Evolution and Single‐Droplet Analysis of Fuel‐Driven Compartments by Droplet‐Based Microfluidics
Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet‐based microfluidics to encapsulate a fuel‐driven cycle that drives phase separation into coace...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 32; pp. e202203928 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
08.08.2022
John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet‐based microfluidics to encapsulate a fuel‐driven cycle that drives phase separation into coacervate‐based droplets to overcome this challenge. This approach enables the analysis of every coacervate‐based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate‐based droplets and their properties. We observed that coacervate‐based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate‐based droplets enables future selection‐ or evolution‐based studies.
Droplet‐based microfluidics were used to encapsulate a fuel‐driven cycle that drives phase separation into coacervate‐based droplets. This approach enables the analysis of every coacervate‐based droplet in the reaction container throughout its lifetime. The nucleation, growth, and dissolution of active coacervate‐based droplets were investigated with this setup. |
---|---|
AbstractList | Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We use droplet-based microfluidics to encapsulate a fuel-driven cycle that drives phase separation into coacervate droplets to overcome this challenge. This approach enables the analysis of every coacervate-based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate-based droplets and their properties. We observe that coacervate-based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate-based droplets enables future selection- or evolution-based studies. Abstract Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet‐based microfluidics to encapsulate a fuel‐driven cycle that drives phase separation into coacervate‐based droplets to overcome this challenge. This approach enables the analysis of every coacervate‐based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate‐based droplets and their properties. We observed that coacervate‐based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate‐based droplets enables future selection‐ or evolution‐based studies. Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet‐based microfluidics to encapsulate a fuel‐driven cycle that drives phase separation into coacervate‐based droplets to overcome this challenge. This approach enables the analysis of every coacervate‐based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate‐based droplets and their properties. We observed that coacervate‐based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate‐based droplets enables future selection‐ or evolution‐based studies. Droplet‐based microfluidics were used to encapsulate a fuel‐driven cycle that drives phase separation into coacervate‐based droplets. This approach enables the analysis of every coacervate‐based droplet in the reaction container throughout its lifetime. The nucleation, growth, and dissolution of active coacervate‐based droplets were investigated with this setup. Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet‐based microfluidics to encapsulate a fuel‐driven cycle that drives phase separation into coacervate‐based droplets to overcome this challenge. This approach enables the analysis of every coacervate‐based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate‐based droplets and their properties. We observed that coacervate‐based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate‐based droplets enables future selection‐ or evolution‐based studies. |
Author | Donau, Carsten Boekhoven, Job Göpfrich, Kerstin Jahnke, Kevin Späth, Fabian Bergmann, Alexander M. |
AuthorAffiliation | 1 Department of Chemistry Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany 3 Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany 2 Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany |
AuthorAffiliation_xml | – name: 2 Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany – name: 1 Department of Chemistry Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany – name: 3 Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany |
Author_xml | – sequence: 1 givenname: Alexander M. surname: Bergmann fullname: Bergmann, Alexander M. organization: Technical University of Munich – sequence: 2 givenname: Carsten surname: Donau fullname: Donau, Carsten organization: Technical University of Munich – sequence: 3 givenname: Fabian surname: Späth fullname: Späth, Fabian organization: Technical University of Munich – sequence: 4 givenname: Kevin surname: Jahnke fullname: Jahnke, Kevin organization: Heidelberg University – sequence: 5 givenname: Kerstin surname: Göpfrich fullname: Göpfrich, Kerstin email: kerstin.goepfrich@mr.mpg.de organization: Heidelberg University – sequence: 6 givenname: Job orcidid: 0000-0002-9126-2430 surname: Boekhoven fullname: Boekhoven, Job email: job.boekhoven@tum.de organization: Technical University of Munich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35657164$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URG9sWaJIbNhk8CW-ZIM0HaZQqcCisLYc56S4cuwhTgbNjkfgGXkSPMx0KGxY2dL5zqdzzn-KjkIMgNAzgmcEY_rKBAcziinFrKbqETohnJKSScmO8r9irJSKk2N0mtJd5pXC4gk6ZlxwSUR1grrlOvppdDEUJrTFjQu3Hn5-__FmiCsPYzEPxm-SS0XsissJ_O-SW0MoFrFfmWHsIYypaDbFviMDFyZBW7x3doidn1zrbDpHjzvjEzzdv2fo8-Xy0-Jdef3x7dVifl3aSihV8o6xxgIFTpWltjZc1lZU2DS2qhThpK55I6zEDGNiWglM2abuQNhc6oCzM_R6511NTQ-tzcMNxuvV4HozbHQ0Tv9dCe6Lvo1rXVcYK6my4OVeMMSvE6RR9y5Z8N4EiFPSVEjGuOQcZ_TFP-hdnIZ8ry1VC0WxJFvhbEfla6Q0QHcYhmC9jVBvI9SHCHPD84crHPD7zDJQ74BvzsPmPzo9_3C1_CP_Bcq1roI |
CitedBy_id | crossref_primary_10_1002_ange_202211905 crossref_primary_10_1002_anie_202309318 crossref_primary_10_1021_jacs_3c03793 crossref_primary_10_1002_anie_202211905 crossref_primary_10_1016_j_matt_2023_12_025 crossref_primary_10_1002_smtd_202300496 crossref_primary_10_1002_syst_202300034 crossref_primary_10_1016_j_cclet_2024_109995 crossref_primary_10_1021_accountsmr_2c00239 crossref_primary_10_1002_ange_202309318 crossref_primary_10_1021_accountsmr_2c00244 crossref_primary_10_1016_j_nbt_2024_02_003 crossref_primary_10_1002_ange_202216537 crossref_primary_10_1002_advs_202305760 crossref_primary_10_1002_anie_202216537 crossref_primary_10_1016_j_chempr_2023_08_029 |
Cites_doi | 10.1126/science.285.5424.83 10.1038/nrm.2017.10 10.1002/anie.201914893 10.1039/D1SM00515D 10.1063/1.1695731 10.1016/j.molcel.2009.11.020 10.1038/nphys3984 10.1021/jacs.1c01148 10.1002/ange.201703145 10.1039/b821785h 10.1002/ange.202117500 10.1039/D0LC00613K 10.1002/ange.201914893 10.1016/j.ymeth.2016.09.016 10.1002/anie.201909228 10.3389/fmolb.2019.00021 10.1038/s41467-019-09855-x 10.1016/j.cell.2015.07.047 10.1016/j.molcel.2015.01.013 10.1002/anie.201703145 10.1038/s41467-021-24111-x 10.1038/s41467-020-18815-9 10.1002/anie.202117500 10.1038/nchem.2414 10.1038/s41586-018-0279-8 10.1016/j.cub.2009.03.013 10.1016/j.str.2016.07.007 10.1126/science.aad9964 10.1016/j.cell.2018.03.056 10.1002/ange.201909228 10.1021/acs.analchem.9b05329 10.1038/s41589-021-00801-x 10.1039/C7CC01289F 10.1039/B809670H 10.1016/j.bbamcr.2020.118823 10.7554/eLife.04591 10.1002/syst.202000022 10.1038/nature22822 10.1021/acs.jpcb.8b01013 10.1021/acs.langmuir.6b02499 10.1016/j.jcis.2020.07.022 10.1002/anie.201907278 10.1126/science.291.5506.1023 10.1021/ja071820f 10.1002/ange.201907278 10.1088/1361-6633/ab052b 10.1039/C6SM01087C |
ContentType | Journal Article |
Copyright | 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2022 Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.202203928 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Journals PubMed CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 10_1002_anie_202203928 35657164 ANIE202203928 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung funderid: Max Planck School Matter to Life – fundername: Deutsche Forschungsgemeinschaft funderid: EXC-2082/1 - 390761711; Excellence initiative Origins – fundername: ; grantid: Max Planck School Matter to Life – fundername: ; grantid: EXC-2082/1 - 390761711; Excellence initiative Origins |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT NPM AAYXX CITATION 7TM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4688-5f33bce2e528c2c9a579c640abc448151995b6c703001ad7e38cb9fe6c519fe53 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Tue Sep 17 21:14:42 EDT 2024 Fri Aug 16 21:03:32 EDT 2024 Thu Oct 10 16:53:54 EDT 2024 Fri Aug 23 02:00:07 EDT 2024 Sat Sep 28 08:20:11 EDT 2024 Sat Aug 24 01:07:28 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | artificial organelles, droplet-based microfluidics, nonequilibrium processes, phase transitions |
Language | English |
License | Attribution 2022 Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4688-5f33bce2e528c2c9a579c640abc448151995b6c703001ad7e38cb9fe6c519fe53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9126-2430 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202203928 |
PMID | 35657164 |
PQID | 2696820718 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9400878 proquest_miscellaneous_2673357550 proquest_journals_2696820718 crossref_primary_10_1002_anie_202203928 pubmed_primary_35657164 wiley_primary_10_1002_anie_202203928_ANIE202203928 |
PublicationCentury | 2000 |
PublicationDate | August 8, 2022 |
PublicationDateYYYYMMDD | 2022-08-08 |
PublicationDate_xml | – month: 08 year: 2022 text: August 8, 2022 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2015; 162 2015; 57 2018; 122 2007; 129 2019; 6 2020; 20 2020; 580 2019; 10 2020 2020; 59 132 2016; 32 1999; 285 2020; 11 2021; 143 2017 2017; 56 129 2017; 115 2019 2019; 58 131 2016; 13 2016; 12 2009; 36 2017; 53 1965; 42 2022 2022; 61 134 2019; 82 2018; 173 2014; 3 2020; 2 2021; 12 2018; 559 2021; 1868 2001; 291 2020; 92 2021; 17 2009; 9 2016; 352 2017; 18 2009; 19 2016; 8 2016; 24 2017; 547 e_1_2_3_50_2 e_1_2_3_2_1 e_1_2_3_39_1 e_1_2_3_16_2 e_1_2_3_37_2 e_1_2_3_4_1 e_1_2_3_18_2 e_1_2_3_33_3 e_1_2_3_12_2 e_1_2_3_33_2 e_1_2_3_8_1 e_1_2_3_14_1 e_1_2_3_6_2 e_1_2_3_35_2 e_1_2_3_31_1 e_1_2_3_52_1 e_1_2_3_10_2 e_1_2_3_54_1 e_1_2_3_49_2 e_1_2_3_28_2 e_1_2_3_45_1 e_1_2_3_24_2 e_1_2_3_47_2 e_1_2_3_26_1 e_1_2_3_20_1 e_1_2_3_41_1 e_1_2_3_20_2 e_1_2_3_43_2 e_1_2_3_22_1 e_1_2_3_1_1 e_1_2_3_19_2 e_1_2_3_19_3 e_1_2_3_5_2 e_1_2_3_15_2 e_1_2_3_38_2 e_1_2_3_15_3 e_1_2_3_17_1 e_1_2_3_3_1 e_1_2_3_9_2 e_1_2_3_34_1 e_1_2_3_13_2 e_1_2_3_36_2 e_1_2_3_7_1 e_1_2_3_30_1 e_1_2_3_53_1 e_1_2_3_30_2 e_1_2_3_51_2 e_1_2_3_32_2 e_1_2_3_11_1 e_1_2_3_40_1 e_1_2_3_27_2 e_1_2_3_29_1 e_1_2_3_23_1 e_1_2_3_44_2 e_1_2_3_48_1 e_1_2_3_25_2 e_1_2_3_46_2 e_1_2_3_42_1 e_1_2_3_21_1 |
References_xml | – volume: 13 start-page: 408 year: 2016 end-page: 413 publication-title: Nat. Phys. – volume: 18 start-page: 263 year: 2017 end-page: 273 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 42 start-page: 93 year: 1965 end-page: 99 publication-title: J. Chem. Phys. – volume: 291 start-page: 1023 year: 2001 end-page: 1026 publication-title: Science – volume: 9 start-page: 44 year: 2009 end-page: 49 publication-title: Lab Chip – volume: 6 start-page: 21 year: 2019 publication-title: Front. Mol. Biosci. – volume: 12 start-page: 3819 year: 2021 publication-title: Nat. Commun. – volume: 352 start-page: 595 year: 2016 end-page: 599 publication-title: Science – volume: 1868 year: 2021 publication-title: Biochim. Biophys. Acta Mol. Cell Res. – volume: 92 start-page: 5803 year: 2020 end-page: 5812 publication-title: Anal. Chem. – volume: 3 year: 2014 publication-title: eLife – volume: 162 start-page: 1066 year: 2015 end-page: 1077 publication-title: Cell – volume: 8 start-page: 129 year: 2016 end-page: 137 publication-title: Nat. Chem. – volume: 17 start-page: 693 year: 2021 end-page: 702 publication-title: Nat. Chem. Biol. – volume: 57 start-page: 936 year: 2015 end-page: 947 publication-title: Mol. Cell – volume: 20 start-page: 4225 year: 2020 end-page: 4234 publication-title: Lab Chip – volume: 9 start-page: 1859 year: 2009 end-page: 1865 publication-title: Lab Chip – volume: 559 start-page: 211 year: 2018 end-page: 216 publication-title: Nature – volume: 122 start-page: 4067 year: 2018 end-page: 4076 publication-title: J. Phys. Chem. B – volume: 17 start-page: 5401 year: 2021 end-page: 5409 publication-title: Soft Matter – volume: 82 year: 2019 publication-title: Rep. Prog. Phys. – volume: 59 132 start-page: 5950 6006 year: 2020 2020 end-page: 5957 6013 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 14489 14631 year: 2019 2019 end-page: 14494 14636 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 start-page: 1537 year: 2016 end-page: 1549 publication-title: Structure – volume: 32 start-page: 10042 year: 2016 end-page: 10053 publication-title: Langmuir – volume: 2 year: 2020 publication-title: ChemSystemsChem – volume: 10 start-page: 1800 year: 2019 publication-title: Nat. Commun. – volume: 12 start-page: 9142 year: 2016 end-page: 9150 publication-title: Soft Matter – volume: 36 start-page: 932 year: 2009 end-page: 941 publication-title: Mol. Cell – volume: 115 start-page: 80 year: 2017 end-page: 90 publication-title: Methods – volume: 129 start-page: 8825 year: 2007 end-page: 8835 publication-title: J. Am. Chem. Soc. – volume: 547 start-page: 236 year: 2017 end-page: 240 publication-title: Nature – volume: 173 start-page: 720 year: 2018 end-page: 734 publication-title: Cell – volume: 11 start-page: 5167 year: 2020 publication-title: Nat. Commun. – volume: 580 start-page: 709 year: 2020 end-page: 719 publication-title: J. Colloid Interface Sci. – volume: 53 start-page: 4775 year: 2017 end-page: 4778 publication-title: Chem. Commun. – volume: 285 start-page: 83 year: 1999 end-page: 85 publication-title: Science – volume: 19 start-page: R397 year: 2009 end-page: R398 publication-title: Curr. Biol. – volume: 61 134 year: 2022 2022 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 14594 14736 year: 2019 2019 end-page: 14598 14740 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 143 start-page: 4782 year: 2021 end-page: 4789 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 9736 9868 year: 2017 2017 end-page: 9740 9872 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_3_4_1 – ident: e_1_2_3_43_2 doi: 10.1126/science.285.5424.83 – ident: e_1_2_3_1_1 doi: 10.1038/nrm.2017.10 – ident: e_1_2_3_15_2 doi: 10.1002/anie.201914893 – ident: e_1_2_3_50_2 doi: 10.1039/D1SM00515D – ident: e_1_2_3_51_2 doi: 10.1063/1.1695731 – ident: e_1_2_3_6_2 doi: 10.1016/j.molcel.2009.11.020 – ident: e_1_2_3_27_2 doi: 10.1038/nphys3984 – ident: e_1_2_3_34_1 – ident: e_1_2_3_48_1 – ident: e_1_2_3_25_2 doi: 10.1021/jacs.1c01148 – ident: e_1_2_3_33_3 doi: 10.1002/ange.201703145 – ident: e_1_2_3_26_1 – ident: e_1_2_3_11_1 – ident: e_1_2_3_42_1 – ident: e_1_2_3_47_2 doi: 10.1039/b821785h – ident: e_1_2_3_19_3 doi: 10.1002/ange.202117500 – ident: e_1_2_3_37_2 doi: 10.1039/D0LC00613K – ident: e_1_2_3_15_3 doi: 10.1002/ange.201914893 – ident: e_1_2_3_53_1 doi: 10.1016/j.ymeth.2016.09.016 – ident: e_1_2_3_8_1 – ident: e_1_2_3_20_1 doi: 10.1002/anie.201909228 – ident: e_1_2_3_49_2 doi: 10.3389/fmolb.2019.00021 – ident: e_1_2_3_16_2 doi: 10.1038/s41467-019-09855-x – ident: e_1_2_3_13_2 doi: 10.1016/j.cell.2015.07.047 – ident: e_1_2_3_22_1 doi: 10.1016/j.molcel.2015.01.013 – ident: e_1_2_3_33_2 doi: 10.1002/anie.201703145 – ident: e_1_2_3_54_1 doi: 10.1038/s41467-021-24111-x – ident: e_1_2_3_24_2 doi: 10.1038/s41467-020-18815-9 – ident: e_1_2_3_19_2 doi: 10.1002/anie.202117500 – ident: e_1_2_3_21_1 doi: 10.1038/nchem.2414 – ident: e_1_2_3_9_2 doi: 10.1038/s41586-018-0279-8 – ident: e_1_2_3_23_1 – ident: e_1_2_3_5_2 doi: 10.1016/j.cub.2009.03.013 – ident: e_1_2_3_12_2 doi: 10.1016/j.str.2016.07.007 – ident: e_1_2_3_3_1 doi: 10.1126/science.aad9964 – ident: e_1_2_3_7_1 doi: 10.1016/j.cell.2018.03.056 – ident: e_1_2_3_20_2 doi: 10.1002/ange.201909228 – ident: e_1_2_3_31_1 – ident: e_1_2_3_38_2 doi: 10.1021/acs.analchem.9b05329 – ident: e_1_2_3_52_1 doi: 10.1038/s41589-021-00801-x – ident: e_1_2_3_32_2 doi: 10.1039/C7CC01289F – ident: e_1_2_3_46_2 doi: 10.1039/B809670H – ident: e_1_2_3_29_1 doi: 10.1016/j.bbamcr.2020.118823 – ident: e_1_2_3_45_1 – ident: e_1_2_3_10_2 doi: 10.7554/eLife.04591 – ident: e_1_2_3_40_1 doi: 10.1002/syst.202000022 – ident: e_1_2_3_2_1 doi: 10.1038/nature22822 – ident: e_1_2_3_35_2 doi: 10.1021/acs.jpcb.8b01013 – ident: e_1_2_3_18_2 doi: 10.1021/acs.langmuir.6b02499 – ident: e_1_2_3_41_1 doi: 10.1016/j.jcis.2020.07.022 – ident: e_1_2_3_14_1 – ident: e_1_2_3_17_1 – ident: e_1_2_3_30_1 doi: 10.1002/anie.201907278 – ident: e_1_2_3_44_2 doi: 10.1126/science.291.5506.1023 – ident: e_1_2_3_36_2 doi: 10.1021/ja071820f – ident: e_1_2_3_30_2 doi: 10.1002/ange.201907278 – ident: e_1_2_3_28_2 doi: 10.1088/1361-6633/ab052b – ident: e_1_2_3_39_1 doi: 10.1039/C6SM01087C |
SSID | ssj0028806 |
Score | 2.5297177 |
Snippet | Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short... Abstract Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e202203928 |
SubjectTerms | Artificial Organelles Communication Communications Droplet-Based Microfluidics Droplets Evolution Fuels Microfluidics Nonequilibrium Processes Organelles Phase separation Phase Transitions |
Title | Evolution and Single‐Droplet Analysis of Fuel‐Driven Compartments by Droplet‐Based Microfluidics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202203928 https://www.ncbi.nlm.nih.gov/pubmed/35657164 https://www.proquest.com/docview/2696820718 https://search.proquest.com/docview/2673357550 https://pubmed.ncbi.nlm.nih.gov/PMC9400878 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BXuDSB9B2W7oyEhKnQGI7cXKksCuKBEI8JG6R7dhixSpb7W4qtaf-hP7G_pJ6nEd3y6FSuSUaW4ntedme-QZgXxVC6ciyIAu5CriM0kCy2ASZsTSUVFnhD_QvLpOzO35-H98vZfHX-BDdgRtKhtfXKOBSzY_-gIZiBrbb31EaOhOP2b4RExjTdXrd4UdRx5x1ehFjAVahb1EbQ3q02n3VKj1xNZ9GTC57st4UjV6CbAdRR6A8HlYLdai__4Xv-JxRvoIXjZ9KjmvGeg1rptyCjZO2PNw22OHXhmuJLAty40zgxPz68fN0hiHpC9KinZCpJaPKTDwJVSvxKmjmo9vnRH0jTQ_X4JMzqQW5wBhBO6nGxVjPd-BuNLw9OQuaog2B5omTutgyprShJqappjqTsch0wkOpNEdgGEwJV4lGRRNGshCGpVpl1iTakayJ2RvoldPSvAOi0swwPKhNC8ZZkmRKWxHzItIyU0zaPhy0i5Z_qbE58hqFmeY4b3k3b33Ybdc0b2R0nlPEBaLOxXLkvY7sZhGvTGRpphW2EYw5jzYO-_C2ZoHuUwxvjN1usw9ihTm6BojcvUopxw8ewRur0afCfZf6tf_H3-fHl5-H3dv7_-n0ATbx2UcuprvQW8wq89F5Uws1gHXKrwZebn4DfVcdHA |
link.rule.ids | 230,315,783,787,888,1378,11576,27938,27939,46066,46308,46490,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BeggX2vJqWlqMhMRpYWPv80ghUYAkBx4St5XttUXUaIOSLBKc-An9jf0l9XgfNOWABMfdsbVre8YzHs98A7An0lDItmZO7HrC8Xg7cjjzlRMrTV1OhQ6tQ38wDHrX3tmNX0UTYi5MgQ9RO9xQMux-jQKODunDZ9RQTME2BzxKXaPjo2X4YGSeYRGDk4saQYoa9iwSjBhzsA59hdvo0sPF_ot66YWx-TJm8l9b1iqj7kcQ1TCKGJRfB_lcHMjH_xAe3zXOT7BamqrkqOCtz7CksjVoHlcV4tZBd-5LxiU8S8ml0YJj9efp98kUo9LnpAI8IRNNurkaWxLursTuQlMb4D4j4oGUPUyDn0arpmSAYYJ6nI_SkZxtwHW3c3Xcc8q6DY70AiN4vmZMSEWVTyNJZcz9MJaB53IhPcSGwaxwEUjca9w2T0PFIilirQJpSFr5bBMa2SRTX4CIKFYMfbVRyjwWBLGQOvS9tC15LBjXLdivVi25K-A5kgKImSY4b0k9by3YrhY1KcV0llCEBqLGyjLk3ZpsZhFvTXimJjm2CRkzRq3vtmCr4IH6Uwwvjc2BswXhAnfUDRC8e5GSjW4tiDcWpI9C811qF_-Vv0-Ohqed-unrWzrtQLN3Negn_dPh-TdYwfc2kDHahsZ8mqvvxriaix9WfP4CcocgXw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RILVcWqBQ0lIwUqWeFja293VMSSKeUVVA4rayvbaIGm1Qkq3UnvoT-hv7S-rxPkrggATH3bG1a3tetme-Afgks0iqjmFe4nPpcdGJPcEC7SXaUF9QaSJ3oH8-DI-u-Ml1cH0ni7_Eh2gO3FAynL5GAb_NzMF_0FDMwLb7O0p9a-LjF7DMQ-ZjUFfvWwMgRS13lvlFjHlYhr6GbfTpwWL_RbP0wNd8GDJ515V1tmjwBkQ9ijIE5ft-MZf76tc9gMfnDHMVXleOKumWnLUGSzpfh1eHdX24t2D6Pyq2JSLPyIW1gWP99_ef3hRj0uekhjshE0MGhR47EupW4nTQ1IW3z4j8SaoetsEXa1Mzco5BgmZcjLKRmm3A1aB_eXjkVVUbPMVDK3aBYUwqTXVAY0VVIoIoUSH3hVQckWEwJ1yGCjWN3xFZpFmsZGJ0qCzJ6IBtQiuf5HoLiIwTzfCkNs4YZ2GYSGWigGcdJRLJhGnD53rR0tsSnCMtYZhpivOWNvPWhu16TdNKSGcpRWAgan0sS95ryHYW8c5E5HpSYJuIMevSBn4b3pUs0HyK4ZWx3W62IVpgjqYBQncvUvLRjYPwxnL0cWS_S93aP_L3aXd43G-e3j-l0y68_NobpGfHw9MPsIKvXRRjvA2t-bTQH61nNZc7Tnj-AQMGHw4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+and+Single%E2%80%90Droplet+Analysis+of+Fuel%E2%80%90Driven+Compartments+by+Droplet%E2%80%90Based+Microfluidics&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Bergmann%2C+Alexander+M.&rft.au=Donau%2C+Carsten&rft.au=Sp%C3%A4th%2C+Fabian&rft.au=Jahnke%2C+Kevin&rft.date=2022-08-08&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=32&rft_id=info:doi/10.1002%2Fanie.202203928&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202203928 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |