Ratiometric Photoacoustic Molecular Imaging for Methylmercury Detection in Living Subjects
Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 29; no. 17 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201606129 |
Cover
Loading…
Abstract | Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg+ detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP‐hCy7) composed of the liposome (LP) and MeHg+‐responsive near‐infrared (NIR) cyanine dye (hCy7) for MeHg+ detection within living subjects, such as zebrafish and mouse. The as‐prepared LP‐hCy7 nanoprobe displays unique dual‐shift NIR absorbance peaks and produces a normalized turn‐on response after the reaction of MeHg+ and hCy7 through a mercury‐promoted cyclization reaction. The absorbance intensities of LP‐hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg+. These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging.
A promising MeHg+ (methylmercury) detection strategy by ratiometric photoacoustic molecular imaging shows very high sensitivity and selectivity in living subjects, such as zebrafish and mouse. MeHg+ is one of the most potent neurotoxins and can damage the brain and nervous system of human beings through fish consumption. Therefore, the development of this visualization tool is highly desirable. |
---|---|
AbstractList | Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg+ detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP-hCy7) composed of the liposome (LP) and MeHg+-responsive near-infrared (NIR) cyanine dye (hCy7) for MeHg+ detection within living subjects, such as zebrafish and mouse. The as-prepared LP-hCy7 nanoprobe displays unique dual-shift NIR absorbance peaks and produces a normalized turn-on response after the reaction of MeHg+ and hCy7 through a mercury-promoted cyclization reaction. The absorbance intensities of LP-hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg+. These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging. Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg ) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP-hCy7) composed of the liposome (LP) and MeHg -responsive near-infrared (NIR) cyanine dye (hCy7) for MeHg detection within living subjects, such as zebrafish and mouse. The as-prepared LP-hCy7 nanoprobe displays unique dual-shift NIR absorbance peaks and produces a normalized turn-on response after the reaction of MeHg and hCy7 through a mercury-promoted cyclization reaction. The absorbance intensities of LP-hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg . These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging. Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg+ detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP‐hCy7) composed of the liposome (LP) and MeHg+‐responsive near‐infrared (NIR) cyanine dye (hCy7) for MeHg+ detection within living subjects, such as zebrafish and mouse. The as‐prepared LP‐hCy7 nanoprobe displays unique dual‐shift NIR absorbance peaks and produces a normalized turn‐on response after the reaction of MeHg+ and hCy7 through a mercury‐promoted cyclization reaction. The absorbance intensities of LP‐hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg+. These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging. A promising MeHg+ (methylmercury) detection strategy by ratiometric photoacoustic molecular imaging shows very high sensitivity and selectivity in living subjects, such as zebrafish and mouse. MeHg+ is one of the most potent neurotoxins and can damage the brain and nervous system of human beings through fish consumption. Therefore, the development of this visualization tool is highly desirable. Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg + ) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg + detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP‐hCy7) composed of the liposome (LP) and MeHg + ‐responsive near‐infrared (NIR) cyanine dye (hCy7) for MeHg + detection within living subjects, such as zebrafish and mouse. The as‐prepared LP‐hCy7 nanoprobe displays unique dual‐shift NIR absorbance peaks and produces a normalized turn‐on response after the reaction of MeHg + and hCy7 through a mercury‐promoted cyclization reaction. The absorbance intensities of LP‐hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg + . These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging. Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+ ) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg+ detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP-hCy7) composed of the liposome (LP) and MeHg+ -responsive near-infrared (NIR) cyanine dye (hCy7) for MeHg+ detection within living subjects, such as zebrafish and mouse. The as-prepared LP-hCy7 nanoprobe displays unique dual-shift NIR absorbance peaks and produces a normalized turn-on response after the reaction of MeHg+ and hCy7 through a mercury-promoted cyclization reaction. The absorbance intensities of LP-hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg+ . These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging.Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+ ) is one of the most potent neurotoxins, which damages the brain and nervous system of human beings through fish consumption. The development of a selective and sensitive method for MeHg+ detection is highly desirable. In this Communication, we develope a chemoselective photoacoustic sensor (LP-hCy7) composed of the liposome (LP) and MeHg+ -responsive near-infrared (NIR) cyanine dye (hCy7) for MeHg+ detection within living subjects, such as zebrafish and mouse. The as-prepared LP-hCy7 nanoprobe displays unique dual-shift NIR absorbance peaks and produces a normalized turn-on response after the reaction of MeHg+ and hCy7 through a mercury-promoted cyclization reaction. The absorbance intensities of LP-hCy7 nanoprobe at 690 and 860 nm are decreased and increased, respectively. The ratiometric photoacoustic signal (PA860/PA690) is noticeably increased in the presence of MeHg+ . These findings not only provide a ratiometric photoacoustic molecular imaging probe for the detection of metal ions in vivo, but also provides a tool for spectroscopic photoacoustic molecular imaging. A promising MeHg + detection strategy by ratiometric photoacoustic molecular imaging shows very high sensitivity and selectivity in living subjects, such as zebrafish and mice. |
Author | Gu, Yueqing Chen, Xiaoyuan Liu, Yi Ma, Ying Lin, Jing Wang, Hai‐Yan Huang, Peng Wang, Sheng |
Author_xml | – sequence: 1 givenname: Yi surname: Liu fullname: Liu, Yi organization: National Institutes of Health (NIH) – sequence: 2 givenname: Sheng surname: Wang fullname: Wang, Sheng organization: Shenzhen University – sequence: 3 givenname: Ying surname: Ma fullname: Ma, Ying organization: National Institutes of Health (NIH) – sequence: 4 givenname: Jing surname: Lin fullname: Lin, Jing organization: Shenzhen University – sequence: 5 givenname: Hai‐Yan surname: Wang fullname: Wang, Hai‐Yan organization: Shenzhen University – sequence: 6 givenname: Yueqing surname: Gu fullname: Gu, Yueqing email: guyueqing@cpu.edu.cn organization: China Pharmaceutical University – sequence: 7 givenname: Xiaoyuan surname: Chen fullname: Chen, Xiaoyuan email: shawn.chen@nih.gov organization: National Institutes of Health (NIH) – sequence: 8 givenname: Peng surname: Huang fullname: Huang, Peng email: peng.huang@szu.edu.cn organization: Shenzhen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28224711$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAUhUVJaSZpt10WQzfdeHIlW7K0KQxJ0wZmSOlj041Q5OsZDbaVSnbK_PvITB5tIHQjIek7h6N7jshB73sk5C2FOQVgJ6buzJwBFSAoUy_IjHJG8xIUPyAzUAXPlSjlITmKcQsAKnGvyCGTjJUVpTPy65sZnO9wCM5mXzd-8Mb6MQ7ptPIt2rE1IbvozNr166zxIVvhsNm1HQY7hl12hgPaZNBnrs-W7maivo9X23QZX5OXjWkjvrnbj8nP808_Tr_ky8vPF6eLZW5LIVUuKyUboThjhUHGAdMiGikUiKZkRVXWDGVtGwmUAy9KQCukFIbXyJSooTgmH_e-1-NVh7XFfgim1dfBdSbstDdO__vSu41e-xvNOS-gosngw51B8L9HjIPuXLTYtqbHNAtNZQVKVhyqhL5_gm79GPr0PU0Vg5Imw4l693eihyj3Y09AuQds8DEGbLR1w1TEFNC1moKe2tVTu_qh3SSbP5HdOz8rUHvBH9fi7j-0XpytFo_aWzfet6A |
CitedBy_id | crossref_primary_10_1021_acs_analchem_1c01568 crossref_primary_10_1016_j_talanta_2018_05_002 crossref_primary_10_1021_acs_jmedchem_3c01515 crossref_primary_10_1016_j_xcrp_2021_100570 crossref_primary_10_1021_acs_molpharmaceut_0c01254 crossref_primary_10_1002_ange_202015451 crossref_primary_10_1021_acs_biochem_7b00888 crossref_primary_10_1111_jace_17477 crossref_primary_10_1021_acs_nanolett_4c02114 crossref_primary_10_1021_acs_analchem_9b02701 crossref_primary_10_3389_fbioe_2021_773705 crossref_primary_10_1016_j_sna_2021_112925 crossref_primary_10_1021_acsami_8b09670 crossref_primary_10_1021_jacs_9b10353 crossref_primary_10_1002_anie_202105905 crossref_primary_10_1021_acs_chemrev_1c00875 crossref_primary_10_1039_D0CC01086C crossref_primary_10_1002_adma_201805875 crossref_primary_10_1002_chem_201705716 crossref_primary_10_1002_adma_201806444 crossref_primary_10_1039_C9CC02224D crossref_primary_10_1038_s41467_023_39610_2 crossref_primary_10_1039_C7TB02648J crossref_primary_10_3390_bios12110947 crossref_primary_10_1002_ange_201904047 crossref_primary_10_1002_anie_202015451 crossref_primary_10_1007_s40242_021_1159_6 crossref_primary_10_1002_adma_201707509 crossref_primary_10_1142_S1793545819410013 crossref_primary_10_1038_s41467_021_27233_4 crossref_primary_10_1002_adma_201807888 crossref_primary_10_1016_j_addr_2021_03_008 crossref_primary_10_1002_cnma_201800170 crossref_primary_10_1021_acs_analchem_4c06870 crossref_primary_10_1021_acs_analchem_9b05431 crossref_primary_10_1002_smll_201800782 crossref_primary_10_1002_smll_202008061 crossref_primary_10_1039_C9NH00328B crossref_primary_10_1002_adma_201701013 crossref_primary_10_1016_j_talanta_2018_02_093 crossref_primary_10_1002_anie_201904047 crossref_primary_10_1021_acsnano_3c10659 crossref_primary_10_1021_acs_analchem_2c01241 crossref_primary_10_1039_D0SC03160G crossref_primary_10_1021_acs_chemrev_2c00627 crossref_primary_10_1002_smll_201703400 crossref_primary_10_1016_j_aca_2020_06_055 crossref_primary_10_1002_adfm_202206300 crossref_primary_10_1021_acsami_8b20113 crossref_primary_10_1016_j_ccr_2023_215379 crossref_primary_10_1016_j_snb_2018_04_099 crossref_primary_10_1088_1748_605X_ac4147 crossref_primary_10_1002_advs_202202384 crossref_primary_10_1016_j_snb_2018_04_052 crossref_primary_10_1039_C8CC01031E crossref_primary_10_1039_C8NR03445A crossref_primary_10_3389_fmats_2021_699433 crossref_primary_10_2174_0929867329666220208093735 crossref_primary_10_1002_adma_202311397 crossref_primary_10_1002_cbic_202000514 crossref_primary_10_1002_VIW_20200149 crossref_primary_10_1039_C7CS00612H crossref_primary_10_1039_C9TA01009B crossref_primary_10_1002_adfm_202001771 crossref_primary_10_1021_acsnano_8b05906 crossref_primary_10_1002_smll_201803866 crossref_primary_10_1021_acs_analchem_1c03302 crossref_primary_10_1002_ange_202105905 |
Cites_doi | 10.1016/j.addr.2016.05.013 10.1021/ar200061q 10.1021/ja403798m 10.1038/nmat2986 10.1021/nl070557d 10.1002/adma.201503194 10.1002/chem.201001769 10.1039/C4CS00086B 10.1021/am502579e 10.7150/thno.16715 10.1021/nn304347g 10.1002/adma.201505700 10.1021/nn505989e 10.1016/j.trac.2016.05.015 10.1002/adma.201400914 10.7150/thno.11632 10.1038/nphoton.2009.157 10.1016/j.tibtech.2016.02.001 10.1021/nl100890d 10.1021/acsnano.5b03874 10.1002/adma.201505681 10.1002/adma.201304497 10.1002/adma.201402972 10.1038/nnano.2008.231 10.1021/jacs.5b10504 10.1021/cr2004103 10.1002/adma.201502598 10.1002/adma.201301946 10.1038/nnano.2015.25 10.1021/ja5115248 10.2528/PIER14032303 10.7150/thno.7217 10.1021/nn5064858 10.1021/acsnano.5b07521 10.1002/adma.201503437 10.1038/nnano.2013.302 10.1002/ange.201308986 10.1007/s12274-016-0996-y 10.1038/nnano.2009.231 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1002/adma.201606129 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | PMC5553071 28224711 10_1002_adma_201606129 ADMA201606129 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Postdoctoral Science Foundation of China funderid: 2016M600671 – fundername: National Institutes of Health – fundername: National Science Foundation of China funderid: 51573096; 81601531; 81401465 – fundername: National Institute of Biomedical Imaging and Bioengineering – fundername: National Science Foundation of Jiangsu Province funderid: BK20160755 – fundername: Intramural Research Programs of the National Institute of Biomedical Imaging and Bioengineering – fundername: Intramural NIH HHS grantid: ZIA EB000073 – fundername: Intramural NIH HHS grantid: Z99 EB999999 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c4689-8798f695223ae250ee256f86906f42374d2e8dcf801505340ec6886a5de296d03 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Aug 21 14:03:13 EDT 2025 Fri Jul 11 09:15:44 EDT 2025 Sun Jul 13 04:26:15 EDT 2025 Mon Jul 21 06:02:36 EDT 2025 Tue Jul 01 00:44:32 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Wed Jan 22 16:43:13 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | methylmercury detection ratiometric probe photoacoustic imaging |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4689-8798f695223ae250ee256f86906f42374d2e8dcf801505340ec6886a5de296d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5553071 |
PMID | 28224711 |
PQID | 1920413077 |
PQPubID | 2045203 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5553071 proquest_miscellaneous_1870987507 proquest_journals_1920413077 pubmed_primary_28224711 crossref_citationtrail_10_1002_adma_201606129 crossref_primary_10_1002_adma_201606129 wiley_primary_10_1002_adma_201606129_ADMA201606129 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-May |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-May |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 16 2014; 4 2008 2010; 3 10 2015; 137 2007 2009 2011 2012 2013 2014 2015 2016; 7 4 44 6 125 26 5 9 2015 2016; 27 28 2014 2011 2015 2016 2015; 26 10 10 28 27 2015 2015; 137 9 2009 2014 2014 2016 2016 2016; 3 147 43 34 6 105 2016; 82 2015 2016 2016 2015; 27 28 10 9 2014; 9 2014; 8 2013 2013 2013; 135 113 25 2014; 6 e_1_2_3_1_1 e_1_2_3_2_1 e_1_2_3_1_2 e_1_2_3_1_5 e_1_2_3_2_5 e_1_2_3_4_3 e_1_2_3_5_2 e_1_2_3_6_1 e_1_2_3_1_6 e_1_2_3_2_4 e_1_2_3_4_2 e_1_2_3_5_1 e_1_2_3_1_3 e_1_2_3_2_3 e_1_2_3_3_2 e_1_2_3_4_1 e_1_2_3_1_4 e_1_2_3_2_2 e_1_2_3_3_1 e_1_2_3_4_7 e_1_2_3_12_1 e_1_2_3_4_6 e_1_2_3_8_2 e_1_2_3_9_1 e_1_2_3_12_2 e_1_2_3_13_1 e_1_2_3_4_5 e_1_2_3_5_4 e_1_2_3_8_1 e_1_2_3_12_3 e_1_2_3_14_1 e_1_2_3_4_4 e_1_2_3_5_3 e_1_2_3_7_1 e_1_2_3_15_1 e_1_2_3_10_1 e_1_2_3_4_8 e_1_2_3_10_2 e_1_2_3_11_1 |
References_xml | – volume: 3 147 43 34 6 105 start-page: 503 1 7132 420 2394 242 year: 2009 2014 2014 2016 2016 2016 publication-title: Nat. Photonics Electromagn. Waves Chem. Soc. Rev. Trends Biotech. Theranostics Adv. Drug Deliver. Rev. – volume: 135 113 25 start-page: 9869 192 5287 year: 2013 2013 2013 publication-title: J. Am. Chem. Soc. Chem. Rev. Adv. Mater. – volume: 137 9 start-page: 15628 1692 year: 2015 2015 publication-title: J. Am. Chem. Soc. ACS Nano – volume: 137 start-page: 2336 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 27 28 10 9 start-page: 843 3273 3453 9517 year: 2015 2016 2016 2015 publication-title: Adv. Mater. Adv. Mater. ACS Nano ACS Nano – volume: 82 start-page: 175 year: 2016 publication-title: TrAC, Trends Anal. Chem. – volume: 26 10 10 28 27 start-page: 6401 324 325 254 6125 year: 2014 2011 2015 2016 2015 publication-title: Adv. Mater. Nat. Mater. Nat. Nanotechnol. Adv. Mater. Adv. Mater. – volume: 16 start-page: 14424 year: 2010 publication-title: Chem. ‐ Eur. J. – volume: 9 start-page: 233 year: 2014 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 10706 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 7 4 44 6 125 26 5 9 start-page: 1914 688 914 10366 14208 1886 970 1043 year: 2007 2009 2011 2012 2013 2014 2015 2016 publication-title: Nano Lett. Nat. Nanotechnol. Acc. Chem. Res. ACS Nano Angew. Chem. Int. Ed. Adv. Mater. Theranostics Nano Res. – volume: 27 28 start-page: 6820 3662 year: 2015 2016 publication-title: Adv. Mater. Adv. Mater. – volume: 3 10 start-page: 557 2168 year: 2008 2010 publication-title: Nat. Nanotechnol. Nano Lett. – volume: 4 start-page: 134 year: 2014 publication-title: Theranostics – volume: 8 start-page: 12141 year: 2014 publication-title: ACS Nano – ident: e_1_2_3_1_6 doi: 10.1016/j.addr.2016.05.013 – ident: e_1_2_3_4_3 doi: 10.1021/ar200061q – ident: e_1_2_3_12_1 doi: 10.1021/ja403798m – ident: e_1_2_3_2_2 doi: 10.1038/nmat2986 – ident: e_1_2_3_4_1 doi: 10.1021/nl070557d – ident: e_1_2_3_8_1 doi: 10.1002/adma.201503194 – ident: e_1_2_3_14_1 doi: 10.1002/chem.201001769 – ident: e_1_2_3_1_3 doi: 10.1039/C4CS00086B – ident: e_1_2_3_13_1 doi: 10.1021/am502579e – ident: e_1_2_3_1_5 doi: 10.7150/thno.16715 – ident: e_1_2_3_4_4 doi: 10.1021/nn304347g – ident: e_1_2_3_5_2 doi: 10.1002/adma.201505700 – ident: e_1_2_3_6_1 doi: 10.1021/nn505989e – ident: e_1_2_3_11_1 doi: 10.1016/j.trac.2016.05.015 – ident: e_1_2_3_2_1 doi: 10.1002/adma.201400914 – ident: e_1_2_3_4_7 doi: 10.7150/thno.11632 – ident: e_1_2_3_1_1 doi: 10.1038/nphoton.2009.157 – ident: e_1_2_3_1_4 doi: 10.1016/j.tibtech.2016.02.001 – ident: e_1_2_3_3_2 doi: 10.1021/nl100890d – ident: e_1_2_3_5_4 doi: 10.1021/acsnano.5b03874 – ident: e_1_2_3_8_2 doi: 10.1002/adma.201505681 – ident: e_1_2_3_4_6 doi: 10.1002/adma.201304497 – ident: e_1_2_3_5_1 doi: 10.1002/adma.201402972 – ident: e_1_2_3_3_1 doi: 10.1038/nnano.2008.231 – ident: e_1_2_3_10_1 doi: 10.1021/jacs.5b10504 – ident: e_1_2_3_12_2 doi: 10.1021/cr2004103 – ident: e_1_2_3_2_5 doi: 10.1002/adma.201502598 – ident: e_1_2_3_12_3 doi: 10.1002/adma.201301946 – ident: e_1_2_3_2_3 doi: 10.1038/nnano.2015.25 – ident: e_1_2_3_15_1 doi: 10.1021/ja5115248 – ident: e_1_2_3_1_2 doi: 10.2528/PIER14032303 – ident: e_1_2_3_9_1 doi: 10.7150/thno.7217 – ident: e_1_2_3_10_2 doi: 10.1021/nn5064858 – ident: e_1_2_3_5_3 doi: 10.1021/acsnano.5b07521 – ident: e_1_2_3_2_4 doi: 10.1002/adma.201503437 – ident: e_1_2_3_7_1 doi: 10.1038/nnano.2013.302 – ident: e_1_2_3_4_5 doi: 10.1002/ange.201308986 – ident: e_1_2_3_4_8 doi: 10.1007/s12274-016-0996-y – ident: e_1_2_3_4_2 doi: 10.1038/nnano.2009.231 |
SSID | ssj0009606 |
Score | 2.5057638 |
Snippet | Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+) is one of the most potent... Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg + ) is one of the most potent... Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg ) is one of the most potent... Photoacoustic molecular imaging is an emerging and promising diagnostic tool for heavy metal ions detection. Methylmercury (MeHg+ ) is one of the most potent... A promising MeHg + detection strategy by ratiometric photoacoustic molecular imaging shows very high sensitivity and selectivity in living subjects, such as... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Absorbance Animals Brain damage Coloring Agents Diagnostic software Diagnostic systems Heavy metals Human beings Imaging Materials science Mercury Mercury (metal) Metal ions methylmercury detection Mice Molecular Imaging Molecular Probes Near infrared radiation Nervous system photoacoustic imaging ratiometric probe Spectrum Analysis Toxins Zebrafish |
Title | Ratiometric Photoacoustic Molecular Imaging for Methylmercury Detection in Living Subjects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201606129 https://www.ncbi.nlm.nih.gov/pubmed/28224711 https://www.proquest.com/docview/1920413077 https://www.proquest.com/docview/1870987507 https://pubmed.ncbi.nlm.nih.gov/PMC5553071 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iSQ--H-uLCIKnapumSXpcXEXFFREF8VLaJMVFtytuvfjrnUm33V1FBL2UliS0TWYmX9PJ9xFykEWaVX8YjRAeB4DhqdRojwsmtYlyGRjcO9y9Fuf3_PIhepjYxV_xQzQLbugZLl6jg6fZ8HhMGpoaxxsUCJykcQcfJmwhKrod80chPHdke2HkxYKrmrXRZ8fTzadnpW9Q83vG5CSSdVPR2SJJ65eoMlCej97L7Eh_fOF3_M9bLpGFEU6l7cqwlsmMLVbI_AR74Sp5vMVR7aMkl6Y3T4NyANHViYPRbi26Sy_6TgaJAjamXQtWgXItGgaSdmzp0sAK2ivoVQ8XNiiEMVwXGq6R-7PTu5NzbyTV4GkuVAwxNVa5iAHMhakFVGXhIHJUuxI5Jt5ww6wyOle4wBKF3LdaKCXSyFgWC-OH62S2GBR2k1CR5yGXGY85T3kAZ0hVKo2RTCsB1tMiXj1UiR7xmKOcxktSMTCzBPssafqsRQ6b-q8Vg8ePNXfqkU9GnjxMAAH7ONFL2SL7TTH4IP5YSQsL_ZoEEPRi-PDzoc5GZSjNrVyargyCFpFTJtRUQH7v6ZKi9-R4viOUdJLQkjkL-eXpk3an226utv7SaJvMMUQtLp9zh8yWb-92FzBXme05v_oEi_8jMg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2V9gAcoHwUFgoYqRKntInj2M5xxVJtYVOhqpUqLlZiO-qqNItoeuHXM-Ns0i4VQqKXKFFsJbFnxi-TyXsAO1VmefeF0UkZCQQYkS6djYTkyrqsVomjf4eLQzk9EZ9Ps76akP6F6fghhoQbeUaI1-TglJDeu2YNLV0gDkokrdL5PdggWW_yzcnRNYMUAfRAt5dmUS6F7nkbY7632n91XboFNm_XTN7EsmEx2n8MVf8YXQ3K-e5VW-3aX38wPN7pOTfh0RKqsnFnW09gzTdP4eENAsNn8O2IJvaCVLks-3q2aBcYYIM-GCt63V12cBGUkBjCY1Z4NAxSbLE4l2zi21AJ1rB5w2Zzym0wjGSUGrp8Dif7n44_TqOlWkNkhdQ5htVc1zJHPJeWHoGVx42sSfBK1lR7Ixz32tlaU44lS0XsrdRalpnzPJcuTrdgvVk0_iUwWdepUJXIhShFgnvEVqqcU9xqiQY0gqifK2OXVOakqPHddCTM3NCYmWHMRvBhaP-jI_H4a8vtfurN0pkvDYLgmNZ6pUbwfjiNbkjfVsrG47iaBONeju9-MbZ50VnKcKlQqauSZARqxYaGBkTxvXqmmZ8Fqu-MVJ0U9uTBRP5x92Y8KcbD0av_6fQO7k-Pi5mZHRx-eQ0POIGYUN65Devtzyv_BiFYW70NTvYbqAEnSw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB21VKrKgZZ-wAItrlSpp0DiOLZzXHVZQcsihIqEerGytiNWhSyCcOHXM-Nswm5RhdReokSxldieGb_Yk_cAvowzy5sdRidlJBBgRLpwNhKSK-uyUiWO_h0eHcn9U_H9LDub-4u_4YfoFtzIM0K8Jge_cuXuA2lo4QJvUCJpks6fwwshY02fX4OTBwIpwueBbS_NolwK3dI2xnx3sf7itPQIaz5OmZyHsmEuGr6Gom1Fk4Lye-e2Hu_Yuz8IHv-nmW9gZQZUWb-xrFV45qu3sDxHX_gOfp3QsF6SJpdlx-fTeorhNaiDsVGrussOLoMOEkNwzEYezYL0WiyOJBv4OuSBVWxSscMJrWwwjGO0MHTzHk6Hez-_7UczrYbICqlzDKq5LmWOaC4tPMIqjwdZktyVLCnzRjjutbOlphWWLBWxt1JrWWTO81y6OP0AS9W08uvAZFmmQo1FLkQhEjwjrlLlnOJWSzSfHkTtUBk7IzInPY0L01Awc0N9Zro-68HXrvxVQ-Hx15Jb7cibmSvfGITAMc30SvXgc3cbnZB2VorKY7-aBKNejl9-MZZZawyle1TI01VJ0gO1YEJdASL4XrxTTc4D0XdGmk4Ka_JgIU-8vekPRv3uauNfKm3Dy-PB0BweHP3YhFecEEzI7dyCpfr61n9E_FWPPwUXuwcs_CYD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ratiometric+Photoacoustic+Molecular+Imaging+for+Methylmercury+Detection+in+Living+Subjects&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Liu%2C+Yi&rft.au=Wang%2C+Sheng&rft.au=Ma%2C+Ying&rft.au=Lin%2C+Jing&rft.date=2017-05-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201606129&rft.externalDBID=10.1002%252Fadma.201606129&rft.externalDocID=ADMA201606129 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |