Ratiometric Photoacoustic Molecular Imaging for Methylmercury Detection in Living Subjects

Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 17
Main Authors Liu, Yi, Wang, Sheng, Ma, Ying, Lin, Jing, Wang, Hai‐Yan, Gu, Yueqing, Chen, Xiaoyuan, Huang, Peng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2017
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201606129

Cover

Loading…
Abstract Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg+ detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP‐hCy7) composed of the liposome (LP) and MeHg+‐responsive near‐infrared (NIR) cyanine dye (hCy7) for MeHg+ detection within living subjects, such as zebrafish and mouse. The as‐prepared LP‐hCy7 nanoprobe displays unique dual‐shift NIR absorbance peaks and produces a normalized turn‐on response after the reaction of MeHg+ and hCy7 through a mercury‐promoted cyclization reaction. The absorbance intensities of LP‐hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg+. These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging. A promising MeHg+ (methylmercury) detection strategy by ratiometric photoacoustic molecular imaging shows very high sensitivity and selectivity in living subjects, such as zebrafish and mouse. MeHg+ is one of the most potent neurotoxins and can damage the brain and nervous system of human beings through fish consumption. Therefore, the development of this visualization tool is highly desirable.
AbstractList Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg+ detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP-hCy7) composed of the liposome (LP) and MeHg+-responsive near-infrared (NIR) cyanine dye (hCy7) for MeHg+ detection within living subjects, such as zebrafish and mouse. The as-prepared LP-hCy7 nanoprobe displays unique dual-shift NIR absorbance peaks and produces a normalized turn-on response after the reaction of MeHg+ and hCy7 through a mercury-promoted cyclization reaction. The absorbance intensities of LP-hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg+. These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging.
Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg ) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP-hCy7) composed of the liposome (LP) and MeHg -responsive near-infrared (NIR) cyanine dye (hCy7) for MeHg detection within living subjects, such as zebrafish and mouse. The as-prepared LP-hCy7 nanoprobe displays unique dual-shift NIR absorbance peaks and produces a normalized turn-on response after the reaction of MeHg and hCy7 through a mercury-promoted cyclization reaction. The absorbance intensities of LP-hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg . These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging.
Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg+ detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP‐hCy7) composed of the liposome (LP) and MeHg+‐responsive near‐infrared (NIR) cyanine dye (hCy7) for MeHg+ detection within living subjects, such as zebrafish and mouse. The as‐prepared LP‐hCy7 nanoprobe displays unique dual‐shift NIR absorbance peaks and produces a normalized turn‐on response after the reaction of MeHg+ and hCy7 through a mercury‐promoted cyclization reaction. The absorbance intensities of LP‐hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg+. These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging. A promising MeHg+ (methylmercury) detection strategy by ratiometric photoacoustic molecular imaging shows very high sensitivity and selectivity in living subjects, such as zebrafish and mouse. MeHg+ is one of the most potent neurotoxins and can damage the brain and nervous system of human beings through fish consumption. Therefore, the development of this visualization tool is highly desirable.
Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg + ) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg + detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP‐hCy7) composed of the liposome (LP) and MeHg + ‐responsive near‐infrared (NIR) cyanine dye (hCy7) for MeHg + detection within living subjects, such as zebrafish and mouse. The as‐prepared LP‐hCy7 nanoprobe displays unique dual‐shift NIR absorbance peaks and produces a normalized turn‐on response after the reaction of MeHg + and hCy7 through a mercury‐promoted cyclization reaction. The absorbance intensities of LP‐hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg + . These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging.
Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+ ) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg+ detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP-hCy7) composed of the liposome (LP) and MeHg+ -responsive near-infrared (NIR) cyanine dye (hCy7) for MeHg+ detection within living subjects, such as zebrafish and mouse. The as-prepared LP-hCy7 nanoprobe displays unique dual-shift NIR absorbance peaks and produces a normalized turn-on response after the reaction of MeHg+ and hCy7 through a mercury-promoted cyclization reaction. The absorbance intensities of LP-hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg+ . These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging.Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+ ) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg+ detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP-hCy7) composed of the liposome (LP) and MeHg+ -responsive near-infrared (NIR) cyanine dye (hCy7) for MeHg+ detection within living subjects, such as zebrafish and mouse. The as-prepared LP-hCy7 nanoprobe displays unique dual-shift NIR absorbance peaks and produces a normalized turn-on response after the reaction of MeHg+ and hCy7 through a mercury-promoted cyclization reaction. The absorbance intensities of LP-hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg+ . These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging.
A promising MeHg + detection strategy by ratiometric photoacoustic molecular imaging shows very high sensitivity and selectivity in living subjects, such as zebrafish and mice.
Author Gu, Yueqing
Chen, Xiaoyuan
Liu, Yi
Ma, Ying
Lin, Jing
Wang, Hai‐Yan
Huang, Peng
Wang, Sheng
Author_xml – sequence: 1
  givenname: Yi
  surname: Liu
  fullname: Liu, Yi
  organization: National Institutes of Health (NIH)
– sequence: 2
  givenname: Sheng
  surname: Wang
  fullname: Wang, Sheng
  organization: Shenzhen University
– sequence: 3
  givenname: Ying
  surname: Ma
  fullname: Ma, Ying
  organization: National Institutes of Health (NIH)
– sequence: 4
  givenname: Jing
  surname: Lin
  fullname: Lin, Jing
  organization: Shenzhen University
– sequence: 5
  givenname: Hai‐Yan
  surname: Wang
  fullname: Wang, Hai‐Yan
  organization: Shenzhen University
– sequence: 6
  givenname: Yueqing
  surname: Gu
  fullname: Gu, Yueqing
  email: guyueqing@cpu.edu.cn
  organization: China Pharmaceutical University
– sequence: 7
  givenname: Xiaoyuan
  surname: Chen
  fullname: Chen, Xiaoyuan
  email: shawn.chen@nih.gov
  organization: National Institutes of Health (NIH)
– sequence: 8
  givenname: Peng
  surname: Huang
  fullname: Huang, Peng
  email: peng.huang@szu.edu.cn
  organization: Shenzhen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28224711$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVJaSZpt10WQzfdeHIlW7K0KQxJ0wZmSOlj041Q5OsZDbaVSnbK_PvITB5tIHQjIek7h6N7jshB73sk5C2FOQVgJ6buzJwBFSAoUy_IjHJG8xIUPyAzUAXPlSjlITmKcQsAKnGvyCGTjJUVpTPy65sZnO9wCM5mXzd-8Mb6MQ7ptPIt2rE1IbvozNr166zxIVvhsNm1HQY7hl12hgPaZNBnrs-W7maivo9X23QZX5OXjWkjvrnbj8nP808_Tr_ky8vPF6eLZW5LIVUuKyUboThjhUHGAdMiGikUiKZkRVXWDGVtGwmUAy9KQCukFIbXyJSooTgmH_e-1-NVh7XFfgim1dfBdSbstDdO__vSu41e-xvNOS-gosngw51B8L9HjIPuXLTYtqbHNAtNZQVKVhyqhL5_gm79GPr0PU0Vg5Imw4l693eihyj3Y09AuQds8DEGbLR1w1TEFNC1moKe2tVTu_qh3SSbP5HdOz8rUHvBH9fi7j-0XpytFo_aWzfet6A
CitedBy_id crossref_primary_10_1021_acs_analchem_1c01568
crossref_primary_10_1016_j_talanta_2018_05_002
crossref_primary_10_1021_acs_jmedchem_3c01515
crossref_primary_10_1016_j_xcrp_2021_100570
crossref_primary_10_1021_acs_molpharmaceut_0c01254
crossref_primary_10_1002_ange_202015451
crossref_primary_10_1021_acs_biochem_7b00888
crossref_primary_10_1111_jace_17477
crossref_primary_10_1021_acs_nanolett_4c02114
crossref_primary_10_1021_acs_analchem_9b02701
crossref_primary_10_3389_fbioe_2021_773705
crossref_primary_10_1016_j_sna_2021_112925
crossref_primary_10_1021_acsami_8b09670
crossref_primary_10_1021_jacs_9b10353
crossref_primary_10_1002_anie_202105905
crossref_primary_10_1021_acs_chemrev_1c00875
crossref_primary_10_1039_D0CC01086C
crossref_primary_10_1002_adma_201805875
crossref_primary_10_1002_chem_201705716
crossref_primary_10_1002_adma_201806444
crossref_primary_10_1039_C9CC02224D
crossref_primary_10_1038_s41467_023_39610_2
crossref_primary_10_1039_C7TB02648J
crossref_primary_10_3390_bios12110947
crossref_primary_10_1002_ange_201904047
crossref_primary_10_1002_anie_202015451
crossref_primary_10_1007_s40242_021_1159_6
crossref_primary_10_1002_adma_201707509
crossref_primary_10_1142_S1793545819410013
crossref_primary_10_1038_s41467_021_27233_4
crossref_primary_10_1002_adma_201807888
crossref_primary_10_1016_j_addr_2021_03_008
crossref_primary_10_1002_cnma_201800170
crossref_primary_10_1021_acs_analchem_4c06870
crossref_primary_10_1021_acs_analchem_9b05431
crossref_primary_10_1002_smll_201800782
crossref_primary_10_1002_smll_202008061
crossref_primary_10_1039_C9NH00328B
crossref_primary_10_1002_adma_201701013
crossref_primary_10_1016_j_talanta_2018_02_093
crossref_primary_10_1002_anie_201904047
crossref_primary_10_1021_acsnano_3c10659
crossref_primary_10_1021_acs_analchem_2c01241
crossref_primary_10_1039_D0SC03160G
crossref_primary_10_1021_acs_chemrev_2c00627
crossref_primary_10_1002_smll_201703400
crossref_primary_10_1016_j_aca_2020_06_055
crossref_primary_10_1002_adfm_202206300
crossref_primary_10_1021_acsami_8b20113
crossref_primary_10_1016_j_ccr_2023_215379
crossref_primary_10_1016_j_snb_2018_04_099
crossref_primary_10_1088_1748_605X_ac4147
crossref_primary_10_1002_advs_202202384
crossref_primary_10_1016_j_snb_2018_04_052
crossref_primary_10_1039_C8CC01031E
crossref_primary_10_1039_C8NR03445A
crossref_primary_10_3389_fmats_2021_699433
crossref_primary_10_2174_0929867329666220208093735
crossref_primary_10_1002_adma_202311397
crossref_primary_10_1002_cbic_202000514
crossref_primary_10_1002_VIW_20200149
crossref_primary_10_1039_C7CS00612H
crossref_primary_10_1039_C9TA01009B
crossref_primary_10_1002_adfm_202001771
crossref_primary_10_1021_acsnano_8b05906
crossref_primary_10_1002_smll_201803866
crossref_primary_10_1021_acs_analchem_1c03302
crossref_primary_10_1002_ange_202105905
Cites_doi 10.1016/j.addr.2016.05.013
10.1021/ar200061q
10.1021/ja403798m
10.1038/nmat2986
10.1021/nl070557d
10.1002/adma.201503194
10.1002/chem.201001769
10.1039/C4CS00086B
10.1021/am502579e
10.7150/thno.16715
10.1021/nn304347g
10.1002/adma.201505700
10.1021/nn505989e
10.1016/j.trac.2016.05.015
10.1002/adma.201400914
10.7150/thno.11632
10.1038/nphoton.2009.157
10.1016/j.tibtech.2016.02.001
10.1021/nl100890d
10.1021/acsnano.5b03874
10.1002/adma.201505681
10.1002/adma.201304497
10.1002/adma.201402972
10.1038/nnano.2008.231
10.1021/jacs.5b10504
10.1021/cr2004103
10.1002/adma.201502598
10.1002/adma.201301946
10.1038/nnano.2015.25
10.1021/ja5115248
10.2528/PIER14032303
10.7150/thno.7217
10.1021/nn5064858
10.1021/acsnano.5b07521
10.1002/adma.201503437
10.1038/nnano.2013.302
10.1002/ange.201308986
10.1007/s12274-016-0996-y
10.1038/nnano.2009.231
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1002/adma.201606129
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE

CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID PMC5553071
28224711
10_1002_adma_201606129
ADMA201606129
Genre article
Journal Article
GrantInformation_xml – fundername: Postdoctoral Science Foundation of China
  funderid: 2016M600671
– fundername: National Institutes of Health
– fundername: National Science Foundation of China
  funderid: 51573096; 81601531; 81401465
– fundername: National Institute of Biomedical Imaging and Bioengineering
– fundername: National Science Foundation of Jiangsu Province
  funderid: BK20160755
– fundername: Intramural Research Programs of the National Institute of Biomedical Imaging and Bioengineering
– fundername: Intramural NIH HHS
  grantid: ZIA EB000073
– fundername: Intramural NIH HHS
  grantid: Z99 EB999999
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c4689-8798f695223ae250ee256f86906f42374d2e8dcf801505340ec6886a5de296d03
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Aug 21 14:03:13 EDT 2025
Fri Jul 11 09:15:44 EDT 2025
Sun Jul 13 04:26:15 EDT 2025
Mon Jul 21 06:02:36 EDT 2025
Tue Jul 01 00:44:32 EDT 2025
Thu Apr 24 22:54:42 EDT 2025
Wed Jan 22 16:43:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords methylmercury detection
ratiometric probe
photoacoustic imaging
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4689-8798f695223ae250ee256f86906f42374d2e8dcf801505340ec6886a5de296d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5553071
PMID 28224711
PQID 1920413077
PQPubID 2045203
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5553071
proquest_miscellaneous_1870987507
proquest_journals_1920413077
pubmed_primary_28224711
crossref_citationtrail_10_1002_adma_201606129
crossref_primary_10_1002_adma_201606129
wiley_primary_10_1002_adma_201606129_ADMA201606129
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-May
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-May
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 16
2014; 4
2008 2010; 3 10
2015; 137
2007 2009 2011 2012 2013 2014 2015 2016; 7 4 44 6 125 26 5 9
2015 2016; 27 28
2014 2011 2015 2016 2015; 26 10 10 28 27
2015 2015; 137 9
2009 2014 2014 2016 2016 2016; 3 147 43 34 6 105
2016; 82
2015 2016 2016 2015; 27 28 10 9
2014; 9
2014; 8
2013 2013 2013; 135 113 25
2014; 6
e_1_2_3_1_1
e_1_2_3_2_1
e_1_2_3_1_2
e_1_2_3_1_5
e_1_2_3_2_5
e_1_2_3_4_3
e_1_2_3_5_2
e_1_2_3_6_1
e_1_2_3_1_6
e_1_2_3_2_4
e_1_2_3_4_2
e_1_2_3_5_1
e_1_2_3_1_3
e_1_2_3_2_3
e_1_2_3_3_2
e_1_2_3_4_1
e_1_2_3_1_4
e_1_2_3_2_2
e_1_2_3_3_1
e_1_2_3_4_7
e_1_2_3_12_1
e_1_2_3_4_6
e_1_2_3_8_2
e_1_2_3_9_1
e_1_2_3_12_2
e_1_2_3_13_1
e_1_2_3_4_5
e_1_2_3_5_4
e_1_2_3_8_1
e_1_2_3_12_3
e_1_2_3_14_1
e_1_2_3_4_4
e_1_2_3_5_3
e_1_2_3_7_1
e_1_2_3_15_1
e_1_2_3_10_1
e_1_2_3_4_8
e_1_2_3_10_2
e_1_2_3_11_1
References_xml – volume: 3 147 43 34 6 105
  start-page: 503 1 7132 420 2394 242
  year: 2009 2014 2014 2016 2016 2016
  publication-title: Nat. Photonics Electromagn. Waves Chem. Soc. Rev. Trends Biotech. Theranostics Adv. Drug Deliver. Rev.
– volume: 135 113 25
  start-page: 9869 192 5287
  year: 2013 2013 2013
  publication-title: J. Am. Chem. Soc. Chem. Rev. Adv. Mater.
– volume: 137 9
  start-page: 15628 1692
  year: 2015 2015
  publication-title: J. Am. Chem. Soc. ACS Nano
– volume: 137
  start-page: 2336
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 27 28 10 9
  start-page: 843 3273 3453 9517
  year: 2015 2016 2016 2015
  publication-title: Adv. Mater. Adv. Mater. ACS Nano ACS Nano
– volume: 82
  start-page: 175
  year: 2016
  publication-title: TrAC, Trends Anal. Chem.
– volume: 26 10 10 28 27
  start-page: 6401 324 325 254 6125
  year: 2014 2011 2015 2016 2015
  publication-title: Adv. Mater. Nat. Mater. Nat. Nanotechnol. Adv. Mater. Adv. Mater.
– volume: 16
  start-page: 14424
  year: 2010
  publication-title: Chem. ‐ Eur. J.
– volume: 9
  start-page: 233
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 10706
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7 4 44 6 125 26 5 9
  start-page: 1914 688 914 10366 14208 1886 970 1043
  year: 2007 2009 2011 2012 2013 2014 2015 2016
  publication-title: Nano Lett. Nat. Nanotechnol. Acc. Chem. Res. ACS Nano Angew. Chem. Int. Ed. Adv. Mater. Theranostics Nano Res.
– volume: 27 28
  start-page: 6820 3662
  year: 2015 2016
  publication-title: Adv. Mater. Adv. Mater.
– volume: 3 10
  start-page: 557 2168
  year: 2008 2010
  publication-title: Nat. Nanotechnol. Nano Lett.
– volume: 4
  start-page: 134
  year: 2014
  publication-title: Theranostics
– volume: 8
  start-page: 12141
  year: 2014
  publication-title: ACS Nano
– ident: e_1_2_3_1_6
  doi: 10.1016/j.addr.2016.05.013
– ident: e_1_2_3_4_3
  doi: 10.1021/ar200061q
– ident: e_1_2_3_12_1
  doi: 10.1021/ja403798m
– ident: e_1_2_3_2_2
  doi: 10.1038/nmat2986
– ident: e_1_2_3_4_1
  doi: 10.1021/nl070557d
– ident: e_1_2_3_8_1
  doi: 10.1002/adma.201503194
– ident: e_1_2_3_14_1
  doi: 10.1002/chem.201001769
– ident: e_1_2_3_1_3
  doi: 10.1039/C4CS00086B
– ident: e_1_2_3_13_1
  doi: 10.1021/am502579e
– ident: e_1_2_3_1_5
  doi: 10.7150/thno.16715
– ident: e_1_2_3_4_4
  doi: 10.1021/nn304347g
– ident: e_1_2_3_5_2
  doi: 10.1002/adma.201505700
– ident: e_1_2_3_6_1
  doi: 10.1021/nn505989e
– ident: e_1_2_3_11_1
  doi: 10.1016/j.trac.2016.05.015
– ident: e_1_2_3_2_1
  doi: 10.1002/adma.201400914
– ident: e_1_2_3_4_7
  doi: 10.7150/thno.11632
– ident: e_1_2_3_1_1
  doi: 10.1038/nphoton.2009.157
– ident: e_1_2_3_1_4
  doi: 10.1016/j.tibtech.2016.02.001
– ident: e_1_2_3_3_2
  doi: 10.1021/nl100890d
– ident: e_1_2_3_5_4
  doi: 10.1021/acsnano.5b03874
– ident: e_1_2_3_8_2
  doi: 10.1002/adma.201505681
– ident: e_1_2_3_4_6
  doi: 10.1002/adma.201304497
– ident: e_1_2_3_5_1
  doi: 10.1002/adma.201402972
– ident: e_1_2_3_3_1
  doi: 10.1038/nnano.2008.231
– ident: e_1_2_3_10_1
  doi: 10.1021/jacs.5b10504
– ident: e_1_2_3_12_2
  doi: 10.1021/cr2004103
– ident: e_1_2_3_2_5
  doi: 10.1002/adma.201502598
– ident: e_1_2_3_12_3
  doi: 10.1002/adma.201301946
– ident: e_1_2_3_2_3
  doi: 10.1038/nnano.2015.25
– ident: e_1_2_3_15_1
  doi: 10.1021/ja5115248
– ident: e_1_2_3_1_2
  doi: 10.2528/PIER14032303
– ident: e_1_2_3_9_1
  doi: 10.7150/thno.7217
– ident: e_1_2_3_10_2
  doi: 10.1021/nn5064858
– ident: e_1_2_3_5_3
  doi: 10.1021/acsnano.5b07521
– ident: e_1_2_3_2_4
  doi: 10.1002/adma.201503437
– ident: e_1_2_3_7_1
  doi: 10.1038/nnano.2013.302
– ident: e_1_2_3_4_5
  doi: 10.1002/ange.201308986
– ident: e_1_2_3_4_8
  doi: 10.1007/s12274-016-0996-y
– ident: e_1_2_3_4_2
  doi: 10.1038/nnano.2009.231
SSID ssj0009606
Score 2.5057638
Snippet Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+) is one of the most potent...
Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg + ) is one of the most potent...
Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg ) is one of the most potent...
Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+ ) is one of the most potent...
A promising MeHg + detection strategy by ratiometric photoacoustic molecular imaging shows very high sensitivity and selectivity in living subjects, such as...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Absorbance
Animals
Brain damage
Coloring Agents
Diagnostic software
Diagnostic systems
Heavy metals
Human beings
Imaging
Materials science
Mercury
Mercury (metal)
Metal ions
methylmercury detection
Mice
Molecular Imaging
Molecular Probes
Near infrared radiation
Nervous system
photoacoustic imaging
ratiometric probe
Spectrum Analysis
Toxins
Zebrafish
Title Ratiometric Photoacoustic Molecular Imaging for Methylmercury Detection in Living Subjects
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201606129
https://www.ncbi.nlm.nih.gov/pubmed/28224711
https://www.proquest.com/docview/1920413077
https://www.proquest.com/docview/1870987507
https://pubmed.ncbi.nlm.nih.gov/PMC5553071
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iSQ--H-uLCIKnapumSXpcXEXFFREF8VLaJMVFtytuvfjrnUm33V1FBL2UliS0TWYmX9PJ9xFykEWaVX8YjRAeB4DhqdRojwsmtYlyGRjcO9y9Fuf3_PIhepjYxV_xQzQLbugZLl6jg6fZ8HhMGpoaxxsUCJykcQcfJmwhKrod80chPHdke2HkxYKrmrXRZ8fTzadnpW9Q83vG5CSSdVPR2SJJ65eoMlCej97L7Eh_fOF3_M9bLpGFEU6l7cqwlsmMLVbI_AR74Sp5vMVR7aMkl6Y3T4NyANHViYPRbi26Sy_6TgaJAjamXQtWgXItGgaSdmzp0sAK2ivoVQ8XNiiEMVwXGq6R-7PTu5NzbyTV4GkuVAwxNVa5iAHMhakFVGXhIHJUuxI5Jt5ww6wyOle4wBKF3LdaKCXSyFgWC-OH62S2GBR2k1CR5yGXGY85T3kAZ0hVKo2RTCsB1tMiXj1UiR7xmKOcxktSMTCzBPssafqsRQ6b-q8Vg8ePNXfqkU9GnjxMAAH7ONFL2SL7TTH4IP5YSQsL_ZoEEPRi-PDzoc5GZSjNrVyargyCFpFTJtRUQH7v6ZKi9-R4viOUdJLQkjkL-eXpk3an226utv7SaJvMMUQtLp9zh8yWb-92FzBXme05v_oEi_8jMg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V9gAcoHwUFgoYqRKntInj2M5xxVJtYVOhqpUqLlZiO-qqNItoeuHXM-Ns0i4VQqKXKFFsJbFnxi-TyXsAO1VmefeF0UkZCQQYkS6djYTkyrqsVomjf4eLQzk9EZ9Ps76akP6F6fghhoQbeUaI1-TglJDeu2YNLV0gDkokrdL5PdggWW_yzcnRNYMUAfRAt5dmUS6F7nkbY7632n91XboFNm_XTN7EsmEx2n8MVf8YXQ3K-e5VW-3aX38wPN7pOTfh0RKqsnFnW09gzTdP4eENAsNn8O2IJvaCVLks-3q2aBcYYIM-GCt63V12cBGUkBjCY1Z4NAxSbLE4l2zi21AJ1rB5w2Zzym0wjGSUGrp8Dif7n44_TqOlWkNkhdQ5htVc1zJHPJeWHoGVx42sSfBK1lR7Ixz32tlaU44lS0XsrdRalpnzPJcuTrdgvVk0_iUwWdepUJXIhShFgnvEVqqcU9xqiQY0gqifK2OXVOakqPHddCTM3NCYmWHMRvBhaP-jI_H4a8vtfurN0pkvDYLgmNZ6pUbwfjiNbkjfVsrG47iaBONeju9-MbZ50VnKcKlQqauSZARqxYaGBkTxvXqmmZ8Fqu-MVJ0U9uTBRP5x92Y8KcbD0av_6fQO7k-Pi5mZHRx-eQ0POIGYUN65Devtzyv_BiFYW70NTvYbqAEnSw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21VKrKgZZ-wAItrlSpp0DiOLZzXHVZQcsihIqEerGytiNWhSyCcOHXM-Nswm5RhdReokSxldieGb_Yk_cAvowzy5sdRidlJBBgRLpwNhKSK-uyUiWO_h0eHcn9U_H9LDub-4u_4YfoFtzIM0K8Jge_cuXuA2lo4QJvUCJpks6fwwshY02fX4OTBwIpwueBbS_NolwK3dI2xnx3sf7itPQIaz5OmZyHsmEuGr6Gom1Fk4Lye-e2Hu_Yuz8IHv-nmW9gZQZUWb-xrFV45qu3sDxHX_gOfp3QsF6SJpdlx-fTeorhNaiDsVGrussOLoMOEkNwzEYezYL0WiyOJBv4OuSBVWxSscMJrWwwjGO0MHTzHk6Hez-_7UczrYbICqlzDKq5LmWOaC4tPMIqjwdZktyVLCnzRjjutbOlphWWLBWxt1JrWWTO81y6OP0AS9W08uvAZFmmQo1FLkQhEjwjrlLlnOJWSzSfHkTtUBk7IzInPY0L01Awc0N9Zro-68HXrvxVQ-Hx15Jb7cibmSvfGITAMc30SvXgc3cbnZB2VorKY7-aBKNejl9-MZZZawyle1TI01VJ0gO1YEJdASL4XrxTTc4D0XdGmk4Ka_JgIU-8vekPRv3uauNfKm3Dy-PB0BweHP3YhFecEEzI7dyCpfr61n9E_FWPPwUXuwcs_CYD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ratiometric+Photoacoustic+Molecular+Imaging+for+Methylmercury+Detection+in+Living+Subjects&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Yi&rft.au=Wang%2C+Sheng&rft.au=Ma%2C+Ying&rft.au=Lin%2C+Jing&rft.date=2017-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201606129&rft.externalDBID=10.1002%252Fadma.201606129&rft.externalDocID=ADMA201606129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon