An Adhesive Hydrogel with “Load‐Sharing” Effect as Tissue Bandages for Drug and Cell Delivery
Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of “triple hydrogen bonding clusters” (THBCs) as...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 43; pp. e2001628 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of “triple hydrogen bonding clusters” (THBCs) as side groups into the hydrogel matrix. The THBC through a unique “load sharing” effect and an increase in bond density results in strong adhesions of the hydrogel to a range of surfaces, including glass, plastic, wood, poly(tetrafluoroethylene) (PTFE), stainless steel, and biological tissues, even without any chemical reaction. Using the adhesive hydrogel, tissue‐adhesive bandages are developed for either targeted and sustained release of chemotherapeutic nanodrug for liver cancer treatment, or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enables almost complete tumor suppression in an orthotopic liver cancer mouse model and ≈1 month diabetes correction in chemically induced diabetic mice.
An adhesive hydrogel based on a “load‐sharing” effect of triple hydrogen bonding clusters is reported. To demonstrate their potential applications, these adhesive hydrogels are engineered into internally applied tissue bandages for delivery of either antitumor drugs directly to the tumor site or insulin‐producing cells to treat type 1 diabetes. |
---|---|
AbstractList | Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of “triple hydrogen bonding clusters” (THBCs) as side groups into the hydrogel matrix. The THBC through a unique “load sharing” effect and an increase in bond density results in strong adhesions of the hydrogel to a range of surfaces, including glass, plastic, wood, poly(tetrafluoroethylene) (PTFE), stainless steel, and biological tissues, even without any chemical reaction. Using the adhesive hydrogel, tissue‐adhesive bandages are developed for either targeted and sustained release of chemotherapeutic nanodrug for liver cancer treatment, or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enables almost complete tumor suppression in an orthotopic liver cancer mouse model and ≈1 month diabetes correction in chemically induced diabetic mice. Hydrogels with adhesive properties have potentials for numerous biomedical applications. Here we report the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages. The design involves incorporation of “triple hydrogen bonding clusters” (THBC) as side groups into the hydrogel matrix. The THBC through a unique “load sharing” effect and an increase in bond density resulted in strong adhesions of the hydrogel to a range of surfaces including glass, plastic, wood, PTFE, stainless steel and biological tissues even without any chemical reaction. Using the adhesive hydrogel, we developed tissue adhesive bandages for either targeted and sustained release of chemotherapeutic nano-drug for liver cancer treatment or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enabled almost complete tumor suppression in an orthotopic liver cancer mouse model and ~1-month diabetes correction in chemically induced diabetic mice. Internally applied tissue bandages based on a novel adhesive hydrogel were developed for delivery of either anti-tumor drugs directly to the tumor site or insulin-producing cells to treat type 1 diabetes. Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of “triple hydrogen bonding clusters” (THBCs) as side groups into the hydrogel matrix. The THBC through a unique “load sharing” effect and an increase in bond density results in strong adhesions of the hydrogel to a range of surfaces, including glass, plastic, wood, poly(tetrafluoroethylene) (PTFE), stainless steel, and biological tissues, even without any chemical reaction. Using the adhesive hydrogel, tissue‐adhesive bandages are developed for either targeted and sustained release of chemotherapeutic nanodrug for liver cancer treatment, or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enables almost complete tumor suppression in an orthotopic liver cancer mouse model and ≈1 month diabetes correction in chemically induced diabetic mice. An adhesive hydrogel based on a “load‐sharing” effect of triple hydrogen bonding clusters is reported. To demonstrate their potential applications, these adhesive hydrogels are engineered into internally applied tissue bandages for delivery of either antitumor drugs directly to the tumor site or insulin‐producing cells to treat type 1 diabetes. Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of "triple hydrogen bonding clusters" (THBCs) as side groups into the hydrogel matrix. The THBC through a unique "load sharing" effect and an increase in bond density results in strong adhesions of the hydrogel to a range of surfaces, including glass, plastic, wood, poly(tetrafluoroethylene) (PTFE), stainless steel, and biological tissues, even without any chemical reaction. Using the adhesive hydrogel, tissue-adhesive bandages are developed for either targeted and sustained release of chemotherapeutic nanodrug for liver cancer treatment, or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enables almost complete tumor suppression in an orthotopic liver cancer mouse model and ≈1 month diabetes correction in chemically induced diabetic mice.Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its use in developing internal therapeutic bandages is reported. The design involves incorporation of "triple hydrogen bonding clusters" (THBCs) as side groups into the hydrogel matrix. The THBC through a unique "load sharing" effect and an increase in bond density results in strong adhesions of the hydrogel to a range of surfaces, including glass, plastic, wood, poly(tetrafluoroethylene) (PTFE), stainless steel, and biological tissues, even without any chemical reaction. Using the adhesive hydrogel, tissue-adhesive bandages are developed for either targeted and sustained release of chemotherapeutic nanodrug for liver cancer treatment, or anchored delivery of pancreatic islets for a potential type 1 diabetes (T1D) cell replacement therapy. Stable adhesion of the bandage inside the body enables almost complete tumor suppression in an orthotopic liver cancer mouse model and ≈1 month diabetes correction in chemically induced diabetic mice. |
Author | Wang, Dong Zhong, Zhe Ma, Minglin Webb, James Chiu, Alan Liu, Wanjun Bouklas, Nikolaos Schwartz, Robert E. Liu, Qingsheng Wang, Long‐Hai Shariati, Kaavian Chen, Jing Wang, Xi |
Author_xml | – sequence: 1 givenname: Jing surname: Chen fullname: Chen, Jing organization: Cornell University – sequence: 2 givenname: Dong surname: Wang fullname: Wang, Dong organization: Cornell University – sequence: 3 givenname: Long‐Hai surname: Wang fullname: Wang, Long‐Hai organization: Cornell University – sequence: 4 givenname: Wanjun surname: Liu fullname: Liu, Wanjun organization: Cornell University – sequence: 5 givenname: Alan surname: Chiu fullname: Chiu, Alan organization: Cornell University – sequence: 6 givenname: Kaavian surname: Shariati fullname: Shariati, Kaavian organization: Cornell University – sequence: 7 givenname: Qingsheng surname: Liu fullname: Liu, Qingsheng organization: Cornell University – sequence: 8 givenname: Xi surname: Wang fullname: Wang, Xi organization: Cornell University – sequence: 9 givenname: Zhe surname: Zhong fullname: Zhong, Zhe organization: Cornell University – sequence: 10 givenname: James surname: Webb fullname: Webb, James organization: Cornell University – sequence: 11 givenname: Robert E. surname: Schwartz fullname: Schwartz, Robert E. organization: Weill Cornell Medical College – sequence: 12 givenname: Nikolaos surname: Bouklas fullname: Bouklas, Nikolaos organization: Cornell University – sequence: 13 givenname: Minglin orcidid: 0000-0002-9553-7526 surname: Ma fullname: Ma, Minglin email: mm826@cornell.edu organization: Cornell University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32945035$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNPCliWyxIbNBP_NjzdIQ1IoUhALsrdubM_E1WRc7JlW2eUReAB4uTwJjtIWqIRYWbK_c3zOvWfopPe9ReglJVNKCHsLZgNTRhghtGDVEzShOaOZIDI_QRMieZ7JQlSn6CzGK0KILEjxDJ1yJkVOeD5Buu5xbdY2uhuLL7cm-NZ2-NYNa7zf_Vh4MPvd969rCK5v97uf-KJprB4wRLx0MY4Wv4feQGsjbnzA8zC2OF3gme06PLddcg3b5-hpA120L-7Oc7T8cLGcXWaLLx8_zepFpkVRVZmkpZCVACo10JUsNAFmGkukkQ0vOBeNNhRWUhIjIHUBLa2srFmxErRm_By9O9pej6uNNdr2Q4BOXQe3gbBVHpz6-6V3a9X6G1WmoeSUJ4M3dwbBfxttHNTGRZ2aQG_9GBUTQvCyyvPDX68foVd-DH1ql6hckJKVjCbq1Z-JHqLcjz8B4gjo4GMMtlHaDTA4fwjoOkWJOmxZHbasHracZNNHsnvnfwrkUXDrOrv9D63q-ef6t_YXsEq8xw |
CitedBy_id | crossref_primary_10_1016_j_compositesb_2023_110989 crossref_primary_10_1016_j_compositesb_2023_110506 crossref_primary_10_1002_adfm_202316346 crossref_primary_10_1016_j_ijbiomac_2024_133857 crossref_primary_10_1016_j_jcis_2022_03_037 crossref_primary_10_1002_advs_202206771 crossref_primary_10_1016_j_mtbio_2025_101518 crossref_primary_10_1002_wnan_1822 crossref_primary_10_1021_acsami_1c18983 crossref_primary_10_3390_polym14010126 crossref_primary_10_1002_adhm_202200874 crossref_primary_10_1016_j_polymertesting_2023_107931 crossref_primary_10_1002_adfm_202310233 crossref_primary_10_1016_j_carbpol_2022_119787 crossref_primary_10_1039_D3TB00251A crossref_primary_10_1002_advs_202203890 crossref_primary_10_59717_j_xinn_mater_2023_100040 crossref_primary_10_1002_adhm_202101714 crossref_primary_10_1016_j_progpolymsci_2021_101388 crossref_primary_10_1016_j_bioactmat_2024_10_015 crossref_primary_10_1016_j_ijbiomac_2022_02_175 crossref_primary_10_1021_acs_biomac_4c00194 crossref_primary_10_1039_D3CS00764B crossref_primary_10_1016_j_colsurfa_2023_133087 crossref_primary_10_1002_admi_202101855 crossref_primary_10_1021_acsapm_2c00390 crossref_primary_10_1039_D3BM00544E crossref_primary_10_1016_j_bioactmat_2022_05_010 crossref_primary_10_1016_j_bioelechem_2021_107919 crossref_primary_10_3389_fbioe_2023_1180073 crossref_primary_10_1126_sciadv_adh4327 crossref_primary_10_1021_acsabm_2c00533 crossref_primary_10_1021_acs_chemrev_2c00215 crossref_primary_10_1039_D2CS00618A crossref_primary_10_1016_j_ijbiomac_2023_126020 crossref_primary_10_1016_j_biomaterials_2022_121506 crossref_primary_10_1002_adfm_202312360 crossref_primary_10_1016_j_colsurfa_2021_127793 crossref_primary_10_1007_s40005_024_00678_7 crossref_primary_10_1002_adma_202413028 crossref_primary_10_1016_j_coco_2024_101839 crossref_primary_10_1021_acs_chemrev_0c01062 crossref_primary_10_1021_acs_chemmater_4c02562 crossref_primary_10_1021_acsami_3c09117 crossref_primary_10_1002_adhm_202101421 crossref_primary_10_1016_j_ijbiomac_2024_135852 crossref_primary_10_1021_acsapm_4c02935 crossref_primary_10_1016_j_compositesb_2023_110964 crossref_primary_10_1021_acsami_2c06957 crossref_primary_10_1002_admi_202101038 crossref_primary_10_1007_s40820_023_01079_5 crossref_primary_10_1016_j_cej_2022_137304 crossref_primary_10_1016_j_ijbiomac_2024_137752 crossref_primary_10_2139_ssrn_4051086 crossref_primary_10_1021_acs_chemrev_1c00815 crossref_primary_10_1021_acsnano_2c07483 crossref_primary_10_1002_smll_202411265 crossref_primary_10_3390_gels10070442 crossref_primary_10_1039_D2SM01158A crossref_primary_10_1021_acsnano_1c04206 crossref_primary_10_1016_j_bioactmat_2021_10_017 crossref_primary_10_1016_j_cej_2021_131049 crossref_primary_10_1038_s41551_021_00769_y crossref_primary_10_1002_mabi_202300379 crossref_primary_10_1039_D2BM01058E crossref_primary_10_1016_j_eurpolymj_2022_111328 crossref_primary_10_1093_rb_rbab008 crossref_primary_10_1002_adfm_202311938 crossref_primary_10_3390_gels9020146 crossref_primary_10_1016_j_biomaterials_2023_122239 crossref_primary_10_1016_j_ijpharm_2024_124015 crossref_primary_10_1126_sciadv_abc3012 crossref_primary_10_1002_adma_202008553 crossref_primary_10_1002_adfm_202401030 crossref_primary_10_1016_j_carbpol_2021_118547 crossref_primary_10_1016_j_eurpolymj_2024_113260 crossref_primary_10_1039_D3TB02186F crossref_primary_10_1016_j_fmre_2023_11_023 crossref_primary_10_1002_advs_202206450 crossref_primary_10_1002_smll_202101858 crossref_primary_10_1002_marc_202400835 crossref_primary_10_1016_j_ijbiomac_2023_128505 crossref_primary_10_1016_j_biomaterials_2024_123068 crossref_primary_10_1016_j_cej_2022_137163 crossref_primary_10_1016_j_cej_2022_138256 crossref_primary_10_1038_s41578_022_00483_4 crossref_primary_10_1016_j_ijbiomac_2022_06_042 crossref_primary_10_1166_jbn_2023_3654 crossref_primary_10_1002_adhm_202200717 crossref_primary_10_1016_j_cej_2021_134055 crossref_primary_10_1016_j_bioactmat_2021_11_032 crossref_primary_10_1016_j_mtbio_2023_100582 crossref_primary_10_1016_j_bioactmat_2021_11_038 crossref_primary_10_1016_j_ijbiomac_2022_05_081 crossref_primary_10_1021_acsami_1c18261 crossref_primary_10_1021_acsabm_0c01235 crossref_primary_10_1002_marc_202400285 crossref_primary_10_31436_iiumej_v26i1_3236 crossref_primary_10_1039_D3TB00239J crossref_primary_10_1002_adhm_202201000 crossref_primary_10_1002_mabi_202100474 crossref_primary_10_1016_j_cis_2023_102982 crossref_primary_10_1039_D3TB02244G crossref_primary_10_1002_advs_202201271 crossref_primary_10_1016_j_jcis_2023_01_111 crossref_primary_10_1186_s40824_022_00306_1 crossref_primary_10_1093_nsr_nwae160 crossref_primary_10_1002_adhm_202403734 crossref_primary_10_1016_j_bioactmat_2021_04_005 crossref_primary_10_1002_adma_202203431 crossref_primary_10_1002_adma_202205567 crossref_primary_10_1186_s12951_024_02547_9 crossref_primary_10_1016_j_biomaterials_2024_122599 crossref_primary_10_1002_SMMD_20230042 crossref_primary_10_1126_sciadv_abe8739 crossref_primary_10_1016_j_jconrel_2024_05_019 crossref_primary_10_1021_acsami_3c19481 crossref_primary_10_1021_acsami_1c16269 crossref_primary_10_1002_admt_202100303 crossref_primary_10_1002_advs_202305508 crossref_primary_10_1016_j_cej_2022_139368 crossref_primary_10_1021_acs_biomac_2c01168 crossref_primary_10_1049_bsb2_12036 crossref_primary_10_1016_j_eurpolymj_2022_111119 crossref_primary_10_1039_D4TA01650E crossref_primary_10_3390_gels8020089 crossref_primary_10_1007_s12274_023_6384_5 crossref_primary_10_1016_j_eml_2022_101687 crossref_primary_10_1002_pol_20210249 crossref_primary_10_1038_s41467_022_33081_7 crossref_primary_10_1016_j_ijbiomac_2025_140448 crossref_primary_10_1002_adhm_202300669 crossref_primary_10_1146_annurev_pathol_042320_094846 crossref_primary_10_1016_j_colcom_2024_100809 crossref_primary_10_1186_s12951_024_02449_w crossref_primary_10_1002_adma_202300876 crossref_primary_10_1021_acs_chemrev_3c00498 crossref_primary_10_1002_advs_202407588 crossref_primary_10_1038_s41467_022_31579_8 crossref_primary_10_1039_D4SM00287C crossref_primary_10_1016_j_mtadv_2023_100452 crossref_primary_10_1016_j_cej_2024_150086 crossref_primary_10_1002_adhm_202301370 crossref_primary_10_1002_marc_202300683 crossref_primary_10_1016_j_carbpol_2023_121543 crossref_primary_10_1016_j_cej_2021_133372 crossref_primary_10_1126_sciadv_adg4031 crossref_primary_10_1002_adfm_202111022 crossref_primary_10_1016_j_bioactmat_2022_11_023 crossref_primary_10_1021_acsami_3c18306 crossref_primary_10_1021_acs_biomac_3c01025 crossref_primary_10_1039_D3MH00514C crossref_primary_10_1021_acs_jchemed_4c01121 crossref_primary_10_1002_adma_202007663 crossref_primary_10_1002_adhm_202201798 crossref_primary_10_1016_j_mtbio_2024_101248 crossref_primary_10_1016_j_ijadhadh_2023_103497 crossref_primary_10_1021_acs_chemmater_3c02803 crossref_primary_10_1021_acs_chemrev_3c00380 |
Cites_doi | 10.1126/science.aah6362 10.1039/C8MH01421C 10.1038/s41467-019-12748-8 10.1038/s41467-019-09351-2 10.1016/j.jconrel.2008.05.010 10.1038/natrevmats.2016.71 10.3322/caac.21551 10.1038/nrdp.2016.18 10.1097/SLA.0000000000001715 10.1002/adfm.201804925 10.1038/s41467-019-11082-3 10.1073/pnas.1708806115 10.1016/j.actbio.2017.02.028 10.1002/adfm.201803951 10.1038/nrendo.2016.178 10.1002/chem.201502756 10.1016/j.jmps.2014.05.014 10.1038/s41467-019-13238-7 10.1016/j.tibtech.2017.06.015 10.1002/adhm.201901396 10.1038/ncomms5095 10.1126/science.1147241 10.1016/j.jmps.2018.02.018 10.1056/NEJMoa1907863 10.1007/s10409-017-0661-z 10.1002/advs.201801987 10.1126/science.aab0556 10.1016/j.addr.2015.10.021 10.1002/adfm.201901693 10.1097/SLA.0000000000001178 10.1038/s41586-019-1710-5 10.1038/nmat4497 10.1016/j.addr.2019.01.013 10.1016/j.jmps.2019.06.013 10.1002/adfm.201703132 10.1126/sciadv.1700184 10.1038/s41551-018-0275-1 10.1557/jmr.2018.384 10.1002/adma.201704235 10.1073/pnas.1505405112 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1002/adma.202001628 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | PMC7606513 32945035 10_1002_adma_202001628 ADMA202001628 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: JDRF funderid: 2‐SRA‐2018‐472‐S‐B – fundername: Novo Nordisk Company – fundername: Hartwell Foundation – fundername: National Institutes of Health funderid: 1R01DK105967‐01A1 – fundername: JDRF grantid: 2-SRA-2018-472-S-B – fundername: NIH HHS grantid: 1R01DK105967-01A1 – fundername: NIDDK NIH HHS grantid: R01 DK105967 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c4688-9174984a19ca1b96c0a2dfe09d9f36334fcd1ab990d4a000ac9e98edb27acc23 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Aug 21 18:32:49 EDT 2025 Thu Jul 10 21:56:42 EDT 2025 Mon Jul 14 09:43:16 EDT 2025 Mon Jul 21 05:51:35 EDT 2025 Thu Apr 24 23:08:35 EDT 2025 Tue Jul 01 02:32:52 EDT 2025 Wed Jan 22 16:32:46 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Keywords | targeted delivery tissue bandages type 1 diabetes load sharing adhesive hydrogels |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4688-9174984a19ca1b96c0a2dfe09d9f36334fcd1ab990d4a000ac9e98edb27acc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9553-7526 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7606513 |
PMID | 32945035 |
PQID | 2454072721 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7606513 proquest_miscellaneous_2444378552 proquest_journals_2454072721 pubmed_primary_32945035 crossref_citationtrail_10_1002_adma_202001628 crossref_primary_10_1002_adma_202001628 wiley_primary_10_1002_adma_202001628_ADMA202001628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2018 2019; 70 115 131 2018 2019 2018; 2 10 115 2018; 28 2007 2019; 318 6 2019; 10 2017; 27 2016 2019; 98 6 2015; 349 2018 2019; 28 10 2017; 357 2016; 263 2016 2017 2016; 15 35 1 2014; 5 2020; 30 2019 2015 2017; 381 112 13 2017 2018 2017 2020; 3 2 53 9 2017; 33 2016 2017; 2 265 2015; 21 2019; 575 2018; 30 2019; 139 2019 2019; 69 10 2018; 33 2008; 132 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_21_3 e_1_2_4_23_1 e_1_2_4_21_2 e_1_2_4_22_1 e_1_2_4_23_3 e_1_2_4_25_1 e_1_2_4_23_2 e_1_2_4_24_1 e_1_2_4_1_1 e_1_2_4_1_3 e_1_2_4_2_2 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_2_1 e_1_2_4_2_4 e_1_2_4_5_1 e_1_2_4_2_3 e_1_2_4_3_2 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_7_2 e_1_2_4_8_1 e_1_2_4_10_1 e_1_2_4_11_1 e_1_2_4_12_1 e_1_2_4_12_2 e_1_2_4_13_1 e_1_2_4_12_3 e_1_2_4_14_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_15_2 e_1_2_4_17_2 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_18_2 e_1_2_4_19_1 |
References_xml | – volume: 318 6 start-page: 426 285 year: 2007 2019 publication-title: Science Mater. Horiz. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 263 start-page: 538 year: 2016 publication-title: Ann. Surg. – volume: 3 2 53 9 start-page: 810 100 year: 2017 2018 2017 2020 publication-title: Sci. Adv. Nat. Biomed. Eng. Acta Biomater. Adv. Healthcare Mater. – volume: 357 start-page: 378 year: 2017 publication-title: Science – volume: 69 10 start-page: 7 3051 year: 2019 2019 publication-title: Ca‐Cancer J. Clin. Nat. Commun. – volume: 33 start-page: 543 year: 2017 publication-title: Acta Mech. Sin. – volume: 33 start-page: 3750 year: 2018 publication-title: J. Mater. Res. – volume: 70 115 131 start-page: 227 230 1 year: 2014 2018 2019 publication-title: J. Mech. Phys. Solids J. Mech. Phys. Solids J. Mech. Phys. Solids – volume: 575 start-page: 169 year: 2019 publication-title: Nature – volume: 381 112 13 start-page: 1707 8260 268 year: 2019 2015 2017 publication-title: N. Engl. J. Med. Proc. Natl. Acad. Sci. USA Nat. Rev. Endocrinol. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 28 10 start-page: 4866 year: 2018 2019 publication-title: Adv. Funct. Mater. Nat. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 139 start-page: 116 year: 2019 publication-title: Adv. Drug Delivery Rev. – volume: 2 10 115 start-page: 810 5262 E263 year: 2018 2019 2018 publication-title: Nat. Biomed. Eng. Nat. Commun. Proc. Natl. Acad. Sci. USA – volume: 15 35 1 start-page: 353 1074 year: 2016 2017 2016 publication-title: Nat. Mater. Trends Biotechnol. Nat. Rev. Mater. – volume: 21 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1487 year: 2019 publication-title: Nat. Commun. – volume: 349 start-page: 628 year: 2015 publication-title: Science – volume: 98 6 start-page: 64 year: 2016 2019 publication-title: Adv. Drug Delivery Rev. Adv. Sci. – volume: 2 265 start-page: 792 year: 2016 2017 publication-title: Nat. Rev. Dis. Primers Ann. Surg. – volume: 5 start-page: 4095 year: 2014 publication-title: Nat. Commun. – volume: 132 start-page: 171 year: 2008 publication-title: J. Controlled Release – ident: e_1_2_4_5_1 doi: 10.1126/science.aah6362 – ident: e_1_2_4_7_2 doi: 10.1039/C8MH01421C – ident: e_1_2_4_3_2 doi: 10.1038/s41467-019-12748-8 – ident: e_1_2_4_9_1 doi: 10.1038/s41467-019-09351-2 – ident: e_1_2_4_20_1 doi: 10.1016/j.jconrel.2008.05.010 – ident: e_1_2_4_1_3 doi: 10.1038/natrevmats.2016.71 – ident: e_1_2_4_15_1 doi: 10.3322/caac.21551 – ident: e_1_2_4_17_1 doi: 10.1038/nrdp.2016.18 – ident: e_1_2_4_17_2 doi: 10.1097/SLA.0000000000001715 – ident: e_1_2_4_24_1 doi: 10.1002/adfm.201804925 – ident: e_1_2_4_15_2 doi: 10.1038/s41467-019-11082-3 – ident: e_1_2_4_23_3 doi: 10.1073/pnas.1708806115 – ident: e_1_2_4_2_3 doi: 10.1016/j.actbio.2017.02.028 – ident: e_1_2_4_3_1 doi: 10.1002/adfm.201803951 – ident: e_1_2_4_21_3 doi: 10.1038/nrendo.2016.178 – ident: e_1_2_4_19_1 doi: 10.1002/chem.201502756 – ident: e_1_2_4_12_1 doi: 10.1016/j.jmps.2014.05.014 – ident: e_1_2_4_23_2 doi: 10.1038/s41467-019-13238-7 – ident: e_1_2_4_1_2 doi: 10.1016/j.tibtech.2017.06.015 – ident: e_1_2_4_2_4 doi: 10.1002/adhm.201901396 – ident: e_1_2_4_14_1 doi: 10.1038/ncomms5095 – ident: e_1_2_4_7_1 doi: 10.1126/science.1147241 – ident: e_1_2_4_12_2 doi: 10.1016/j.jmps.2018.02.018 – ident: e_1_2_4_21_1 doi: 10.1056/NEJMoa1907863 – ident: e_1_2_4_11_1 doi: 10.1007/s10409-017-0661-z – ident: e_1_2_4_18_2 doi: 10.1002/advs.201801987 – ident: e_1_2_4_10_1 doi: 10.1126/science.aab0556 – ident: e_1_2_4_18_1 doi: 10.1016/j.addr.2015.10.021 – ident: e_1_2_4_4_1 doi: 10.1002/adfm.201901693 – ident: e_1_2_4_16_1 doi: 10.1097/SLA.0000000000001178 – ident: e_1_2_4_6_1 doi: 10.1038/s41586-019-1710-5 – ident: e_1_2_4_1_1 doi: 10.1038/nmat4497 – ident: e_1_2_4_22_1 doi: 10.1016/j.addr.2019.01.013 – ident: e_1_2_4_12_3 doi: 10.1016/j.jmps.2019.06.013 – ident: e_1_2_4_25_1 doi: 10.1002/adfm.201703132 – ident: e_1_2_4_2_1 doi: 10.1126/sciadv.1700184 – ident: e_1_2_4_2_2 doi: 10.1038/s41551-018-0275-1 – ident: e_1_2_4_23_1 doi: 10.1038/s41551-018-0275-1 – ident: e_1_2_4_13_1 doi: 10.1557/jmr.2018.384 – ident: e_1_2_4_8_1 doi: 10.1002/adma.201704235 – ident: e_1_2_4_21_2 doi: 10.1073/pnas.1505405112 |
SSID | ssj0009606 |
Score | 2.6542866 |
Snippet | Hydrogels with adhesive properties have potential for numerous biomedical applications. Here, the design of a novel, intrinsically adhesive hydrogel and its... Hydrogels with adhesive properties have potentials for numerous biomedical applications. Here we report the design of a novel, intrinsically adhesive hydrogel... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2001628 |
SubjectTerms | adhesive hydrogels Adhesiveness Adhesives Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Bandages Biomedical materials Bond strength Cell Line, Tumor Chemical reactions Diabetes Diabetes Mellitus, Type 1 - pathology Drug Carriers - chemistry Drug delivery systems Drug Design Drug Liberation Humans Hydrogels Hydrogels - chemistry Hydrogen Bonding Liver Liver cancer Liver Neoplasms - pathology Load sharing Mechanical Phenomena Medical dressings Medical materials Mice Polytetrafluoroethylene Stainless steels Sustained release targeted delivery tissue bandages Tissues type 1 diabetes |
Title | An Adhesive Hydrogel with “Load‐Sharing” Effect as Tissue Bandages for Drug and Cell Delivery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202001628 https://www.ncbi.nlm.nih.gov/pubmed/32945035 https://www.proquest.com/docview/2454072721 https://www.proquest.com/docview/2444378552 https://pubmed.ncbi.nlm.nih.gov/PMC7606513 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLXQrGDB-xEYkJGQWGUm8SvxMkwZVYhhgYo0u-j6kQ6iSlEfi2HVT-AD4Of6Jfg6baZlhJBgl8TXih_3xMfO9TEhr_LMszIHnRooilRAgKIWMhA5yY1nqsyEw_WOsw9q-Em8O5fnO7v4O32IfsENkRG_1whwMPPjK9FQcFE3CGOCFMPdvhiwhazo45V-FNLzKLbHZaqVKLeqjRk73s--Pypdo5rXIyZ3mWwcik7vENhWootA-XK0XJgj--03fcf_qeVdcnvDU2nVOdY9csO398mtHfXCB8RWLa3chccAeDq8dLPp2E8oLuzS9erH-ym49eo7CkIH6_XqJ-2EkinM6Sj2Nn2DqxhjP6eBONPBbDmm4QE98ZMJHYRiB5BdPiSj07ejk2G6ObMhtUKV-O0shC4F5NpCbrSyGTDX-Ew73XDFuWisy8GEMdAJCD0EVntdemdYAdYy_ogctNPWPyGU56BKwTPfeB0muQ3I0qjG5Mw6sE3hE5Juu6y2Gz1zPFZjUndKzKzGtqv7tkvI697-a6fk8UfLw60H1BtEz2sWpQpZmDAn5GWfHLCIP1ig9dMl2gjBi1JKlpDHncP0r-IsYCDjMiHFniv1BqjzvZ_Sfr6Iet9F8GKZ84Sw6Cl_KX1dDc6q_u7pv2R6Rm7idRezeEgOFrOlfx6418K8iPj6BTPtKH0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUA7AgXdpoICRkDilTWzHsY-hS7XAbg9okbhFfmWLWGWrfRzKaX8CPwD-3P4SbGeTdqkQEhwTjxU_ZuLxZPIZ4FWaWMxTKWIl8zym0pmioJlz5DKiLGY8ocbHO4YnrP-Jvv-ctdmE_l-Yhg_RBdy8ZYT3tTdwH5A-vKCGShPAQT4piGF-HW74Y73DrurjBUHKO-gBt0eyWDDKW25jgg-362-vS1eczas5k5d92bAYHd8F1XajyUH5erBcqAP97TfC43_18x7c2biqqGh06z5cs_UDuH0JYPgQdFGjwpxanwOP-udmNh3bCfKxXbRe_RhMpVmvvnsmtJNer36ihpWM5ByNwoSjNz6QMbZz5Hxn1Jstx8jdQEd2MkE9125nZ-ePYHT8dnTUjzfHNsSaMu5fnzkVnMpUaJkqwXQisalsIoyoCCOEVtqkUrll0FDppkhqYQW3RuFcao3JLuzU09ruASKpZJySxFZWuH1uJTOuWKVSrI3UVW4jiNs5K_UGae5P1piUDYwZl37sym7sInjdyZ81MI8_Su63KlBujHpe4kArxG7PHMHLrtiZo__GIms7XXoZSknOswxH8LjRmO5RBDszSEgWQb6lS52AR31vl9RfTgPyO3dq7JQ7AhxU5S-tL4vesOiunvxLpRdwsz8aDsrBu5MPT-GWv9-kMO7DzmK2tM-cK7ZQz4Ox_QKejyyY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUCQEB96PQAEjIXFKm_gV-xgaVgu0FUKL1Fvk2M4WscpW-ziU0_4EfgD8uf0l2M5uukuFkOAYe6z4MWOPnclngFdpYrFIlYwrlWUxVc4UJWXOkWOkspiLhBp_3nF0zPuf6fsTdrLxF3_Lh-gO3LxlhPnaG_iZqfcvoKHKBG6QjwniWFyFa5Qnwut18ekCIOX980DbIyyWnIo1tjHB-9vlt5elS77m5ZDJTVc2rEW926DWrWhDUL7uzWfVnv72G-Dxf5p5B26tHFWUt5p1F67Y5h7c3MAX3gedNyg3p9ZHwKP-uZmMh3aE_MkuWi5-HI6VWS6-eyK0k14ufqKWlIzUFA3CcKM3_hhjaKfIec6omMyHyCWgAzsaocJV21nZ-QMY9N4ODvrx6tKGWFMu_OSZUSmoSqVWaSW5ThQ2tU2kkTXhhNBam1RVbhE0VLkRUlpaKaypcKa0xuQh7DTjxj4GRFLFBSWJra10u9xaMVHxukqxNkrXmY0gXg9ZqVdAc3-vxqhsUcy49H1Xdn0XwetO_qxFefxRcnetAeXKpKclDqxC7HbMEbzssp0x-i8sqrHjuZehlGSCMRzBo1ZhulcR7IwgISyCbEuVOgEP-t7Oab6cBuB35rSYpSQCHDTlL7Uv8-Io756e_EuhF3D9Y9ErD98df3gKN3xyG7-4Czuzydw-c37YrHoeTO0XF_krUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adhesive+Hydrogel+with+%E2%80%9CLoad%E2%80%90Sharing%E2%80%9D+Effect+as+Tissue+Bandages+for+Drug+and+Cell+Delivery&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Chen%2C+Jing&rft.au=Wang%2C+Dong&rft.au=Wang%2C+Long%E2%80%90Hai&rft.au=Liu%2C+Wanjun&rft.date=2020-10-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202001628&rft.externalDBID=10.1002%252Fadma.202001628&rft.externalDocID=ADMA202001628 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |