Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm
Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneur...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 143; no. 21; pp. 2091 - 2109 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Lippincott Williams & Wilkins
25.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the
(fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms.
Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model (
) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A;
mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration.
The main canonical pathways highlighted in the transcriptomic analysis in aortas from
mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young
mice. In vitro experiments in
-silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in
mice.
Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders. |
---|---|
AbstractList | Supplemental Digital Content is available in the text. Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms. Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model ( ) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration. The main canonical pathways highlighted in the transcriptomic analysis in aortas from mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young mice. In vitro experiments in -silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in mice. Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders. Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms.BACKGROUNDMarfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms.Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model (Fbn1c1039g/+) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; Myh11-CreERT2Tfamflox/flox mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration.METHODSCombining transcriptomics and metabolic analysis of aortas from an MFS mouse model (Fbn1c1039g/+) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; Myh11-CreERT2Tfamflox/flox mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration.The main canonical pathways highlighted in the transcriptomic analysis in aortas from Fbn1c1039g/+ mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young Fbn1c1039g/+ mice. In vitro experiments in Fbn1-silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in Fbn1c1039g/+ mice.RESULTSThe main canonical pathways highlighted in the transcriptomic analysis in aortas from Fbn1c1039g/+ mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young Fbn1c1039g/+ mice. In vitro experiments in Fbn1-silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in Fbn1c1039g/+ mice.Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders.CONCLUSIONSMitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders. |
Author | Aranda, Juan Francisco Rodrigues-Diez, Raquel Forteza Gil, Alberto Lindsay, Mark Evan Nistal, J. Francisco Ruiz-Rodríguez, María Jesús Acuña, Pedro Gabandé-Rodríguez, Enrique Lino Cardenas, Christian L. Martín-López, Carlos E. Briones, Ana M. Roldan-Montero, Raquel Oller, Jorge Ballesteros-Martínez, Constanza Martín-Ventura, José Luís Blanco, Eva María Desdín-Micó, Gabriela Miguel Redondo, Juan Mittelbrunn, María |
AuthorAffiliation | Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Spain (R.R-D., C.B-M., A.M.B.) Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.) Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.J.R-R., J.M.R.) Massachusetts General Hospital Thoracic Aortic Center, Boston (C.L.L.C., M.E.L.) Cardiovascular Surgery, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, Spain. (J.F.N.) |
AuthorAffiliation_xml | – name: Cardiovascular Surgery, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, Spain. (J.F.N.) – name: Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.J.R-R., J.M.R.) – name: Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Spain (R.R-D., C.B-M., A.M.B.) – name: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.) – name: Massachusetts General Hospital Thoracic Aortic Center, Boston (C.L.L.C., M.E.L.) |
Author_xml | – sequence: 1 givenname: Jorge surname: Oller fullname: Oller, Jorge organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.) – sequence: 2 givenname: Enrique surname: Gabandé-Rodríguez fullname: Gabandé-Rodríguez, Enrique organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.) – sequence: 3 givenname: María Jesús surname: Ruiz-Rodríguez fullname: Ruiz-Rodríguez, María Jesús organization: Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.J.R-R., J.M.R.) – sequence: 4 givenname: Gabriela surname: Desdín-Micó fullname: Desdín-Micó, Gabriela organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.) – sequence: 5 givenname: Juan Francisco surname: Aranda fullname: Aranda, Juan Francisco organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.) – sequence: 6 givenname: Raquel surname: Rodrigues-Diez fullname: Rodrigues-Diez, Raquel organization: Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (J.O., R.R-D., R.R-M., A.M.B., J.M.R.) – sequence: 7 givenname: Constanza surname: Ballesteros-Martínez fullname: Ballesteros-Martínez, Constanza organization: Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Spain (R.R-D., C.B-M., A.M.B.) – sequence: 8 givenname: Eva María surname: Blanco fullname: Blanco, Eva María organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.) – sequence: 9 givenname: Raquel surname: Roldan-Montero fullname: Roldan-Montero, Raquel organization: Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (J.O., R.R-D., R.R-M., A.M.B., J.M.R.) – sequence: 10 givenname: Pedro surname: Acuña fullname: Acuña, Pedro organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.) – sequence: 11 givenname: Alberto surname: Forteza Gil fullname: Forteza Gil, Alberto organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.) – sequence: 12 givenname: Carlos E. surname: Martín-López fullname: Martín-López, Carlos E. organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.) – sequence: 13 givenname: J. Francisco surname: Nistal fullname: Nistal, J. Francisco organization: Cardiovascular Surgery, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, Spain. (J.F.N.) – sequence: 14 givenname: Christian L. surname: Lino Cardenas fullname: Lino Cardenas, Christian L. organization: Massachusetts General Hospital Thoracic Aortic Center, Boston (C.L.L.C., M.E.L.) – sequence: 15 givenname: Mark Evan surname: Lindsay fullname: Lindsay, Mark Evan organization: Massachusetts General Hospital Thoracic Aortic Center, Boston (C.L.L.C., M.E.L.) – sequence: 16 givenname: José Luís surname: Martín-Ventura fullname: Martín-Ventura, José Luís organization: Instituto de Investigación Sanitaria-Fundación Jimenez Diaz, Madrid, Spain (R.R-M. J.L.M-V.) – sequence: 17 givenname: Ana M. surname: Briones fullname: Briones, Ana M. organization: Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (J.O., R.R-D., R.R-M., A.M.B., J.M.R.) – sequence: 18 givenname: Juan surname: Miguel Redondo fullname: Miguel Redondo, Juan organization: Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., M.M.) – sequence: 19 givenname: María surname: Mittelbrunn fullname: Mittelbrunn, María organization: Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas Universidad Autónoma de Madrid, Spain (J.O., E.G-R., G.D-M., J.F.A., E.M.B., P.A., M.M.) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33709773$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1uEzEUhS1URNPCK6Bhx2aC_x1vQKOo0KBApSpdW47npjE4drFnWvr2OKRFlBUry_a539E95wQdxRQBoTcETwmR5N18cTm_WnarxcXX7rybEoqnWBCiyDM0IYLylgumj9AEY6xbxSg9RielfKtXyZR4gY4ZU1grxSbo89nPIVsHIYzB5mY1Rh-vm7RpvvghuW2KffY2NJdQbny2g0-xWYLtSzOkpkt58K7pIoz5vuxeoucbGwq8ejhP0dXHs9X8vF1efFrMu2XruJyptudSrDkFDbS3vdTYCcEVVtphqTAVrgfONjPRy5mUlnCsHWipFSNr4JIydoreH7g343oHvYNYNwjmJvudzfcmWW-e_kS_Ndfp1swqTEpZAW8fADn9GKEMZufLPgIbIY3FUIEJFZpSXKWv__b6Y_IYYBV8OAhcTqVk2Bjnh985VWsfDMFmX5l5WpmplZlDZZWg_yE8mvzPLD_M3qUwQC7fw3gH2WzBhmFrat-YYaJaiinBoq7V7p8U-wW9XKzG |
CitedBy_id | crossref_primary_10_1016_j_jacbts_2023_07_014 crossref_primary_10_1038_s41419_022_04679_y crossref_primary_10_1007_s40256_024_00711_y crossref_primary_10_1097_MS9_0000000000002932 crossref_primary_10_1016_j_lfs_2022_121159 crossref_primary_10_1038_s44161_024_00606_w crossref_primary_10_1172_jci_insight_161729 crossref_primary_10_1097_FJC_0000000000001400 crossref_primary_10_3390_biom12010128 crossref_primary_10_1016_j_metabol_2023_155658 crossref_primary_10_1016_j_bios_2022_114747 crossref_primary_10_3390_ijms24043483 crossref_primary_10_1152_ajpcell_00074_2022 crossref_primary_10_1186_s13578_023_01080_w crossref_primary_10_1038_s41598_022_26662_5 crossref_primary_10_7554_eLife_69310 crossref_primary_10_1016_j_arteri_2024_09_002 crossref_primary_10_1146_annurev_genom_111521_104455 crossref_primary_10_1515_med_2024_1059 crossref_primary_10_1161_CIRCRESAHA_123_323596 crossref_primary_10_1136_heartjnl_2024_324343 crossref_primary_10_1016_j_ejvs_2024_09_022 crossref_primary_10_1186_s12872_024_04077_6 crossref_primary_10_1016_j_cellsig_2023_110834 crossref_primary_10_1038_s44161_024_00599_6 crossref_primary_10_3390_ijms23010438 crossref_primary_10_1161_CIRCRESAHA_122_321005 crossref_primary_10_1161_JAHA_124_037640 crossref_primary_10_1016_j_atherosclerosis_2023_117283 crossref_primary_10_3390_ijms25126498 crossref_primary_10_3390_pharmaceutics14122760 crossref_primary_10_1021_acs_jproteome_3c00649 crossref_primary_10_1016_j_vph_2024_107279 crossref_primary_10_1186_s12979_024_00437_0 crossref_primary_10_1016_j_niox_2021_08_006 crossref_primary_10_3390_ijms241411293 crossref_primary_10_1152_ajplung_00033_2023 crossref_primary_10_1186_s13148_023_01556_z crossref_primary_10_1093_eurheartj_ehad534 crossref_primary_10_1016_j_bbrc_2023_05_017 crossref_primary_10_1016_j_xhgg_2021_100057 crossref_primary_10_1038_s44161_024_00603_z crossref_primary_10_1002_advs_202411559 crossref_primary_10_1007_s00018_022_04337_8 crossref_primary_10_3390_ijms25052662 crossref_primary_10_3390_biomedicines11020571 crossref_primary_10_3390_ijms241411701 crossref_primary_10_1055_a_1576_6600 crossref_primary_10_1111_cge_14211 crossref_primary_10_1016_j_freeradbiomed_2022_11_001 crossref_primary_10_1016_j_jprot_2023_104889 crossref_primary_10_3390_ijms25020901 crossref_primary_10_3390_ijms24098209 crossref_primary_10_1161_ATVBAHA_121_317346 crossref_primary_10_3390_ijms25137367 crossref_primary_10_1038_s41598_024_56438_y crossref_primary_10_1016_j_heliyon_2023_e23696 crossref_primary_10_1126_scitranslmed_adg6298 crossref_primary_10_3390_biomedicines12122749 crossref_primary_10_1016_j_drudis_2024_104023 crossref_primary_10_1016_j_mvr_2025_104794 crossref_primary_10_3390_antiox10121939 crossref_primary_10_12997_jla_2022_11_2_111 crossref_primary_10_3389_fcvm_2022_1055862 crossref_primary_10_3390_diagnostics13132166 crossref_primary_10_1097_MD_0000000000039686 crossref_primary_10_1007_s00018_023_04793_w crossref_primary_10_1016_j_ebiom_2022_104080 crossref_primary_10_1007_s10495_023_01865_x crossref_primary_10_1096_fj_202202158RR crossref_primary_10_1126_sciadv_abm7322 |
Cites_doi | 10.1161/CIRCRESAHA.116.310022 10.1016/j.cmet.2015.11.011 10.1038/s12276-019-0286-3 10.1128/MCB.00494-15 10.1126/science.aac4854 10.1016/j.cell.2015.12.042 10.1038/nm.4266 10.1016/j.jtcvs.2009.07.075 10.1038/nm1666 10.1002/ajmg.c.31771 10.1016/j.bbadis.2019.165587 10.1073/pnas.232591499 10.1093/eurheartj/ehv575 10.1016/j.cell.2018.08.017 10.1016/j.cmet.2014.04.001 10.1038/nature14156 10.1093/cvr/cvy150 10.14814/phy2.13257 10.1038/352337a0 10.1038/s41467-018-06376-x 10.1002/(SICI)1096-8628(19960424)62:4<417::AID-AJMG15>3.0.CO;2-R 10.1016/j.cmet.2015.05.023 10.1056/NEJM200003093421001 10.1111/j.1540-8175.2010.01241.x 10.1073/pnas.0308710100 10.1016/j.jvs.2019.06.216 10.1161/CIRCULATIONAHA.107.693523 10.1161/ATVBAHA.119.312787 10.1016/j.cmet.2020.04.008 10.1038/s42255-018-0008-5 10.1161/CIRCRESAHA.114.304936 10.1126/science.aaf2693 10.1016/j.cmet.2014.01.005 10.1038/s41586-020-1998-1 10.1016/j.cell.2013.06.037 10.1084/jem.20110503 10.1161/CIRCRESAHA.118.313187 10.1016/j.cmet.2019.08.003 10.1007/978-1-59745-413-1_19 10.1371/journal.pone.0152124 10.1016/j.jacc.2018.07.052 10.1038/ncb3537 10.1161/CIRCRESAHA.113.300675 10.1038/ng0398-231 10.1056/NEJMoa055695 10.1161/CIRCULATIONAHA.111.025056 10.1038/415168a 10.1126/science.aax0860 10.1111/febs.15327 10.1093/cvr/cvy006 10.3390/ijms18081812 10.1161/CIRCRESAHA.118.312436 10.1074/jbc.M115.646984 10.1161/CIRCULATIONAHA.119.041460 10.1161/ATVBAHA.114.304412 10.1016/s0002-9149(77)80005-2 10.1126/science.1124287 |
ContentType | Journal Article |
Copyright | Lippincott Williams & Wilkins 2021 The Authors. 2021 |
Copyright_xml | – notice: Lippincott Williams & Wilkins – notice: 2021 The Authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1161/CIRCULATIONAHA.120.051171 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | 2109 |
ExternalDocumentID | PMC8140666 33709773 10_1161_CIRCULATIONAHA_120_051171 00003017-202105250-00007 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: T32 HL007208 |
GroupedDBID | --- .-D .3C .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACLDA ACOAL ACRKK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADCYY ADGGA ADHPY AE3 AE6 AEBDS AENEX AFBFQ AFCHL AFDTB AFEXH AFMBP AFNMH AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BYPQX C45 CS3 DIK DIWNM DU5 E3Z EBS EEVPB ERAAH EX3 F2K F2L F2M F2N F5P FCALG GNXGY GQDEL GX1 H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 K-A K-F K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OBH OCB ODMTH OGEVE OHH OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W2D W3M W8F WH7 WOQ WOW X3V X3W XXN XYM YFH YOC YSK YYM YZZ ZFV ZY1 ~H1 AAFWJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADSXY |
ID | FETCH-LOGICAL-c4687-d465b42e9e2dad690c5547079c067025cde43f85d6866a1409ce969731be46233 |
ISSN | 0009-7322 1524-4539 |
IngestDate | Thu Aug 21 18:27:26 EDT 2025 Fri Jul 11 00:15:01 EDT 2025 Mon Jul 21 05:55:42 EDT 2025 Tue Jul 01 04:15:52 EDT 2025 Thu Apr 24 23:01:35 EDT 2025 Fri May 16 03:57:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | aortic aneurysm genetic diseases, inborn muscle, smooth, vascular glycolysis DNA, mitochondrial Marfan syndrome extracellular matrix |
Language | English |
License | Circulation is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4687-d465b42e9e2dad690c5547079c067025cde43f85d6866a1409ce969731be46233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6348-1505 0000-0003-3487-8762 0000-0001-5940-1827 0000-0002-9715-8714 0000-0001-5779-9122 0000-0003-4085-0459 0000-0001-8136-4145 0000-0002-2224-2954 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8140666 |
PMID | 33709773 |
PQID | 2501259220 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8140666 proquest_miscellaneous_2501259220 pubmed_primary_33709773 crossref_citationtrail_10_1161_CIRCULATIONAHA_120_051171 crossref_primary_10_1161_CIRCULATIONAHA_120_051171 wolterskluwer_health_00003017-202105250-00007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-May-25 |
PublicationDateYYYYMMDD | 2021-05-25 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-May-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hagerstown, MD |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationTitleAlternate | Circulation |
PublicationYear | 2021 |
Publisher | Lippincott Williams & Wilkins |
Publisher_xml | – name: Lippincott Williams & Wilkins |
References | e_1_3_5_27_2 e_1_3_5_25_2 e_1_3_5_23_2 e_1_3_5_21_2 e_1_3_5_44_2 e_1_3_5_46_2 e_1_3_5_48_2 e_1_3_5_29_2 e_1_3_5_40_2 e_1_3_5_42_2 e_1_3_5_7_2 e_1_3_5_9_2 e_1_3_5_3_2 e_1_3_5_5_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_10_2 e_1_3_5_33_2 e_1_3_5_54_2 e_1_3_5_56_2 e_1_3_5_58_2 e_1_3_5_18_2 e_1_3_5_50_2 e_1_3_5_52_2 e_1_3_5_31_2 e_1_3_5_28_2 e_1_3_5_26_2 e_1_3_5_24_2 e_1_3_5_22_2 e_1_3_5_43_2 e_1_3_5_45_2 e_1_3_5_47_2 e_1_3_5_49_2 e_1_3_5_2_2 e_1_3_5_41_2 e_1_3_5_8_2 e_1_3_5_20_2 e_1_3_5_4_2 e_1_3_5_6_2 e_1_3_5_17_2 e_1_3_5_38_2 e_1_3_5_15_2 e_1_3_5_36_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_55_2 e_1_3_5_57_2 e_1_3_5_19_2 e_1_3_5_51_2 e_1_3_5_53_2 e_1_3_5_30_2 |
References_xml | – ident: e_1_3_5_47_2 doi: 10.1161/CIRCRESAHA.116.310022 – ident: e_1_3_5_37_2 doi: 10.1016/j.cmet.2015.11.011 – ident: e_1_3_5_15_2 doi: 10.1038/s12276-019-0286-3 – ident: e_1_3_5_32_2 doi: 10.1128/MCB.00494-15 – ident: e_1_3_5_42_2 doi: 10.1126/science.aac4854 – ident: e_1_3_5_21_2 doi: 10.1016/j.cell.2015.12.042 – ident: e_1_3_5_33_2 doi: 10.1038/nm.4266 – ident: e_1_3_5_16_2 doi: 10.1016/j.jtcvs.2009.07.075 – ident: e_1_3_5_30_2 doi: 10.1038/nm1666 – ident: e_1_3_5_11_2 doi: 10.1002/ajmg.c.31771 – ident: e_1_3_5_19_2 doi: 10.1016/j.bbadis.2019.165587 – ident: e_1_3_5_27_2 doi: 10.1073/pnas.232591499 – ident: e_1_3_5_56_2 doi: 10.1093/eurheartj/ehv575 – ident: e_1_3_5_22_2 doi: 10.1016/j.cell.2018.08.017 – ident: e_1_3_5_46_2 doi: 10.1016/j.cmet.2014.04.001 – ident: e_1_3_5_38_2 doi: 10.1038/nature14156 – ident: e_1_3_5_48_2 doi: 10.1093/cvr/cvy150 – ident: e_1_3_5_36_2 doi: 10.14814/phy2.13257 – ident: e_1_3_5_4_2 doi: 10.1038/352337a0 – ident: e_1_3_5_53_2 doi: 10.1038/s41467-018-06376-x – ident: e_1_3_5_6_2 doi: 10.1002/(SICI)1096-8628(19960424)62:4<417::AID-AJMG15>3.0.CO;2-R – ident: e_1_3_5_41_2 doi: 10.1016/j.cmet.2015.05.023 – ident: e_1_3_5_8_2 doi: 10.1056/NEJM200003093421001 – ident: e_1_3_5_18_2 doi: 10.1111/j.1540-8175.2010.01241.x – ident: e_1_3_5_28_2 doi: 10.1073/pnas.0308710100 – ident: e_1_3_5_58_2 doi: 10.1016/j.jvs.2019.06.216 – ident: e_1_3_5_5_2 doi: 10.1161/CIRCULATIONAHA.107.693523 – ident: e_1_3_5_14_2 doi: 10.1161/ATVBAHA.119.312787 – ident: e_1_3_5_44_2 doi: 10.1016/j.cmet.2020.04.008 – ident: e_1_3_5_52_2 doi: 10.1038/s42255-018-0008-5 – ident: e_1_3_5_40_2 doi: 10.1161/CIRCRESAHA.114.304936 – ident: e_1_3_5_45_2 doi: 10.1126/science.aaf2693 – ident: e_1_3_5_43_2 doi: 10.1016/j.cmet.2014.01.005 – ident: e_1_3_5_23_2 doi: 10.1038/s41586-020-1998-1 – ident: e_1_3_5_51_2 doi: 10.1016/j.cell.2013.06.037 – ident: e_1_3_5_31_2 doi: 10.1084/jem.20110503 – ident: e_1_3_5_13_2 doi: 10.1161/CIRCRESAHA.118.313187 – ident: e_1_3_5_25_2 doi: 10.1016/j.cmet.2019.08.003 – ident: e_1_3_5_34_2 doi: 10.1007/978-1-59745-413-1_19 – ident: e_1_3_5_35_2 doi: 10.1371/journal.pone.0152124 – ident: e_1_3_5_57_2 doi: 10.1016/j.jacc.2018.07.052 – ident: e_1_3_5_20_2 doi: 10.1038/ncb3537 – ident: e_1_3_5_2_2 doi: 10.1161/CIRCRESAHA.113.300675 – ident: e_1_3_5_24_2 doi: 10.1038/ng0398-231 – ident: e_1_3_5_7_2 doi: 10.1056/NEJMoa055695 – ident: e_1_3_5_9_2 doi: 10.1161/CIRCULATIONAHA.111.025056 – ident: e_1_3_5_10_2 doi: 10.1038/415168a – ident: e_1_3_5_26_2 doi: 10.1126/science.aax0860 – ident: e_1_3_5_55_2 doi: 10.1111/febs.15327 – ident: e_1_3_5_12_2 doi: 10.1093/cvr/cvy006 – ident: e_1_3_5_50_2 doi: 10.3390/ijms18081812 – ident: e_1_3_5_3_2 doi: 10.1161/CIRCRESAHA.118.312436 – ident: e_1_3_5_54_2 doi: 10.1074/jbc.M115.646984 – ident: e_1_3_5_39_2 doi: 10.1161/CIRCULATIONAHA.119.041460 – ident: e_1_3_5_49_2 doi: 10.1161/ATVBAHA.114.304412 – ident: e_1_3_5_17_2 doi: 10.1016/s0002-9149(77)80005-2 – ident: e_1_3_5_29_2 doi: 10.1126/science.1124287 |
SSID | ssj0006375 |
Score | 2.6007247 |
Snippet | Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the
(fibrillin-1) gene encoding a large glycoprotein in... Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large... Supplemental Digital Content is available in the text. |
SourceID | pubmedcentral proquest pubmed crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2091 |
SubjectTerms | Animals Aortic Aneurysm - physiopathology Disease Models, Animal Humans Marfan Syndrome - genetics Marfan Syndrome - physiopathology Mice Mitochondria - metabolism Original s |
Title | Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003017-202105250-00007 https://www.ncbi.nlm.nih.gov/pubmed/33709773 https://www.proquest.com/docview/2501259220 https://pubmed.ncbi.nlm.nih.gov/PMC8140666 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB6Ewxtbukt1wYeylOHNkW44fszRbFuYxQgJ5M7KsbGapXVKHrf3d-wE7R5KdmGbQ9cUYx5ETn4t0jr7zHULe0l6aUjfs2YJ7iQ0zdGKHfurYMnEkMlX7nuqfEn1l47k3WfiLVuvPDmppUyZdcb23ruQuUoVrIFeskv0PydaDwgU4B_nCESQMx1vJePS7XHNMvSss6WyTGwhzBGYKbi1PVUuOqdlNR0FjR03F6TAocLjTAfJZXhkWwYqwIFsL09RrX6-eRmbW1BFOMLFeQ3l4gmhJtQNvT4tUb8affd_oZPUoX2ca6W0g9tn1nrsibi7w0wl4Mjj9MKiX_xAs6_HPcjvKhPrUVRl-nkDov-K7uQzaw214Xfescxl7OClULiNbIWCo4cdDO3B1RXNXGtdNPVA2TY1U-3bNAWWUWNdiV67a0W3CzLQPoW-4f0phOKUMP0-H8y-aoHiMGWSnC-6sp9vH7KjaxbnSNdcNHFhZu9tZtsY-fouGyDIGYeM9cp9CcIN9Nz4ttsAk5gZ-1f8P_2ObnJjf8f6fv-KQtKtHNhdYN6Kmm-DfB78KBGZc_lR1GTurq9kj8tCERdZA6_hj0pL5ETke5Lwszq-sd5YCKqsdoCPSjgwe5JhMGhZgaQuwiqXVsABrxwIsZQFWWVjaAqzKAp6Q-cfRbDi2TXcQW3gMZsbUY37iURlKmvKUhY6AlTHyPQosPaO-SKXnLvt-yvqMceR1EzJk2KktkR4s-t2n5CAvcvmcWIxTD2QieABDUCr7CeU0DMDVLH1BE9Eh_eqVxsJQ52MHl1WsQmjWi5uCiUEwsRZMh9D6qxeaP-Y2Xzqp5BaDt8e3yHNZbC5jCFggIgkpdTrkmZZjPWylAB0SNCRc34BM8s1P8uyHYpQ3CtkhdkMXYl2LjQAVzJwENtosNr5UZBRO8OLOT3pJDrf2_4oclOuNfA2r-zJ5o4zhL-5I7xY |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+Tuning+of+Mitochondrial+Respiration+Leads+to+Aortic+Aneurysm&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Oller%2C+Jorge&rft.au=Gaband%C3%A9-Rodr%C3%ADguez%2C+Enrique&rft.au=Ruiz-Rodr%C3%ADguez%2C+Mar%C3%ADa+Jes%C3%BAs&rft.au=Desd%C3%ADn-Mic%C3%B3%2C+Gabriela&rft.date=2021-05-25&rft.pub=Lippincott+Williams+%26+Wilkins&rft.issn=0009-7322&rft.eissn=1524-4539&rft.volume=143&rft.issue=21&rft.spage=2091&rft.epage=2109&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.120.051171&rft_id=info%3Apmid%2F33709773&rft.externalDocID=PMC8140666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |