An Adhesive Hydrogel with “Load‐Sharing” Effect as Tissue Bandages for Drug and Cell Delivery

Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of “triple hydrogen bonding clusters” (THBCs) as...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 43; pp. e2001628 - n/a
Main Authors Chen, Jing, Wang, Dong, Wang, Long‐Hai, Liu, Wanjun, Chiu, Alan, Shariati, Kaavian, Liu, Qingsheng, Wang, Xi, Zhong, Zhe, Webb, James, Schwartz, Robert E., Bouklas, Nikolaos, Ma, Minglin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of “triple hydrogen bonding clusters” (THBCs) as side groups into the hydrogel matrix. The THBC through a unique “load sharing” effect and an increase in bond density results in strong adhesions of the hydrogel to a range of surfaces, including glass, plastic, wood, poly(tetrafluoroethylene) (PTFE), stainless steel, and biological tissues, even without any chemical reaction. Using the adhesive hydrogel, tissue‐adhesive bandages are developed for either targeted and sustained release of chemotherapeutic nanodrug for liver cancer treatment, or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enables almost complete tumor suppression in an orthotopic liver cancer mouse model and ≈1 month diabetes correction in chemically induced diabetic mice. An adhesive hydrogel based on a “load‐sharing” effect of triple hydrogen bonding clusters is reported. To demonstrate their potential applications, these adhesive hydrogels are engineered into internally applied tissue bandages for delivery of either antitumor drugs directly to the tumor site or insulin‐producing cells to treat type 1 diabetes.
AbstractList Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of “triple hydrogen bonding clusters” (THBCs) as side groups into the hydrogel matrix. The THBC through a unique “load sharing” effect and an increase in bond density results in strong adhesions of the hydrogel to a range of surfaces, including glass, plastic, wood, poly(tetrafluoroethylene) (PTFE), stainless steel, and biological tissues, even without any chemical reaction. Using the adhesive hydrogel, tissue‐adhesive bandages are developed for either targeted and sustained release of chemotherapeutic nanodrug for liver cancer treatment, or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enables almost complete tumor suppression in an orthotopic liver cancer mouse model and ≈1 month diabetes correction in chemically induced diabetic mice.
Hydrogels with adhesive properties have potentials for numerous biomedical applications. Here we report the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages. The design involves incorporation of “triple hydrogen bonding clusters” (THBC) as side groups into the hydrogel matrix. The THBC through a unique “load sharing” effect and an increase in bond density resulted in strong adhesions of the hydrogel to a range of surfaces including glass, plastic, wood, PTFE, stainless steel and biological tissues even without any chemical reaction. Using the adhesive hydrogel, we developed tissue adhesive bandages for either targeted and sustained release of chemotherapeutic nano-drug for liver cancer treatment or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enabled almost complete tumor suppression in an orthotopic liver cancer mouse model and ~1-month diabetes correction in chemically induced diabetic mice. Internally applied tissue bandages based on a novel adhesive hydrogel were developed for delivery of either anti-tumor drugs directly to the tumor site or insulin-producing cells to treat type 1 diabetes.
Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of “triple hydrogen bonding clusters” (THBCs) as side groups into the hydrogel matrix. The THBC through a unique “load sharing” effect and an increase in bond density results in strong adhesions of the hydrogel to a range of surfaces, including glass, plastic, wood, poly(tetrafluoroethylene) (PTFE), stainless steel, and biological tissues, even without any chemical reaction. Using the adhesive hydrogel, tissue‐adhesive bandages are developed for either targeted and sustained release of chemotherapeutic nanodrug for liver cancer treatment, or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enables almost complete tumor suppression in an orthotopic liver cancer mouse model and ≈1 month diabetes correction in chemically induced diabetic mice. An adhesive hydrogel based on a “load‐sharing” effect of triple hydrogen bonding clusters is reported. To demonstrate their potential applications, these adhesive hydrogels are engineered into internally applied tissue bandages for delivery of either antitumor drugs directly to the tumor site or insulin‐producing cells to treat type 1 diabetes.
Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of "triple hydrogen bonding clusters" (THBCs) as side groups into the hydrogel matrix. The THBC through a unique "load sharing" effect and an increase in bond density results in strong adhesions of the hydrogel to a range of surfaces, including glass, plastic, wood, poly(tetrafluoroethylene) (PTFE), stainless steel, and biological tissues, even without any chemical reaction. Using the adhesive hydrogel, tissue-adhesive bandages are developed for either targeted and sustained release of chemotherapeutic nanodrug for liver cancer treatment, or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enables almost complete tumor suppression in an orthotopic liver cancer mouse model and ≈1 month diabetes correction in chemically induced diabetic mice.Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of "triple hydrogen bonding clusters" (THBCs) as side groups into the hydrogel matrix. The THBC through a unique "load sharing" effect and an increase in bond density results in strong adhesions of the hydrogel to a range of surfaces, including glass, plastic, wood, poly(tetrafluoroethylene) (PTFE), stainless steel, and biological tissues, even without any chemical reaction. Using the adhesive hydrogel, tissue-adhesive bandages are developed for either targeted and sustained release of chemotherapeutic nanodrug for liver cancer treatment, or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enables almost complete tumor suppression in an orthotopic liver cancer mouse model and ≈1 month diabetes correction in chemically induced diabetic mice.
Author Wang, Dong
Zhong, Zhe
Ma, Minglin
Webb, James
Chiu, Alan
Liu, Wanjun
Bouklas, Nikolaos
Schwartz, Robert E.
Liu, Qingsheng
Wang, Long‐Hai
Shariati, Kaavian
Chen, Jing
Wang, Xi
Author_xml – sequence: 1
  givenname: Jing
  surname: Chen
  fullname: Chen, Jing
  organization: Cornell University
– sequence: 2
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  organization: Cornell University
– sequence: 3
  givenname: Long‐Hai
  surname: Wang
  fullname: Wang, Long‐Hai
  organization: Cornell University
– sequence: 4
  givenname: Wanjun
  surname: Liu
  fullname: Liu, Wanjun
  organization: Cornell University
– sequence: 5
  givenname: Alan
  surname: Chiu
  fullname: Chiu, Alan
  organization: Cornell University
– sequence: 6
  givenname: Kaavian
  surname: Shariati
  fullname: Shariati, Kaavian
  organization: Cornell University
– sequence: 7
  givenname: Qingsheng
  surname: Liu
  fullname: Liu, Qingsheng
  organization: Cornell University
– sequence: 8
  givenname: Xi
  surname: Wang
  fullname: Wang, Xi
  organization: Cornell University
– sequence: 9
  givenname: Zhe
  surname: Zhong
  fullname: Zhong, Zhe
  organization: Cornell University
– sequence: 10
  givenname: James
  surname: Webb
  fullname: Webb, James
  organization: Cornell University
– sequence: 11
  givenname: Robert E.
  surname: Schwartz
  fullname: Schwartz, Robert E.
  organization: Weill Cornell Medical College
– sequence: 12
  givenname: Nikolaos
  surname: Bouklas
  fullname: Bouklas, Nikolaos
  organization: Cornell University
– sequence: 13
  givenname: Minglin
  orcidid: 0000-0002-9553-7526
  surname: Ma
  fullname: Ma, Minglin
  email: mm826@cornell.edu
  organization: Cornell University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32945035$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPCliWyxIbNBP_NjzdIQ1IoUhALsrdubM_E1WRc7JlW2eUReAB4uTwJjtIWqIRYWbK_c3zOvWfopPe9ReglJVNKCHsLZgNTRhghtGDVEzShOaOZIDI_QRMieZ7JQlSn6CzGK0KILEjxDJ1yJkVOeD5Buu5xbdY2uhuLL7cm-NZ2-NYNa7zf_Vh4MPvd969rCK5v97uf-KJprB4wRLx0MY4Wv4feQGsjbnzA8zC2OF3gme06PLddcg3b5-hpA120L-7Oc7T8cLGcXWaLLx8_zepFpkVRVZmkpZCVACo10JUsNAFmGkukkQ0vOBeNNhRWUhIjIHUBLa2srFmxErRm_By9O9pej6uNNdr2Q4BOXQe3gbBVHpz6-6V3a9X6G1WmoeSUJ4M3dwbBfxttHNTGRZ2aQG_9GBUTQvCyyvPDX68foVd-DH1ql6hckJKVjCbq1Z-JHqLcjz8B4gjo4GMMtlHaDTA4fwjoOkWJOmxZHbasHracZNNHsnvnfwrkUXDrOrv9D63q-ef6t_YXsEq8xw
CitedBy_id crossref_primary_10_1016_j_compositesb_2023_110989
crossref_primary_10_1016_j_compositesb_2023_110506
crossref_primary_10_1002_adfm_202316346
crossref_primary_10_1016_j_ijbiomac_2024_133857
crossref_primary_10_1016_j_jcis_2022_03_037
crossref_primary_10_1002_advs_202206771
crossref_primary_10_1016_j_mtbio_2025_101518
crossref_primary_10_1002_wnan_1822
crossref_primary_10_1021_acsami_1c18983
crossref_primary_10_3390_polym14010126
crossref_primary_10_1002_adhm_202200874
crossref_primary_10_1016_j_polymertesting_2023_107931
crossref_primary_10_1002_adfm_202310233
crossref_primary_10_1016_j_carbpol_2022_119787
crossref_primary_10_1039_D3TB00251A
crossref_primary_10_1002_advs_202203890
crossref_primary_10_59717_j_xinn_mater_2023_100040
crossref_primary_10_1002_adhm_202101714
crossref_primary_10_1016_j_progpolymsci_2021_101388
crossref_primary_10_1016_j_bioactmat_2024_10_015
crossref_primary_10_1016_j_ijbiomac_2022_02_175
crossref_primary_10_1021_acs_biomac_4c00194
crossref_primary_10_1039_D3CS00764B
crossref_primary_10_1016_j_colsurfa_2023_133087
crossref_primary_10_1002_admi_202101855
crossref_primary_10_1021_acsapm_2c00390
crossref_primary_10_1039_D3BM00544E
crossref_primary_10_1016_j_bioactmat_2022_05_010
crossref_primary_10_1016_j_bioelechem_2021_107919
crossref_primary_10_3389_fbioe_2023_1180073
crossref_primary_10_1126_sciadv_adh4327
crossref_primary_10_1021_acsabm_2c00533
crossref_primary_10_1021_acs_chemrev_2c00215
crossref_primary_10_1039_D2CS00618A
crossref_primary_10_1016_j_ijbiomac_2023_126020
crossref_primary_10_1016_j_biomaterials_2022_121506
crossref_primary_10_1002_adfm_202312360
crossref_primary_10_1016_j_colsurfa_2021_127793
crossref_primary_10_1007_s40005_024_00678_7
crossref_primary_10_1002_adma_202413028
crossref_primary_10_1016_j_coco_2024_101839
crossref_primary_10_1021_acs_chemrev_0c01062
crossref_primary_10_1021_acs_chemmater_4c02562
crossref_primary_10_1021_acsami_3c09117
crossref_primary_10_1002_adhm_202101421
crossref_primary_10_1016_j_ijbiomac_2024_135852
crossref_primary_10_1021_acsapm_4c02935
crossref_primary_10_1016_j_compositesb_2023_110964
crossref_primary_10_1021_acsami_2c06957
crossref_primary_10_1002_admi_202101038
crossref_primary_10_1007_s40820_023_01079_5
crossref_primary_10_1016_j_cej_2022_137304
crossref_primary_10_1016_j_ijbiomac_2024_137752
crossref_primary_10_2139_ssrn_4051086
crossref_primary_10_1021_acs_chemrev_1c00815
crossref_primary_10_1021_acsnano_2c07483
crossref_primary_10_1002_smll_202411265
crossref_primary_10_3390_gels10070442
crossref_primary_10_1039_D2SM01158A
crossref_primary_10_1021_acsnano_1c04206
crossref_primary_10_1016_j_bioactmat_2021_10_017
crossref_primary_10_1016_j_cej_2021_131049
crossref_primary_10_1038_s41551_021_00769_y
crossref_primary_10_1002_mabi_202300379
crossref_primary_10_1039_D2BM01058E
crossref_primary_10_1016_j_eurpolymj_2022_111328
crossref_primary_10_1093_rb_rbab008
crossref_primary_10_1002_adfm_202311938
crossref_primary_10_3390_gels9020146
crossref_primary_10_1016_j_biomaterials_2023_122239
crossref_primary_10_1016_j_ijpharm_2024_124015
crossref_primary_10_1126_sciadv_abc3012
crossref_primary_10_1002_adma_202008553
crossref_primary_10_1002_adfm_202401030
crossref_primary_10_1016_j_carbpol_2021_118547
crossref_primary_10_1016_j_eurpolymj_2024_113260
crossref_primary_10_1039_D3TB02186F
crossref_primary_10_1016_j_fmre_2023_11_023
crossref_primary_10_1002_advs_202206450
crossref_primary_10_1002_smll_202101858
crossref_primary_10_1002_marc_202400835
crossref_primary_10_1016_j_ijbiomac_2023_128505
crossref_primary_10_1016_j_biomaterials_2024_123068
crossref_primary_10_1016_j_cej_2022_137163
crossref_primary_10_1016_j_cej_2022_138256
crossref_primary_10_1038_s41578_022_00483_4
crossref_primary_10_1016_j_ijbiomac_2022_06_042
crossref_primary_10_1166_jbn_2023_3654
crossref_primary_10_1002_adhm_202200717
crossref_primary_10_1016_j_cej_2021_134055
crossref_primary_10_1016_j_bioactmat_2021_11_032
crossref_primary_10_1016_j_mtbio_2023_100582
crossref_primary_10_1016_j_bioactmat_2021_11_038
crossref_primary_10_1016_j_ijbiomac_2022_05_081
crossref_primary_10_1021_acsami_1c18261
crossref_primary_10_1021_acsabm_0c01235
crossref_primary_10_1002_marc_202400285
crossref_primary_10_31436_iiumej_v26i1_3236
crossref_primary_10_1039_D3TB00239J
crossref_primary_10_1002_adhm_202201000
crossref_primary_10_1002_mabi_202100474
crossref_primary_10_1016_j_cis_2023_102982
crossref_primary_10_1039_D3TB02244G
crossref_primary_10_1002_advs_202201271
crossref_primary_10_1016_j_jcis_2023_01_111
crossref_primary_10_1186_s40824_022_00306_1
crossref_primary_10_1093_nsr_nwae160
crossref_primary_10_1002_adhm_202403734
crossref_primary_10_1016_j_bioactmat_2021_04_005
crossref_primary_10_1002_adma_202203431
crossref_primary_10_1002_adma_202205567
crossref_primary_10_1186_s12951_024_02547_9
crossref_primary_10_1016_j_biomaterials_2024_122599
crossref_primary_10_1002_SMMD_20230042
crossref_primary_10_1126_sciadv_abe8739
crossref_primary_10_1016_j_jconrel_2024_05_019
crossref_primary_10_1021_acsami_3c19481
crossref_primary_10_1021_acsami_1c16269
crossref_primary_10_1002_admt_202100303
crossref_primary_10_1002_advs_202305508
crossref_primary_10_1016_j_cej_2022_139368
crossref_primary_10_1021_acs_biomac_2c01168
crossref_primary_10_1049_bsb2_12036
crossref_primary_10_1016_j_eurpolymj_2022_111119
crossref_primary_10_1039_D4TA01650E
crossref_primary_10_3390_gels8020089
crossref_primary_10_1007_s12274_023_6384_5
crossref_primary_10_1016_j_eml_2022_101687
crossref_primary_10_1002_pol_20210249
crossref_primary_10_1038_s41467_022_33081_7
crossref_primary_10_1016_j_ijbiomac_2025_140448
crossref_primary_10_1002_adhm_202300669
crossref_primary_10_1146_annurev_pathol_042320_094846
crossref_primary_10_1016_j_colcom_2024_100809
crossref_primary_10_1186_s12951_024_02449_w
crossref_primary_10_1002_adma_202300876
crossref_primary_10_1021_acs_chemrev_3c00498
crossref_primary_10_1002_advs_202407588
crossref_primary_10_1038_s41467_022_31579_8
crossref_primary_10_1039_D4SM00287C
crossref_primary_10_1016_j_mtadv_2023_100452
crossref_primary_10_1016_j_cej_2024_150086
crossref_primary_10_1002_adhm_202301370
crossref_primary_10_1002_marc_202300683
crossref_primary_10_1016_j_carbpol_2023_121543
crossref_primary_10_1016_j_cej_2021_133372
crossref_primary_10_1126_sciadv_adg4031
crossref_primary_10_1002_adfm_202111022
crossref_primary_10_1016_j_bioactmat_2022_11_023
crossref_primary_10_1021_acsami_3c18306
crossref_primary_10_1021_acs_biomac_3c01025
crossref_primary_10_1039_D3MH00514C
crossref_primary_10_1021_acs_jchemed_4c01121
crossref_primary_10_1002_adma_202007663
crossref_primary_10_1002_adhm_202201798
crossref_primary_10_1016_j_mtbio_2024_101248
crossref_primary_10_1016_j_ijadhadh_2023_103497
crossref_primary_10_1021_acs_chemmater_3c02803
crossref_primary_10_1021_acs_chemrev_3c00380
Cites_doi 10.1126/science.aah6362
10.1039/C8MH01421C
10.1038/s41467-019-12748-8
10.1038/s41467-019-09351-2
10.1016/j.jconrel.2008.05.010
10.1038/natrevmats.2016.71
10.3322/caac.21551
10.1038/nrdp.2016.18
10.1097/SLA.0000000000001715
10.1002/adfm.201804925
10.1038/s41467-019-11082-3
10.1073/pnas.1708806115
10.1016/j.actbio.2017.02.028
10.1002/adfm.201803951
10.1038/nrendo.2016.178
10.1002/chem.201502756
10.1016/j.jmps.2014.05.014
10.1038/s41467-019-13238-7
10.1016/j.tibtech.2017.06.015
10.1002/adhm.201901396
10.1038/ncomms5095
10.1126/science.1147241
10.1016/j.jmps.2018.02.018
10.1056/NEJMoa1907863
10.1007/s10409-017-0661-z
10.1002/advs.201801987
10.1126/science.aab0556
10.1016/j.addr.2015.10.021
10.1002/adfm.201901693
10.1097/SLA.0000000000001178
10.1038/s41586-019-1710-5
10.1038/nmat4497
10.1016/j.addr.2019.01.013
10.1016/j.jmps.2019.06.013
10.1002/adfm.201703132
10.1126/sciadv.1700184
10.1038/s41551-018-0275-1
10.1557/jmr.2018.384
10.1002/adma.201704235
10.1073/pnas.1505405112
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1002/adma.202001628
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID PMC7606513
32945035
10_1002_adma_202001628
ADMA202001628
Genre article
Journal Article
GrantInformation_xml – fundername: JDRF
  funderid: 2‐SRA‐2018‐472‐S‐B
– fundername: Novo Nordisk Company
– fundername: Hartwell Foundation
– fundername: National Institutes of Health
  funderid: 1R01DK105967‐01A1
– fundername: JDRF
  grantid: 2-SRA-2018-472-S-B
– fundername: NIH HHS
  grantid: 1R01DK105967-01A1
– fundername: NIDDK NIH HHS
  grantid: R01 DK105967
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c4688-9174984a19ca1b96c0a2dfe09d9f36334fcd1ab990d4a000ac9e98edb27acc23
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Aug 21 18:32:49 EDT 2025
Thu Jul 10 21:56:42 EDT 2025
Mon Jul 14 09:43:16 EDT 2025
Mon Jul 21 05:51:35 EDT 2025
Thu Apr 24 23:08:35 EDT 2025
Tue Jul 01 02:32:52 EDT 2025
Wed Jan 22 16:32:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Keywords targeted delivery
tissue bandages
type 1 diabetes
load sharing
adhesive hydrogels
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4688-9174984a19ca1b96c0a2dfe09d9f36334fcd1ab990d4a000ac9e98edb27acc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9553-7526
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7606513
PMID 32945035
PQID 2454072721
PQPubID 2045203
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7606513
proquest_miscellaneous_2444378552
proquest_journals_2454072721
pubmed_primary_32945035
crossref_citationtrail_10_1002_adma_202001628
crossref_primary_10_1002_adma_202001628
wiley_primary_10_1002_adma_202001628_ADMA202001628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2018 2019; 70 115 131
2018 2019 2018; 2 10 115
2018; 28
2007 2019; 318 6
2019; 10
2017; 27
2016 2019; 98 6
2015; 349
2018 2019; 28 10
2017; 357
2016; 263
2016 2017 2016; 15 35 1
2014; 5
2020; 30
2019 2015 2017; 381 112 13
2017 2018 2017 2020; 3 2 53 9
2017; 33
2016 2017; 2 265
2015; 21
2019; 575
2018; 30
2019; 139
2019 2019; 69 10
2018; 33
2008; 132
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_21_3
e_1_2_4_23_1
e_1_2_4_21_2
e_1_2_4_22_1
e_1_2_4_23_3
e_1_2_4_25_1
e_1_2_4_23_2
e_1_2_4_24_1
e_1_2_4_1_1
e_1_2_4_1_3
e_1_2_4_2_2
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_2_1
e_1_2_4_2_4
e_1_2_4_5_1
e_1_2_4_2_3
e_1_2_4_3_2
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_7_2
e_1_2_4_8_1
e_1_2_4_10_1
e_1_2_4_11_1
e_1_2_4_12_1
e_1_2_4_12_2
e_1_2_4_13_1
e_1_2_4_12_3
e_1_2_4_14_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_15_2
e_1_2_4_17_2
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_18_2
e_1_2_4_19_1
References_xml – volume: 318 6
  start-page: 426 285
  year: 2007 2019
  publication-title: Science Mater. Horiz.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 263
  start-page: 538
  year: 2016
  publication-title: Ann. Surg.
– volume: 3 2 53 9
  start-page: 810 100
  year: 2017 2018 2017 2020
  publication-title: Sci. Adv. Nat. Biomed. Eng. Acta Biomater. Adv. Healthcare Mater.
– volume: 357
  start-page: 378
  year: 2017
  publication-title: Science
– volume: 69 10
  start-page: 7 3051
  year: 2019 2019
  publication-title: Ca‐Cancer J. Clin. Nat. Commun.
– volume: 33
  start-page: 543
  year: 2017
  publication-title: Acta Mech. Sin.
– volume: 33
  start-page: 3750
  year: 2018
  publication-title: J. Mater. Res.
– volume: 70 115 131
  start-page: 227 230 1
  year: 2014 2018 2019
  publication-title: J. Mech. Phys. Solids J. Mech. Phys. Solids J. Mech. Phys. Solids
– volume: 575
  start-page: 169
  year: 2019
  publication-title: Nature
– volume: 381 112 13
  start-page: 1707 8260 268
  year: 2019 2015 2017
  publication-title: N. Engl. J. Med. Proc. Natl. Acad. Sci. USA Nat. Rev. Endocrinol.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 28 10
  start-page: 4866
  year: 2018 2019
  publication-title: Adv. Funct. Mater. Nat. Commun.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 139
  start-page: 116
  year: 2019
  publication-title: Adv. Drug Delivery Rev.
– volume: 2 10 115
  start-page: 810 5262 E263
  year: 2018 2019 2018
  publication-title: Nat. Biomed. Eng. Nat. Commun. Proc. Natl. Acad. Sci. USA
– volume: 15 35 1
  start-page: 353 1074
  year: 2016 2017 2016
  publication-title: Nat. Mater. Trends Biotechnol. Nat. Rev. Mater.
– volume: 21
  year: 2015
  publication-title: Chem. ‐ Eur. J.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1487
  year: 2019
  publication-title: Nat. Commun.
– volume: 349
  start-page: 628
  year: 2015
  publication-title: Science
– volume: 98 6
  start-page: 64
  year: 2016 2019
  publication-title: Adv. Drug Delivery Rev. Adv. Sci.
– volume: 2 265
  start-page: 792
  year: 2016 2017
  publication-title: Nat. Rev. Dis. Primers Ann. Surg.
– volume: 5
  start-page: 4095
  year: 2014
  publication-title: Nat. Commun.
– volume: 132
  start-page: 171
  year: 2008
  publication-title: J. Controlled Release
– ident: e_1_2_4_5_1
  doi: 10.1126/science.aah6362
– ident: e_1_2_4_7_2
  doi: 10.1039/C8MH01421C
– ident: e_1_2_4_3_2
  doi: 10.1038/s41467-019-12748-8
– ident: e_1_2_4_9_1
  doi: 10.1038/s41467-019-09351-2
– ident: e_1_2_4_20_1
  doi: 10.1016/j.jconrel.2008.05.010
– ident: e_1_2_4_1_3
  doi: 10.1038/natrevmats.2016.71
– ident: e_1_2_4_15_1
  doi: 10.3322/caac.21551
– ident: e_1_2_4_17_1
  doi: 10.1038/nrdp.2016.18
– ident: e_1_2_4_17_2
  doi: 10.1097/SLA.0000000000001715
– ident: e_1_2_4_24_1
  doi: 10.1002/adfm.201804925
– ident: e_1_2_4_15_2
  doi: 10.1038/s41467-019-11082-3
– ident: e_1_2_4_23_3
  doi: 10.1073/pnas.1708806115
– ident: e_1_2_4_2_3
  doi: 10.1016/j.actbio.2017.02.028
– ident: e_1_2_4_3_1
  doi: 10.1002/adfm.201803951
– ident: e_1_2_4_21_3
  doi: 10.1038/nrendo.2016.178
– ident: e_1_2_4_19_1
  doi: 10.1002/chem.201502756
– ident: e_1_2_4_12_1
  doi: 10.1016/j.jmps.2014.05.014
– ident: e_1_2_4_23_2
  doi: 10.1038/s41467-019-13238-7
– ident: e_1_2_4_1_2
  doi: 10.1016/j.tibtech.2017.06.015
– ident: e_1_2_4_2_4
  doi: 10.1002/adhm.201901396
– ident: e_1_2_4_14_1
  doi: 10.1038/ncomms5095
– ident: e_1_2_4_7_1
  doi: 10.1126/science.1147241
– ident: e_1_2_4_12_2
  doi: 10.1016/j.jmps.2018.02.018
– ident: e_1_2_4_21_1
  doi: 10.1056/NEJMoa1907863
– ident: e_1_2_4_11_1
  doi: 10.1007/s10409-017-0661-z
– ident: e_1_2_4_18_2
  doi: 10.1002/advs.201801987
– ident: e_1_2_4_10_1
  doi: 10.1126/science.aab0556
– ident: e_1_2_4_18_1
  doi: 10.1016/j.addr.2015.10.021
– ident: e_1_2_4_4_1
  doi: 10.1002/adfm.201901693
– ident: e_1_2_4_16_1
  doi: 10.1097/SLA.0000000000001178
– ident: e_1_2_4_6_1
  doi: 10.1038/s41586-019-1710-5
– ident: e_1_2_4_1_1
  doi: 10.1038/nmat4497
– ident: e_1_2_4_22_1
  doi: 10.1016/j.addr.2019.01.013
– ident: e_1_2_4_12_3
  doi: 10.1016/j.jmps.2019.06.013
– ident: e_1_2_4_25_1
  doi: 10.1002/adfm.201703132
– ident: e_1_2_4_2_1
  doi: 10.1126/sciadv.1700184
– ident: e_1_2_4_2_2
  doi: 10.1038/s41551-018-0275-1
– ident: e_1_2_4_23_1
  doi: 10.1038/s41551-018-0275-1
– ident: e_1_2_4_13_1
  doi: 10.1557/jmr.2018.384
– ident: e_1_2_4_8_1
  doi: 10.1002/adma.201704235
– ident: e_1_2_4_21_2
  doi: 10.1073/pnas.1505405112
SSID ssj0009606
Score 2.6542866
Snippet Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its...
Hydrogels with adhesive properties have potentials for numerous biomedical applications. Here we report the design of a novel, intrinsically adhesive hydrogel...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2001628
SubjectTerms adhesive hydrogels
Adhesiveness
Adhesives
Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Bandages
Biomedical materials
Bond strength
Cell Line, Tumor
Chemical reactions
Diabetes
Diabetes Mellitus, Type 1 - pathology
Drug Carriers - chemistry
Drug delivery systems
Drug Design
Drug Liberation
Humans
Hydrogels
Hydrogels - chemistry
Hydrogen Bonding
Liver
Liver cancer
Liver Neoplasms - pathology
Load sharing
Mechanical Phenomena
Medical dressings
Medical materials
Mice
Polytetrafluoroethylene
Stainless steels
Sustained release
targeted delivery
tissue bandages
Tissues
type 1 diabetes
Title An Adhesive Hydrogel with “Load‐Sharing” Effect as Tissue Bandages for Drug and Cell Delivery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202001628
https://www.ncbi.nlm.nih.gov/pubmed/32945035
https://www.proquest.com/docview/2454072721
https://www.proquest.com/docview/2444378552
https://pubmed.ncbi.nlm.nih.gov/PMC7606513
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLXQrGDB-xEYkJGQWGUm8SvxMkwZVYhhgYo0u-j6kQ6iSlEfi2HVT-AD4Of6Jfg6baZlhJBgl8TXih_3xMfO9TEhr_LMszIHnRooilRAgKIWMhA5yY1nqsyEw_WOsw9q-Em8O5fnO7v4O32IfsENkRG_1whwMPPjK9FQcFE3CGOCFMPdvhiwhazo45V-FNLzKLbHZaqVKLeqjRk73s--Pypdo5rXIyZ3mWwcik7vENhWootA-XK0XJgj--03fcf_qeVdcnvDU2nVOdY9csO398mtHfXCB8RWLa3chccAeDq8dLPp2E8oLuzS9erH-ym49eo7CkIH6_XqJ-2EkinM6Sj2Nn2DqxhjP6eBONPBbDmm4QE98ZMJHYRiB5BdPiSj07ejk2G6ObMhtUKV-O0shC4F5NpCbrSyGTDX-Ew73XDFuWisy8GEMdAJCD0EVntdemdYAdYy_ogctNPWPyGU56BKwTPfeB0muQ3I0qjG5Mw6sE3hE5Juu6y2Gz1zPFZjUndKzKzGtqv7tkvI697-a6fk8UfLw60H1BtEz2sWpQpZmDAn5GWfHLCIP1ig9dMl2gjBi1JKlpDHncP0r-IsYCDjMiHFniv1BqjzvZ_Sfr6Iet9F8GKZ84Sw6Cl_KX1dDc6q_u7pv2R6Rm7idRezeEgOFrOlfx6418K8iPj6BTPtKH0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUA7AgXdpoICRkDilTWzHsY-hS7XAbg9okbhFfmWLWGWrfRzKaX8CPwD-3P4SbGeTdqkQEhwTjxU_ZuLxZPIZ4FWaWMxTKWIl8zym0pmioJlz5DKiLGY8ocbHO4YnrP-Jvv-ctdmE_l-Yhg_RBdy8ZYT3tTdwH5A-vKCGShPAQT4piGF-HW74Y73DrurjBUHKO-gBt0eyWDDKW25jgg-362-vS1eczas5k5d92bAYHd8F1XajyUH5erBcqAP97TfC43_18x7c2biqqGh06z5cs_UDuH0JYPgQdFGjwpxanwOP-udmNh3bCfKxXbRe_RhMpVmvvnsmtJNer36ihpWM5ByNwoSjNz6QMbZz5Hxn1Jstx8jdQEd2MkE9125nZ-ePYHT8dnTUjzfHNsSaMu5fnzkVnMpUaJkqwXQisalsIoyoCCOEVtqkUrll0FDppkhqYQW3RuFcao3JLuzU09ruASKpZJySxFZWuH1uJTOuWKVSrI3UVW4jiNs5K_UGae5P1piUDYwZl37sym7sInjdyZ81MI8_Su63KlBujHpe4kArxG7PHMHLrtiZo__GIms7XXoZSknOswxH8LjRmO5RBDszSEgWQb6lS52AR31vl9RfTgPyO3dq7JQ7AhxU5S-tL4vesOiunvxLpRdwsz8aDsrBu5MPT-GWv9-kMO7DzmK2tM-cK7ZQz4Ox_QKejyyY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUCQEB96PQAEjIXFKm_gV-xgaVgu0FUKL1Fvk2M4WscpW-ziU0_4EfgD8uf0l2M5uukuFkOAYe6z4MWOPnclngFdpYrFIlYwrlWUxVc4UJWXOkWOkspiLhBp_3nF0zPuf6fsTdrLxF3_Lh-gO3LxlhPnaG_iZqfcvoKHKBG6QjwniWFyFa5Qnwut18ekCIOX980DbIyyWnIo1tjHB-9vlt5elS77m5ZDJTVc2rEW926DWrWhDUL7uzWfVnv72G-Dxf5p5B26tHFWUt5p1F67Y5h7c3MAX3gedNyg3p9ZHwKP-uZmMh3aE_MkuWi5-HI6VWS6-eyK0k14ufqKWlIzUFA3CcKM3_hhjaKfIec6omMyHyCWgAzsaocJV21nZ-QMY9N4ODvrx6tKGWFMu_OSZUSmoSqVWaSW5ThQ2tU2kkTXhhNBam1RVbhE0VLkRUlpaKaypcKa0xuQh7DTjxj4GRFLFBSWJra10u9xaMVHxukqxNkrXmY0gXg9ZqVdAc3-vxqhsUcy49H1Xdn0XwetO_qxFefxRcnetAeXKpKclDqxC7HbMEbzssp0x-i8sqrHjuZehlGSCMRzBo1ZhulcR7IwgISyCbEuVOgEP-t7Oab6cBuB35rSYpSQCHDTlL7Uv8-Io756e_EuhF3D9Y9ErD98df3gKN3xyG7-4Czuzydw-c37YrHoeTO0XF_krUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adhesive+Hydrogel+with+%E2%80%9CLoad%E2%80%90Sharing%E2%80%9D+Effect+as+Tissue+Bandages+for+Drug+and+Cell+Delivery&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Jing&rft.au=Wang%2C+Dong&rft.au=Wang%2C+Long%E2%80%90Hai&rft.au=Liu%2C+Wanjun&rft.date=2020-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202001628&rft.externalDBID=10.1002%252Fadma.202001628&rft.externalDocID=ADMA202001628
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon