Evolution and Single‐Droplet Analysis of Fuel‐Driven Compartments by Droplet‐Based Microfluidics

Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet‐based microfluidics to encapsulate a fuel‐driven cycle that drives phase separation into coace...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 32; pp. e202203928 - n/a
Main Authors Bergmann, Alexander M., Donau, Carsten, Späth, Fabian, Jahnke, Kevin, Göpfrich, Kerstin, Boekhoven, Job
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 08.08.2022
John Wiley and Sons Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet‐based microfluidics to encapsulate a fuel‐driven cycle that drives phase separation into coacervate‐based droplets to overcome this challenge. This approach enables the analysis of every coacervate‐based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate‐based droplets and their properties. We observed that coacervate‐based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate‐based droplets enables future selection‐ or evolution‐based studies. Droplet‐based microfluidics were used to encapsulate a fuel‐driven cycle that drives phase separation into coacervate‐based droplets. This approach enables the analysis of every coacervate‐based droplet in the reaction container throughout its lifetime. The nucleation, growth, and dissolution of active coacervate‐based droplets were investigated with this setup.
AbstractList Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We use droplet-based microfluidics to encapsulate a fuel-driven cycle that drives phase separation into coacervate droplets to overcome this challenge. This approach enables the analysis of every coacervate-based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate-based droplets and their properties. We observe that coacervate-based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate-based droplets enables future selection- or evolution-based studies.
Abstract Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet‐based microfluidics to encapsulate a fuel‐driven cycle that drives phase separation into coacervate‐based droplets to overcome this challenge. This approach enables the analysis of every coacervate‐based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate‐based droplets and their properties. We observed that coacervate‐based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate‐based droplets enables future selection‐ or evolution‐based studies.
Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet‐based microfluidics to encapsulate a fuel‐driven cycle that drives phase separation into coacervate‐based droplets to overcome this challenge. This approach enables the analysis of every coacervate‐based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate‐based droplets and their properties. We observed that coacervate‐based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate‐based droplets enables future selection‐ or evolution‐based studies. Droplet‐based microfluidics were used to encapsulate a fuel‐driven cycle that drives phase separation into coacervate‐based droplets. This approach enables the analysis of every coacervate‐based droplet in the reaction container throughout its lifetime. The nucleation, growth, and dissolution of active coacervate‐based droplets were investigated with this setup.
Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short timescales of their kinetics. We used droplet‐based microfluidics to encapsulate a fuel‐driven cycle that drives phase separation into coacervate‐based droplets to overcome this challenge. This approach enables the analysis of every coacervate‐based droplet in the reaction container throughout its lifetime. We discovered that the fuel concentration dictates the formation of the coacervate‐based droplets and their properties. We observed that coacervate‐based droplets grow through fusion, decay simultaneously independent of their volume, and shrinkage rate scales with their initial volume. This method helps to further understand the regulation of membraneless organelles, and we believe the analysis of individual coacervate‐based droplets enables future selection‐ or evolution‐based studies.
Author Donau, Carsten
Boekhoven, Job
Göpfrich, Kerstin
Jahnke, Kevin
Späth, Fabian
Bergmann, Alexander M.
AuthorAffiliation 1 Department of Chemistry Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
3 Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
2 Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
AuthorAffiliation_xml – name: 2 Biophysical Engineering Group Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
– name: 1 Department of Chemistry Technical University of Munich Lichtenbergstrasse 4 85748 Garching Germany
– name: 3 Department of Physics and Astronomy Heidelberg University 69120 Heidelberg Germany
Author_xml – sequence: 1
  givenname: Alexander M.
  surname: Bergmann
  fullname: Bergmann, Alexander M.
  organization: Technical University of Munich
– sequence: 2
  givenname: Carsten
  surname: Donau
  fullname: Donau, Carsten
  organization: Technical University of Munich
– sequence: 3
  givenname: Fabian
  surname: Späth
  fullname: Späth, Fabian
  organization: Technical University of Munich
– sequence: 4
  givenname: Kevin
  surname: Jahnke
  fullname: Jahnke, Kevin
  organization: Heidelberg University
– sequence: 5
  givenname: Kerstin
  surname: Göpfrich
  fullname: Göpfrich, Kerstin
  email: kerstin.goepfrich@mr.mpg.de
  organization: Heidelberg University
– sequence: 6
  givenname: Job
  orcidid: 0000-0002-9126-2430
  surname: Boekhoven
  fullname: Boekhoven, Job
  email: job.boekhoven@tum.de
  organization: Technical University of Munich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35657164$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URG9sWaJIbNhk8CW-ZIM0HaZQqcCisLYc56S4cuwhTgbNjkfgGXkSPMx0KGxY2dL5zqdzzn-KjkIMgNAzgmcEY_rKBAcziinFrKbqETohnJKSScmO8r9irJSKk2N0mtJd5pXC4gk6ZlxwSUR1grrlOvppdDEUJrTFjQu3Hn5-__FmiCsPYzEPxm-SS0XsissJ_O-SW0MoFrFfmWHsIYypaDbFviMDFyZBW7x3doidn1zrbDpHjzvjEzzdv2fo8-Xy0-Jdef3x7dVifl3aSihV8o6xxgIFTpWltjZc1lZU2DS2qhThpK55I6zEDGNiWglM2abuQNhc6oCzM_R6511NTQ-tzcMNxuvV4HozbHQ0Tv9dCe6Lvo1rXVcYK6my4OVeMMSvE6RR9y5Z8N4EiFPSVEjGuOQcZ_TFP-hdnIZ8ry1VC0WxJFvhbEfla6Q0QHcYhmC9jVBvI9SHCHPD84crHPD7zDJQ74BvzsPmPzo9_3C1_CP_Bcq1roI
CitedBy_id crossref_primary_10_1002_ange_202211905
crossref_primary_10_1002_anie_202309318
crossref_primary_10_1021_jacs_3c03793
crossref_primary_10_1002_anie_202211905
crossref_primary_10_1016_j_matt_2023_12_025
crossref_primary_10_1002_smtd_202300496
crossref_primary_10_1002_syst_202300034
crossref_primary_10_1016_j_cclet_2024_109995
crossref_primary_10_1021_accountsmr_2c00239
crossref_primary_10_1002_ange_202309318
crossref_primary_10_1021_accountsmr_2c00244
crossref_primary_10_1016_j_nbt_2024_02_003
crossref_primary_10_1002_ange_202216537
crossref_primary_10_1002_advs_202305760
crossref_primary_10_1002_anie_202216537
crossref_primary_10_1016_j_chempr_2023_08_029
Cites_doi 10.1126/science.285.5424.83
10.1038/nrm.2017.10
10.1002/anie.201914893
10.1039/D1SM00515D
10.1063/1.1695731
10.1016/j.molcel.2009.11.020
10.1038/nphys3984
10.1021/jacs.1c01148
10.1002/ange.201703145
10.1039/b821785h
10.1002/ange.202117500
10.1039/D0LC00613K
10.1002/ange.201914893
10.1016/j.ymeth.2016.09.016
10.1002/anie.201909228
10.3389/fmolb.2019.00021
10.1038/s41467-019-09855-x
10.1016/j.cell.2015.07.047
10.1016/j.molcel.2015.01.013
10.1002/anie.201703145
10.1038/s41467-021-24111-x
10.1038/s41467-020-18815-9
10.1002/anie.202117500
10.1038/nchem.2414
10.1038/s41586-018-0279-8
10.1016/j.cub.2009.03.013
10.1016/j.str.2016.07.007
10.1126/science.aad9964
10.1016/j.cell.2018.03.056
10.1002/ange.201909228
10.1021/acs.analchem.9b05329
10.1038/s41589-021-00801-x
10.1039/C7CC01289F
10.1039/B809670H
10.1016/j.bbamcr.2020.118823
10.7554/eLife.04591
10.1002/syst.202000022
10.1038/nature22822
10.1021/acs.jpcb.8b01013
10.1021/acs.langmuir.6b02499
10.1016/j.jcis.2020.07.022
10.1002/anie.201907278
10.1126/science.291.5506.1023
10.1021/ja071820f
10.1002/ange.201907278
10.1088/1361-6633/ab052b
10.1039/C6SM01087C
ContentType Journal Article
Copyright 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2022 Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7TM
K9.
7X8
5PM
DOI 10.1002/anie.202203928
DatabaseName Wiley Online Library Open Access
Wiley Online Library Journals
PubMed
CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 10_1002_anie_202203928
35657164
ANIE202203928
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  funderid: Max Planck School Matter to Life
– fundername: Deutsche Forschungsgemeinschaft
  funderid: EXC-2082/1 - 390761711; Excellence initiative Origins
– fundername: ;
  grantid: Max Planck School Matter to Life
– fundername: ;
  grantid: EXC-2082/1 - 390761711; Excellence initiative Origins
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
7TM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4688-5f33bce2e528c2c9a579c640abc448151995b6c703001ad7e38cb9fe6c519fe53
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Tue Sep 17 21:14:42 EDT 2024
Fri Aug 16 21:03:32 EDT 2024
Thu Oct 10 16:53:54 EDT 2024
Fri Aug 23 02:00:07 EDT 2024
Sat Sep 28 08:20:11 EDT 2024
Sat Aug 24 01:07:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords artificial organelles, droplet-based microfluidics, nonequilibrium processes, phase transitions
Language English
License Attribution
2022 Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4688-5f33bce2e528c2c9a579c640abc448151995b6c703001ad7e38cb9fe6c519fe53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9126-2430
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202203928
PMID 35657164
PQID 2696820718
PQPubID 946352
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9400878
proquest_miscellaneous_2673357550
proquest_journals_2696820718
crossref_primary_10_1002_anie_202203928
pubmed_primary_35657164
wiley_primary_10_1002_anie_202203928_ANIE202203928
PublicationCentury 2000
PublicationDate August 8, 2022
PublicationDateYYYYMMDD 2022-08-08
PublicationDate_xml – month: 08
  year: 2022
  text: August 8, 2022
  day: 08
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 162
2015; 57
2018; 122
2007; 129
2019; 6
2020; 20
2020; 580
2019; 10
2020 2020; 59 132
2016; 32
1999; 285
2020; 11
2021; 143
2017 2017; 56 129
2017; 115
2019 2019; 58 131
2016; 13
2016; 12
2009; 36
2017; 53
1965; 42
2022 2022; 61 134
2019; 82
2018; 173
2014; 3
2020; 2
2021; 12
2018; 559
2021; 1868
2001; 291
2020; 92
2021; 17
2009; 9
2016; 352
2017; 18
2009; 19
2016; 8
2016; 24
2017; 547
e_1_2_3_50_2
e_1_2_3_2_1
e_1_2_3_39_1
e_1_2_3_16_2
e_1_2_3_37_2
e_1_2_3_4_1
e_1_2_3_18_2
e_1_2_3_33_3
e_1_2_3_12_2
e_1_2_3_33_2
e_1_2_3_8_1
e_1_2_3_14_1
e_1_2_3_6_2
e_1_2_3_35_2
e_1_2_3_31_1
e_1_2_3_52_1
e_1_2_3_10_2
e_1_2_3_54_1
e_1_2_3_49_2
e_1_2_3_28_2
e_1_2_3_45_1
e_1_2_3_24_2
e_1_2_3_47_2
e_1_2_3_26_1
e_1_2_3_20_1
e_1_2_3_41_1
e_1_2_3_20_2
e_1_2_3_43_2
e_1_2_3_22_1
e_1_2_3_1_1
e_1_2_3_19_2
e_1_2_3_19_3
e_1_2_3_5_2
e_1_2_3_15_2
e_1_2_3_38_2
e_1_2_3_15_3
e_1_2_3_17_1
e_1_2_3_3_1
e_1_2_3_9_2
e_1_2_3_34_1
e_1_2_3_13_2
e_1_2_3_36_2
e_1_2_3_7_1
e_1_2_3_30_1
e_1_2_3_53_1
e_1_2_3_30_2
e_1_2_3_51_2
e_1_2_3_32_2
e_1_2_3_11_1
e_1_2_3_40_1
e_1_2_3_27_2
e_1_2_3_29_1
e_1_2_3_23_1
e_1_2_3_44_2
e_1_2_3_48_1
e_1_2_3_25_2
e_1_2_3_46_2
e_1_2_3_42_1
e_1_2_3_21_1
References_xml – volume: 13
  start-page: 408
  year: 2016
  end-page: 413
  publication-title: Nat. Phys.
– volume: 18
  start-page: 263
  year: 2017
  end-page: 273
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 42
  start-page: 93
  year: 1965
  end-page: 99
  publication-title: J. Chem. Phys.
– volume: 291
  start-page: 1023
  year: 2001
  end-page: 1026
  publication-title: Science
– volume: 9
  start-page: 44
  year: 2009
  end-page: 49
  publication-title: Lab Chip
– volume: 6
  start-page: 21
  year: 2019
  publication-title: Front. Mol. Biosci.
– volume: 12
  start-page: 3819
  year: 2021
  publication-title: Nat. Commun.
– volume: 352
  start-page: 595
  year: 2016
  end-page: 599
  publication-title: Science
– volume: 1868
  year: 2021
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
– volume: 92
  start-page: 5803
  year: 2020
  end-page: 5812
  publication-title: Anal. Chem.
– volume: 3
  year: 2014
  publication-title: eLife
– volume: 162
  start-page: 1066
  year: 2015
  end-page: 1077
  publication-title: Cell
– volume: 8
  start-page: 129
  year: 2016
  end-page: 137
  publication-title: Nat. Chem.
– volume: 17
  start-page: 693
  year: 2021
  end-page: 702
  publication-title: Nat. Chem. Biol.
– volume: 57
  start-page: 936
  year: 2015
  end-page: 947
  publication-title: Mol. Cell
– volume: 20
  start-page: 4225
  year: 2020
  end-page: 4234
  publication-title: Lab Chip
– volume: 9
  start-page: 1859
  year: 2009
  end-page: 1865
  publication-title: Lab Chip
– volume: 559
  start-page: 211
  year: 2018
  end-page: 216
  publication-title: Nature
– volume: 122
  start-page: 4067
  year: 2018
  end-page: 4076
  publication-title: J. Phys. Chem. B
– volume: 17
  start-page: 5401
  year: 2021
  end-page: 5409
  publication-title: Soft Matter
– volume: 82
  year: 2019
  publication-title: Rep. Prog. Phys.
– volume: 59 132
  start-page: 5950 6006
  year: 2020 2020
  end-page: 5957 6013
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 14489 14631
  year: 2019 2019
  end-page: 14494 14636
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 1537
  year: 2016
  end-page: 1549
  publication-title: Structure
– volume: 32
  start-page: 10042
  year: 2016
  end-page: 10053
  publication-title: Langmuir
– volume: 2
  year: 2020
  publication-title: ChemSystemsChem
– volume: 10
  start-page: 1800
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  start-page: 9142
  year: 2016
  end-page: 9150
  publication-title: Soft Matter
– volume: 36
  start-page: 932
  year: 2009
  end-page: 941
  publication-title: Mol. Cell
– volume: 115
  start-page: 80
  year: 2017
  end-page: 90
  publication-title: Methods
– volume: 129
  start-page: 8825
  year: 2007
  end-page: 8835
  publication-title: J. Am. Chem. Soc.
– volume: 547
  start-page: 236
  year: 2017
  end-page: 240
  publication-title: Nature
– volume: 173
  start-page: 720
  year: 2018
  end-page: 734
  publication-title: Cell
– volume: 11
  start-page: 5167
  year: 2020
  publication-title: Nat. Commun.
– volume: 580
  start-page: 709
  year: 2020
  end-page: 719
  publication-title: J. Colloid Interface Sci.
– volume: 53
  start-page: 4775
  year: 2017
  end-page: 4778
  publication-title: Chem. Commun.
– volume: 285
  start-page: 83
  year: 1999
  end-page: 85
  publication-title: Science
– volume: 19
  start-page: R397
  year: 2009
  end-page: R398
  publication-title: Curr. Biol.
– volume: 61 134
  year: 2022 2022
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 14594 14736
  year: 2019 2019
  end-page: 14598 14740
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 143
  start-page: 4782
  year: 2021
  end-page: 4789
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 9736 9868
  year: 2017 2017
  end-page: 9740 9872
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_3_4_1
– ident: e_1_2_3_43_2
  doi: 10.1126/science.285.5424.83
– ident: e_1_2_3_1_1
  doi: 10.1038/nrm.2017.10
– ident: e_1_2_3_15_2
  doi: 10.1002/anie.201914893
– ident: e_1_2_3_50_2
  doi: 10.1039/D1SM00515D
– ident: e_1_2_3_51_2
  doi: 10.1063/1.1695731
– ident: e_1_2_3_6_2
  doi: 10.1016/j.molcel.2009.11.020
– ident: e_1_2_3_27_2
  doi: 10.1038/nphys3984
– ident: e_1_2_3_34_1
– ident: e_1_2_3_48_1
– ident: e_1_2_3_25_2
  doi: 10.1021/jacs.1c01148
– ident: e_1_2_3_33_3
  doi: 10.1002/ange.201703145
– ident: e_1_2_3_26_1
– ident: e_1_2_3_11_1
– ident: e_1_2_3_42_1
– ident: e_1_2_3_47_2
  doi: 10.1039/b821785h
– ident: e_1_2_3_19_3
  doi: 10.1002/ange.202117500
– ident: e_1_2_3_37_2
  doi: 10.1039/D0LC00613K
– ident: e_1_2_3_15_3
  doi: 10.1002/ange.201914893
– ident: e_1_2_3_53_1
  doi: 10.1016/j.ymeth.2016.09.016
– ident: e_1_2_3_8_1
– ident: e_1_2_3_20_1
  doi: 10.1002/anie.201909228
– ident: e_1_2_3_49_2
  doi: 10.3389/fmolb.2019.00021
– ident: e_1_2_3_16_2
  doi: 10.1038/s41467-019-09855-x
– ident: e_1_2_3_13_2
  doi: 10.1016/j.cell.2015.07.047
– ident: e_1_2_3_22_1
  doi: 10.1016/j.molcel.2015.01.013
– ident: e_1_2_3_33_2
  doi: 10.1002/anie.201703145
– ident: e_1_2_3_54_1
  doi: 10.1038/s41467-021-24111-x
– ident: e_1_2_3_24_2
  doi: 10.1038/s41467-020-18815-9
– ident: e_1_2_3_19_2
  doi: 10.1002/anie.202117500
– ident: e_1_2_3_21_1
  doi: 10.1038/nchem.2414
– ident: e_1_2_3_9_2
  doi: 10.1038/s41586-018-0279-8
– ident: e_1_2_3_23_1
– ident: e_1_2_3_5_2
  doi: 10.1016/j.cub.2009.03.013
– ident: e_1_2_3_12_2
  doi: 10.1016/j.str.2016.07.007
– ident: e_1_2_3_3_1
  doi: 10.1126/science.aad9964
– ident: e_1_2_3_7_1
  doi: 10.1016/j.cell.2018.03.056
– ident: e_1_2_3_20_2
  doi: 10.1002/ange.201909228
– ident: e_1_2_3_31_1
– ident: e_1_2_3_38_2
  doi: 10.1021/acs.analchem.9b05329
– ident: e_1_2_3_52_1
  doi: 10.1038/s41589-021-00801-x
– ident: e_1_2_3_32_2
  doi: 10.1039/C7CC01289F
– ident: e_1_2_3_46_2
  doi: 10.1039/B809670H
– ident: e_1_2_3_29_1
  doi: 10.1016/j.bbamcr.2020.118823
– ident: e_1_2_3_45_1
– ident: e_1_2_3_10_2
  doi: 10.7554/eLife.04591
– ident: e_1_2_3_40_1
  doi: 10.1002/syst.202000022
– ident: e_1_2_3_2_1
  doi: 10.1038/nature22822
– ident: e_1_2_3_35_2
  doi: 10.1021/acs.jpcb.8b01013
– ident: e_1_2_3_18_2
  doi: 10.1021/acs.langmuir.6b02499
– ident: e_1_2_3_41_1
  doi: 10.1016/j.jcis.2020.07.022
– ident: e_1_2_3_14_1
– ident: e_1_2_3_17_1
– ident: e_1_2_3_30_1
  doi: 10.1002/anie.201907278
– ident: e_1_2_3_44_2
  doi: 10.1126/science.291.5506.1023
– ident: e_1_2_3_36_2
  doi: 10.1021/ja071820f
– ident: e_1_2_3_30_2
  doi: 10.1002/ange.201907278
– ident: e_1_2_3_28_2
  doi: 10.1088/1361-6633/ab052b
– ident: e_1_2_3_39_1
  doi: 10.1039/C6SM01087C
SSID ssj0028806
Score 2.5297177
Snippet Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to the short...
Abstract Active droplets are a great model for membraneless organelles. However, the analysis of these systems remains challenging and is often limited due to...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e202203928
SubjectTerms Artificial Organelles
Communication
Communications
Droplet-Based Microfluidics
Droplets
Evolution
Fuels
Microfluidics
Nonequilibrium Processes
Organelles
Phase separation
Phase Transitions
Title Evolution and Single‐Droplet Analysis of Fuel‐Driven Compartments by Droplet‐Based Microfluidics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202203928
https://www.ncbi.nlm.nih.gov/pubmed/35657164
https://www.proquest.com/docview/2696820718
https://search.proquest.com/docview/2673357550
https://pubmed.ncbi.nlm.nih.gov/PMC9400878
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BXuDSB9B2W7oyEhKnQGI7cXKksCuKBEI8JG6R7dhixSpb7W4qtaf-hP7G_pJ6nEd3y6FSuSUaW4ntedme-QZgXxVC6ciyIAu5CriM0kCy2ASZsTSUVFnhD_QvLpOzO35-H98vZfHX-BDdgRtKhtfXKOBSzY_-gIZiBrbb31EaOhOP2b4RExjTdXrd4UdRx5x1ehFjAVahb1EbQ3q02n3VKj1xNZ9GTC57st4UjV6CbAdRR6A8HlYLdai__4Xv-JxRvoIXjZ9KjmvGeg1rptyCjZO2PNw22OHXhmuJLAty40zgxPz68fN0hiHpC9KinZCpJaPKTDwJVSvxKmjmo9vnRH0jTQ_X4JMzqQW5wBhBO6nGxVjPd-BuNLw9OQuaog2B5omTutgyprShJqappjqTsch0wkOpNEdgGEwJV4lGRRNGshCGpVpl1iTakayJ2RvoldPSvAOi0swwPKhNC8ZZkmRKWxHzItIyU0zaPhy0i5Z_qbE58hqFmeY4b3k3b33Ybdc0b2R0nlPEBaLOxXLkvY7sZhGvTGRpphW2EYw5jzYO-_C2ZoHuUwxvjN1usw9ihTm6BojcvUopxw8ewRur0afCfZf6tf_H3-fHl5-H3dv7_-n0ATbx2UcuprvQW8wq89F5Uws1gHXKrwZebn4DfVcdHA
link.rule.ids 230,315,783,787,888,1378,11576,27938,27939,46066,46308,46490,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5BeggX2vJqWlqMhMRpYWPv80ghUYAkBx4St5XttUXUaIOSLBKc-An9jf0l9XgfNOWABMfdsbVre8YzHs98A7An0lDItmZO7HrC8Xg7cjjzlRMrTV1OhQ6tQ38wDHrX3tmNX0UTYi5MgQ9RO9xQMux-jQKODunDZ9RQTME2BzxKXaPjo2X4YGSeYRGDk4saQYoa9iwSjBhzsA59hdvo0sPF_ot66YWx-TJm8l9b1iqj7kcQ1TCKGJRfB_lcHMjH_xAe3zXOT7BamqrkqOCtz7CksjVoHlcV4tZBd-5LxiU8S8ml0YJj9efp98kUo9LnpAI8IRNNurkaWxLursTuQlMb4D4j4oGUPUyDn0arpmSAYYJ6nI_SkZxtwHW3c3Xcc8q6DY70AiN4vmZMSEWVTyNJZcz9MJaB53IhPcSGwaxwEUjca9w2T0PFIilirQJpSFr5bBMa2SRTX4CIKFYMfbVRyjwWBLGQOvS9tC15LBjXLdivVi25K-A5kgKImSY4b0k9by3YrhY1KcV0llCEBqLGyjLk3ZpsZhFvTXimJjm2CRkzRq3vtmCr4IH6Uwwvjc2BswXhAnfUDRC8e5GSjW4tiDcWpI9C811qF_-Vv0-Ohqed-unrWzrtQLN3Negn_dPh-TdYwfc2kDHahsZ8mqvvxriaix9WfP4CcocgXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7RILVcWqBQ0lIwUqWeFja293VMSSKeUVVA4rayvbaIGm1Qkq3UnvoT-hv7S-rxPkrggATH3bG1a3tetme-Afgks0iqjmFe4nPpcdGJPcEC7SXaUF9QaSJ3oH8-DI-u-Ml1cH0ni7_Eh2gO3FAynL5GAb_NzMF_0FDMwLb7O0p9a-LjF7DMQ-ZjUFfvWwMgRS13lvlFjHlYhr6GbfTpwWL_RbP0wNd8GDJ515V1tmjwBkQ9ijIE5ft-MZf76tc9gMfnDHMVXleOKumWnLUGSzpfh1eHdX24t2D6Pyq2JSLPyIW1gWP99_ef3hRj0uekhjshE0MGhR47EupW4nTQ1IW3z4j8SaoetsEXa1Mzco5BgmZcjLKRmm3A1aB_eXjkVVUbPMVDK3aBYUwqTXVAY0VVIoIoUSH3hVQckWEwJ1yGCjWN3xFZpFmsZGJ0qCzJ6IBtQiuf5HoLiIwTzfCkNs4YZ2GYSGWigGcdJRLJhGnD53rR0tsSnCMtYZhpivOWNvPWhu16TdNKSGcpRWAgan0sS95ryHYW8c5E5HpSYJuIMevSBn4b3pUs0HyK4ZWx3W62IVpgjqYBQncvUvLRjYPwxnL0cWS_S93aP_L3aXd43G-e3j-l0y68_NobpGfHw9MPsIKvXRRjvA2t-bTQH61nNZc7Tnj-AQMGHw4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+and+Single%E2%80%90Droplet+Analysis+of+Fuel%E2%80%90Driven+Compartments+by+Droplet%E2%80%90Based+Microfluidics&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Bergmann%2C+Alexander+M.&rft.au=Donau%2C+Carsten&rft.au=Sp%C3%A4th%2C+Fabian&rft.au=Jahnke%2C+Kevin&rft.date=2022-08-08&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=32&rft_id=info:doi/10.1002%2Fanie.202203928&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202203928
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon