Effects of gradient non-linearity correction and intensity non-uniformity correction in longitudinal studies using structural image evaluation using normalization of atrophy (SIENA)
Purpose: To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two‐year) changes in global and regional brain volumes. Materials and Methods: A total of 208 subjects (70 females and 138 males, age range = 38.1–83.0 years) were included in...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 32; no. 2; pp. 489 - 492 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.08.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1053-1807 1522-2586 1522-2586 |
DOI | 10.1002/jmri.22237 |
Cover
Loading…
Abstract | Purpose:
To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two‐year) changes in global and regional brain volumes.
Materials and Methods:
A total of 208 subjects (70 females and 138 males, age range = 38.1–83.0 years) were included in this study. Each subject was scanned twice, at an interval of approximately two years (range = 1.5–2.3 years). Three‐dimensional fast spoiled‐gradient recalled acquisition in the steady state (3D‐FSPGR) images corrected for gradient nonlinearity and/or intensity nonuniformity were compared with uncorrected 3D‐FSPGR images with use of structural image evaluation using normalization of atrophy 2.6 (SIENA).
Results:
The mean absolute deviations of percentage brain volume change (PBVC) values in the gradient nonlinearity ± intensity nonuniformity corrected images were significantly less than that in the uncorrected images, and the difference in the mean absolute deviation of PBVC was the most significant between the uncorrected images and the images corrected for both gradient nonlinearity and intensity nonuniformity. Voxel‐wise comparisons showed large significant differences between the uncorrected images and the corrected images.
Conclusion:
Correction for gradient nonlinearity and intensity nonuniformity reduces the variance of measured longitudinal changes in brain volumes and will improve accuracy for detecting subtle brain changes. J. Magn. Reson. Imaging 2010;32:489–492. © 2010 Wiley‐Liss, Inc. |
---|---|
AbstractList | To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two-year) changes in global and regional brain volumes.PURPOSETo evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two-year) changes in global and regional brain volumes.A total of 208 subjects (70 females and 138 males, age range = 38.1-83.0 years) were included in this study. Each subject was scanned twice, at an interval of approximately two years (range = 1.5-2.3 years). Three-dimensional fast spoiled-gradient recalled acquisition in the steady state (3D-FSPGR) images corrected for gradient nonlinearity and/or intensity nonuniformity were compared with uncorrected 3D-FSPGR images with use of structural image evaluation using normalization of atrophy 2.6 (SIENA).MATERIALS AND METHODSA total of 208 subjects (70 females and 138 males, age range = 38.1-83.0 years) were included in this study. Each subject was scanned twice, at an interval of approximately two years (range = 1.5-2.3 years). Three-dimensional fast spoiled-gradient recalled acquisition in the steady state (3D-FSPGR) images corrected for gradient nonlinearity and/or intensity nonuniformity were compared with uncorrected 3D-FSPGR images with use of structural image evaluation using normalization of atrophy 2.6 (SIENA).The mean absolute deviations of percentage brain volume change (PBVC) values in the gradient nonlinearity +/- intensity nonuniformity corrected images were significantly less than that in the uncorrected images, and the difference in the mean absolute deviation of PBVC was the most significant between the uncorrected images and the images corrected for both gradient nonlinearity and intensity nonuniformity. Voxel-wise comparisons showed large significant differences between the uncorrected images and the corrected images.RESULTSThe mean absolute deviations of percentage brain volume change (PBVC) values in the gradient nonlinearity +/- intensity nonuniformity corrected images were significantly less than that in the uncorrected images, and the difference in the mean absolute deviation of PBVC was the most significant between the uncorrected images and the images corrected for both gradient nonlinearity and intensity nonuniformity. Voxel-wise comparisons showed large significant differences between the uncorrected images and the corrected images.Correction for gradient nonlinearity and intensity nonuniformity reduces the variance of measured longitudinal changes in brain volumes and will improve accuracy for detecting subtle brain changes.CONCLUSIONCorrection for gradient nonlinearity and intensity nonuniformity reduces the variance of measured longitudinal changes in brain volumes and will improve accuracy for detecting subtle brain changes. Purpose: To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two‐year) changes in global and regional brain volumes. Materials and Methods: A total of 208 subjects (70 females and 138 males, age range = 38.1–83.0 years) were included in this study. Each subject was scanned twice, at an interval of approximately two years (range = 1.5–2.3 years). Three‐dimensional fast spoiled‐gradient recalled acquisition in the steady state (3D‐FSPGR) images corrected for gradient nonlinearity and/or intensity nonuniformity were compared with uncorrected 3D‐FSPGR images with use of structural image evaluation using normalization of atrophy 2.6 (SIENA). Results: The mean absolute deviations of percentage brain volume change (PBVC) values in the gradient nonlinearity ± intensity nonuniformity corrected images were significantly less than that in the uncorrected images, and the difference in the mean absolute deviation of PBVC was the most significant between the uncorrected images and the images corrected for both gradient nonlinearity and intensity nonuniformity. Voxel‐wise comparisons showed large significant differences between the uncorrected images and the corrected images. Conclusion: Correction for gradient nonlinearity and intensity nonuniformity reduces the variance of measured longitudinal changes in brain volumes and will improve accuracy for detecting subtle brain changes. J. Magn. Reson. Imaging 2010;32:489–492. © 2010 Wiley‐Liss, Inc. To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two-year) changes in global and regional brain volumes. A total of 208 subjects (70 females and 138 males, age range = 38.1-83.0 years) were included in this study. Each subject was scanned twice, at an interval of approximately two years (range = 1.5-2.3 years). Three-dimensional fast spoiled-gradient recalled acquisition in the steady state (3D-FSPGR) images corrected for gradient nonlinearity and/or intensity nonuniformity were compared with uncorrected 3D-FSPGR images with use of structural image evaluation using normalization of atrophy 2.6 (SIENA). The mean absolute deviations of percentage brain volume change (PBVC) values in the gradient nonlinearity +/- intensity nonuniformity corrected images were significantly less than that in the uncorrected images, and the difference in the mean absolute deviation of PBVC was the most significant between the uncorrected images and the images corrected for both gradient nonlinearity and intensity nonuniformity. Voxel-wise comparisons showed large significant differences between the uncorrected images and the corrected images. Correction for gradient nonlinearity and intensity nonuniformity reduces the variance of measured longitudinal changes in brain volumes and will improve accuracy for detecting subtle brain changes. |
Author | Takao, Hidemasa Hayashi, Naoto Ohtomo, Kuni Kabasawa, Hiroyuki Abe, Osamu |
Author_xml | – sequence: 1 givenname: Hidemasa surname: Takao fullname: Takao, Hidemasa email: takaoh-tky@umin.ac.jp organization: Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan – sequence: 2 givenname: Osamu surname: Abe fullname: Abe, Osamu organization: Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan – sequence: 3 givenname: Naoto surname: Hayashi fullname: Hayashi, Naoto organization: Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan – sequence: 4 givenname: Hiroyuki surname: Kabasawa fullname: Kabasawa, Hiroyuki organization: Japan Applied Science Laboratory, GE Healthcare Japan Corporation, Tokyo, Japan – sequence: 5 givenname: Kuni surname: Ohtomo fullname: Ohtomo, Kuni organization: Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20677282$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URH9gwwMg76BIKf5J4mRZ2qEMDEUUEOwsj2MPLo492A4wvBfvhzPpsKgQK1_7fufoXp9DsOe8UwA8xOgEI0SeXffBnBBCKLsDDnBFSEGqpt7LNapogRvE9sFhjNcIobYtq3tgn6CaMdKQA_B7prWSKUKv4SqIziiXYPYvrHFKBJM2UPoQMmK8g8J10LikXBwbIzY4o33ob3HGQevdyqShM05YGMdCRThE41b5FgaZhpAbphcrBdV3YQexVU6Ey5bCml_TWx5NpODXXzbwyfv57PL0-D64q4WN6sHNeQQ-vph9OHtZLN5ezM9OF4Us64YVWlGFmWyolmRZVmjZIdEgKcquazUmqK0EW9ZIspaUHcaIKFEJRHUp0ZLQWtIj8HjyXQf_bVAx8d5EqawVTvkhclY2LWGsoZl8dEMOy151fB3yamHDdz-dATQBMvgYg9JcmrTdLwVhLMeIj2HyMUy-DTNLnt6S7Fz_CeMJ_mGs2vyH5K_eXM13mmLSmJjUz78aEb7ymlFW8U-XF7w-f_7u9ecF5lf0DyKQxGQ |
CitedBy_id | crossref_primary_10_1371_journal_pone_0239021 crossref_primary_10_3389_fnins_2023_1196087 crossref_primary_10_1002_jmri_24038 crossref_primary_10_1002_jmri_24225 crossref_primary_10_1002_jmri_27568 crossref_primary_10_1007_s00234_010_0715_4 crossref_primary_10_1016_j_neurad_2021_11_007 crossref_primary_10_1016_j_neuroimage_2014_01_058 crossref_primary_10_1007_s00415_012_6762_5 crossref_primary_10_1016_j_pscychresns_2016_04_006 crossref_primary_10_1002_acn3_51251 crossref_primary_10_1002_jmri_27929 crossref_primary_10_1016_j_neuroimage_2018_09_062 crossref_primary_10_1002_jmri_22636 crossref_primary_10_1016_j_mri_2015_03_010 crossref_primary_10_1177_1352458517715811 crossref_primary_10_1016_j_neuroimage_2013_08_046 crossref_primary_10_3233_JAD_210596 crossref_primary_10_1016_j_mri_2021_06_020 crossref_primary_10_1177_0271678X16647396 |
Cites_doi | 10.1016/j.neuroimage.2005.07.035 10.1109/42.906424 10.1002/hbm.10062 10.1002/jmri.10325 10.1016/j.neuroimage.2009.02.010 10.1006/nimg.2002.1132 10.1109/TMI.2006.891486 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2007.10.051 10.1016/j.neuroimage.2009.06.039 10.1016/j.neuroimage.2004.04.030 10.1016/j.neuroimage.2005.10.049 10.1002/hbm.1058 10.1016/j.neuroimage.2005.09.046 10.1002/jmri.10064 10.1006/nimg.2002.1040 10.1016/j.neuroimage.2008.02.003 10.1016/j.neuroimage.2007.10.026 10.1016/j.neuroimage.2005.12.013 10.1109/42.668698 |
ContentType | Journal Article |
Copyright | Copyright © 2010 Wiley‐Liss, Inc. 2010 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: 2010 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/jmri.22237 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 492 |
ExternalDocumentID | 20677282 10_1002_jmri_22237 JMRI22237 ark_67375_WNG_6DBQKXL1_R |
Genre | shortCommunication Journal Article |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4687-fe3e17c83fc2b450bd0a80ca4dd9f12095a7b60c7924d1102ea5a03f4c0b236c3 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Jul 11 11:33:38 EDT 2025 Mon Jul 21 06:05:59 EDT 2025 Thu Apr 24 23:10:27 EDT 2025 Tue Jul 01 01:41:23 EDT 2025 Wed Jan 22 16:42:08 EST 2025 Wed Oct 30 09:45:55 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2010 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4687-fe3e17c83fc2b450bd0a80ca4dd9f12095a7b60c7924d1102ea5a03f4c0b236c3 |
Notes | istex:1A245EEB06D94BD62A03B7E9731B77C7FD413CAC ark:/67375/WNG-6DBQKXL1-R ArticleID:JMRI22237 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.22237 |
PMID | 20677282 |
PQID | 748927783 |
PQPubID | 23479 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_748927783 pubmed_primary_20677282 crossref_citationtrail_10_1002_jmri_22237 crossref_primary_10_1002_jmri_22237 wiley_primary_10_1002_jmri_22237_JMRI22237 istex_primary_ark_67375_WNG_6DBQKXL1_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2010 |
PublicationDateYYYYMMDD | 2010-08-01 |
PublicationDate_xml | – month: 08 year: 2010 text: August 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J. Magn. Reson. Imaging |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Leow AD, Klunder AD, Jack CR Jr, et al. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry. Neuroimage 2006; 31: 627-640. Jovicich J, Czanner S, Han X, et al. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 2009; 46: 177-192. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825-841. Gunter JL, Shiung MM, Manduca A, Jack CR Jr. Methodological considerations for measuring rates of brain atrophy. J Magn Reson Imaging 2003; 18: 16-24. Lewis EB, Fox NC. Correction of differential intensity inhomogeneity in longitudinal MR images. Neuroimage 2004; 23: 75-83. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001; 20: 45-57. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 2002; 15: 1-25. Acosta-Cabronero J, Williams GB, Pereira JM, Pengas G, Nestor PJ. The impact of skull-stripping and radio-frequency bias correction on grey-matter segmentation for voxel-based morphometry. Neuroimage 2008; 39: 1654-1665. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002; 17: 143-155. Jovicich J, Czanner S, Greve D, et al. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 2006; 30: 436-443. Smith SM, Zhang Y, Jenkinson M, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002; 17: 479-489. Chard DT, Parker GJ, Griffin CM, Thompson AJ, Miller DH. The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology. J Magn Reson Imaging 2002; 15: 259-267. Preboske GM, Gunter JL, Ward CP, Jack CR Jr. Common MRI acquisition non-idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI. Neuroimage 2006; 30: 1196-1202. Shuter B, Yeh IB, Graham S, Au C, Wang SC. Reproducibility of brain tissue volumes in longitudinal studies: effects of changes in signal-to-noise ratio and scanner software. Neuroimage 2008; 41: 371-379. Clark KA, Woods RP, Rottenberg DA, Toga AW, Mazziotta JC. Impact of acquisition protocols and processing streams on tissue segmentation of T1 weighted MR images. Neuroimage 2006; 29: 185-202. Zheng W, Chee MW, Zagorodnov V. Improvement of brain segmentation accuracy by optimizing non-uniformity correction using N3. Neuroimage 2009; 48: 73-83. Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23: S208-S219. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998; 17: 87-97. Vovk U, Pernus F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 2007; 26: 405-421. Boyes RG, Gunter JL, Frost C, et al. Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. Neuroimage 2008; 39: 1752-1762. 2002; 17 2009; 46 1998; 17 2002; 15 2006; 30 2006; 31 2004; 23 2008; 39 2006; 29 2003; 18 2008; 41 2009; 48 2007; 26 2001; 20 e_1_2_6_20_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_18_2 e_1_2_6_9_2 e_1_2_6_19_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_2_2 e_1_2_6_10_2 e_1_2_6_11_2 e_1_2_6_21_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 |
References_xml | – reference: Vovk U, Pernus F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 2007; 26: 405-421. – reference: Acosta-Cabronero J, Williams GB, Pereira JM, Pengas G, Nestor PJ. The impact of skull-stripping and radio-frequency bias correction on grey-matter segmentation for voxel-based morphometry. Neuroimage 2008; 39: 1654-1665. – reference: Jovicich J, Czanner S, Han X, et al. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 2009; 46: 177-192. – reference: Chard DT, Parker GJ, Griffin CM, Thompson AJ, Miller DH. The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology. J Magn Reson Imaging 2002; 15: 259-267. – reference: Clark KA, Woods RP, Rottenberg DA, Toga AW, Mazziotta JC. Impact of acquisition protocols and processing streams on tissue segmentation of T1 weighted MR images. Neuroimage 2006; 29: 185-202. – reference: Boyes RG, Gunter JL, Frost C, et al. Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. Neuroimage 2008; 39: 1752-1762. – reference: Zheng W, Chee MW, Zagorodnov V. Improvement of brain segmentation accuracy by optimizing non-uniformity correction using N3. Neuroimage 2009; 48: 73-83. – reference: Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825-841. – reference: Leow AD, Klunder AD, Jack CR Jr, et al. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry. Neuroimage 2006; 31: 627-640. – reference: Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 2002; 15: 1-25. – reference: Shuter B, Yeh IB, Graham S, Au C, Wang SC. Reproducibility of brain tissue volumes in longitudinal studies: effects of changes in signal-to-noise ratio and scanner software. Neuroimage 2008; 41: 371-379. – reference: Gunter JL, Shiung MM, Manduca A, Jack CR Jr. Methodological considerations for measuring rates of brain atrophy. J Magn Reson Imaging 2003; 18: 16-24. – reference: Jovicich J, Czanner S, Greve D, et al. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 2006; 30: 436-443. – reference: Lewis EB, Fox NC. Correction of differential intensity inhomogeneity in longitudinal MR images. Neuroimage 2004; 23: 75-83. – reference: Preboske GM, Gunter JL, Ward CP, Jack CR Jr. Common MRI acquisition non-idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI. Neuroimage 2006; 30: 1196-1202. – reference: Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23: S208-S219. – reference: Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002; 17: 143-155. – reference: Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001; 20: 45-57. – reference: Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998; 17: 87-97. – reference: Smith SM, Zhang Y, Jenkinson M, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002; 17: 479-489. – volume: 26 start-page: 405 year: 2007 end-page: 421 article-title: A review of methods for correction of intensity inhomogeneity in MRI publication-title: IEEE Trans Med Imaging – volume: 31 start-page: 627 year: 2006 end-page: 640 article-title: Longitudinal stability of MRI for mapping brain change using tensor‐based morphometry publication-title: Neuroimage – volume: 30 start-page: 1196 year: 2006 end-page: 1202 article-title: Common MRI acquisition non‐idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI publication-title: Neuroimage – volume: 15 start-page: 259 year: 2002 end-page: 267 article-title: The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM‐based segmentation methodology publication-title: J Magn Reson Imaging – volume: 23 start-page: S208 year: 2004 end-page: S219 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – volume: 30 start-page: 436 year: 2006 end-page: 443 article-title: Reliability in multi‐site structural MRI studies: effects of gradient non‐linearity correction on phantom and human data publication-title: Neuroimage – volume: 41 start-page: 371 year: 2008 end-page: 379 article-title: Reproducibility of brain tissue volumes in longitudinal studies: effects of changes in signal‐to‐noise ratio and scanner software publication-title: Neuroimage – volume: 20 start-page: 45 year: 2001 end-page: 57 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm publication-title: IEEE Trans Med Imaging – volume: 15 start-page: 1 year: 2002 end-page: 25 article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples publication-title: Hum Brain Mapp – volume: 46 start-page: 177 year: 2009 end-page: 192 article-title: MRI‐derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths publication-title: Neuroimage – volume: 39 start-page: 1654 year: 2008 end-page: 1665 article-title: The impact of skull‐stripping and radio‐frequency bias correction on grey‐matter segmentation for voxel‐based morphometry publication-title: Neuroimage – volume: 23 start-page: 75 year: 2004 end-page: 83 article-title: Correction of differential intensity inhomogeneity in longitudinal MR images publication-title: Neuroimage – volume: 17 start-page: 479 year: 2002 end-page: 489 article-title: Accurate, robust, and automated longitudinal and cross‐sectional brain change analysis publication-title: Neuroimage – volume: 17 start-page: 87 year: 1998 end-page: 97 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans Med Imaging – volume: 18 start-page: 16 year: 2003 end-page: 24 article-title: Methodological considerations for measuring rates of brain atrophy publication-title: J Magn Reson Imaging – volume: 39 start-page: 1752 year: 2008 end-page: 1762 article-title: Intensity non‐uniformity correction using N3 on 3‐T scanners with multichannel phased array coils publication-title: Neuroimage – volume: 48 start-page: 73 year: 2009 end-page: 83 article-title: Improvement of brain segmentation accuracy by optimizing non‐uniformity correction using N3 publication-title: Neuroimage – volume: 17 start-page: 143 year: 2002 end-page: 155 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp – volume: 29 start-page: 185 year: 2006 end-page: 202 article-title: Impact of acquisition protocols and processing streams on tissue segmentation of T1 weighted MR images publication-title: Neuroimage – volume: 17 start-page: 825 year: 2002 end-page: 841 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – ident: e_1_2_6_12_2 doi: 10.1016/j.neuroimage.2005.07.035 – ident: e_1_2_6_20_2 doi: 10.1109/42.906424 – ident: e_1_2_6_18_2 doi: 10.1002/hbm.10062 – ident: e_1_2_6_15_2 doi: 10.1002/jmri.10325 – ident: e_1_2_6_3_2 doi: 10.1016/j.neuroimage.2009.02.010 – ident: e_1_2_6_19_2 doi: 10.1006/nimg.2002.1132 – ident: e_1_2_6_7_2 doi: 10.1109/TMI.2006.891486 – ident: e_1_2_6_17_2 doi: 10.1016/j.neuroimage.2004.07.051 – ident: e_1_2_6_10_2 doi: 10.1016/j.neuroimage.2007.10.051 – ident: e_1_2_6_13_2 doi: 10.1016/j.neuroimage.2009.06.039 – ident: e_1_2_6_14_2 doi: 10.1016/j.neuroimage.2004.04.030 – ident: e_1_2_6_5_2 doi: 10.1016/j.neuroimage.2005.10.049 – ident: e_1_2_6_21_2 doi: 10.1002/hbm.1058 – ident: e_1_2_6_2_2 doi: 10.1016/j.neuroimage.2005.09.046 – ident: e_1_2_6_11_2 doi: 10.1002/jmri.10064 – ident: e_1_2_6_16_2 doi: 10.1006/nimg.2002.1040 – ident: e_1_2_6_6_2 doi: 10.1016/j.neuroimage.2008.02.003 – ident: e_1_2_6_9_2 doi: 10.1016/j.neuroimage.2007.10.026 – ident: e_1_2_6_4_2 doi: 10.1016/j.neuroimage.2005.12.013 – ident: e_1_2_6_8_2 doi: 10.1109/42.668698 |
SSID | ssj0009945 |
Score | 2.0800207 |
Snippet | Purpose:
To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two‐year) changes in global and... To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two-year) changes in global and regional... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 489 |
SubjectTerms | Adult Aged Aged, 80 and over Atrophy - pathology Brain - pathology Brain Mapping brain volume Female gradient non-linearity Humans Image Processing, Computer-Assisted - methods intensity non-uniformity Longitudinal Studies longitudinal study Magnetic Resonance Imaging - methods Male Middle Aged SIENA Software |
Title | Effects of gradient non-linearity correction and intensity non-uniformity correction in longitudinal studies using structural image evaluation using normalization of atrophy (SIENA) |
URI | https://api.istex.fr/ark:/67375/WNG-6DBQKXL1-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22237 https://www.ncbi.nlm.nih.gov/pubmed/20677282 https://www.proquest.com/docview/748927783 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UFsQX75fRKgFFrDDbuWcGfKna2lZ3wdXivpSQZDJl7e5s2QsUn_wJ_h3_jr_Ec5LZWVqKoG8Dc2YmmZwkX5LvfAfgOYLo0uDE6-vIcD-JTOgXmVJ-WQWKkqYV0gYKd3vZ_lFyOEgHa_B6GQvj9CHaDTfqGXa8pg4u1Wx7JRr6bTwddmh2o1ByImsRIuqvtKOKwmYoRvwQ-2Ee8FabNNpePXphNtqgH3t-FdS8iFzt1LN3E46XhXaMk9POYq46-vslPcf_rdUtuNFgUrbjnOg2rJn6DlzrNqfud-GXkziesUnFTqaWIzZn9aT-_eMnfVBS_jumKc2HDZJgsi7Z0FHj8YYzXNQUAja-ZDms2WhCGZMWJWXnYjPHamTExj9hTtuWdEHYcIzjHltJkzcWNSHuURNKSsWjnX10HPby88Fub2frHhzt7X55u-83KR98nWQ43FUmNiHXeVzpSCVpoMpA5oGWSVkWFYX5ppKrLNAcl40lIpfIyFQGcZVodK040_F9WMdqmYfAYlmphCP8KqIwqUKTS1zrGo6PhLKIjfZga9n0Qjd66JSWYyScknMkqC2EbQsPnrW2Z04F5EqrF9aDWhM5PSXeHE_F1957kb178-nD4GMo-h6wpYsJ7M10RCNrM1nMBGkBRZznsQcPnOu1LyOdfY4LZA9eWQf6S0HEYbd_YK8e_YvxY7juuBFEb9yEdWxk8wQh11w9tV3rD8pJLjk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk4AX7pdwtQRCDCldEidx8jhgo93aSpRN65tlO85U1qaoFwntaT9hf2d_h1_COXaWatOEBG-VcpIm8bH92fnO9xHyDkB0YWDi9XVkuB9HJvTzVCm_KAOFpmm5tIXCvX7aPoh3h8mw5uZgLYzTh2g23LBn2PEaOzhuSG-uVEN_TGajFk5v_CZZR0tvu6IarNSj8tx6FAOCYH6YBbxRJ402V-demo_W8dX-ug5sXsaudvLZueccVudWsxA5J8et5UK19MkVRcf_fq775G4NS-mWy6MH5IapHpJbvfrD-yNy7lSO53Ra0qOZpYktaDWtfp-e4T9KtMCjGp0-bJ0ElVVBR44dDwdc4LLCKrDJlchRRcdTNE1aFmjQReeO2EiRkH9EnbwtSoPQ0QSGPrpSJ68jKgTd47qaFG8PN_chd-iH753t_tbGY3Kws73_ue3Xrg--jlMY8UrDTMh1xkodqTgJVBHILNAyLoq8xErfRHKVBprDyrEA8BIZmciAlbGG7GKpZk_IGjyWeUYok6WKOSCwPArjMjSZhOWu4XBKKHNmtEc2Ltpe6FoSHZ05xsKJOUcC20LYtvDI2yb2pxMCuTbqvU2hJkTOjpE6xxNx2P8q0i-fvu0Nu6EYeIRe5JiADo1faWRlpsu5QDmgiPOMeeSpy73mYii1z2GN7JGPNoP-ciNitzfo2F_P_yX4Dbnd3u91RbfT33tB7jiqBLIdX5I1aHDzChDYQr22_ewPdH4yVA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NTZp4GePvAgMsgRBDSpfESZxIexl0Zd3WCgoTfUGW4zhTWZtO_SMhnvYR-Dp8HT4JPjtNtWlCgrdIuSR27s7-2b77HcBLDaJzpSdeVwaKuWGgfDeNs8zNCy_DommpMInCnW58eBoe9aP-CuwtcmEsP0S94YaeYcZrdPCLvNhdkoZ-G00GDZzd2C1YC2MvQZtu9pbkUWlqShRrAEFdP_FYTU4a7C6fvTIdreGf_X4T1rwKXc3c07oDXxettiEn5435LGvIH9cIHf-3W5uwUYFSsm-t6C6sqPIerHeqY_f78MtyHE_JuCBnExMkNiPluPx9-RM_KLAAHpFY58NkSRBR5mRgY-P1DSs4LzEHbHRNclCS4RhLJs1zLM9FpjaskWA4_hmx5LZIDEIGIz3wkSU3eSVRIuQeVrmk2Dzc2teWQ15_ah9093cewGnr4PO7Q7eq-eDKMNbjXaGo8plMaCGDLIy8LPdE4kkR5nlaYJ5vJFgWe5LpdWOuoUugRCQ8WoRS2xaNJX0Iq7pbagsIFUUWMo2_0sAPC18lQi92FdOP-CKlSjqws1A9lxUhOtblGHJL5Rxw1AU3unDgRS17YWlAbpR6ZSyoFhGTcwycYxH_0n3P4-bbj8f9E5_3HCALE-PanfGMRpRqPJ9yJAMKGEuoA4-s6dUvQ6J9plfIDrwxBvSXhvCjTq9trh7_i_BzWP_QbPGTdvf4Cdy2cRIY6rgNq1rf6qmGX7PsmfGyP-wLMQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+gradient+non%E2%80%90linearity+correction+and+intensity+non%E2%80%90uniformity+correction+in+longitudinal+studies+using+structural+image+evaluation+using+normalization+of+atrophy+%28SIENA%29&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Takao%2C+Hidemasa&rft.au=Abe%2C+Osamu&rft.au=Hayashi%2C+Naoto&rft.au=Kabasawa%2C+Hiroyuki&rft.date=2010-08-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=32&rft.issue=2&rft.spage=489&rft.epage=492&rft_id=info:doi/10.1002%2Fjmri.22237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmri_22237 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |