Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm

Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneur...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 143; no. 21; pp. 2091 - 2109
Main Authors Oller, Jorge, Gabandé-Rodríguez, Enrique, Ruiz-Rodríguez, María Jesús, Desdín-Micó, Gabriela, Aranda, Juan Francisco, Rodrigues-Diez, Raquel, Ballesteros-Martínez, Constanza, Blanco, Eva María, Roldan-Montero, Raquel, Acuña, Pedro, Forteza Gil, Alberto, Martín-López, Carlos E., Nistal, J. Francisco, Lino Cardenas, Christian L., Lindsay, Mark Evan, Martín-Ventura, José Luís, Briones, Ana M., Miguel Redondo, Juan, Mittelbrunn, María
Format Journal Article
LanguageEnglish
Published United States Lippincott Williams & Wilkins 25.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms. Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model ( ) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration. The main canonical pathways highlighted in the transcriptomic analysis in aortas from mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young mice. In vitro experiments in -silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in mice. Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders.
AbstractList Supplemental Digital Content is available in the text.
Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms. Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model ( ) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration. The main canonical pathways highlighted in the transcriptomic analysis in aortas from mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young mice. In vitro experiments in -silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in mice. Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders.
Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms.BACKGROUNDMarfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms.Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model (Fbn1c1039g/+) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; Myh11-CreERT2Tfamflox/flox mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration.METHODSCombining transcriptomics and metabolic analysis of aortas from an MFS mouse model (Fbn1c1039g/+) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; Myh11-CreERT2Tfamflox/flox mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration.The main canonical pathways highlighted in the transcriptomic analysis in aortas from Fbn1c1039g/+ mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young Fbn1c1039g/+ mice. In vitro experiments in Fbn1-silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in Fbn1c1039g/+ mice.RESULTSThe main canonical pathways highlighted in the transcriptomic analysis in aortas from Fbn1c1039g/+ mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young Fbn1c1039g/+ mice. In vitro experiments in Fbn1-silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in Fbn1c1039g/+ mice.Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders.CONCLUSIONSMitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders.
Author Aranda, Juan Francisco
Rodrigues-Diez, Raquel
Forteza Gil, Alberto
Lindsay, Mark Evan
Nistal, J. Francisco
Ruiz-Rodríguez, María Jesús
Acuña, Pedro
Gabandé-Rodríguez, Enrique
Lino Cardenas, Christian L.
Martín-López, Carlos E.
Briones, Ana M.
Roldan-Montero, Raquel
Oller, Jorge
Ballesteros-Martínez, Constanza
Martín-Ventura, José Luís
Blanco, Eva María
Desdín-Micó, Gabriela
Miguel Redondo, Juan
Mittelbrunn, María
AuthorAffiliation Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Spain (R.R-D., C.B-M., A.M.B.)
Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.)
Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.J.R-R., J.M.R.)
Massachusetts General Hospital Thoracic Aortic Center, Boston (C.L.L.C., M.E.L.)
Cardiovascular Surgery, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, Spain. (J.F.N.)
AuthorAffiliation_xml – name: Cardiovascular Surgery, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, Spain. (J.F.N.)
– name: Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.J.R-R., J.M.R.)
– name: Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Spain (R.R-D., C.B-M., A.M.B.)
– name: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.)
– name: Massachusetts General Hospital Thoracic Aortic Center, Boston (C.L.L.C., M.E.L.)
Author_xml – sequence: 1
  givenname: Jorge
  surname: Oller
  fullname: Oller, Jorge
  organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.)
– sequence: 2
  givenname: Enrique
  surname: Gabandé-Rodríguez
  fullname: Gabandé-Rodríguez, Enrique
  organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.)
– sequence: 3
  givenname: María Jesús
  surname: Ruiz-Rodríguez
  fullname: Ruiz-Rodríguez, María Jesús
  organization: Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.J.R-R., J.M.R.)
– sequence: 4
  givenname: Gabriela
  surname: Desdín-Micó
  fullname: Desdín-Micó, Gabriela
  organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.)
– sequence: 5
  givenname: Juan Francisco
  surname: Aranda
  fullname: Aranda, Juan Francisco
  organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.)
– sequence: 6
  givenname: Raquel
  surname: Rodrigues-Diez
  fullname: Rodrigues-Diez, Raquel
  organization: Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (J.O., R.R-D., R.R-M., A.M.B., J.M.R.)
– sequence: 7
  givenname: Constanza
  surname: Ballesteros-Martínez
  fullname: Ballesteros-Martínez, Constanza
  organization: Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Spain (R.R-D., C.B-M., A.M.B.)
– sequence: 8
  givenname: Eva María
  surname: Blanco
  fullname: Blanco, Eva María
  organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.)
– sequence: 9
  givenname: Raquel
  surname: Roldan-Montero
  fullname: Roldan-Montero, Raquel
  organization: Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (J.O., R.R-D., R.R-M., A.M.B., J.M.R.)
– sequence: 10
  givenname: Pedro
  surname: Acuña
  fullname: Acuña, Pedro
  organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.)
– sequence: 11
  givenname: Alberto
  surname: Forteza Gil
  fullname: Forteza Gil, Alberto
  organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.)
– sequence: 12
  givenname: Carlos E.
  surname: Martín-López
  fullname: Martín-López, Carlos E.
  organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.)
– sequence: 13
  givenname: J. Francisco
  surname: Nistal
  fullname: Nistal, J. Francisco
  organization: Cardiovascular Surgery, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, Spain. (J.F.N.)
– sequence: 14
  givenname: Christian L.
  surname: Lino Cardenas
  fullname: Lino Cardenas, Christian L.
  organization: Massachusetts General Hospital Thoracic Aortic Center, Boston (C.L.L.C., M.E.L.)
– sequence: 15
  givenname: Mark Evan
  surname: Lindsay
  fullname: Lindsay, Mark Evan
  organization: Massachusetts General Hospital Thoracic Aortic Center, Boston (C.L.L.C., M.E.L.)
– sequence: 16
  givenname: José Luís
  surname: Martín-Ventura
  fullname: Martín-Ventura, José Luís
  organization: Instituto de Investigación Sanitaria-Fundación Jimenez Diaz, Madrid, Spain (R.R-M. J.L.M-V.)
– sequence: 17
  givenname: Ana M.
  surname: Briones
  fullname: Briones, Ana M.
  organization: Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (J.O., R.R-D., R.R-M., A.M.B., J.M.R.)
– sequence: 18
  givenname: Juan
  surname: Miguel Redondo
  fullname: Miguel Redondo, Juan
  organization: Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., M.M.)
– sequence: 19
  givenname: María
  surname: Mittelbrunn
  fullname: Mittelbrunn, María
  organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33709773$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uEzEUhS1URNPCK6Bhx2aC_x1vQKOo0KBApSpdW47npjE4drFnWvr2OKRFlBUry_a539E95wQdxRQBoTcETwmR5N18cTm_WnarxcXX7rybEoqnWBCiyDM0IYLylgumj9AEY6xbxSg9RielfKtXyZR4gY4ZU1grxSbo89nPIVsHIYzB5mY1Rh-vm7RpvvghuW2KffY2NJdQbny2g0-xWYLtSzOkpkt58K7pIoz5vuxeoucbGwq8ejhP0dXHs9X8vF1efFrMu2XruJyptudSrDkFDbS3vdTYCcEVVtphqTAVrgfONjPRy5mUlnCsHWipFSNr4JIydoreH7g343oHvYNYNwjmJvudzfcmWW-e_kS_Ndfp1swqTEpZAW8fADn9GKEMZufLPgIbIY3FUIEJFZpSXKWv__b6Y_IYYBV8OAhcTqVk2Bjnh985VWsfDMFmX5l5WpmplZlDZZWg_yE8mvzPLD_M3qUwQC7fw3gH2WzBhmFrat-YYaJaiinBoq7V7p8U-wW9XKzG
CitedBy_id crossref_primary_10_1016_j_jacbts_2023_07_014
crossref_primary_10_1038_s41419_022_04679_y
crossref_primary_10_1007_s40256_024_00711_y
crossref_primary_10_1097_MS9_0000000000002932
crossref_primary_10_1016_j_lfs_2022_121159
crossref_primary_10_1038_s44161_024_00606_w
crossref_primary_10_1172_jci_insight_161729
crossref_primary_10_1097_FJC_0000000000001400
crossref_primary_10_3390_biom12010128
crossref_primary_10_1016_j_metabol_2023_155658
crossref_primary_10_1016_j_bios_2022_114747
crossref_primary_10_3390_ijms24043483
crossref_primary_10_1152_ajpcell_00074_2022
crossref_primary_10_1186_s13578_023_01080_w
crossref_primary_10_1038_s41598_022_26662_5
crossref_primary_10_7554_eLife_69310
crossref_primary_10_1016_j_arteri_2024_09_002
crossref_primary_10_1146_annurev_genom_111521_104455
crossref_primary_10_1515_med_2024_1059
crossref_primary_10_1161_CIRCRESAHA_123_323596
crossref_primary_10_1136_heartjnl_2024_324343
crossref_primary_10_1016_j_ejvs_2024_09_022
crossref_primary_10_1186_s12872_024_04077_6
crossref_primary_10_1016_j_cellsig_2023_110834
crossref_primary_10_1038_s44161_024_00599_6
crossref_primary_10_3390_ijms23010438
crossref_primary_10_1161_CIRCRESAHA_122_321005
crossref_primary_10_1161_JAHA_124_037640
crossref_primary_10_1016_j_atherosclerosis_2023_117283
crossref_primary_10_3390_ijms25126498
crossref_primary_10_3390_pharmaceutics14122760
crossref_primary_10_1021_acs_jproteome_3c00649
crossref_primary_10_1016_j_vph_2024_107279
crossref_primary_10_1186_s12979_024_00437_0
crossref_primary_10_1016_j_niox_2021_08_006
crossref_primary_10_3390_ijms241411293
crossref_primary_10_1152_ajplung_00033_2023
crossref_primary_10_1186_s13148_023_01556_z
crossref_primary_10_1093_eurheartj_ehad534
crossref_primary_10_1016_j_bbrc_2023_05_017
crossref_primary_10_1016_j_xhgg_2021_100057
crossref_primary_10_1038_s44161_024_00603_z
crossref_primary_10_1002_advs_202411559
crossref_primary_10_1007_s00018_022_04337_8
crossref_primary_10_3390_ijms25052662
crossref_primary_10_3390_biomedicines11020571
crossref_primary_10_3390_ijms241411701
crossref_primary_10_1055_a_1576_6600
crossref_primary_10_1111_cge_14211
crossref_primary_10_1016_j_freeradbiomed_2022_11_001
crossref_primary_10_1016_j_jprot_2023_104889
crossref_primary_10_3390_ijms25020901
crossref_primary_10_3390_ijms24098209
crossref_primary_10_1161_ATVBAHA_121_317346
crossref_primary_10_3390_ijms25137367
crossref_primary_10_1038_s41598_024_56438_y
crossref_primary_10_1016_j_heliyon_2023_e23696
crossref_primary_10_1126_scitranslmed_adg6298
crossref_primary_10_3390_biomedicines12122749
crossref_primary_10_1016_j_drudis_2024_104023
crossref_primary_10_1016_j_mvr_2025_104794
crossref_primary_10_3390_antiox10121939
crossref_primary_10_12997_jla_2022_11_2_111
crossref_primary_10_3389_fcvm_2022_1055862
crossref_primary_10_3390_diagnostics13132166
crossref_primary_10_1097_MD_0000000000039686
crossref_primary_10_1007_s00018_023_04793_w
crossref_primary_10_1016_j_ebiom_2022_104080
crossref_primary_10_1007_s10495_023_01865_x
crossref_primary_10_1096_fj_202202158RR
crossref_primary_10_1126_sciadv_abm7322
Cites_doi 10.1161/CIRCRESAHA.116.310022
10.1016/j.cmet.2015.11.011
10.1038/s12276-019-0286-3
10.1128/MCB.00494-15
10.1126/science.aac4854
10.1016/j.cell.2015.12.042
10.1038/nm.4266
10.1016/j.jtcvs.2009.07.075
10.1038/nm1666
10.1002/ajmg.c.31771
10.1016/j.bbadis.2019.165587
10.1073/pnas.232591499
10.1093/eurheartj/ehv575
10.1016/j.cell.2018.08.017
10.1016/j.cmet.2014.04.001
10.1038/nature14156
10.1093/cvr/cvy150
10.14814/phy2.13257
10.1038/352337a0
10.1038/s41467-018-06376-x
10.1002/(SICI)1096-8628(19960424)62:4<417::AID-AJMG15>3.0.CO;2-R
10.1016/j.cmet.2015.05.023
10.1056/NEJM200003093421001
10.1111/j.1540-8175.2010.01241.x
10.1073/pnas.0308710100
10.1016/j.jvs.2019.06.216
10.1161/CIRCULATIONAHA.107.693523
10.1161/ATVBAHA.119.312787
10.1016/j.cmet.2020.04.008
10.1038/s42255-018-0008-5
10.1161/CIRCRESAHA.114.304936
10.1126/science.aaf2693
10.1016/j.cmet.2014.01.005
10.1038/s41586-020-1998-1
10.1016/j.cell.2013.06.037
10.1084/jem.20110503
10.1161/CIRCRESAHA.118.313187
10.1016/j.cmet.2019.08.003
10.1007/978-1-59745-413-1_19
10.1371/journal.pone.0152124
10.1016/j.jacc.2018.07.052
10.1038/ncb3537
10.1161/CIRCRESAHA.113.300675
10.1038/ng0398-231
10.1056/NEJMoa055695
10.1161/CIRCULATIONAHA.111.025056
10.1038/415168a
10.1126/science.aax0860
10.1111/febs.15327
10.1093/cvr/cvy006
10.3390/ijms18081812
10.1161/CIRCRESAHA.118.312436
10.1074/jbc.M115.646984
10.1161/CIRCULATIONAHA.119.041460
10.1161/ATVBAHA.114.304412
10.1016/s0002-9149(77)80005-2
10.1126/science.1124287
ContentType Journal Article
Copyright Lippincott Williams & Wilkins
2021 The Authors. 2021
Copyright_xml – notice: Lippincott Williams & Wilkins
– notice: 2021 The Authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1161/CIRCULATIONAHA.120.051171
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
EndPage 2109
ExternalDocumentID PMC8140666
33709773
10_1161_CIRCULATIONAHA_120_051171
00003017-202105250-00007
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: T32 HL007208
GroupedDBID ---
.-D
.3C
.XZ
.Z2
01R
0R~
0ZK
18M
1J1
29B
2FS
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AASXQ
AAUEB
AAWTL
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABPXF
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACOAL
ACRKK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADCYY
ADGGA
ADHPY
AE3
AE6
AEBDS
AENEX
AFBFQ
AFCHL
AFDTB
AFEXH
AFMBP
AFNMH
AFSOK
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
ASPBG
AVWKF
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BYPQX
C45
CS3
DIK
DIWNM
DU5
E3Z
EBS
EEVPB
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
GNXGY
GQDEL
GX1
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OBH
OCB
ODMTH
OGEVE
OHH
OHYEH
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
YSK
YYM
YZZ
ZFV
ZY1
~H1
AAFWJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADSXY
ID FETCH-LOGICAL-c4687-d465b42e9e2dad690c5547079c067025cde43f85d6866a1409ce969731be46233
ISSN 0009-7322
1524-4539
IngestDate Thu Aug 21 18:27:26 EDT 2025
Fri Jul 11 00:15:01 EDT 2025
Mon Jul 21 05:55:42 EDT 2025
Tue Jul 01 04:15:52 EDT 2025
Thu Apr 24 23:01:35 EDT 2025
Fri May 16 03:57:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords aortic aneurysm
genetic diseases, inborn
muscle, smooth, vascular
glycolysis
DNA, mitochondrial
Marfan syndrome
extracellular matrix
Language English
License Circulation is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4687-d465b42e9e2dad690c5547079c067025cde43f85d6866a1409ce969731be46233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6348-1505
0000-0003-3487-8762
0000-0001-5940-1827
0000-0002-9715-8714
0000-0001-5779-9122
0000-0003-4085-0459
0000-0001-8136-4145
0000-0002-2224-2954
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8140666
PMID 33709773
PQID 2501259220
PQPubID 23479
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8140666
proquest_miscellaneous_2501259220
pubmed_primary_33709773
crossref_citationtrail_10_1161_CIRCULATIONAHA_120_051171
crossref_primary_10_1161_CIRCULATIONAHA_120_051171
wolterskluwer_health_00003017-202105250-00007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-May-25
PublicationDateYYYYMMDD 2021-05-25
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-May-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hagerstown, MD
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 2021
Publisher Lippincott Williams & Wilkins
Publisher_xml – name: Lippincott Williams & Wilkins
References e_1_3_5_27_2
e_1_3_5_25_2
e_1_3_5_23_2
e_1_3_5_21_2
e_1_3_5_44_2
e_1_3_5_46_2
e_1_3_5_48_2
e_1_3_5_29_2
e_1_3_5_40_2
e_1_3_5_42_2
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_3_2
e_1_3_5_5_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_10_2
e_1_3_5_33_2
e_1_3_5_54_2
e_1_3_5_56_2
e_1_3_5_58_2
e_1_3_5_18_2
e_1_3_5_50_2
e_1_3_5_52_2
e_1_3_5_31_2
e_1_3_5_28_2
e_1_3_5_26_2
e_1_3_5_24_2
e_1_3_5_22_2
e_1_3_5_43_2
e_1_3_5_45_2
e_1_3_5_47_2
e_1_3_5_49_2
e_1_3_5_2_2
e_1_3_5_41_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_4_2
e_1_3_5_6_2
e_1_3_5_17_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_36_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_55_2
e_1_3_5_57_2
e_1_3_5_19_2
e_1_3_5_51_2
e_1_3_5_53_2
e_1_3_5_30_2
References_xml – ident: e_1_3_5_47_2
  doi: 10.1161/CIRCRESAHA.116.310022
– ident: e_1_3_5_37_2
  doi: 10.1016/j.cmet.2015.11.011
– ident: e_1_3_5_15_2
  doi: 10.1038/s12276-019-0286-3
– ident: e_1_3_5_32_2
  doi: 10.1128/MCB.00494-15
– ident: e_1_3_5_42_2
  doi: 10.1126/science.aac4854
– ident: e_1_3_5_21_2
  doi: 10.1016/j.cell.2015.12.042
– ident: e_1_3_5_33_2
  doi: 10.1038/nm.4266
– ident: e_1_3_5_16_2
  doi: 10.1016/j.jtcvs.2009.07.075
– ident: e_1_3_5_30_2
  doi: 10.1038/nm1666
– ident: e_1_3_5_11_2
  doi: 10.1002/ajmg.c.31771
– ident: e_1_3_5_19_2
  doi: 10.1016/j.bbadis.2019.165587
– ident: e_1_3_5_27_2
  doi: 10.1073/pnas.232591499
– ident: e_1_3_5_56_2
  doi: 10.1093/eurheartj/ehv575
– ident: e_1_3_5_22_2
  doi: 10.1016/j.cell.2018.08.017
– ident: e_1_3_5_46_2
  doi: 10.1016/j.cmet.2014.04.001
– ident: e_1_3_5_38_2
  doi: 10.1038/nature14156
– ident: e_1_3_5_48_2
  doi: 10.1093/cvr/cvy150
– ident: e_1_3_5_36_2
  doi: 10.14814/phy2.13257
– ident: e_1_3_5_4_2
  doi: 10.1038/352337a0
– ident: e_1_3_5_53_2
  doi: 10.1038/s41467-018-06376-x
– ident: e_1_3_5_6_2
  doi: 10.1002/(SICI)1096-8628(19960424)62:4<417::AID-AJMG15>3.0.CO;2-R
– ident: e_1_3_5_41_2
  doi: 10.1016/j.cmet.2015.05.023
– ident: e_1_3_5_8_2
  doi: 10.1056/NEJM200003093421001
– ident: e_1_3_5_18_2
  doi: 10.1111/j.1540-8175.2010.01241.x
– ident: e_1_3_5_28_2
  doi: 10.1073/pnas.0308710100
– ident: e_1_3_5_58_2
  doi: 10.1016/j.jvs.2019.06.216
– ident: e_1_3_5_5_2
  doi: 10.1161/CIRCULATIONAHA.107.693523
– ident: e_1_3_5_14_2
  doi: 10.1161/ATVBAHA.119.312787
– ident: e_1_3_5_44_2
  doi: 10.1016/j.cmet.2020.04.008
– ident: e_1_3_5_52_2
  doi: 10.1038/s42255-018-0008-5
– ident: e_1_3_5_40_2
  doi: 10.1161/CIRCRESAHA.114.304936
– ident: e_1_3_5_45_2
  doi: 10.1126/science.aaf2693
– ident: e_1_3_5_43_2
  doi: 10.1016/j.cmet.2014.01.005
– ident: e_1_3_5_23_2
  doi: 10.1038/s41586-020-1998-1
– ident: e_1_3_5_51_2
  doi: 10.1016/j.cell.2013.06.037
– ident: e_1_3_5_31_2
  doi: 10.1084/jem.20110503
– ident: e_1_3_5_13_2
  doi: 10.1161/CIRCRESAHA.118.313187
– ident: e_1_3_5_25_2
  doi: 10.1016/j.cmet.2019.08.003
– ident: e_1_3_5_34_2
  doi: 10.1007/978-1-59745-413-1_19
– ident: e_1_3_5_35_2
  doi: 10.1371/journal.pone.0152124
– ident: e_1_3_5_57_2
  doi: 10.1016/j.jacc.2018.07.052
– ident: e_1_3_5_20_2
  doi: 10.1038/ncb3537
– ident: e_1_3_5_2_2
  doi: 10.1161/CIRCRESAHA.113.300675
– ident: e_1_3_5_24_2
  doi: 10.1038/ng0398-231
– ident: e_1_3_5_7_2
  doi: 10.1056/NEJMoa055695
– ident: e_1_3_5_9_2
  doi: 10.1161/CIRCULATIONAHA.111.025056
– ident: e_1_3_5_10_2
  doi: 10.1038/415168a
– ident: e_1_3_5_26_2
  doi: 10.1126/science.aax0860
– ident: e_1_3_5_55_2
  doi: 10.1111/febs.15327
– ident: e_1_3_5_12_2
  doi: 10.1093/cvr/cvy006
– ident: e_1_3_5_50_2
  doi: 10.3390/ijms18081812
– ident: e_1_3_5_3_2
  doi: 10.1161/CIRCRESAHA.118.312436
– ident: e_1_3_5_54_2
  doi: 10.1074/jbc.M115.646984
– ident: e_1_3_5_39_2
  doi: 10.1161/CIRCULATIONAHA.119.041460
– ident: e_1_3_5_49_2
  doi: 10.1161/ATVBAHA.114.304412
– ident: e_1_3_5_17_2
  doi: 10.1016/s0002-9149(77)80005-2
– ident: e_1_3_5_29_2
  doi: 10.1126/science.1124287
SSID ssj0006375
Score 2.6007247
Snippet Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the (fibrillin-1) gene encoding a large glycoprotein in...
Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large...
Supplemental Digital Content is available in the text.
SourceID pubmedcentral
proquest
pubmed
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2091
SubjectTerms Animals
Aortic Aneurysm - physiopathology
Disease Models, Animal
Humans
Marfan Syndrome - genetics
Marfan Syndrome - physiopathology
Mice
Mitochondria - metabolism
Original s
Title Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003017-202105250-00007
https://www.ncbi.nlm.nih.gov/pubmed/33709773
https://www.proquest.com/docview/2501259220
https://pubmed.ncbi.nlm.nih.gov/PMC8140666
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB6Ewxtbukt1wYeylOHNkW44fszRbFuYxQgJ5M7KsbGapXVKHrf3d-wE7R5KdmGbQ9cUYx5ETn4t0jr7zHULe0l6aUjfs2YJ7iQ0zdGKHfurYMnEkMlX7nuqfEn1l47k3WfiLVuvPDmppUyZdcb23ruQuUoVrIFeskv0PydaDwgU4B_nCESQMx1vJePS7XHNMvSss6WyTGwhzBGYKbi1PVUuOqdlNR0FjR03F6TAocLjTAfJZXhkWwYqwIFsL09RrX6-eRmbW1BFOMLFeQ3l4gmhJtQNvT4tUb8affd_oZPUoX2ca6W0g9tn1nrsibi7w0wl4Mjj9MKiX_xAs6_HPcjvKhPrUVRl-nkDov-K7uQzaw214Xfescxl7OClULiNbIWCo4cdDO3B1RXNXGtdNPVA2TY1U-3bNAWWUWNdiV67a0W3CzLQPoW-4f0phOKUMP0-H8y-aoHiMGWSnC-6sp9vH7KjaxbnSNdcNHFhZu9tZtsY-fouGyDIGYeM9cp9CcIN9Nz4ttsAk5gZ-1f8P_2ObnJjf8f6fv-KQtKtHNhdYN6Kmm-DfB78KBGZc_lR1GTurq9kj8tCERdZA6_hj0pL5ETke5Lwszq-sd5YCKqsdoCPSjgwe5JhMGhZgaQuwiqXVsABrxwIsZQFWWVjaAqzKAp6Q-cfRbDi2TXcQW3gMZsbUY37iURlKmvKUhY6AlTHyPQosPaO-SKXnLvt-yvqMceR1EzJk2KktkR4s-t2n5CAvcvmcWIxTD2QieABDUCr7CeU0DMDVLH1BE9Eh_eqVxsJQ52MHl1WsQmjWi5uCiUEwsRZMh9D6qxeaP-Y2Xzqp5BaDt8e3yHNZbC5jCFggIgkpdTrkmZZjPWylAB0SNCRc34BM8s1P8uyHYpQ3CtkhdkMXYl2LjQAVzJwENtosNr5UZBRO8OLOT3pJDrf2_4oclOuNfA2r-zJ5o4zhL-5I7xY
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+Tuning+of+Mitochondrial+Respiration+Leads+to+Aortic+Aneurysm&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Oller%2C+Jorge&rft.au=Gaband%C3%A9-Rodr%C3%ADguez%2C+Enrique&rft.au=Ruiz-Rodr%C3%ADguez%2C+Mar%C3%ADa+Jes%C3%BAs&rft.au=Desd%C3%ADn-Mic%C3%B3%2C+Gabriela&rft.date=2021-05-25&rft.pub=Lippincott+Williams+%26+Wilkins&rft.issn=0009-7322&rft.eissn=1524-4539&rft.volume=143&rft.issue=21&rft.spage=2091&rft.epage=2109&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.120.051171&rft_id=info%3Apmid%2F33709773&rft.externalDocID=PMC8140666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon