWBGLRJRWWl8AYrCCWx57QCelVlYlNhVyn_Sq98odEiqlNVowD6aIK6N45jzPvMlMkapSpH5ArjqR5R9NiYyct5VHOxnnKOO8lfGAZMuCzevATfjmIZFc_tH3vNNCDhsBTzdM5d7ns5xrnakYbBK0OWi0spiOwNMlJuMBSVb0tWiARbZX_1SvL6HYttIY4aijf8z5mGziZ0PcnJAe6M6dQihTF2dhsX4BYE3pYw
  priority: 102
  providerName: Taylor & Francis
Title Four RNA families with functional transient structures
URI https://www.tandfonline.com/doi/abs/10.1080/15476286.2015.1008373
https://www.ncbi.nlm.nih.gov/pubmed/25751035
https://search.proquest.com/docview/1669450403
https://pubmed.ncbi.nlm.nih.gov/PMC4615214
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD64-eKLqPMyLyOC-NYtSdO0fRzTMQSHiOLlpaRpgoKrgvPBf-9J2qoTQfC1TSA95_RcvpwLwJHIUe0ZqgIqTREItIGBCg0PZF6IhOpUUY9Dnk_l5Fqc3Ua3SxA1tTA-aV_nj_3yadYvHx98buXLTA-aPLHBxflISGd1xKAFLRTQJkSv1G8oEz9qBV2DOHB1l03ZTkIH7pl75DK6IpcfgNGZG6TD3eUD9RPfvmzTQufS3_zPn2mU3-zSeA1Wa4eSDKuDr8OSKTegMywxmJ69k2PiUzw9dt4BOcbV5HI6JB7XwCCZOByWOONWYYJk7myXq5EkVWfZNwzHN-F6fHo1mgT14IRAC5nMA1ag32bQN2FWK15IpqnKtU2EDotY0TziMS90qG2O4YLmTLPIYmhSSKFFrBMebkG7fC7NDpAw1EpyalEPMaEES41lqVWpyhNR8MR2od-QLHup-mNkrG472pA7c-TOanJ3If1O2GzugQlbTRHJwj_2HjZcyPAvcFcbqjTPb68ZkzIVESokXLNdceXzOA13uxAv8OtzgeuwvfgGBc932q4FbfffO_dgxX1AhdnsQxs5Zw7Qi5nnPWjRu0kPloeTk_ubnpfhD4un73c
link.rule.ids 230,315,730,783,787,888,27514,27936,27937,53804,53806,59471,59472,60214,61003
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFH907aG7jG7Z1mxdp0HZzYkky7J9DKEh_UgYpYXehCxLtNA4gbmH_vd9ku00KYNBr7IE8nvS-_jpfQCciALFnqU6otKWkUAdGOnY8kgWpcioyTUNOORsLqc34vw2ud2BpMuFCUH7prgfVA-LQXV_F2IrVwsz7OLEhn9mYyG91hHDd7CH95WKzklvBHAss9BsBY2DNPKZl13iTkaHfswP-ZiuxEcIoH_mW-lw__xAQ8-3F-20Vbv0Xxbo60DKDc00OYAPrUlJRs3WP8KOrT5Bb1ShO714Ir9JCPIM6HkP5ARnk6v5iARkA91k4pFY4tVbgwqS2msvnyVJmtqyj-iQf4abyen1eBq1rRMiI2RWR6xEy82idcKc0byUzFBdGJcJE5eppkXCU16a2LgCHQbDmWGJQ-eklMKI1GQ8_gK71bKyh0Di2GjJqUNJxIQWLLeO5U7nushEyTPXh0FHMrVqKmQo1hYe7citPLlVS-4-5JuEVXWAJlzTR0TF_1n7q-OCwnvgHzd0ZZePfxWTMhcJiiSc87Xhyno7HXf7kG7xaz3B19je_oJHL9Tabo_atzev_An70-vZpbo8m198h_f-ZxoE5wh2kYv2B9o0dXEcTvAzLWHwOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA4eIL6It-sZQXzrNknTtH1c1MVzEVHwLaQ5UHDrguuD_95J2uquCIKvaQLpzGSOL5MZhI54CWrPEhURYU3EwQZGKrEsEqXhOdGFIgGHvBmI8wd--Zg-TrT6Ckn7unzuVi_DbvX8FHIrR0Mdt3li8e3NCRfe6vB4ZFw8i-bhzBLRBuq1Ek5EHhqugIOQRf71Zft4JyexH_NDPq8r9VkCEKP5djrMX0GQ0Pft20JN1S_9zQv9mUw5YZ36y2ipcStxr97-Cpqx1Spa61UQUg8_8DEOiZ4BQV9Dog-z8d2ghwO6AaEy9mgs9iauRgbx2Fsw_1IS1_Vl3yEoX0cP_bP7k_OoaZ8QaS7ycUQNeG8WPBTqtGJGUE1UqV3OdWIyRcqUZczoRLsSggbNqKapgwDFCK55pnOWbKC56rWyWwgniVaCEQfaiHLFaWEdLZwqVJlzw3LXQd2WZHJUV8mQtCk-2pJbenLLhtwdVEwSVo4DPOHqXiIy-WPtYcsFCWfBX3Coyr6-v0kqRMFTUEswZ7Pmytd2Wu52UDbFr68Jvs729BcQv1BvuxG37X-vPEALt6d9eX0xuNpBi_5fahBnF80BE-0euDXjcj8I8Ce80PFN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Four+RNA+families+with+functional+transient+structures&rft.jtitle=RNA+biology&rft.au=Zhu%2C+Jing+Yun+A&rft.au=Meyer%2C+Irmtraud+M&rft.date=2015-01-01&rft.eissn=1555-8584&rft.volume=12&rft.issue=1&rft.spage=5&rft_id=info:doi/10.1080%2F15476286.2015.1008373&rft_id=info%3Apmid%2F25751035&rft.externalDocID=25751035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-6286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-6286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-6286&client=summon