Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide
[Display omitted] Oral administration of proteins and peptides still is a challenging task to overcome due to low permeability through absorptive epithelia, degradation and metabolism that lead to poor bioavailability. Attempting to overcome such limitations, an antihypertensive peptide derived from...
Saved in:
Published in | International journal of pharmaceutics Vol. 547; no. 1-2; pp. 593 - 601 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
25.08.2018
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Oral administration of proteins and peptides still is a challenging task to overcome due to low permeability through absorptive epithelia, degradation and metabolism that lead to poor bioavailability. Attempting to overcome such limitations, an antihypertensive peptide derived from whey protein, with KGYGGVSLPEW sequence, was incorporated for the first time into polymeric nanoparticles. An experimental design was followed in order to optimize drug-loading, association efficiency, mean particle size, zeta-potential and polydispersity index of a formulation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles as carriers for bioactive peptides. In sequence, peptide-loaded PLGA nanoparticles were incorporated in a guar-gum film matrix, resulting in a combined delivery system aiming to promote slow release and permeation across buccal epithelium. Neither PLGA nanoparticles, guar-gum films nor the conjugation of PLGA nanoparticles and guar-gum films (GfNp) significantly compromised in vitro TR146 human buccal carcinoma cell line viability after 12 h contact, as assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide reduction assay (MTT). In vitro release assay for developed formulations allowed to conclude that the combination of orodispersible film and nanoparticles granted a slower release of AhP when compared with PLGA or guar-gum films alone or with control. GfNp offered more effective, synergistic, in vitro permeation of TR146 cell multilayer in comparison with guar-gum films or PLGA nanoparticles alone. The combination of PLGA nanoparticles with guar-gum films represent a suitable alternative to conventional per os delivery systems, leading to an increased buccal permeability of carried antihypertensive peptide. |
---|---|
AbstractList | Oral administration of proteins and peptides still is a challenging task to overcome due to low permeability through absorptive epithelia, degradation and metabolism that lead to poor bioavailability. Attempting to overcome such limitations, an antihypertensive peptide derived from whey protein, with KGYGGVSLPEW sequence, was incorporated for the first time into polymeric nanoparticles. An experimental design was followed in order to optimize drug-loading, association efficiency, mean particle size, zeta-potential and polydispersity index of a formulation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles as carriers for bioactive peptides. In sequence, peptide-loaded PLGA nanoparticles were incorporated in a guar-gum film matrix, resulting in a combined delivery system aiming to promote slow release and permeation across buccal epithelium. Neither PLGA nanoparticles, guar-gum films nor the conjugation of PLGA nanoparticles and guar-gum films (GfNp) significantly compromised in vitro TR146 human buccal carcinoma cell line viability after 12 h contact, as assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide reduction assay (MTT). In vitro release assay for developed formulations allowed to conclude that the combination of orodispersible film and nanoparticles granted a slower release of AhP when compared with PLGA or guar-gum films alone or with control. GfNp offered more effective, synergistic, in vitro permeation of TR146 cell multilayer in comparison with guar-gum films or PLGA nanoparticles alone. The combination of PLGA nanoparticles with guar-gum films represent a suitable alternative to conventional per os delivery systems, leading to an increased buccal permeability of carried antihypertensive peptide. Oral administration of proteins and peptides still is a challenging task to overcome due to low permeability through absorptive epithelia, degradation and metabolism that lead to poor bioavailability. Attempting to overcome such limitations, an antihypertensive peptide derived from whey protein, with KGYGGVSLPEW sequence, was incorporated for the first time into polymeric nanoparticles. An experimental design was followed in order to optimize drug-loading, association efficiency, mean particle size, zeta-potential and polydispersity index of a formulation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles as carriers for bioactive peptides. In sequence, peptide-loaded PLGA nanoparticles were incorporated in a guar-gum film matrix, resulting in a combined delivery system aiming to promote slow release and permeation across buccal epithelium. Neither PLGA nanoparticles, guar-gum films nor the conjugation of PLGA nanoparticles and guar-gum films (GfNp) significantly compromised in vitro TR146 human buccal carcinoma cell line viability after 12 h contact, as assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide reduction assay (MTT). In vitro release assay for developed formulations allowed to conclude that the combination of orodispersible film and nanoparticles granted a slower release of AhP when compared with PLGA or guar-gum films alone or with control. GfNp offered more effective, synergistic, in vitro permeation of TR146 cell multilayer in comparison with guar-gum films or PLGA nanoparticles alone. The combination of PLGA nanoparticles with guar-gum films represent a suitable alternative to conventional per os delivery systems, leading to an increased buccal permeability of carried antihypertensive peptide.Oral administration of proteins and peptides still is a challenging task to overcome due to low permeability through absorptive epithelia, degradation and metabolism that lead to poor bioavailability. Attempting to overcome such limitations, an antihypertensive peptide derived from whey protein, with KGYGGVSLPEW sequence, was incorporated for the first time into polymeric nanoparticles. An experimental design was followed in order to optimize drug-loading, association efficiency, mean particle size, zeta-potential and polydispersity index of a formulation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles as carriers for bioactive peptides. In sequence, peptide-loaded PLGA nanoparticles were incorporated in a guar-gum film matrix, resulting in a combined delivery system aiming to promote slow release and permeation across buccal epithelium. Neither PLGA nanoparticles, guar-gum films nor the conjugation of PLGA nanoparticles and guar-gum films (GfNp) significantly compromised in vitro TR146 human buccal carcinoma cell line viability after 12 h contact, as assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide reduction assay (MTT). In vitro release assay for developed formulations allowed to conclude that the combination of orodispersible film and nanoparticles granted a slower release of AhP when compared with PLGA or guar-gum films alone or with control. GfNp offered more effective, synergistic, in vitro permeation of TR146 cell multilayer in comparison with guar-gum films or PLGA nanoparticles alone. The combination of PLGA nanoparticles with guar-gum films represent a suitable alternative to conventional per os delivery systems, leading to an increased buccal permeability of carried antihypertensive peptide. [Display omitted] Oral administration of proteins and peptides still is a challenging task to overcome due to low permeability through absorptive epithelia, degradation and metabolism that lead to poor bioavailability. Attempting to overcome such limitations, an antihypertensive peptide derived from whey protein, with KGYGGVSLPEW sequence, was incorporated for the first time into polymeric nanoparticles. An experimental design was followed in order to optimize drug-loading, association efficiency, mean particle size, zeta-potential and polydispersity index of a formulation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles as carriers for bioactive peptides. In sequence, peptide-loaded PLGA nanoparticles were incorporated in a guar-gum film matrix, resulting in a combined delivery system aiming to promote slow release and permeation across buccal epithelium. Neither PLGA nanoparticles, guar-gum films nor the conjugation of PLGA nanoparticles and guar-gum films (GfNp) significantly compromised in vitro TR146 human buccal carcinoma cell line viability after 12 h contact, as assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide reduction assay (MTT). In vitro release assay for developed formulations allowed to conclude that the combination of orodispersible film and nanoparticles granted a slower release of AhP when compared with PLGA or guar-gum films alone or with control. GfNp offered more effective, synergistic, in vitro permeation of TR146 cell multilayer in comparison with guar-gum films or PLGA nanoparticles alone. The combination of PLGA nanoparticles with guar-gum films represent a suitable alternative to conventional per os delivery systems, leading to an increased buccal permeability of carried antihypertensive peptide. |
Author | Castro, Pedro M. Madureira, Ana Raquel Baptista, Patrícia Pintado, Manuela E. Sarmento, Bruno |
Author_xml | – sequence: 1 givenname: Pedro M. surname: Castro fullname: Castro, Pedro M. organization: CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal – sequence: 2 givenname: Patrícia surname: Baptista fullname: Baptista, Patrícia organization: CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal – sequence: 3 givenname: Ana Raquel surname: Madureira fullname: Madureira, Ana Raquel organization: CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal – sequence: 4 givenname: Bruno orcidid: 0000-0001-5763-7553 surname: Sarmento fullname: Sarmento, Bruno organization: CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra-PRD, Portugal – sequence: 5 givenname: Manuela E. surname: Pintado fullname: Pintado, Manuela E. email: mpintado@porto.ucp.pt organization: CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 172, 4200-374 Porto, Portugal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29800740$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1702743$$D View this record in Osti.gov |
BookMark | eNqFkU9v1DAQxS1URLeFjwCKOHHJMo7_JBEHVK2grbQSHOBsOc6k8Sqxg-0U7bcn6W4vXCqNNJffe6N574pcOO-QkPcUthSo_HzY2sPU6zBuC6DVFsQy9BXZ0KpkOeOlvCAbYGWVC1qyS3IV4wEAZEHZG3JZ1BVAyWFDws6PjXU6We8y32U_97c3mdPOTzokawaM2V-b-mycjddtj9E-YvYw65A_zGPW2WGMWedD1szG6CFrcViAcFyttEu2P04YEron2YRTsi2-Ja87PUR8d97X5Pf3b792d_n-x-397mafGy6rlFMmeMtFjZpKQCEla3nTAEqAmomKAzKJhaaC1hXHhjEUvOBYybqoaFsguyYfT74-JquisQlNb7xzaJKiJRQlZwv06QRNwf-ZMSY12mhwGLRDP0dVABcMWMHEgn44o3MzYqumYEcdjuo5zAX4cgJM8DEG7NRy8ynZFLQdFAW1VqcO6lydWqtTIJahi1r8p34-8JLu60mHS5aPFsP6KjqDrQ3rp623Lzj8Aygqtfg |
CitedBy_id | crossref_primary_10_3390_polym12123063 crossref_primary_10_1016_j_ijbiomac_2022_12_271 crossref_primary_10_2174_1573407219666230306142421 crossref_primary_10_3390_pharmaceutics14081621 crossref_primary_10_1002_bkcs_11962 crossref_primary_10_1016_j_cclet_2022_107943 crossref_primary_10_1007_s40005_021_00530_2 crossref_primary_10_1016_j_colsurfb_2019_05_029 crossref_primary_10_1016_j_foodres_2020_109002 crossref_primary_10_3390_pharmaceutics12060502 crossref_primary_10_1061_JSWBAY_SWENG_598 crossref_primary_10_1016_j_ijbiomac_2025_140229 crossref_primary_10_3390_ph12010032 crossref_primary_10_2217_nnm_2023_0180 crossref_primary_10_1016_j_ijpharm_2022_122166 crossref_primary_10_3390_app11167486 crossref_primary_10_2174_1573403X17666210611115823 crossref_primary_10_2174_1573402117666210921121622 crossref_primary_10_3390_pharmaceutics15112583 crossref_primary_10_1016_j_biotechadv_2024_108362 crossref_primary_10_1016_j_ejps_2021_106085 crossref_primary_10_3390_ma17112774 crossref_primary_10_1016_j_jconrel_2020_01_006 crossref_primary_10_3390_pharmaceutics15030759 crossref_primary_10_3389_fphar_2019_01328 crossref_primary_10_1016_j_carbpol_2018_10_098 crossref_primary_10_2174_1567201819666220321111338 crossref_primary_10_1016_j_jddst_2022_103712 crossref_primary_10_1080_00498254_2020_1774681 crossref_primary_10_1080_17425247_2019_1651716 crossref_primary_10_1186_s43014_024_00285_x crossref_primary_10_1111_1750_3841_17672 crossref_primary_10_1080_10837450_2019_1682608 crossref_primary_10_1016_j_cis_2020_102334 crossref_primary_10_1016_j_ijhydene_2022_03_049 crossref_primary_10_1080_17425247_2020_1699913 crossref_primary_10_3390_ph18010127 crossref_primary_10_3390_pharmaceutics11030145 crossref_primary_10_1016_j_ejps_2018_11_031 crossref_primary_10_3390_ph14080752 crossref_primary_10_1007_s10257_023_00629_z crossref_primary_10_1016_j_foodhyd_2023_108684 crossref_primary_10_2174_1567201819666220307112525 crossref_primary_10_1080_17425247_2019_1652595 crossref_primary_10_1016_j_ijpharm_2021_120759 crossref_primary_10_3390_pharmaceutics15030935 crossref_primary_10_1016_j_jconrel_2020_08_032 crossref_primary_10_1615_CritRevTherDrugCarrierSyst_2022042252 crossref_primary_10_2174_1872210515666210609145144 crossref_primary_10_1016_j_ijbiomac_2024_130078 crossref_primary_10_3389_fnut_2022_1050647 crossref_primary_10_1016_j_ejps_2019_105142 crossref_primary_10_1016_j_jddst_2020_102122 crossref_primary_10_1016_j_ejps_2023_106374 crossref_primary_10_1016_j_ijbiomac_2021_03_087 crossref_primary_10_2174_0929867329666220613111635 |
Cites_doi | 10.1016/j.jare.2016.12.002 10.1016/j.ijpharm.2012.08.012 10.1016/j.ijbiomac.2015.11.070 10.1016/j.msec.2017.12.036 10.1016/j.colsurfb.2015.10.045 10.1016/j.peptides.2018.01.002 10.1016/j.eurpolymj.2017.12.039 10.1016/j.progpolymsci.2014.07.010 10.1016/j.peptides.2011.02.005 10.1016/j.jff.2017.12.063 10.1016/0022-1759(83)90303-4 10.1016/j.carbpol.2017.06.014 10.1016/j.ijpharm.2015.09.045 10.1016/j.jconrel.2008.06.008 10.1016/j.msec.2017.02.173 10.1016/j.ijbiomac.2017.12.137 10.1016/j.ijpharm.2012.02.035 10.1016/S0378-5173(00)00394-X 10.1016/j.chemphyslip.2016.10.005 10.1016/j.ijpharm.2017.08.118 10.1016/j.biomaterials.2014.07.026 10.1016/j.reactfunctpolym.2016.01.011 10.1016/j.msec.2016.03.032 10.1016/j.ejps.2015.03.019 10.1046/j.0909-8836.1999.eos107210.x 10.1016/j.ijpharm.2011.05.049 10.1016/j.ejpb.2017.04.032 10.1016/j.colsurfb.2017.07.038 10.1016/S0032-3861(98)00546-1 10.1016/j.colsurfb.2017.10.037 10.1016/j.msec.2017.03.121 10.1016/j.carbpol.2018.04.032 10.1016/j.trac.2015.06.014 10.1016/j.jddst.2017.10.004 10.1016/0378-5173(95)00109-V 10.1016/j.coph.2017.07.011 10.1016/0003-9969(88)90089-1 10.1016/j.jddst.2015.07.020 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 OTOTI |
DOI | 10.1016/j.ijpharm.2018.05.051 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-3476 |
EndPage | 601 |
ExternalDocumentID | 1702743 29800740 10_1016_j_ijpharm_2018_05_051 S0378517318303612 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSP SSZ T5K TEORI ~02 ~G- .GJ 29J 3O- 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMT HVGLF HZ~ R2- SEW SPT SSH WUQ ZXP NPM 7X8 AALMO AAPBV ABPIF ABPTK ABQIS OTOTI |
ID | FETCH-LOGICAL-c468t-1354d459ea160e5663d4bb0e600935840e36e2a151984eb33e5424e869281d2e3 |
IEDL.DBID | .~1 |
ISSN | 0378-5173 1873-3476 |
IngestDate | Thu May 18 22:33:24 EDT 2023 Fri Jul 11 00:31:08 EDT 2025 Thu Apr 03 07:04:11 EDT 2025 Tue Jul 01 01:18:52 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Fri Feb 23 02:29:54 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | Guar-gum films Antihypertensive peptide Whey protein Buccal delivery PLGA nanoparticles |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c468t-1354d459ea160e5663d4bb0e600935840e36e2a151984eb33e5424e869281d2e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PTDC/BBB-NAN/3249/2014; POCI-01-0145-FEDER-007274 USDOE Office of Nuclear Energy (NE), Nuclear Fuel Cycle and Supply Chain |
ORCID | 0000-0001-5763-7553 0000000157637553 |
OpenAccessLink | http://hdl.handle.net/10400.14/25688 |
PMID | 29800740 |
PQID | 2045303235 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1702743 proquest_miscellaneous_2045303235 pubmed_primary_29800740 crossref_citationtrail_10_1016_j_ijpharm_2018_05_051 crossref_primary_10_1016_j_ijpharm_2018_05_051 elsevier_sciencedirect_doi_10_1016_j_ijpharm_2018_05_051 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-25 |
PublicationDateYYYYMMDD | 2018-08-25 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of pharmaceutics |
PublicationTitleAlternate | Int J Pharm |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | di Cagno, Bibi, Bauer-Brandl (b0075) 2015; 73 Dullius, Goettert, de Souza (b0095) 2018; 42 Brazel, Peppas (b0045) 1999; 40 Thakur, Thakur (b0210) 2016 Rodrigues de Azevedo, von Stosch, Costa, Ramos, Cardoso, Danhier, Preat, Oliveira (b0165) 2017; 532 Cerqueira, Lasham, Shelling, Al-Kassas (b0060) 2017; 76 Petropoulos, Papadokostaki, Sanopoulou (b0160) 2012; 437 Castro, Fonte, Oliveira, Madureira, Sarmento, Pintado (b0050) 2017; 76 Mosmann (b0155) 1983; 65 Satarkar, Hilt (b0180) 2008; 130 Mir, Ahmed, Rehman (b0140) 2017; 159 Castro, Sousa, Magalhães, Ruiz-Henestrosa, Pilosof, Madureira, Sarmento, Pintado (b0055) 2018 Santos, Hernández, Rescignano, Boff, Reginatto, Simões, de Campos, Mijangos (b0170) 2018; 99 Sharma, Parmar, Kori, Sandhir (b0185) 2016; 80 Agency (b0025) 2010 (FDA), F.a.D.A., 2017c. SCOGS (Select Committee on GRAS Substances) – sorbitol. Al-Dhubiab, Nair, Kumria, Attimarad, Harsha (b0030) 2015; 136 Araujo, Shrestha, Shahbazi, Fonte, Makila, Salonen, Hirvonen, Granja, Santos, Sarmento (b0035) 2014; 35 Abdelkader, El-Gizawy, Faheem, McCarron, Osman (b0020) 2018; 43 Shtenberg, Goldfeder, Prinz, Shainsky, Ghantous, Abu El-Naaj, Schroeder, Bianco-Peled (b0195) 2018; 111 Fredenberg, Wahlgren, Reslow, Axelsson (b0100) 2011; 415 dos Santos, Rescignano, Boff, Reginatto, Simões, de Campos, Mijangos (b0090) 2017; 173 Jacobsen, van Deurs, Pedersen, Rassing (b0125) 1995; 125 Sosnik, das Neves, Sarmento (b0200) 2014; 39 Dodi, Pala, Barbu, Peptanariu, Hritcu, Popa, Tamba (b0085) 2016; 63 Giovino, Ayensu, Tetteh, Boateng (b0105) 2012; 428 Santos, Rescignano, Boff, Reginatto, Simoes, de Campos, Mijangos (b0175) 2017; 173 Ibrahim, Ahmed, Miyata (b0115) 2017; 8 Jacobsen, Nielsen, Brøndum-Nielsen, Christensen, Olin, Tommerup, Rassing (b0120) 1999; 107 Tavares, Contreras Mdel, Amorim, Pintado, Recio, Malcata (b0205) 2011; 32 Morck Nielsen, Romer Rassing (b0150) 2000; 200 Ding, Zhu (b0080) 2018 Zeng, Mignet, Dumortier, Olivier, Seguin, Maury, Scherman, Rat, Boudy (b0220) 2015; 495 (FDA), F.a.D.A., 2017b. SCOGS (Select Committee on GRAS Substances) – guar gum. Watanabe, Dawes (b0215) 1988; 33 Shi, Xue, Jia, Du, Niu, Zhang (b0190) 2018; 161 Jain, Jain (b0130) 2016; 201 (FDA), F.a.D.A., 2017a. SCOGS (Select Committee on GRAS Substances) – citric acid. da Silva, Ferreira, Pintado, Sarmento (b0065) 2016; 84 Dalpiaz, Sacchetti, Baldisserotto, Pavan, Maretti, Iannuccelli, Leo (b0070) 2016; 32 Gunday Tureli, Torge, Juntke, Schwarz, Schneider-Daum, Tureli, Lehr, Schneider (b0110) 2017; 117 Mansuri, Kesharwani, Jain, Tekade, Jain (b0135) 2016; 100 Batista, Castro, Madureira, Sarmento, Pintado (b0040) 2018; 101 Morales, Brayden (b0145) 2017; 36 Batista (10.1016/j.ijpharm.2018.05.051_b0040) 2018; 101 di Cagno (10.1016/j.ijpharm.2018.05.051_b0075) 2015; 73 Araujo (10.1016/j.ijpharm.2018.05.051_b0035) 2014; 35 dos Santos (10.1016/j.ijpharm.2018.05.051_b0090) 2017; 173 10.1016/j.ijpharm.2018.05.051_b0005 Tavares (10.1016/j.ijpharm.2018.05.051_b0205) 2011; 32 da Silva (10.1016/j.ijpharm.2018.05.051_b0065) 2016; 84 Sharma (10.1016/j.ijpharm.2018.05.051_b0185) 2016; 80 Brazel (10.1016/j.ijpharm.2018.05.051_b0045) 1999; 40 Mosmann (10.1016/j.ijpharm.2018.05.051_b0155) 1983; 65 Abdelkader (10.1016/j.ijpharm.2018.05.051_b0020) 2018; 43 Dalpiaz (10.1016/j.ijpharm.2018.05.051_b0070) 2016; 32 Giovino (10.1016/j.ijpharm.2018.05.051_b0105) 2012; 428 Morck Nielsen (10.1016/j.ijpharm.2018.05.051_b0150) 2000; 200 Mir (10.1016/j.ijpharm.2018.05.051_b0140) 2017; 159 Agency (10.1016/j.ijpharm.2018.05.051_b0025) 2010 Jacobsen (10.1016/j.ijpharm.2018.05.051_b0125) 1995; 125 Morales (10.1016/j.ijpharm.2018.05.051_b0145) 2017; 36 Castro (10.1016/j.ijpharm.2018.05.051_b0050) 2017; 76 Jacobsen (10.1016/j.ijpharm.2018.05.051_b0120) 1999; 107 Al-Dhubiab (10.1016/j.ijpharm.2018.05.051_b0030) 2015; 136 Cerqueira (10.1016/j.ijpharm.2018.05.051_b0060) 2017; 76 Satarkar (10.1016/j.ijpharm.2018.05.051_b0180) 2008; 130 10.1016/j.ijpharm.2018.05.051_b0015 Ding (10.1016/j.ijpharm.2018.05.051_b0080) 2018 Santos (10.1016/j.ijpharm.2018.05.051_b0170) 2018; 99 Castro (10.1016/j.ijpharm.2018.05.051_b0055) 2018 Zeng (10.1016/j.ijpharm.2018.05.051_b0220) 2015; 495 10.1016/j.ijpharm.2018.05.051_b0010 Mansuri (10.1016/j.ijpharm.2018.05.051_b0135) 2016; 100 Rodrigues de Azevedo (10.1016/j.ijpharm.2018.05.051_b0165) 2017; 532 Santos (10.1016/j.ijpharm.2018.05.051_b0175) 2017; 173 Jain (10.1016/j.ijpharm.2018.05.051_b0130) 2016; 201 Petropoulos (10.1016/j.ijpharm.2018.05.051_b0160) 2012; 437 Dullius (10.1016/j.ijpharm.2018.05.051_b0095) 2018; 42 Shtenberg (10.1016/j.ijpharm.2018.05.051_b0195) 2018; 111 Dodi (10.1016/j.ijpharm.2018.05.051_b0085) 2016; 63 Gunday Tureli (10.1016/j.ijpharm.2018.05.051_b0110) 2017; 117 Watanabe (10.1016/j.ijpharm.2018.05.051_b0215) 1988; 33 Ibrahim (10.1016/j.ijpharm.2018.05.051_b0115) 2017; 8 Sosnik (10.1016/j.ijpharm.2018.05.051_b0200) 2014; 39 Shi (10.1016/j.ijpharm.2018.05.051_b0190) 2018; 161 Fredenberg (10.1016/j.ijpharm.2018.05.051_b0100) 2011; 415 Thakur (10.1016/j.ijpharm.2018.05.051_b0210) 2016 |
References_xml | – year: 2010 ident: b0025 article-title: Guideline on the Investigation of Bioequivalence – volume: 63 start-page: 628 year: 2016 end-page: 636 ident: b0085 article-title: Carboxymethyl guar gum nanoparticles for drug delivery applications: preparation and preliminary in-vitro investigations publication-title: Mater. Sci. Eng. C – volume: 173 start-page: 638 year: 2017 end-page: 644 ident: b0175 article-title: Manufacture and characterization of chitosan/PLGA nanoparticles nanocomposite buccal films publication-title: Carbohydr. Polym. – volume: 130 start-page: 246 year: 2008 end-page: 251 ident: b0180 article-title: Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release publication-title: J. Controlled Release – volume: 161 start-page: 67 year: 2018 end-page: 72 ident: b0190 article-title: Surface-modified PLGA nanoparticles with chitosan for oral delivery of tolbutamide publication-title: Colloids Surf., B – volume: 100 start-page: 151 year: 2016 end-page: 172 ident: b0135 article-title: Mucoadhesion: a promising approach in drug delivery system publication-title: React. Funct. Polym. – volume: 84 start-page: 112 year: 2016 end-page: 120 ident: b0065 article-title: Chitosan-based nanoparticles for rosmarinic acid ocular delivery–In vitro tests publication-title: Int. J. Biol. Macromol. – volume: 173 start-page: 638 year: 2017 end-page: 644 ident: b0090 article-title: Manufacture and characterization of chitosan/PLGA nanoparticles nanocomposite buccal films publication-title: Carbohydr. Polym. – volume: 415 start-page: 34 year: 2011 end-page: 52 ident: b0100 article-title: The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review publication-title: Int. J. Pharm. – volume: 159 start-page: 217 year: 2017 end-page: 231 ident: b0140 article-title: Recent applications of PLGA based nanostructures in drug delivery publication-title: Colloids Surf., B – volume: 99 start-page: 456 year: 2018 end-page: 463 ident: b0170 article-title: Nanocomposite chitosan hydrogels based on PLGA nanoparticles as potential biomedical materials publication-title: Eur. Polym. J. – reference: (FDA), F.a.D.A., 2017a. SCOGS (Select Committee on GRAS Substances) – citric acid. – reference: (FDA), F.a.D.A., 2017c. SCOGS (Select Committee on GRAS Substances) – sorbitol. – volume: 36 start-page: 22 year: 2017 end-page: 28 ident: b0145 article-title: Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles publication-title: Curr. Opin. Pharmacol. – volume: 39 start-page: 2030 year: 2014 end-page: 2075 ident: b0200 article-title: Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review publication-title: Progr. Polym. Sci. – volume: 532 start-page: 229 year: 2017 end-page: 240 ident: b0165 article-title: Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics publication-title: Int. J. Pharm. – year: 2018 ident: b0080 article-title: Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics publication-title: Mater. Sci. Eng., C – volume: 437 start-page: 178 year: 2012 end-page: 191 ident: b0160 article-title: Higuchi’s equation and beyond: overview of the formulation and application of a generalized model of drug release from polymeric matrices publication-title: Int. J. Pharm. – volume: 40 start-page: 3383 year: 1999 end-page: 3398 ident: b0045 article-title: Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers publication-title: Polymer – volume: 200 start-page: 261 year: 2000 end-page: 270 ident: b0150 article-title: TR146 cells grown on filters as a model of human buccal epithelium: V. Enzyme activity of the TR146 cell culture model, human buccal epithelium and porcine buccal epithelium, and permeability of leu-enkephalin publication-title: Int. J. Pharm. – volume: 495 start-page: 1028 year: 2015 end-page: 1037 ident: b0220 article-title: Poloxamer bioadhesive hydrogel for buccal drug delivery: cytotoxicity and trans-epithelial permeability evaluations using TR146 human buccal epithelial cell line publication-title: Int. J. Pharm. – volume: 33 start-page: 1 year: 1988 end-page: 5 ident: b0215 article-title: The effects of different foods and concentrations of citric acid on the flow rate of whole saliva in man publication-title: Arch. Oral Biol. – reference: (FDA), F.a.D.A., 2017b. SCOGS (Select Committee on GRAS Substances) – guar gum. – year: 2018 ident: b0055 article-title: Incorporation of beads into oral films for buccal and oral delivery of bioactive molecules publication-title: Carbohydr. Polym. – volume: 42 start-page: 58 year: 2018 end-page: 74 ident: b0095 article-title: Whey protein hydrolysates as a source of bioactive peptides for functional foods–biotechnological facilitation of industrial scale-up publication-title: J. Funct. Foods – volume: 8 start-page: 63 year: 2017 end-page: 71 ident: b0115 article-title: Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk publication-title: J. Adv. Res. – volume: 65 start-page: 55 year: 1983 end-page: 63 ident: b0155 article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays publication-title: J. Immunol. Methods – volume: 76 start-page: 593 year: 2017 end-page: 600 ident: b0060 article-title: Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells publication-title: Mater. Sci. Eng., C – volume: 136 start-page: 878 year: 2015 end-page: 884 ident: b0030 article-title: Formulation and evaluation of nano based drug delivery system for the buccal delivery of acyclovir publication-title: Colloids Surf., B – volume: 111 start-page: 62 year: 2018 end-page: 69 ident: b0195 article-title: Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery publication-title: Int. J. Biol. Macromol. – volume: 107 start-page: 138 year: 1999 end-page: 146 ident: b0120 article-title: Filter-grown TR146 cells as an in vitro model of human buccal epithelial permeability publication-title: Eur. J. Oral Sci. – volume: 43 start-page: 160 year: 2018 end-page: 171 ident: b0020 article-title: Effect of process variables on formulation, in-vitro characterisation and subcutaneous delivery of insulin PLGA nanoparticles: an optimisation study publication-title: J. Drug Delivery Sci. Technol. – volume: 101 start-page: 112 year: 2018 end-page: 123 ident: b0040 article-title: Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides publication-title: Peptides – volume: 73 start-page: 29 year: 2015 end-page: 34 ident: b0075 article-title: New biomimetic barrier Permeapad for efficient investigation of passive permeability of drugs publication-title: Eur. J. Pharm. Sci. – volume: 32 start-page: 283 year: 2016 end-page: 290 ident: b0070 article-title: Application of the “in-oil nanoprecipitation” method in the encapsulation of hydrophilic drugs in PLGA nanoparticles publication-title: J. Drug Deliv. Sci. Technol. – volume: 201 start-page: 28 year: 2016 end-page: 40 ident: b0130 article-title: In vitro release kinetics model fitting of liposomes: an insight publication-title: Chem. Phys. Lipids – volume: 35 start-page: 9199 year: 2014 end-page: 9207 ident: b0035 article-title: The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium publication-title: Biomaterials – volume: 125 start-page: 165 year: 1995 end-page: 184 ident: b0125 article-title: TR146 cells grown on filters as a model for human buccal epithelium: I. Morphology, growth, barrier properties, and permeability publication-title: Int. J. Pharm. – volume: 80 start-page: 30 year: 2016 end-page: 40 ident: b0185 article-title: PLGA-based nanoparticles: a new paradigm in biomedical applications publication-title: TRAC-Trends Anal. Chem. – volume: 428 start-page: 143 year: 2012 end-page: 151 ident: b0105 article-title: Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules publication-title: Int. J. Pharm. – volume: 117 start-page: 363 year: 2017 end-page: 371 ident: b0110 article-title: Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections publication-title: Eur. J. Pharm. Biopharm. – volume: 76 start-page: 171 year: 2017 end-page: 180 ident: b0050 article-title: Optimization of two biopolymer-based oral films for the delivery of bioactive molecules publication-title: Mater. Sci. Eng., C – year: 2016 ident: b0210 article-title: Handbook of Sustainable Polymers: Structure and Chemistry – volume: 32 start-page: 1013 year: 2011 end-page: 1019 ident: b0205 article-title: Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: in vitro effect and stability to gastrointestinal enzymes publication-title: Peptides – volume: 8 start-page: 63 year: 2017 ident: 10.1016/j.ijpharm.2018.05.051_b0115 article-title: Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk publication-title: J. Adv. Res. doi: 10.1016/j.jare.2016.12.002 – volume: 437 start-page: 178 year: 2012 ident: 10.1016/j.ijpharm.2018.05.051_b0160 article-title: Higuchi’s equation and beyond: overview of the formulation and application of a generalized model of drug release from polymeric matrices publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2012.08.012 – volume: 84 start-page: 112 year: 2016 ident: 10.1016/j.ijpharm.2018.05.051_b0065 article-title: Chitosan-based nanoparticles for rosmarinic acid ocular delivery–In vitro tests publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.11.070 – ident: 10.1016/j.ijpharm.2018.05.051_b0015 – year: 2018 ident: 10.1016/j.ijpharm.2018.05.051_b0080 article-title: Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2017.12.036 – volume: 136 start-page: 878 year: 2015 ident: 10.1016/j.ijpharm.2018.05.051_b0030 article-title: Formulation and evaluation of nano based drug delivery system for the buccal delivery of acyclovir publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2015.10.045 – volume: 101 start-page: 112 year: 2018 ident: 10.1016/j.ijpharm.2018.05.051_b0040 article-title: Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides publication-title: Peptides doi: 10.1016/j.peptides.2018.01.002 – volume: 99 start-page: 456 year: 2018 ident: 10.1016/j.ijpharm.2018.05.051_b0170 article-title: Nanocomposite chitosan hydrogels based on PLGA nanoparticles as potential biomedical materials publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2017.12.039 – volume: 39 start-page: 2030 year: 2014 ident: 10.1016/j.ijpharm.2018.05.051_b0200 article-title: Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: a review publication-title: Progr. Polym. Sci. doi: 10.1016/j.progpolymsci.2014.07.010 – volume: 32 start-page: 1013 year: 2011 ident: 10.1016/j.ijpharm.2018.05.051_b0205 article-title: Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: in vitro effect and stability to gastrointestinal enzymes publication-title: Peptides doi: 10.1016/j.peptides.2011.02.005 – volume: 42 start-page: 58 year: 2018 ident: 10.1016/j.ijpharm.2018.05.051_b0095 article-title: Whey protein hydrolysates as a source of bioactive peptides for functional foods–biotechnological facilitation of industrial scale-up publication-title: J. Funct. Foods doi: 10.1016/j.jff.2017.12.063 – volume: 65 start-page: 55 year: 1983 ident: 10.1016/j.ijpharm.2018.05.051_b0155 article-title: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(83)90303-4 – volume: 173 start-page: 638 year: 2017 ident: 10.1016/j.ijpharm.2018.05.051_b0175 article-title: Manufacture and characterization of chitosan/PLGA nanoparticles nanocomposite buccal films publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.06.014 – volume: 495 start-page: 1028 year: 2015 ident: 10.1016/j.ijpharm.2018.05.051_b0220 article-title: Poloxamer bioadhesive hydrogel for buccal drug delivery: cytotoxicity and trans-epithelial permeability evaluations using TR146 human buccal epithelial cell line publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.09.045 – volume: 130 start-page: 246 year: 2008 ident: 10.1016/j.ijpharm.2018.05.051_b0180 article-title: Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2008.06.008 – volume: 76 start-page: 171 year: 2017 ident: 10.1016/j.ijpharm.2018.05.051_b0050 article-title: Optimization of two biopolymer-based oral films for the delivery of bioactive molecules publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2017.02.173 – volume: 173 start-page: 638 year: 2017 ident: 10.1016/j.ijpharm.2018.05.051_b0090 article-title: Manufacture and characterization of chitosan/PLGA nanoparticles nanocomposite buccal films publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.06.014 – volume: 111 start-page: 62 year: 2018 ident: 10.1016/j.ijpharm.2018.05.051_b0195 article-title: Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.12.137 – volume: 428 start-page: 143 year: 2012 ident: 10.1016/j.ijpharm.2018.05.051_b0105 article-title: Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2012.02.035 – volume: 200 start-page: 261 year: 2000 ident: 10.1016/j.ijpharm.2018.05.051_b0150 article-title: TR146 cells grown on filters as a model of human buccal epithelium: V. Enzyme activity of the TR146 cell culture model, human buccal epithelium and porcine buccal epithelium, and permeability of leu-enkephalin publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(00)00394-X – volume: 201 start-page: 28 year: 2016 ident: 10.1016/j.ijpharm.2018.05.051_b0130 article-title: In vitro release kinetics model fitting of liposomes: an insight publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2016.10.005 – volume: 532 start-page: 229 year: 2017 ident: 10.1016/j.ijpharm.2018.05.051_b0165 article-title: Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.08.118 – volume: 35 start-page: 9199 year: 2014 ident: 10.1016/j.ijpharm.2018.05.051_b0035 article-title: The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.07.026 – volume: 100 start-page: 151 year: 2016 ident: 10.1016/j.ijpharm.2018.05.051_b0135 article-title: Mucoadhesion: a promising approach in drug delivery system publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2016.01.011 – volume: 63 start-page: 628 year: 2016 ident: 10.1016/j.ijpharm.2018.05.051_b0085 article-title: Carboxymethyl guar gum nanoparticles for drug delivery applications: preparation and preliminary in-vitro investigations publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.03.032 – volume: 73 start-page: 29 year: 2015 ident: 10.1016/j.ijpharm.2018.05.051_b0075 article-title: New biomimetic barrier Permeapad for efficient investigation of passive permeability of drugs publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2015.03.019 – volume: 107 start-page: 138 year: 1999 ident: 10.1016/j.ijpharm.2018.05.051_b0120 article-title: Filter-grown TR146 cells as an in vitro model of human buccal epithelial permeability publication-title: Eur. J. Oral Sci. doi: 10.1046/j.0909-8836.1999.eos107210.x – volume: 415 start-page: 34 year: 2011 ident: 10.1016/j.ijpharm.2018.05.051_b0100 article-title: The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems–a review publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2011.05.049 – volume: 117 start-page: 363 year: 2017 ident: 10.1016/j.ijpharm.2018.05.051_b0110 article-title: Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2017.04.032 – volume: 159 start-page: 217 year: 2017 ident: 10.1016/j.ijpharm.2018.05.051_b0140 article-title: Recent applications of PLGA based nanostructures in drug delivery publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2017.07.038 – volume: 40 start-page: 3383 year: 1999 ident: 10.1016/j.ijpharm.2018.05.051_b0045 article-title: Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers publication-title: Polymer doi: 10.1016/S0032-3861(98)00546-1 – volume: 161 start-page: 67 year: 2018 ident: 10.1016/j.ijpharm.2018.05.051_b0190 article-title: Surface-modified PLGA nanoparticles with chitosan for oral delivery of tolbutamide publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2017.10.037 – ident: 10.1016/j.ijpharm.2018.05.051_b0010 – year: 2010 ident: 10.1016/j.ijpharm.2018.05.051_b0025 – volume: 76 start-page: 593 year: 2017 ident: 10.1016/j.ijpharm.2018.05.051_b0060 article-title: Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2017.03.121 – year: 2016 ident: 10.1016/j.ijpharm.2018.05.051_b0210 – ident: 10.1016/j.ijpharm.2018.05.051_b0005 – year: 2018 ident: 10.1016/j.ijpharm.2018.05.051_b0055 article-title: Incorporation of beads into oral films for buccal and oral delivery of bioactive molecules publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.04.032 – volume: 80 start-page: 30 year: 2016 ident: 10.1016/j.ijpharm.2018.05.051_b0185 article-title: PLGA-based nanoparticles: a new paradigm in biomedical applications publication-title: TRAC-Trends Anal. Chem. doi: 10.1016/j.trac.2015.06.014 – volume: 43 start-page: 160 year: 2018 ident: 10.1016/j.ijpharm.2018.05.051_b0020 article-title: Effect of process variables on formulation, in-vitro characterisation and subcutaneous delivery of insulin PLGA nanoparticles: an optimisation study publication-title: J. Drug Delivery Sci. Technol. doi: 10.1016/j.jddst.2017.10.004 – volume: 125 start-page: 165 year: 1995 ident: 10.1016/j.ijpharm.2018.05.051_b0125 article-title: TR146 cells grown on filters as a model for human buccal epithelium: I. Morphology, growth, barrier properties, and permeability publication-title: Int. J. Pharm. doi: 10.1016/0378-5173(95)00109-V – volume: 36 start-page: 22 year: 2017 ident: 10.1016/j.ijpharm.2018.05.051_b0145 article-title: Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2017.07.011 – volume: 33 start-page: 1 year: 1988 ident: 10.1016/j.ijpharm.2018.05.051_b0215 article-title: The effects of different foods and concentrations of citric acid on the flow rate of whole saliva in man publication-title: Arch. Oral Biol. doi: 10.1016/0003-9969(88)90089-1 – volume: 32 start-page: 283 year: 2016 ident: 10.1016/j.ijpharm.2018.05.051_b0070 article-title: Application of the “in-oil nanoprecipitation” method in the encapsulation of hydrophilic drugs in PLGA nanoparticles publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2015.07.020 |
SSID | ssj0006213 |
Score | 2.5176353 |
Snippet | [Display omitted]
Oral administration of proteins and peptides still is a challenging task to overcome due to low permeability through absorptive epithelia,... Oral administration of proteins and peptides still is a challenging task to overcome due to low permeability through absorptive epithelia, degradation and... |
SourceID | osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 593 |
SubjectTerms | Antihypertensive peptide Buccal delivery Guar-gum films PLGA nanoparticles Whey protein |
Title | Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide |
URI | https://dx.doi.org/10.1016/j.ijpharm.2018.05.051 https://www.ncbi.nlm.nih.gov/pubmed/29800740 https://www.proquest.com/docview/2045303235 https://www.osti.gov/biblio/1702743 |
Volume | 547 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB1F4cKlAkrbQEFbCXHCiT92HecYIWjaUhSpIHFb2d4JOErsKMGHXPrbmbHXiTggJKRcEnmilWd29s3u2zcAZyz53TeYOl5sEkcShKUpJSeOUemEsFwS9GPe0P97G47u5e8H9dCCy-YuDNMqbe6vc3qVre0vPfs2e4ss6_1zg6qxPAclpeGq07CUfY7y7v8tzSP0bYtkqpb46e0tnt60m00XLBDNDK-oEvBU3lvrU7ugKfc2DK2Wo-s9-GRxpBjWQ92HFuYHcD6uhajXF-Jue69qdSHOxXgrUb3-DEtKA1QSV14RxUSMb34ORR7nVEFbopzgDVoxL9MiNk_IHHfxSNHkPJZzMclm85UgtCuSklwzEwZnTO9Y81-Rp7InKm6XlhovFsybMXgI99dXd5cjx3ZfcFIZRtyjXkkj1QBjL3SRUF9gZJK4GLrV2al0MQjRjwkxDCJJJXmASvoSo3DgEwb2MfgC7bzI8RuIRGHEB76eQlo0qQAj2EXIDSnBGIxd7IBs3rlOrTQ5d8iY6YaDNtXWVZpdpV1FH68D3Y3ZotbmeM8gahyqXwWZpvXjPdNjDgA2Y3HdlFlIZOf1uawPOvCjiQtN05PPXOIci3KlWe2fwtMPVAe-1gGzGas_iBjBuUcfH9Yx7PI33uT21XdoPy9LPCGU9JycVtPgFHaGv_6Mbl8AQQQRWg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEB2Cc2gvJemnk7TZQskpivWxK8tHE5o4jWMMdSC3RdKOExlbMnZ08L_PjLSy6SEECjpZjFk0s7Nvdt--AfjFkt9dg6njxSZxJEFYmlJy6hiVTgnLJUE35g39u1E4uJd_HtTDHlw2d2GYVmlzf53Tq2xtf-nYr9lZZlnnrxtUjeU5KCkNc6fhfVanUi3Y79_cDkbbhBz6tksyFUxssLvI05ldZLMla0QzySuqNDyV99oS1Spo1r2ORKsV6eoAPlgoKfr1aA9hD_OPcDautag352Kyu1q1PhdnYrxTqd58ghVlAqqKK8eIYirGw-u-yOOcimjLlRO8RysWZVrE5gmZ5i4eKaCcx3Ihptl8sRYEeEVSknfmwuCcGR4b_ityVvZE9e3KsuPFkqkzBj_D_dXvyeXAsQ0YnFSGEbepV9JI1cPYC10k4BcYmSQuhm51fCpdDEL0YwINvUhSVR6gkr7EKOz5BIN9DL5AKy9y_AYiURjxma-nkNZNqsEIeRF4Q8oxBmMX2yCbb65Tq07OTTLmuqGhzbR1lWZXaVfR47XhYmu2rOU53jKIGofqf-JM0xLylukxBwCbsb5uykQksvO6XNkHbfjZxIWmGcrHLnGORbnWLPhPEeoHqg1f64DZjtXvRQzi3KP_H9YpvBtM7oZ6eDO6PYb3_Ib3vH11Aq3nVYnfCTQ9Jz_spHgBkV0UCw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combination+of+PLGA+nanoparticles+with+mucoadhesive+guar-gum+films+for+buccal+delivery+of+antihypertensive+peptide&rft.jtitle=International+journal+of+pharmaceutics&rft.au=Castro%2C+Pedro+M.&rft.au=Baptista%2C+Patr%C3%ADcia&rft.au=Madureira%2C+Ana+Raquel&rft.au=Sarmento%2C+Bruno&rft.date=2018-08-25&rft.pub=Elsevier+B.V&rft.issn=0378-5173&rft.eissn=1873-3476&rft.volume=547&rft.issue=1-2&rft.spage=593&rft.epage=601&rft_id=info:doi/10.1016%2Fj.ijpharm.2018.05.051&rft.externalDocID=S0378517318303612 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5173&client=summon |