Effects of gradient non-linearity correction and intensity non-uniformity correction in longitudinal studies using structural image evaluation using normalization of atrophy (SIENA)

Purpose: To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two‐year) changes in global and regional brain volumes. Materials and Methods: A total of 208 subjects (70 females and 138 males, age range = 38.1–83.0 years) were included in...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 32; no. 2; pp. 489 - 492
Main Authors Takao, Hidemasa, Abe, Osamu, Hayashi, Naoto, Kabasawa, Hiroyuki, Ohtomo, Kuni
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2010
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.22237

Cover

Loading…
Abstract Purpose: To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two‐year) changes in global and regional brain volumes. Materials and Methods: A total of 208 subjects (70 females and 138 males, age range = 38.1–83.0 years) were included in this study. Each subject was scanned twice, at an interval of approximately two years (range = 1.5–2.3 years). Three‐dimensional fast spoiled‐gradient recalled acquisition in the steady state (3D‐FSPGR) images corrected for gradient nonlinearity and/or intensity nonuniformity were compared with uncorrected 3D‐FSPGR images with use of structural image evaluation using normalization of atrophy 2.6 (SIENA). Results: The mean absolute deviations of percentage brain volume change (PBVC) values in the gradient nonlinearity ± intensity nonuniformity corrected images were significantly less than that in the uncorrected images, and the difference in the mean absolute deviation of PBVC was the most significant between the uncorrected images and the images corrected for both gradient nonlinearity and intensity nonuniformity. Voxel‐wise comparisons showed large significant differences between the uncorrected images and the corrected images. Conclusion: Correction for gradient nonlinearity and intensity nonuniformity reduces the variance of measured longitudinal changes in brain volumes and will improve accuracy for detecting subtle brain changes. J. Magn. Reson. Imaging 2010;32:489–492. © 2010 Wiley‐Liss, Inc.
AbstractList To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two-year) changes in global and regional brain volumes.PURPOSETo evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two-year) changes in global and regional brain volumes.A total of 208 subjects (70 females and 138 males, age range = 38.1-83.0 years) were included in this study. Each subject was scanned twice, at an interval of approximately two years (range = 1.5-2.3 years). Three-dimensional fast spoiled-gradient recalled acquisition in the steady state (3D-FSPGR) images corrected for gradient nonlinearity and/or intensity nonuniformity were compared with uncorrected 3D-FSPGR images with use of structural image evaluation using normalization of atrophy 2.6 (SIENA).MATERIALS AND METHODSA total of 208 subjects (70 females and 138 males, age range = 38.1-83.0 years) were included in this study. Each subject was scanned twice, at an interval of approximately two years (range = 1.5-2.3 years). Three-dimensional fast spoiled-gradient recalled acquisition in the steady state (3D-FSPGR) images corrected for gradient nonlinearity and/or intensity nonuniformity were compared with uncorrected 3D-FSPGR images with use of structural image evaluation using normalization of atrophy 2.6 (SIENA).The mean absolute deviations of percentage brain volume change (PBVC) values in the gradient nonlinearity +/- intensity nonuniformity corrected images were significantly less than that in the uncorrected images, and the difference in the mean absolute deviation of PBVC was the most significant between the uncorrected images and the images corrected for both gradient nonlinearity and intensity nonuniformity. Voxel-wise comparisons showed large significant differences between the uncorrected images and the corrected images.RESULTSThe mean absolute deviations of percentage brain volume change (PBVC) values in the gradient nonlinearity +/- intensity nonuniformity corrected images were significantly less than that in the uncorrected images, and the difference in the mean absolute deviation of PBVC was the most significant between the uncorrected images and the images corrected for both gradient nonlinearity and intensity nonuniformity. Voxel-wise comparisons showed large significant differences between the uncorrected images and the corrected images.Correction for gradient nonlinearity and intensity nonuniformity reduces the variance of measured longitudinal changes in brain volumes and will improve accuracy for detecting subtle brain changes.CONCLUSIONCorrection for gradient nonlinearity and intensity nonuniformity reduces the variance of measured longitudinal changes in brain volumes and will improve accuracy for detecting subtle brain changes.
Purpose: To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two‐year) changes in global and regional brain volumes. Materials and Methods: A total of 208 subjects (70 females and 138 males, age range = 38.1–83.0 years) were included in this study. Each subject was scanned twice, at an interval of approximately two years (range = 1.5–2.3 years). Three‐dimensional fast spoiled‐gradient recalled acquisition in the steady state (3D‐FSPGR) images corrected for gradient nonlinearity and/or intensity nonuniformity were compared with uncorrected 3D‐FSPGR images with use of structural image evaluation using normalization of atrophy 2.6 (SIENA). Results: The mean absolute deviations of percentage brain volume change (PBVC) values in the gradient nonlinearity ± intensity nonuniformity corrected images were significantly less than that in the uncorrected images, and the difference in the mean absolute deviation of PBVC was the most significant between the uncorrected images and the images corrected for both gradient nonlinearity and intensity nonuniformity. Voxel‐wise comparisons showed large significant differences between the uncorrected images and the corrected images. Conclusion: Correction for gradient nonlinearity and intensity nonuniformity reduces the variance of measured longitudinal changes in brain volumes and will improve accuracy for detecting subtle brain changes. J. Magn. Reson. Imaging 2010;32:489–492. © 2010 Wiley‐Liss, Inc.
To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two-year) changes in global and regional brain volumes. A total of 208 subjects (70 females and 138 males, age range = 38.1-83.0 years) were included in this study. Each subject was scanned twice, at an interval of approximately two years (range = 1.5-2.3 years). Three-dimensional fast spoiled-gradient recalled acquisition in the steady state (3D-FSPGR) images corrected for gradient nonlinearity and/or intensity nonuniformity were compared with uncorrected 3D-FSPGR images with use of structural image evaluation using normalization of atrophy 2.6 (SIENA). The mean absolute deviations of percentage brain volume change (PBVC) values in the gradient nonlinearity +/- intensity nonuniformity corrected images were significantly less than that in the uncorrected images, and the difference in the mean absolute deviation of PBVC was the most significant between the uncorrected images and the images corrected for both gradient nonlinearity and intensity nonuniformity. Voxel-wise comparisons showed large significant differences between the uncorrected images and the corrected images. Correction for gradient nonlinearity and intensity nonuniformity reduces the variance of measured longitudinal changes in brain volumes and will improve accuracy for detecting subtle brain changes.
Author Takao, Hidemasa
Hayashi, Naoto
Ohtomo, Kuni
Kabasawa, Hiroyuki
Abe, Osamu
Author_xml – sequence: 1
  givenname: Hidemasa
  surname: Takao
  fullname: Takao, Hidemasa
  email: takaoh-tky@umin.ac.jp
  organization: Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
– sequence: 2
  givenname: Osamu
  surname: Abe
  fullname: Abe, Osamu
  organization: Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
– sequence: 3
  givenname: Naoto
  surname: Hayashi
  fullname: Hayashi, Naoto
  organization: Department of Computational Diagnostic Radiology and Preventive Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
– sequence: 4
  givenname: Hiroyuki
  surname: Kabasawa
  fullname: Kabasawa, Hiroyuki
  organization: Japan Applied Science Laboratory, GE Healthcare Japan Corporation, Tokyo, Japan
– sequence: 5
  givenname: Kuni
  surname: Ohtomo
  fullname: Ohtomo, Kuni
  organization: Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20677282$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URH9gwwMg76BIKf5J4mRZ2qEMDEUUEOwsj2MPLo492A4wvBfvhzPpsKgQK1_7fufoXp9DsOe8UwA8xOgEI0SeXffBnBBCKLsDDnBFSEGqpt7LNapogRvE9sFhjNcIobYtq3tgn6CaMdKQA_B7prWSKUKv4SqIziiXYPYvrHFKBJM2UPoQMmK8g8J10LikXBwbIzY4o33ob3HGQevdyqShM05YGMdCRThE41b5FgaZhpAbphcrBdV3YQexVU6Ey5bCml_TWx5NpODXXzbwyfv57PL0-D64q4WN6sHNeQQ-vph9OHtZLN5ezM9OF4Us64YVWlGFmWyolmRZVmjZIdEgKcquazUmqK0EW9ZIspaUHcaIKFEJRHUp0ZLQWtIj8HjyXQf_bVAx8d5EqawVTvkhclY2LWGsoZl8dEMOy151fB3yamHDdz-dATQBMvgYg9JcmrTdLwVhLMeIj2HyMUy-DTNLnt6S7Fz_CeMJ_mGs2vyH5K_eXM13mmLSmJjUz78aEb7ymlFW8U-XF7w-f_7u9ecF5lf0DyKQxGQ
CitedBy_id crossref_primary_10_1371_journal_pone_0239021
crossref_primary_10_3389_fnins_2023_1196087
crossref_primary_10_1002_jmri_24038
crossref_primary_10_1002_jmri_24225
crossref_primary_10_1002_jmri_27568
crossref_primary_10_1007_s00234_010_0715_4
crossref_primary_10_1016_j_neurad_2021_11_007
crossref_primary_10_1016_j_neuroimage_2014_01_058
crossref_primary_10_1007_s00415_012_6762_5
crossref_primary_10_1016_j_pscychresns_2016_04_006
crossref_primary_10_1002_acn3_51251
crossref_primary_10_1002_jmri_27929
crossref_primary_10_1016_j_neuroimage_2018_09_062
crossref_primary_10_1002_jmri_22636
crossref_primary_10_1016_j_mri_2015_03_010
crossref_primary_10_1177_1352458517715811
crossref_primary_10_1016_j_neuroimage_2013_08_046
crossref_primary_10_3233_JAD_210596
crossref_primary_10_1016_j_mri_2021_06_020
crossref_primary_10_1177_0271678X16647396
Cites_doi 10.1016/j.neuroimage.2005.07.035
10.1109/42.906424
10.1002/hbm.10062
10.1002/jmri.10325
10.1016/j.neuroimage.2009.02.010
10.1006/nimg.2002.1132
10.1109/TMI.2006.891486
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2007.10.051
10.1016/j.neuroimage.2009.06.039
10.1016/j.neuroimage.2004.04.030
10.1016/j.neuroimage.2005.10.049
10.1002/hbm.1058
10.1016/j.neuroimage.2005.09.046
10.1002/jmri.10064
10.1006/nimg.2002.1040
10.1016/j.neuroimage.2008.02.003
10.1016/j.neuroimage.2007.10.026
10.1016/j.neuroimage.2005.12.013
10.1109/42.668698
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: 2010 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/jmri.22237
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 492
ExternalDocumentID 20677282
10_1002_jmri_22237
JMRI22237
ark_67375_WNG_6DBQKXL1_R
Genre shortCommunication
Journal Article
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4687-fe3e17c83fc2b450bd0a80ca4dd9f12095a7b60c7924d1102ea5a03f4c0b236c3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 11:33:38 EDT 2025
Mon Jul 21 06:05:59 EDT 2025
Thu Apr 24 23:10:27 EDT 2025
Tue Jul 01 01:41:23 EDT 2025
Wed Jan 22 16:42:08 EST 2025
Wed Oct 30 09:45:55 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4687-fe3e17c83fc2b450bd0a80ca4dd9f12095a7b60c7924d1102ea5a03f4c0b236c3
Notes istex:1A245EEB06D94BD62A03B7E9731B77C7FD413CAC
ark:/67375/WNG-6DBQKXL1-R
ArticleID:JMRI22237
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.22237
PMID 20677282
PQID 748927783
PQPubID 23479
PageCount 4
ParticipantIDs proquest_miscellaneous_748927783
pubmed_primary_20677282
crossref_citationtrail_10_1002_jmri_22237
crossref_primary_10_1002_jmri_22237
wiley_primary_10_1002_jmri_22237_JMRI22237
istex_primary_ark_67375_WNG_6DBQKXL1_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2010
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: August 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Leow AD, Klunder AD, Jack CR Jr, et al. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry. Neuroimage 2006; 31: 627-640.
Jovicich J, Czanner S, Han X, et al. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 2009; 46: 177-192.
Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825-841.
Gunter JL, Shiung MM, Manduca A, Jack CR Jr. Methodological considerations for measuring rates of brain atrophy. J Magn Reson Imaging 2003; 18: 16-24.
Lewis EB, Fox NC. Correction of differential intensity inhomogeneity in longitudinal MR images. Neuroimage 2004; 23: 75-83.
Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001; 20: 45-57.
Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 2002; 15: 1-25.
Acosta-Cabronero J, Williams GB, Pereira JM, Pengas G, Nestor PJ. The impact of skull-stripping and radio-frequency bias correction on grey-matter segmentation for voxel-based morphometry. Neuroimage 2008; 39: 1654-1665.
Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002; 17: 143-155.
Jovicich J, Czanner S, Greve D, et al. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 2006; 30: 436-443.
Smith SM, Zhang Y, Jenkinson M, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002; 17: 479-489.
Chard DT, Parker GJ, Griffin CM, Thompson AJ, Miller DH. The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology. J Magn Reson Imaging 2002; 15: 259-267.
Preboske GM, Gunter JL, Ward CP, Jack CR Jr. Common MRI acquisition non-idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI. Neuroimage 2006; 30: 1196-1202.
Shuter B, Yeh IB, Graham S, Au C, Wang SC. Reproducibility of brain tissue volumes in longitudinal studies: effects of changes in signal-to-noise ratio and scanner software. Neuroimage 2008; 41: 371-379.
Clark KA, Woods RP, Rottenberg DA, Toga AW, Mazziotta JC. Impact of acquisition protocols and processing streams on tissue segmentation of T1 weighted MR images. Neuroimage 2006; 29: 185-202.
Zheng W, Chee MW, Zagorodnov V. Improvement of brain segmentation accuracy by optimizing non-uniformity correction using N3. Neuroimage 2009; 48: 73-83.
Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23: S208-S219.
Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998; 17: 87-97.
Vovk U, Pernus F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 2007; 26: 405-421.
Boyes RG, Gunter JL, Frost C, et al. Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. Neuroimage 2008; 39: 1752-1762.
2002; 17
2009; 46
1998; 17
2002; 15
2006; 30
2006; 31
2004; 23
2008; 39
2006; 29
2003; 18
2008; 41
2009; 48
2007; 26
2001; 20
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_18_2
e_1_2_6_9_2
e_1_2_6_19_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_2_2
e_1_2_6_10_2
e_1_2_6_11_2
e_1_2_6_21_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
References_xml – reference: Vovk U, Pernus F, Likar B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans Med Imaging 2007; 26: 405-421.
– reference: Acosta-Cabronero J, Williams GB, Pereira JM, Pengas G, Nestor PJ. The impact of skull-stripping and radio-frequency bias correction on grey-matter segmentation for voxel-based morphometry. Neuroimage 2008; 39: 1654-1665.
– reference: Jovicich J, Czanner S, Han X, et al. MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage 2009; 46: 177-192.
– reference: Chard DT, Parker GJ, Griffin CM, Thompson AJ, Miller DH. The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM-based segmentation methodology. J Magn Reson Imaging 2002; 15: 259-267.
– reference: Clark KA, Woods RP, Rottenberg DA, Toga AW, Mazziotta JC. Impact of acquisition protocols and processing streams on tissue segmentation of T1 weighted MR images. Neuroimage 2006; 29: 185-202.
– reference: Boyes RG, Gunter JL, Frost C, et al. Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. Neuroimage 2008; 39: 1752-1762.
– reference: Zheng W, Chee MW, Zagorodnov V. Improvement of brain segmentation accuracy by optimizing non-uniformity correction using N3. Neuroimage 2009; 48: 73-83.
– reference: Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825-841.
– reference: Leow AD, Klunder AD, Jack CR Jr, et al. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry. Neuroimage 2006; 31: 627-640.
– reference: Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 2002; 15: 1-25.
– reference: Shuter B, Yeh IB, Graham S, Au C, Wang SC. Reproducibility of brain tissue volumes in longitudinal studies: effects of changes in signal-to-noise ratio and scanner software. Neuroimage 2008; 41: 371-379.
– reference: Gunter JL, Shiung MM, Manduca A, Jack CR Jr. Methodological considerations for measuring rates of brain atrophy. J Magn Reson Imaging 2003; 18: 16-24.
– reference: Jovicich J, Czanner S, Greve D, et al. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 2006; 30: 436-443.
– reference: Lewis EB, Fox NC. Correction of differential intensity inhomogeneity in longitudinal MR images. Neuroimage 2004; 23: 75-83.
– reference: Preboske GM, Gunter JL, Ward CP, Jack CR Jr. Common MRI acquisition non-idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI. Neuroimage 2006; 30: 1196-1202.
– reference: Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23: S208-S219.
– reference: Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002; 17: 143-155.
– reference: Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001; 20: 45-57.
– reference: Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998; 17: 87-97.
– reference: Smith SM, Zhang Y, Jenkinson M, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 2002; 17: 479-489.
– volume: 26
  start-page: 405
  year: 2007
  end-page: 421
  article-title: A review of methods for correction of intensity inhomogeneity in MRI
  publication-title: IEEE Trans Med Imaging
– volume: 31
  start-page: 627
  year: 2006
  end-page: 640
  article-title: Longitudinal stability of MRI for mapping brain change using tensor‐based morphometry
  publication-title: Neuroimage
– volume: 30
  start-page: 1196
  year: 2006
  end-page: 1202
  article-title: Common MRI acquisition non‐idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI
  publication-title: Neuroimage
– volume: 15
  start-page: 259
  year: 2002
  end-page: 267
  article-title: The reproducibility and sensitivity of brain tissue volume measurements derived from an SPM‐based segmentation methodology
  publication-title: J Magn Reson Imaging
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– volume: 30
  start-page: 436
  year: 2006
  end-page: 443
  article-title: Reliability in multi‐site structural MRI studies: effects of gradient non‐linearity correction on phantom and human data
  publication-title: Neuroimage
– volume: 41
  start-page: 371
  year: 2008
  end-page: 379
  article-title: Reproducibility of brain tissue volumes in longitudinal studies: effects of changes in signal‐to‐noise ratio and scanner software
  publication-title: Neuroimage
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm
  publication-title: IEEE Trans Med Imaging
– volume: 15
  start-page: 1
  year: 2002
  end-page: 25
  article-title: Nonparametric permutation tests for functional neuroimaging: a primer with examples
  publication-title: Hum Brain Mapp
– volume: 46
  start-page: 177
  year: 2009
  end-page: 192
  article-title: MRI‐derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths
  publication-title: Neuroimage
– volume: 39
  start-page: 1654
  year: 2008
  end-page: 1665
  article-title: The impact of skull‐stripping and radio‐frequency bias correction on grey‐matter segmentation for voxel‐based morphometry
  publication-title: Neuroimage
– volume: 23
  start-page: 75
  year: 2004
  end-page: 83
  article-title: Correction of differential intensity inhomogeneity in longitudinal MR images
  publication-title: Neuroimage
– volume: 17
  start-page: 479
  year: 2002
  end-page: 489
  article-title: Accurate, robust, and automated longitudinal and cross‐sectional brain change analysis
  publication-title: Neuroimage
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans Med Imaging
– volume: 18
  start-page: 16
  year: 2003
  end-page: 24
  article-title: Methodological considerations for measuring rates of brain atrophy
  publication-title: J Magn Reson Imaging
– volume: 39
  start-page: 1752
  year: 2008
  end-page: 1762
  article-title: Intensity non‐uniformity correction using N3 on 3‐T scanners with multichannel phased array coils
  publication-title: Neuroimage
– volume: 48
  start-page: 73
  year: 2009
  end-page: 83
  article-title: Improvement of brain segmentation accuracy by optimizing non‐uniformity correction using N3
  publication-title: Neuroimage
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
– volume: 29
  start-page: 185
  year: 2006
  end-page: 202
  article-title: Impact of acquisition protocols and processing streams on tissue segmentation of T1 weighted MR images
  publication-title: Neuroimage
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– ident: e_1_2_6_12_2
  doi: 10.1016/j.neuroimage.2005.07.035
– ident: e_1_2_6_20_2
  doi: 10.1109/42.906424
– ident: e_1_2_6_18_2
  doi: 10.1002/hbm.10062
– ident: e_1_2_6_15_2
  doi: 10.1002/jmri.10325
– ident: e_1_2_6_3_2
  doi: 10.1016/j.neuroimage.2009.02.010
– ident: e_1_2_6_19_2
  doi: 10.1006/nimg.2002.1132
– ident: e_1_2_6_7_2
  doi: 10.1109/TMI.2006.891486
– ident: e_1_2_6_17_2
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: e_1_2_6_10_2
  doi: 10.1016/j.neuroimage.2007.10.051
– ident: e_1_2_6_13_2
  doi: 10.1016/j.neuroimage.2009.06.039
– ident: e_1_2_6_14_2
  doi: 10.1016/j.neuroimage.2004.04.030
– ident: e_1_2_6_5_2
  doi: 10.1016/j.neuroimage.2005.10.049
– ident: e_1_2_6_21_2
  doi: 10.1002/hbm.1058
– ident: e_1_2_6_2_2
  doi: 10.1016/j.neuroimage.2005.09.046
– ident: e_1_2_6_11_2
  doi: 10.1002/jmri.10064
– ident: e_1_2_6_16_2
  doi: 10.1006/nimg.2002.1040
– ident: e_1_2_6_6_2
  doi: 10.1016/j.neuroimage.2008.02.003
– ident: e_1_2_6_9_2
  doi: 10.1016/j.neuroimage.2007.10.026
– ident: e_1_2_6_4_2
  doi: 10.1016/j.neuroimage.2005.12.013
– ident: e_1_2_6_8_2
  doi: 10.1109/42.668698
SSID ssj0009945
Score 2.0800207
Snippet Purpose: To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two‐year) changes in global and...
To evaluate the effects of gradient nonlinearity correction and intensity nonuniformity correction on longitudinal (two-year) changes in global and regional...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 489
SubjectTerms Adult
Aged
Aged, 80 and over
Atrophy - pathology
Brain - pathology
Brain Mapping
brain volume
Female
gradient non-linearity
Humans
Image Processing, Computer-Assisted - methods
intensity non-uniformity
Longitudinal Studies
longitudinal study
Magnetic Resonance Imaging - methods
Male
Middle Aged
SIENA
Software
Title Effects of gradient non-linearity correction and intensity non-uniformity correction in longitudinal studies using structural image evaluation using normalization of atrophy (SIENA)
URI https://api.istex.fr/ark:/67375/WNG-6DBQKXL1-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.22237
https://www.ncbi.nlm.nih.gov/pubmed/20677282
https://www.proquest.com/docview/748927783
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UFsQX75fRKgFFrDDbuWcGfKna2lZ3wdXivpSQZDJl7e5s2QsUn_wJ_h3_jr_Ec5LZWVqKoG8Dc2YmmZwkX5LvfAfgOYLo0uDE6-vIcD-JTOgXmVJ-WQWKkqYV0gYKd3vZ_lFyOEgHa_B6GQvj9CHaDTfqGXa8pg4u1Wx7JRr6bTwddmh2o1ByImsRIuqvtKOKwmYoRvwQ-2Ee8FabNNpePXphNtqgH3t-FdS8iFzt1LN3E46XhXaMk9POYq46-vslPcf_rdUtuNFgUrbjnOg2rJn6DlzrNqfud-GXkziesUnFTqaWIzZn9aT-_eMnfVBS_jumKc2HDZJgsi7Z0FHj8YYzXNQUAja-ZDms2WhCGZMWJWXnYjPHamTExj9hTtuWdEHYcIzjHltJkzcWNSHuURNKSsWjnX10HPby88Fub2frHhzt7X55u-83KR98nWQ43FUmNiHXeVzpSCVpoMpA5oGWSVkWFYX5ppKrLNAcl40lIpfIyFQGcZVodK040_F9WMdqmYfAYlmphCP8KqIwqUKTS1zrGo6PhLKIjfZga9n0Qjd66JSWYyScknMkqC2EbQsPnrW2Z04F5EqrF9aDWhM5PSXeHE_F1957kb178-nD4GMo-h6wpYsJ7M10RCNrM1nMBGkBRZznsQcPnOu1LyOdfY4LZA9eWQf6S0HEYbd_YK8e_YvxY7juuBFEb9yEdWxk8wQh11w9tV3rD8pJLjk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgk4AX7pdwtQRCDCldEidx8jhgo93aSpRN65tlO85U1qaoFwntaT9hf2d_h1_COXaWatOEBG-VcpIm8bH92fnO9xHyDkB0YWDi9XVkuB9HJvTzVCm_KAOFpmm5tIXCvX7aPoh3h8mw5uZgLYzTh2g23LBn2PEaOzhuSG-uVEN_TGajFk5v_CZZR0tvu6IarNSj8tx6FAOCYH6YBbxRJ402V-demo_W8dX-ug5sXsaudvLZueccVudWsxA5J8et5UK19MkVRcf_fq775G4NS-mWy6MH5IapHpJbvfrD-yNy7lSO53Ra0qOZpYktaDWtfp-e4T9KtMCjGp0-bJ0ElVVBR44dDwdc4LLCKrDJlchRRcdTNE1aFmjQReeO2EiRkH9EnbwtSoPQ0QSGPrpSJ68jKgTd47qaFG8PN_chd-iH753t_tbGY3Kws73_ue3Xrg--jlMY8UrDTMh1xkodqTgJVBHILNAyLoq8xErfRHKVBprDyrEA8BIZmciAlbGG7GKpZk_IGjyWeUYok6WKOSCwPArjMjSZhOWu4XBKKHNmtEc2Ltpe6FoSHZ05xsKJOUcC20LYtvDI2yb2pxMCuTbqvU2hJkTOjpE6xxNx2P8q0i-fvu0Nu6EYeIRe5JiADo1faWRlpsu5QDmgiPOMeeSpy73mYii1z2GN7JGPNoP-ciNitzfo2F_P_yX4Dbnd3u91RbfT33tB7jiqBLIdX5I1aHDzChDYQr22_ewPdH4yVA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NTZp4GePvAgMsgRBDSpfESZxIexl0Zd3WCgoTfUGW4zhTWZtO_SMhnvYR-Dp8HT4JPjtNtWlCgrdIuSR27s7-2b77HcBLDaJzpSdeVwaKuWGgfDeNs8zNCy_DommpMInCnW58eBoe9aP-CuwtcmEsP0S94YaeYcZrdPCLvNhdkoZ-G00GDZzd2C1YC2MvQZtu9pbkUWlqShRrAEFdP_FYTU4a7C6fvTIdreGf_X4T1rwKXc3c07oDXxettiEn5435LGvIH9cIHf-3W5uwUYFSsm-t6C6sqPIerHeqY_f78MtyHE_JuCBnExMkNiPluPx9-RM_KLAAHpFY58NkSRBR5mRgY-P1DSs4LzEHbHRNclCS4RhLJs1zLM9FpjaskWA4_hmx5LZIDEIGIz3wkSU3eSVRIuQeVrmk2Dzc2teWQ15_ah9093cewGnr4PO7Q7eq-eDKMNbjXaGo8plMaCGDLIy8LPdE4kkR5nlaYJ5vJFgWe5LpdWOuoUugRCQ8WoRS2xaNJX0Iq7pbagsIFUUWMo2_0sAPC18lQi92FdOP-CKlSjqws1A9lxUhOtblGHJL5Rxw1AU3unDgRS17YWlAbpR6ZSyoFhGTcwycYxH_0n3P4-bbj8f9E5_3HCALE-PanfGMRpRqPJ9yJAMKGEuoA4-s6dUvQ6J9plfIDrwxBvSXhvCjTq9trh7_i_BzWP_QbPGTdvf4Cdy2cRIY6rgNq1rf6qmGX7PsmfGyP-wLMQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+gradient+non%E2%80%90linearity+correction+and+intensity+non%E2%80%90uniformity+correction+in+longitudinal+studies+using+structural+image+evaluation+using+normalization+of+atrophy+%28SIENA%29&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Takao%2C+Hidemasa&rft.au=Abe%2C+Osamu&rft.au=Hayashi%2C+Naoto&rft.au=Kabasawa%2C+Hiroyuki&rft.date=2010-08-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=32&rft.issue=2&rft.spage=489&rft.epage=492&rft_id=info:doi/10.1002%2Fjmri.22237&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmri_22237
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon