On the Generalized Bootstrap for Sample Surveys with Special Attention to Poisson Sampling

We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the empirical properties of bootstrap confidence intervals obtained using the percentile method. Generalized bootstrap consists of randomly generating...

Full description

Saved in:
Bibliographic Details
Published inInternational statistical review Vol. 80; no. 1; pp. 127 - 148
Main Authors Beaumont, Jean-François, Patak, Zdenek
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2012
Blackwell Publishing
International Statistical Institute
John Wiley & Sons, Inc
SeriesInternational Statistical Review
Subjects
Online AccessGet full text
ISSN0306-7734
1751-5823
DOI10.1111/j.1751-5823.2011.00166.x

Cover

Abstract We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the empirical properties of bootstrap confidence intervals obtained using the percentile method. Generalized bootstrap consists of randomly generating bootstrap weights so that the first two (or more) design moments of the sampling error are tracked by the corresponding bootstrap moments. Most bootstrap methods in the literature can be viewed as special cases. We discuss issues such as the choice of the distribution used to generate bootstrap weights, the choice of the number of bootstrap replicates, and the potential occurrence of negative bootstrap weights. We first describe the generalized bootstrap for the linear Horvitz-Thompson estimator and then consider non-linear estimators such as those defined through estimating equations. We also develop two ways of bootstrapping the generalized regression estimator of a population total. We study in greater depth the case of Poisson sampling, which is often used to select samples in Price Index surveys conducted by national statistical agencies around the world. For Poisson sampling, we consider a pseudo-population approach and show that the resulting bootstrap weights capture the first three design moments of the sampling error. A simulation study and an example with real survey data are used to illustrate the theory. Nous étudions la technique du bootstrap généralisé pour des plans de sondage généraux. Nous nous concentrons principalement sur l'estimation bootstrap de la variance mais nous étudions également les propriétés empiriques des intervalles de confiance bootstrap obtenus en utilisant la méthode des percentiles. Le bootstrap généralisé consiste à générer aléatoirement des poids bootstrap de telle sorte que les deux (ou plus) premiers moments selon le plan de l'erreur d'échantillonnage soient approchés par leurs moments correspondants selon le mécanisme bootstrap. On peut voir la plupart des méthodes bootstrap dans la littérature comme étant des cas particuliers du bootstrap généralisé. Nous discutons de considérations telles que le choix de la distribution utilisée pour générer les poids bootstrap, le choix du nombre de répliques bootstrap et la présence possible de poids bootstrap négatifs. Nous décrivons d'abord le bootstrap généralisé pour l'estimateur linéaire de Horvitz-Thompson et considérons ensuite les estimateurs non linéaires tels que ceux définis au moyen d'équations d'estimation. Nous développons également deux façons d'appliquer le bootstrap à l'estimateur par la régression généralisée du total d'une population. Nous étudions plus en profondeur le cas de l'échantillonnage de Poisson qui est souvent utilisé pour sélectionner des échantillons dans les enquêtes sur les indices de prix effectuées par les agences statistiques nationales dans le monde. Pour l'échantillonnage de Poisson, nous considérons une approche par pseudo-population et montrons que les poids bootstrap qui en résultent capturent les trois premiers moments sous le plan de l'erreur d'échantillonnage. Nous utilisons une étude par simulation et un exemple avec des données d'enquêtes réelles pour illustrer la théorie.
AbstractList We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the empirical properties of bootstrap confidence intervals obtained using the percentile method. Generalized bootstrap consists of randomly generating bootstrap weights so that the first two (or more) design moments of the sampling error are tracked by the corresponding bootstrap moments. Most bootstrap methods in the literature can be viewed as special cases. We discuss issues such as the choice of the distribution used to generate bootstrap weights, the choice of the number of bootstrap replicates, and the potential occurrence of negative bootstrap weights. We first describe the generalized bootstrap for the linear Horvitz-Thompson estimator and then consider non-linear estimators such as those defined through estimating equations. We also develop two ways of bootstrapping the generalized regression estimator of a population total. We study in greater depth the case of Poisson sampling, which is often used to select samples in Price Index surveys conducted by national statistical agencies around the world. For Poisson sampling, we consider a pseudo-population approach and show that the resulting bootstrap weights capture the first three design moments of the sampling error. A simulation study and an example with real survey data are used to illustrate the theory. [PUBLICATION ABSTRACT]
We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the empirical properties of bootstrap confidence intervals obtained using the percentile method. Generalized bootstrap consists of randomly generating bootstrap weights so that the first two (or more) design moments of the sampling error are tracked by the corresponding bootstrap moments. Most bootstrap methods in the literature can be viewed as special cases. We discuss issues such as the choice of the distribution used to generate bootstrap weights, the choice of the number of bootstrap replicates, and the potential occurrence of negative bootstrap weights. We first describe the generalized bootstrap for the linear Horvitz-Thompson estimator and then consider non-linear estimators such as those defined through estimating equations. We also develop two ways of bootstrapping the generalized regression estimator of a population total. We study in greater depth the case of Poisson sampling, which is often used to select samples in Price Index surveys conducted by national statistical agencies around the world. For Poisson sampling, we consider a pseudo-population approach and show that the resulting bootstrap weights capture the first three design moments of the sampling error. A simulation study and an example with real survey data are used to illustrate the theory. Nous étudions la technique du bootstrap généralisé pour des plans de sondage généraux. Nous nous concentrons principalement sur l'estimation bootstrap de la variance mais nous étudions également les propriétés empiriques des intervalles de confiance bootstrap obtenus en utilisant la méthode des percentiles. Le bootstrap généralisé consiste à générer aléatoirement des poids bootstrap de telle sorte que les deux (ou plus) premiers moments selon le plan de l'erreur d'échantillonnage soient approchés par leurs moments correspondants selon le mécanisme bootstrap. On peut voir la plupart des méthodes bootstrap dans la littérature comme étant des cas particuliers du bootstrap généralisé. Nous discutons de considérations telles que le choix de la distribution utilisée pour générer les poids bootstrap, le choix du nombre de répliques bootstrap et la présence possible de poids bootstrap négatifs. Nous décrivons d'abord le bootstrap généralisé pour l'estimateur linéaire de Horvitz-Thompson et considérons ensuite les estimateurs non linéaires tels que ceux définis au moyen d'équations d'estimation. Nous développons également deux façons d'appliquer le bootstrap à l'estimateur par la régression généralisée du total d'une population. Nous étudions plus en profondeur le cas de l'échantillonnage de Poisson qui est souvent utilisé pour sélectionner des échantillons dans les enquêtes sur les indices de prix effectuées par les agences statistiques nationales dans le monde. Pour l'échantillonnage de Poisson, nous considérons une approche par pseudo-population et montrons que les poids bootstrap qui en résultent capturent les trois premiers moments sous le plan de l'erreur d'échantillonnage. Nous utilisons une étude par simulation et un exemple avec des données d'enquêtes réelles pour illustrer la théorie.
Nous étudions la technique du bootstrap généralisé pour des plans de sondage généraux. Nous nous concentrons principalement sur l’estimation bootstrap de la variance mais nous étudions également les propriétés empiriques des intervalles de confiance bootstrap obtenus en utilisant la méthode des percentiles. Le bootstrap généralisé consiste à générer aléatoirement des poids bootstrap de telle sorte que les deux (ou plus) premiers moments selon le plan de l’erreur d’échantillonnage soient approchés par leurs moments correspondants selon le mécanisme bootstrap. On peut voir la plupart des méthodes bootstrap dans la littérature comme étant des cas particuliers du bootstrap généralisé. Nous discutons de considérations telles que le choix de la distribution utilisée pour générer les poids bootstrap, le choix du nombre de répliques bootstrap et la présence possible de poids bootstrap négatifs. Nous décrivons d’abord le bootstrap généralisé pour l’estimateur linéaire de Horvitz‐Thompson et considérons ensuite les estimateurs non linéaires tels que ceux définis au moyen d’équations d’estimation. Nous développons également deux façons d’appliquer le bootstrap à l’estimateur par la régression généralisée du total d’une population. Nous étudions plus en profondeur le cas de l’échantillonnage de Poisson qui est souvent utilisé pour sélectionner des échantillons dans les enquêtes sur les indices de prix effectuées par les agences statistiques nationales dans le monde. Pour l’échantillonnage de Poisson, nous considérons une approche par pseudo‐population et montrons que les poids bootstrap qui en résultent capturent les trois premiers moments sous le plan de l’erreur d’échantillonnage. Nous utilisons une étude par simulation et un exemple avec des données d’enquêtes réelles pour illustrer la théorie. We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the empirical properties of bootstrap confidence intervals obtained using the percentile method. Generalized bootstrap consists of randomly generating bootstrap weights so that the first two (or more) design moments of the sampling error are tracked by the corresponding bootstrap moments. Most bootstrap methods in the literature can be viewed as special cases. We discuss issues such as the choice of the distribution used to generate bootstrap weights, the choice of the number of bootstrap replicates, and the potential occurrence of negative bootstrap weights. We first describe the generalized bootstrap for the linear Horvitz‐Thompson estimator and then consider non‐linear estimators such as those defined through estimating equations. We also develop two ways of bootstrapping the generalized regression estimator of a population total. We study in greater depth the case of Poisson sampling, which is often used to select samples in Price Index surveys conducted by national statistical agencies around the world. For Poisson sampling, we consider a pseudo‐population approach and show that the resulting bootstrap weights capture the first three design moments of the sampling error. A simulation study and an example with real survey data are used to illustrate the theory.
Résumé  Nous étudions la technique du bootstrap généralisé pour des plans de sondage généraux. Nous nous concentrons principalement sur l’estimation bootstrap de la variance mais nous étudions également les propriétés empiriques des intervalles de confiance bootstrap obtenus en utilisant la méthode des percentiles. Le bootstrap généralisé consiste à générer aléatoirement des poids bootstrap de telle sorte que les deux (ou plus) premiers moments selon le plan de l’erreur d’échantillonnage soient approchés par leurs moments correspondants selon le mécanisme bootstrap. On peut voir la plupart des méthodes bootstrap dans la littérature comme étant des cas particuliers du bootstrap généralisé. Nous discutons de considérations telles que le choix de la distribution utilisée pour générer les poids bootstrap, le choix du nombre de répliques bootstrap et la présence possible de poids bootstrap négatifs. Nous décrivons d’abord le bootstrap généralisé pour l’estimateur linéaire de Horvitz‐Thompson et considérons ensuite les estimateurs non linéaires tels que ceux définis au moyen d’équations d’estimation. Nous développons également deux façons d’appliquer le bootstrap à l’estimateur par la régression généralisée du total d’une population. Nous étudions plus en profondeur le cas de l’échantillonnage de Poisson qui est souvent utilisé pour sélectionner des échantillons dans les enquêtes sur les indices de prix effectuées par les agences statistiques nationales dans le monde. Pour l’échantillonnage de Poisson, nous considérons une approche par pseudo‐population et montrons que les poids bootstrap qui en résultent capturent les trois premiers moments sous le plan de l’erreur d’échantillonnage. Nous utilisons une étude par simulation et un exemple avec des données d’enquêtes réelles pour illustrer la théorie. Summary  We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the empirical properties of bootstrap confidence intervals obtained using the percentile method. Generalized bootstrap consists of randomly generating bootstrap weights so that the first two (or more) design moments of the sampling error are tracked by the corresponding bootstrap moments. Most bootstrap methods in the literature can be viewed as special cases. We discuss issues such as the choice of the distribution used to generate bootstrap weights, the choice of the number of bootstrap replicates, and the potential occurrence of negative bootstrap weights. We first describe the generalized bootstrap for the linear Horvitz‐Thompson estimator and then consider non‐linear estimators such as those defined through estimating equations. We also develop two ways of bootstrapping the generalized regression estimator of a population total. We study in greater depth the case of Poisson sampling, which is often used to select samples in Price Index surveys conducted by national statistical agencies around the world. For Poisson sampling, we consider a pseudo‐population approach and show that the resulting bootstrap weights capture the first three design moments of the sampling error. A simulation study and an example with real survey data are used to illustrate the theory.
Author Beaumont, Jean-François
Patak, Zdenek
Author_xml – sequence: 1
  givenname: Jean-François
  surname: Beaumont
  fullname: Beaumont, Jean-François
  email: Statistical Research and Innovation Division, Statistics Canada, 100 Tunney's Pasture Driveway, R.H. Coats Bldg., 16-th floor, Ottawa, Ontario, K1A 0T6, Canada jean-francois.beaumont@statcan.gc.ca
  organization: Statistical Research and Innovation Division, Statistics Canada, 100 Tunney's Pasture Driveway, R.H. Coats Bldg., 16-th floor, Ottawa, Ontario, K1A 0T6, Canada E-mail: jean-francois.beaumont@statcan.gc.ca
– sequence: 2
  givenname: Zdenek
  surname: Patak
  fullname: Patak, Zdenek
  email: Business Survey Methods Division, Statistics Canada, 100 Tunney's Pasture Driveway, R.H. Coats Bldg., 17-th floor, Ottawa, Ontario, K1A 0T6, Canada zdenek.patak@statcan.gc.ca
  organization: Business Survey Methods Division, Statistics Canada, 100 Tunney's Pasture Driveway, R.H. Coats Bldg., 17-th floor, Ottawa, Ontario, K1A 0T6, Canada E-mail: zdenek.patak@statcan.gc.ca
BackLink http://econpapers.repec.org/article/blaistatr/v_3a80_3ay_3a2012_3ai_3a1_3ap_3a127-148.htm$$DView record in RePEc
BookMark eNqNUd9r2zAQFqODpen-hIFgz870w7a8hw260qUtJS3N1sFeDtmRF3mO5UlKm-yv77keedhTBXffodP3nfjumBx1rjOEUM5mHM-HZsZVxpOsEHImGOczxniez3avyOTQOCITJlmeKCXTN-Q4hIYxJkWRTsjPm47GtaFz0xmvW_vXrOgX52KIXve0dp4u9aZvDV1u_YPZB_po45oue1NZ3dLTGE0XrUMNR2-dDQHLZ4Ltfp2Q17Vug3n7D6fk-9fzb2cXyfXN_PLs9Dqp0rzIk1wIkTGNyXBZq1KxqmYfRV3zVabLHFHWdV7wsqzUSlY5V6pYKSllxdISr-WUvB91e-_-bE2I0Lit73AkcMbStEglejAlV-Mrb_Dz0Hu70X4PZattiDp6eACpC4Zpj4FOCgSLwTH6AYUCnhawjhsUK0axyrsQvKkPepzBsBZoYHAfBvdhWAs8rwV2SP38H7WyOB89RMdt-xKBT6PAo23N_sWD4XKxvMMK-e9GfhOi8we-kCJTXDHsJ2MffTG7Q1_735ArqTL4sZjD_e39nVpcSLiSTxFWwPQ
CitedBy_id crossref_primary_10_1111_rssb_12506
crossref_primary_10_1016_j_jspi_2021_07_011
crossref_primary_10_1007_s11749_019_00687_x
crossref_primary_10_1080_01621459_2023_2183130
crossref_primary_10_1093_jssam_smaa004
crossref_primary_10_1080_01621459_2016_1222285
crossref_primary_10_1093_biomet_asz001
crossref_primary_10_1111_insr_12528
crossref_primary_10_1080_00949655_2013_833204
crossref_primary_10_1214_16_SS113
crossref_primary_10_21307_stattrans_2021_009
crossref_primary_10_3150_19_BEJ1138
crossref_primary_10_1111_stan_12145
crossref_primary_10_1007_s10260_021_00618_x
crossref_primary_10_1007_s42081_020_00083_y
crossref_primary_10_2478_jos_2021_0045
crossref_primary_10_1016_j_csda_2012_03_011
crossref_primary_10_1177_1687814019836849
crossref_primary_10_15678_KREM_2024_1004_0207
crossref_primary_10_1093_jssam_smab047
crossref_primary_10_1111_insr_12313
crossref_primary_10_1093_biomet_ast010
crossref_primary_10_1214_15_AOS1348
crossref_primary_10_1093_jssam_smab008
crossref_primary_10_1093_jssam_smab029
crossref_primary_10_3390_stats5020019
crossref_primary_10_1007_s00180_014_0495_0
crossref_primary_10_1177_0282423X251314363
crossref_primary_10_3390_stats5020031
crossref_primary_10_3390_stats5010016
Cites_doi 10.1214/aos/1176350142
10.2307/20076068
10.1214/aos/1176348787
10.1198/jasa.2011.tm09767
10.1007/978-1-4612-2532-4
10.2307/1402588
10.1093/biomet/93.2.269
10.1080/01621459.1988.10478591
10.1111/j.1467-9868.2005.00489.x
10.1093/biomet/76.3.527
10.2307/3315464
ContentType Journal Article
Copyright 2012 International Statistical Institute
2012 The Authors. International Statistical Review © 2012 International Statistical Institute
Copyright John Wiley & Sons, Inc. Apr 2012
Copyright_xml – notice: 2012 International Statistical Institute
– notice: 2012 The Authors. International Statistical Review © 2012 International Statistical Institute
– notice: Copyright John Wiley & Sons, Inc. Apr 2012
DBID BSCLL
AAYXX
CITATION
DKI
X2L
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1111/j.1751-5823.2011.00166.x
DatabaseName Istex
CrossRef
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

CrossRef

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1751-5823
EndPage 148
ExternalDocumentID 2639049411
blaistatr_v_3a80_3ay_3a2012_3ai_3a1_3ap_3a127_148_htm
10_1111_j_1751_5823_2011_00166_x
INSR166
23257170
ark_67375_WNG_VPVR7NH3_J
Genre article
Feature
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29J
31~
33P
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5RE
5VS
66C
6OB
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHHS
AAKYL
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABDBF
ABEML
ABFAN
ABIVO
ABJNI
ABLJU
ABPVW
ABQDR
ABXSQ
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACDIW
ACGFO
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADODI
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AELLO
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFVYC
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKBRZ
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BHOJU
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DU5
EBS
ECEWR
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GIFXF
GODZA
H.T
H.X
HF~
HGD
HGLYW
HQ6
HVGLF
HZ~
H~9
IPSME
IX1
J0M
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RBU
RNS
ROL
RPE
RX1
SA0
SUPJJ
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
YYP
ZZTAW
~02
~IA
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAWIL
AAYCA
ABAWQ
ACHJO
ACRPL
ACUHS
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGLNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIHAF
ALRMG
ALVPJ
AMVHM
AAYXX
AGHNM
CITATION
02
0R
31
3N
AAPBV
ABHUG
ABPTK
ACXME
ADAWD
ADDAD
AFVGU
AFXKK
AGJLS
AS
BDTQF
DKI
EFSUC
GA
HZ
IA
IPNFZ
NF
P4A
PQEST
RIG
WT
X
X2L
XFK
XHC
Y3
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4686-622250a225e13f7b70cf092ff1d5ab6ff13ff681bbc7d3c61778d7333c04b81b3
IEDL.DBID DR2
ISSN 0306-7734
IngestDate Fri Jul 25 18:58:16 EDT 2025
Wed Aug 18 03:11:05 EDT 2021
Tue Jul 01 00:48:46 EDT 2025
Thu Apr 24 23:09:30 EDT 2025
Wed Jan 22 16:46:01 EST 2025
Thu Jul 03 21:14:03 EDT 2025
Wed Oct 30 09:48:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4686-622250a225e13f7b70cf092ff1d5ab6ff13ff681bbc7d3c61778d7333c04b81b3
Notes ark:/67375/WNG-VPVR7NH3-J
ArticleID:INSR166
istex:165A00788CB3C6301F175DF5DC4A3E65FEF24DE4
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1004484382
PQPubID 105652
PageCount 22
ParticipantIDs proquest_journals_1004484382
repec_primary_blaistatr_v_3a80_3ay_3a2012_3ai_3a1_3ap_3a127_148_htm
crossref_primary_10_1111_j_1751_5823_2011_00166_x
crossref_citationtrail_10_1111_j_1751_5823_2011_00166_x
wiley_primary_10_1111_j_1751_5823_2011_00166_x_INSR166
jstor_primary_23257170
istex_primary_ark_67375_WNG_VPVR7NH3_J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2012
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Hoboken
PublicationSeriesTitle International Statistical Review
PublicationTitle International statistical review
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Blackwell Publishing
International Statistical Institute
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: International Statistical Institute
– name: John Wiley & Sons, Inc
References Binder, D.A. (1983). On the variances of asymptotically normal estimators from complex surveys. Int. Statist. Rev., 51, 279-292.
Sitter, R.R. (1992). Comparing three bootstrap methods for survey data. Canad. J. Statist., 20, 135-154.
Rao, J.N.K. & Wu, C.F.J. (1988). Resampling inference with complex survey data. J. Amer. Statist. Assoc., 83, 231-241.
Särndal, C.-E., Swensson, B. & Wretman, J.H. (1989). The weighted residual technique for estimating the variance of the general regression estimator of the finite population total. Biometrika, 76, 527-537.
Chipperfield, J. & Preston, J. (2007). Efficient bootstrap for business surveys. Survey Methodol., 33, 167-172.
Bertail, P. & Combris, P. (1997). Bootstrap généralisé d'un sondage. Annales d'économie et de statistique, 46, 49-83.
Antal, E. & Tillé, Y. (2011). A direct bootstrap method for complex sampling designs from a finite population. J. Amer. Statist. Assoc., 106, 534-543.
Thompson, M.E. & Wu, C. (2008). Simulation-based randomized systematic PPS sampling under substitution of units. Survey Methodol., 34, 3-10.
Fattorini, L. (2006). Applying the Horvitz-Thompson criterion in complex designs: a computer-intensive perspective for estimating inclusion probabilities. Biometrika, 93, 269-278.
Mason, D.M. & Newton, M.A. (1992). A rank statistics approach to the consistency of a general bootstrap. Ann. Statist., 20, 1611-1624.
Rao, J.N.K., Wu, C.F.J. & Yue, K. (1992). Some recent work on resampling methods for complex surveys. Survey Methodol., 18, 209-217.
Valliant, R. (2002). Variance estimation for the general regression estimator. Survey Methodol., 28, 103-114.
Berger, Y.G. & Skinner, C.J. (2005). A jackknife variance estimator for unequal probability sampling. J. R. Statist. Soc. Ser. B, 67, 79-89.
Nigam, A.K. & Rao, J.N.K. (1996). On balanced bootstrap for stratified multistage samples. Statist. Sinica, 6, 199-214.
Barbe, P. & Bertail, P. (1995). The Weighted Bootstrap. Monograph, Lecture Notes in Statistics. New York : Springer-Verlag.
Särndal, C.-E. (1996). Efficient estimators with simple variance in unequal probability sampling. J. Amer. Statist. Assoc., 91, 1289-1300.
Wu, C.F.J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Stat., 14, 1261-1295.
2006; 93
2002; 28
2011; 106
1989; 76
2001
1997; 46
1986; 14
2009
2008
1992; 18
1983; 51
2007
2008; 34
1995
1988; 83
1980
1996; 91
1992; 20
2007; 33
2005; 67
1989
1996; 6
Fay R.E. (e_1_2_11_11_1) 1989
Saavedra P.J. (e_1_2_11_18_1) 2001
e_1_2_11_10_1
e_1_2_11_21_1
Rao J.N.K. (e_1_2_11_17_1) 1992; 18
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_24_1
e_1_2_11_8_1
e_1_2_11_7_1
Thompson M.E. (e_1_2_11_22_1) 2008; 34
e_1_2_11_5_1
Gross S. (e_1_2_11_12_1) 1980
e_1_2_11_16_1
e_1_2_11_3_1
Beaumont J.‐F. (e_1_2_11_4_1) 2009
e_1_2_11_2_1
e_1_2_11_19_1
Valliant R. (e_1_2_11_23_1) 2002; 28
Nigam A.K. (e_1_2_11_15_1) 1996; 6
Bertail P. (e_1_2_11_6_1) 1997; 46
Chipperfield J. (e_1_2_11_9_1) 2007; 33
Särndal C.‐E. (e_1_2_11_20_1) 1996; 91
References_xml – reference: Bertail, P. & Combris, P. (1997). Bootstrap généralisé d'un sondage. Annales d'économie et de statistique, 46, 49-83.
– reference: Valliant, R. (2002). Variance estimation for the general regression estimator. Survey Methodol., 28, 103-114.
– reference: Berger, Y.G. & Skinner, C.J. (2005). A jackknife variance estimator for unequal probability sampling. J. R. Statist. Soc. Ser. B, 67, 79-89.
– reference: Rao, J.N.K., Wu, C.F.J. & Yue, K. (1992). Some recent work on resampling methods for complex surveys. Survey Methodol., 18, 209-217.
– reference: Barbe, P. & Bertail, P. (1995). The Weighted Bootstrap. Monograph, Lecture Notes in Statistics. New York : Springer-Verlag.
– reference: Chipperfield, J. & Preston, J. (2007). Efficient bootstrap for business surveys. Survey Methodol., 33, 167-172.
– reference: Binder, D.A. (1983). On the variances of asymptotically normal estimators from complex surveys. Int. Statist. Rev., 51, 279-292.
– reference: Rao, J.N.K. & Wu, C.F.J. (1988). Resampling inference with complex survey data. J. Amer. Statist. Assoc., 83, 231-241.
– reference: Mason, D.M. & Newton, M.A. (1992). A rank statistics approach to the consistency of a general bootstrap. Ann. Statist., 20, 1611-1624.
– reference: Sitter, R.R. (1992). Comparing three bootstrap methods for survey data. Canad. J. Statist., 20, 135-154.
– reference: Thompson, M.E. & Wu, C. (2008). Simulation-based randomized systematic PPS sampling under substitution of units. Survey Methodol., 34, 3-10.
– reference: Wu, C.F.J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Stat., 14, 1261-1295.
– reference: Fattorini, L. (2006). Applying the Horvitz-Thompson criterion in complex designs: a computer-intensive perspective for estimating inclusion probabilities. Biometrika, 93, 269-278.
– reference: Särndal, C.-E., Swensson, B. & Wretman, J.H. (1989). The weighted residual technique for estimating the variance of the general regression estimator of the finite population total. Biometrika, 76, 527-537.
– reference: Särndal, C.-E. (1996). Efficient estimators with simple variance in unequal probability sampling. J. Amer. Statist. Assoc., 91, 1289-1300.
– reference: Antal, E. & Tillé, Y. (2011). A direct bootstrap method for complex sampling designs from a finite population. J. Amer. Statist. Assoc., 106, 534-543.
– reference: Nigam, A.K. & Rao, J.N.K. (1996). On balanced bootstrap for stratified multistage samples. Statist. Sinica, 6, 199-214.
– volume: 18
  start-page: 209
  year: 1992
  end-page: 217
  article-title: Some recent work on resampling methods for complex surveys
  publication-title: Survey Methodol.
– volume: 34
  start-page: 3
  year: 2008
  end-page: 10
  article-title: Simulation‐based randomized systematic PPS sampling under substitution of units
  publication-title: Survey Methodol.
– volume: 76
  start-page: 527
  year: 1989
  end-page: 537
  article-title: The weighted residual technique for estimating the variance of the general regression estimator of the finite population total
  publication-title: Biometrika
– year: 2009
– volume: 46
  start-page: 49
  year: 1997
  end-page: 83
  article-title: Bootstrap généralisé d’un sondage
  publication-title: Annales d’économie et de statistique
– volume: 6
  start-page: 199
  year: 1996
  end-page: 214
  article-title: On balanced bootstrap for stratified multistage samples
  publication-title: Statist. Sinica
– volume: 20
  start-page: 135
  year: 1992
  end-page: 154
  article-title: Comparing three bootstrap methods for survey data
  publication-title: Canad. J. Statist.
– volume: 106
  start-page: 534
  year: 2011
  end-page: 543
  article-title: A direct bootstrap method for complex sampling designs from a finite population
  publication-title: J. Amer. Statist. Assoc.
– year: 2007
– year: 2008
– year: 2001
– volume: 28
  start-page: 103
  year: 2002
  end-page: 114
  article-title: Variance estimation for the general regression estimator
  publication-title: Survey Methodol.
– volume: 93
  start-page: 269
  year: 2006
  end-page: 278
  article-title: Applying the Horvitz‐Thompson criterion in complex designs: a computer‐intensive perspective for estimating inclusion probabilities
  publication-title: Biometrika
– year: 1995
– volume: 20
  start-page: 1611
  year: 1992
  end-page: 1624
  article-title: A rank statistics approach to the consistency of a general bootstrap
  publication-title: Ann. Statist.
– start-page: 212
  year: 1989
  end-page: 217
– volume: 33
  start-page: 167
  year: 2007
  end-page: 172
  article-title: Efficient bootstrap for business surveys
  publication-title: Survey Methodol.
– volume: 83
  start-page: 231
  year: 1988
  end-page: 241
  article-title: Resampling inference with complex survey data
  publication-title: J. Amer. Statist. Assoc.
– volume: 91
  start-page: 1289
  year: 1996
  end-page: 1300
  article-title: Efficient estimators with simple variance in unequal probability sampling
  publication-title: J. Amer. Statist. Assoc.
– volume: 67
  start-page: 79
  year: 2005
  end-page: 89
  article-title: A jackknife variance estimator for unequal probability sampling
  publication-title: J. R. Statist. Soc.
– volume: 51
  start-page: 279
  year: 1983
  end-page: 292
  article-title: On the variances of asymptotically normal estimators from complex surveys
  publication-title: Int. Statist. Rev.
– start-page: 181
  year: 1980
  end-page: 184
– volume: 14
  start-page: 1261
  year: 1986
  end-page: 1295
  article-title: Jackknife, bootstrap and other resampling methods in regression analysis
  publication-title: Ann. Stat.
– ident: e_1_2_11_24_1
  doi: 10.1214/aos/1176350142
– volume: 46
  start-page: 49
  year: 1997
  ident: e_1_2_11_6_1
  article-title: Bootstrap généralisé d’un sondage
  publication-title: Annales d’économie et de statistique
  doi: 10.2307/20076068
– ident: e_1_2_11_13_1
– volume: 18
  start-page: 209
  year: 1992
  ident: e_1_2_11_17_1
  article-title: Some recent work on resampling methods for complex surveys
  publication-title: Survey Methodol.
– volume-title: Proceedings of the Section on Survey Research Methods
  year: 2001
  ident: e_1_2_11_18_1
– volume: 28
  start-page: 103
  year: 2002
  ident: e_1_2_11_23_1
  article-title: Variance estimation for the general regression estimator
  publication-title: Survey Methodol.
– ident: e_1_2_11_14_1
  doi: 10.1214/aos/1176348787
– ident: e_1_2_11_2_1
  doi: 10.1198/jasa.2011.tm09767
– volume: 91
  start-page: 1289
  year: 1996
  ident: e_1_2_11_20_1
  article-title: Efficient estimators with simple variance in unequal probability sampling
  publication-title: J. Amer. Statist. Assoc.
– ident: e_1_2_11_3_1
  doi: 10.1007/978-1-4612-2532-4
– ident: e_1_2_11_7_1
  doi: 10.2307/1402588
– ident: e_1_2_11_10_1
  doi: 10.1093/biomet/93.2.269
– volume-title: Proceedings of the 57th Session of the International Statistical Institute
  year: 2009
  ident: e_1_2_11_4_1
– volume: 33
  start-page: 167
  year: 2007
  ident: e_1_2_11_9_1
  article-title: Efficient bootstrap for business surveys
  publication-title: Survey Methodol.
– volume: 6
  start-page: 199
  year: 1996
  ident: e_1_2_11_15_1
  article-title: On balanced bootstrap for stratified multistage samples
  publication-title: Statist. Sinica
– ident: e_1_2_11_16_1
  doi: 10.1080/01621459.1988.10478591
– start-page: 212
  volume-title: Proceedings of the Section on Survey Research Methods
  year: 1989
  ident: e_1_2_11_11_1
– start-page: 181
  volume-title: Proceedings of the Section on Survey Research Methods
  year: 1980
  ident: e_1_2_11_12_1
– ident: e_1_2_11_5_1
  doi: 10.1111/j.1467-9868.2005.00489.x
– ident: e_1_2_11_19_1
  doi: 10.1093/biomet/76.3.527
– ident: e_1_2_11_8_1
– ident: e_1_2_11_21_1
  doi: 10.2307/3315464
– volume: 34
  start-page: 3
  year: 2008
  ident: e_1_2_11_22_1
  article-title: Simulation‐based randomized systematic PPS sampling under substitution of units
  publication-title: Survey Methodol.
SSID ssj0003284
Score 2.0973585
Snippet We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the...
Résumé  Nous étudions la technique du bootstrap généralisé pour des plans de sondage généraux. Nous nous concentrons principalement sur l’estimation bootstrap...
Nous étudions la technique du bootstrap généralisé pour des plans de sondage généraux. Nous nous concentrons principalement sur l’estimation bootstrap de la...
SourceID proquest
repec
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 127
SubjectTerms Bootstrap method
Bootstrap weight
Confidence interval
estimating equation
Estimating techniques
Estimation methods
Estimators
Gaussian distributions
generalized regression estimator
Poisson distribution
Population estimates
pseudo-population
Sample size
Sampling
Sampling distributions
Sampling errors
Simulation
Statistical variance
Survey sampling
variance estimation
weighted bootstrap
Title On the Generalized Bootstrap for Sample Surveys with Special Attention to Poisson Sampling
URI https://api.istex.fr/ark:/67375/WNG-VPVR7NH3-J/fulltext.pdf
https://www.jstor.org/stable/23257170
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1751-5823.2011.00166.x
http://econpapers.repec.org/article/blaistatr/v_3a80_3ay_3a2012_3ai_3a1_3ap_3a127-148.htm
https://www.proquest.com/docview/1004484382
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQdtmF3xOBMfmAuKVK4sR2jjAY3RBlatmYuFi2G4uqo6kydxr763nPSQOdOEyIg-MoyrPsl_fs7zkvXwh5pV2ZC2dKQG7cxLnhZWyEk5hFWJTOOJ0I_MD504gPT_Pj8-K8y3_Cb2Fafoh-ww09I8zX6ODaXG46uSjSuJAZ65g4Ab3wAeLJlHGk0X83_s0kxTLZMklBAC0Ey28l9fytoY2VahuVfr1OWtyAo9tNtazsJrgNq9PhAzJfj6tNSpkPVt4M7M0tysf_M_CH5H4HYumb1uoekXvV4jHZQdza0j4_Id8-LyhAS9qxWs9uqil9W9ceN1aWFIAynWjkJaaTVXMFxkRxP5hOYIQzbNj7NguT-pqe1GAbcBoEYKF9Sk4P3385GMbdbxxim3PJY44hZaLhUKXMCSMS65Iycy6dFtpwqJlzHOCzsWLKLEAqIaeCMWaT3MBltku2FvWiegaPzCUWJgxZOC0gstMa8U8K7Za2qHjFIyLWj0zZjuMcf7Vxof6IdUB5CpWnUHkqKE9dRyTtJZctz8cdZF4Hq-gFdDPHPDlRqK-jD-rs5GwsRkOmjiOyG8ymvxFgbAFxdBKRvbUdqW7uuFSBw0_iC9qIHATb6uXMhcaowjfqSjEtEzj8hAKdyqCaQUmhLLHOBER1Un33PyLCgzndeVzqaDQZw9nzfxV8QXawS22C0x7Z8s2qegnYzZt98MqPR_vBN38B0cwykQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYmehiX_UbLBpsP026pkjixk-OAscIgQy0wtItlu7FW0TVVSBHjr997Thoo2gFNOzi2ojwnfnm2v-e8fCbkg7JZLKzOALlx7ceaZ74WNsUowiSz2qpA4A_ORzkfnMYH58l5ux0Q_gvT8EN0C27YM9x4jR0cF6RXe7lIQj9JI9ZScQJ84X0AlD24UYCe2O7wlkuKRWnDJQUutBAsvhfW87eaVuaqHqr9ehm2uAJIe1UxL8wqvHXz095TMl22rAlLuegvat03N_dIH_9T05-RJy2OpZ8aw3tOHhWzF2QdoWvD_PyS_Pg2o4AuaUtsPbkpxnS7LGtcW5lTwMp0pJCamI4W1RXYE8UlYTqCJk6w4rpuAjFpXdLjEswDik4A5tpX5HTv88nOwG93cvBNzFPuc_QqAwWHImRWaBEYG2SRteE4UZpDzqzlgKC1EWNmAFWJdCwYYyaINZxmG2RtVs6K1_DObGBgzEgTqwQ4d0ohBAqh3swkBS-4R8TynUnT0pzjbhtTecfdAeVJVJ5E5UmnPHntkbCTnDdUHw-Q-ejMohNQ1QWGyolEfs-_yLPjs6HIB0weeGTD2U13ISDZBFzpwCObS0OS7fBxKR2NX4rfaD2y44yrk9NThY5FXckryVQawOE3JHioCLIJpBDSHPNIgGOXyp_1L49wZ08Pbpfcz0dDKL35V8H35PHg5OhQHu7nX9-SdXy8Jt5pk6zV1aLYAihX63eui_4B0101tw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQKqFd-D0RGOAD4pYqqRM7OcKgdANC1bIxcbFsJ9aqjiYK6TT21_OekwY6cZgQB8dRlGfZL8_295znz4S8VDaNhNUpIDeu_Ujz1NfCJhhFGKdWWxUI3OD8KeOT4-joND7t4p9wL0zLD9EvuGHPcOM1dvAqt9udXMShHycj1jFxAnrhQ8CTg4gDsECANPtNJcVGSUslBR60ECy6FtXzt5K2pqoBav1yE7W4hUcHdVEVZhvduulpfJcsNw1ro1KWw3Wjh-bqGufj_2n5PXKnQ7H0dWt298mtYvWA7CJwbXmfH5Jvn1cUsCXtaK0XV0VO35RlgysrFQWkTOcKiYnpfF1fgDVRXBCmc2jhAgtumjYMkzYlnZZgHHDrBGCmfUSOx---HEz87hwH30Q84T5HnzJQcClCZoUWgbFBOrI2zGOlOeTMWg74WRuRMwOYSiS5YIyZINLwmO2RnVW5Kh7DJ7OBgREjia0S4NophQAohHJTExe84B4Rm08mTUdyjmdtnMs_nB1QnkTlSVSedMqTlx4Je8mqJfq4gcwrZxW9gKqXGCgnYvk1ey9PpiczkU2YPPLInjOb_kXAsTE40oFH9jd2JLvB44d0JH4J_qH1yIGzrV5Onyt0K5paXkimkgAuPyFBpUaQLSCFkCrMRwLcukSeNd89wp053bhd8jCbz-Duyb8KviC3p2_H8uNh9uEp2cXatcFO-2SnqdfFM8BxjX7uOugv7G00Zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Generalized+Bootstrap+for+Sample+Surveys+with+Special+Attention+to+Poisson+Sampling&rft.jtitle=International+statistical+review&rft.au=Beaumont%2C+Jean-Fran%C3%A7ois&rft.au=Patak%2C+Zdenek&rft.date=2012-04-01&rft.pub=Blackwell+Publishing&rft.issn=0306-7734&rft.eissn=1751-5823&rft.volume=80&rft.issue=1&rft.spage=127&rft.epage=148&rft_id=info:doi/10.1111%2Fj.1751-5823.2011.00166.x&rft.externalDocID=23257170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7734&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7734&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7734&client=summon