On the Generalized Bootstrap for Sample Surveys with Special Attention to Poisson Sampling
We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the empirical properties of bootstrap confidence intervals obtained using the percentile method. Generalized bootstrap consists of randomly generating...
Saved in:
Published in | International statistical review Vol. 80; no. 1; pp. 127 - 148 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2012
Blackwell Publishing International Statistical Institute John Wiley & Sons, Inc |
Series | International Statistical Review |
Subjects | |
Online Access | Get full text |
ISSN | 0306-7734 1751-5823 |
DOI | 10.1111/j.1751-5823.2011.00166.x |
Cover
Abstract | We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the empirical properties of bootstrap confidence intervals obtained using the percentile method. Generalized bootstrap consists of randomly generating bootstrap weights so that the first two (or more) design moments of the sampling error are tracked by the corresponding bootstrap moments. Most bootstrap methods in the literature can be viewed as special cases. We discuss issues such as the choice of the distribution used to generate bootstrap weights, the choice of the number of bootstrap replicates, and the potential occurrence of negative bootstrap weights. We first describe the generalized bootstrap for the linear Horvitz-Thompson estimator and then consider non-linear estimators such as those defined through estimating equations. We also develop two ways of bootstrapping the generalized regression estimator of a population total. We study in greater depth the case of Poisson sampling, which is often used to select samples in Price Index surveys conducted by national statistical agencies around the world. For Poisson sampling, we consider a pseudo-population approach and show that the resulting bootstrap weights capture the first three design moments of the sampling error. A simulation study and an example with real survey data are used to illustrate the theory. Nous étudions la technique du bootstrap généralisé pour des plans de sondage généraux. Nous nous concentrons principalement sur l'estimation bootstrap de la variance mais nous étudions également les propriétés empiriques des intervalles de confiance bootstrap obtenus en utilisant la méthode des percentiles. Le bootstrap généralisé consiste à générer aléatoirement des poids bootstrap de telle sorte que les deux (ou plus) premiers moments selon le plan de l'erreur d'échantillonnage soient approchés par leurs moments correspondants selon le mécanisme bootstrap. On peut voir la plupart des méthodes bootstrap dans la littérature comme étant des cas particuliers du bootstrap généralisé. Nous discutons de considérations telles que le choix de la distribution utilisée pour générer les poids bootstrap, le choix du nombre de répliques bootstrap et la présence possible de poids bootstrap négatifs. Nous décrivons d'abord le bootstrap généralisé pour l'estimateur linéaire de Horvitz-Thompson et considérons ensuite les estimateurs non linéaires tels que ceux définis au moyen d'équations d'estimation. Nous développons également deux façons d'appliquer le bootstrap à l'estimateur par la régression généralisée du total d'une population. Nous étudions plus en profondeur le cas de l'échantillonnage de Poisson qui est souvent utilisé pour sélectionner des échantillons dans les enquêtes sur les indices de prix effectuées par les agences statistiques nationales dans le monde. Pour l'échantillonnage de Poisson, nous considérons une approche par pseudo-population et montrons que les poids bootstrap qui en résultent capturent les trois premiers moments sous le plan de l'erreur d'échantillonnage. Nous utilisons une étude par simulation et un exemple avec des données d'enquêtes réelles pour illustrer la théorie. |
---|---|
AbstractList | We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the empirical properties of bootstrap confidence intervals obtained using the percentile method. Generalized bootstrap consists of randomly generating bootstrap weights so that the first two (or more) design moments of the sampling error are tracked by the corresponding bootstrap moments. Most bootstrap methods in the literature can be viewed as special cases. We discuss issues such as the choice of the distribution used to generate bootstrap weights, the choice of the number of bootstrap replicates, and the potential occurrence of negative bootstrap weights. We first describe the generalized bootstrap for the linear Horvitz-Thompson estimator and then consider non-linear estimators such as those defined through estimating equations. We also develop two ways of bootstrapping the generalized regression estimator of a population total. We study in greater depth the case of Poisson sampling, which is often used to select samples in Price Index surveys conducted by national statistical agencies around the world. For Poisson sampling, we consider a pseudo-population approach and show that the resulting bootstrap weights capture the first three design moments of the sampling error. A simulation study and an example with real survey data are used to illustrate the theory. [PUBLICATION ABSTRACT] We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the empirical properties of bootstrap confidence intervals obtained using the percentile method. Generalized bootstrap consists of randomly generating bootstrap weights so that the first two (or more) design moments of the sampling error are tracked by the corresponding bootstrap moments. Most bootstrap methods in the literature can be viewed as special cases. We discuss issues such as the choice of the distribution used to generate bootstrap weights, the choice of the number of bootstrap replicates, and the potential occurrence of negative bootstrap weights. We first describe the generalized bootstrap for the linear Horvitz-Thompson estimator and then consider non-linear estimators such as those defined through estimating equations. We also develop two ways of bootstrapping the generalized regression estimator of a population total. We study in greater depth the case of Poisson sampling, which is often used to select samples in Price Index surveys conducted by national statistical agencies around the world. For Poisson sampling, we consider a pseudo-population approach and show that the resulting bootstrap weights capture the first three design moments of the sampling error. A simulation study and an example with real survey data are used to illustrate the theory. Nous étudions la technique du bootstrap généralisé pour des plans de sondage généraux. Nous nous concentrons principalement sur l'estimation bootstrap de la variance mais nous étudions également les propriétés empiriques des intervalles de confiance bootstrap obtenus en utilisant la méthode des percentiles. Le bootstrap généralisé consiste à générer aléatoirement des poids bootstrap de telle sorte que les deux (ou plus) premiers moments selon le plan de l'erreur d'échantillonnage soient approchés par leurs moments correspondants selon le mécanisme bootstrap. On peut voir la plupart des méthodes bootstrap dans la littérature comme étant des cas particuliers du bootstrap généralisé. Nous discutons de considérations telles que le choix de la distribution utilisée pour générer les poids bootstrap, le choix du nombre de répliques bootstrap et la présence possible de poids bootstrap négatifs. Nous décrivons d'abord le bootstrap généralisé pour l'estimateur linéaire de Horvitz-Thompson et considérons ensuite les estimateurs non linéaires tels que ceux définis au moyen d'équations d'estimation. Nous développons également deux façons d'appliquer le bootstrap à l'estimateur par la régression généralisée du total d'une population. Nous étudions plus en profondeur le cas de l'échantillonnage de Poisson qui est souvent utilisé pour sélectionner des échantillons dans les enquêtes sur les indices de prix effectuées par les agences statistiques nationales dans le monde. Pour l'échantillonnage de Poisson, nous considérons une approche par pseudo-population et montrons que les poids bootstrap qui en résultent capturent les trois premiers moments sous le plan de l'erreur d'échantillonnage. Nous utilisons une étude par simulation et un exemple avec des données d'enquêtes réelles pour illustrer la théorie. Nous étudions la technique du bootstrap généralisé pour des plans de sondage généraux. Nous nous concentrons principalement sur l’estimation bootstrap de la variance mais nous étudions également les propriétés empiriques des intervalles de confiance bootstrap obtenus en utilisant la méthode des percentiles. Le bootstrap généralisé consiste à générer aléatoirement des poids bootstrap de telle sorte que les deux (ou plus) premiers moments selon le plan de l’erreur d’échantillonnage soient approchés par leurs moments correspondants selon le mécanisme bootstrap. On peut voir la plupart des méthodes bootstrap dans la littérature comme étant des cas particuliers du bootstrap généralisé. Nous discutons de considérations telles que le choix de la distribution utilisée pour générer les poids bootstrap, le choix du nombre de répliques bootstrap et la présence possible de poids bootstrap négatifs. Nous décrivons d’abord le bootstrap généralisé pour l’estimateur linéaire de Horvitz‐Thompson et considérons ensuite les estimateurs non linéaires tels que ceux définis au moyen d’équations d’estimation. Nous développons également deux façons d’appliquer le bootstrap à l’estimateur par la régression généralisée du total d’une population. Nous étudions plus en profondeur le cas de l’échantillonnage de Poisson qui est souvent utilisé pour sélectionner des échantillons dans les enquêtes sur les indices de prix effectuées par les agences statistiques nationales dans le monde. Pour l’échantillonnage de Poisson, nous considérons une approche par pseudo‐population et montrons que les poids bootstrap qui en résultent capturent les trois premiers moments sous le plan de l’erreur d’échantillonnage. Nous utilisons une étude par simulation et un exemple avec des données d’enquêtes réelles pour illustrer la théorie. We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the empirical properties of bootstrap confidence intervals obtained using the percentile method. Generalized bootstrap consists of randomly generating bootstrap weights so that the first two (or more) design moments of the sampling error are tracked by the corresponding bootstrap moments. Most bootstrap methods in the literature can be viewed as special cases. We discuss issues such as the choice of the distribution used to generate bootstrap weights, the choice of the number of bootstrap replicates, and the potential occurrence of negative bootstrap weights. We first describe the generalized bootstrap for the linear Horvitz‐Thompson estimator and then consider non‐linear estimators such as those defined through estimating equations. We also develop two ways of bootstrapping the generalized regression estimator of a population total. We study in greater depth the case of Poisson sampling, which is often used to select samples in Price Index surveys conducted by national statistical agencies around the world. For Poisson sampling, we consider a pseudo‐population approach and show that the resulting bootstrap weights capture the first three design moments of the sampling error. A simulation study and an example with real survey data are used to illustrate the theory. Résumé Nous étudions la technique du bootstrap généralisé pour des plans de sondage généraux. Nous nous concentrons principalement sur l’estimation bootstrap de la variance mais nous étudions également les propriétés empiriques des intervalles de confiance bootstrap obtenus en utilisant la méthode des percentiles. Le bootstrap généralisé consiste à générer aléatoirement des poids bootstrap de telle sorte que les deux (ou plus) premiers moments selon le plan de l’erreur d’échantillonnage soient approchés par leurs moments correspondants selon le mécanisme bootstrap. On peut voir la plupart des méthodes bootstrap dans la littérature comme étant des cas particuliers du bootstrap généralisé. Nous discutons de considérations telles que le choix de la distribution utilisée pour générer les poids bootstrap, le choix du nombre de répliques bootstrap et la présence possible de poids bootstrap négatifs. Nous décrivons d’abord le bootstrap généralisé pour l’estimateur linéaire de Horvitz‐Thompson et considérons ensuite les estimateurs non linéaires tels que ceux définis au moyen d’équations d’estimation. Nous développons également deux façons d’appliquer le bootstrap à l’estimateur par la régression généralisée du total d’une population. Nous étudions plus en profondeur le cas de l’échantillonnage de Poisson qui est souvent utilisé pour sélectionner des échantillons dans les enquêtes sur les indices de prix effectuées par les agences statistiques nationales dans le monde. Pour l’échantillonnage de Poisson, nous considérons une approche par pseudo‐population et montrons que les poids bootstrap qui en résultent capturent les trois premiers moments sous le plan de l’erreur d’échantillonnage. Nous utilisons une étude par simulation et un exemple avec des données d’enquêtes réelles pour illustrer la théorie. Summary We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the empirical properties of bootstrap confidence intervals obtained using the percentile method. Generalized bootstrap consists of randomly generating bootstrap weights so that the first two (or more) design moments of the sampling error are tracked by the corresponding bootstrap moments. Most bootstrap methods in the literature can be viewed as special cases. We discuss issues such as the choice of the distribution used to generate bootstrap weights, the choice of the number of bootstrap replicates, and the potential occurrence of negative bootstrap weights. We first describe the generalized bootstrap for the linear Horvitz‐Thompson estimator and then consider non‐linear estimators such as those defined through estimating equations. We also develop two ways of bootstrapping the generalized regression estimator of a population total. We study in greater depth the case of Poisson sampling, which is often used to select samples in Price Index surveys conducted by national statistical agencies around the world. For Poisson sampling, we consider a pseudo‐population approach and show that the resulting bootstrap weights capture the first three design moments of the sampling error. A simulation study and an example with real survey data are used to illustrate the theory. |
Author | Beaumont, Jean-François Patak, Zdenek |
Author_xml | – sequence: 1 givenname: Jean-François surname: Beaumont fullname: Beaumont, Jean-François email: Statistical Research and Innovation Division, Statistics Canada, 100 Tunney's Pasture Driveway, R.H. Coats Bldg., 16-th floor, Ottawa, Ontario, K1A 0T6, Canada jean-francois.beaumont@statcan.gc.ca organization: Statistical Research and Innovation Division, Statistics Canada, 100 Tunney's Pasture Driveway, R.H. Coats Bldg., 16-th floor, Ottawa, Ontario, K1A 0T6, Canada E-mail: jean-francois.beaumont@statcan.gc.ca – sequence: 2 givenname: Zdenek surname: Patak fullname: Patak, Zdenek email: Business Survey Methods Division, Statistics Canada, 100 Tunney's Pasture Driveway, R.H. Coats Bldg., 17-th floor, Ottawa, Ontario, K1A 0T6, Canada zdenek.patak@statcan.gc.ca organization: Business Survey Methods Division, Statistics Canada, 100 Tunney's Pasture Driveway, R.H. Coats Bldg., 17-th floor, Ottawa, Ontario, K1A 0T6, Canada E-mail: zdenek.patak@statcan.gc.ca |
BackLink | http://econpapers.repec.org/article/blaistatr/v_3a80_3ay_3a2012_3ai_3a1_3ap_3a127-148.htm$$DView record in RePEc |
BookMark | eNqNUd9r2zAQFqODpen-hIFgz870w7a8hw260qUtJS3N1sFeDtmRF3mO5UlKm-yv77keedhTBXffodP3nfjumBx1rjOEUM5mHM-HZsZVxpOsEHImGOczxniez3avyOTQOCITJlmeKCXTN-Q4hIYxJkWRTsjPm47GtaFz0xmvW_vXrOgX52KIXve0dp4u9aZvDV1u_YPZB_po45oue1NZ3dLTGE0XrUMNR2-dDQHLZ4Ltfp2Q17Vug3n7D6fk-9fzb2cXyfXN_PLs9Dqp0rzIk1wIkTGNyXBZq1KxqmYfRV3zVabLHFHWdV7wsqzUSlY5V6pYKSllxdISr-WUvB91e-_-bE2I0Lit73AkcMbStEglejAlV-Mrb_Dz0Hu70X4PZattiDp6eACpC4Zpj4FOCgSLwTH6AYUCnhawjhsUK0axyrsQvKkPepzBsBZoYHAfBvdhWAs8rwV2SP38H7WyOB89RMdt-xKBT6PAo23N_sWD4XKxvMMK-e9GfhOi8we-kCJTXDHsJ2MffTG7Q1_735ArqTL4sZjD_e39nVpcSLiSTxFWwPQ |
CitedBy_id | crossref_primary_10_1111_rssb_12506 crossref_primary_10_1016_j_jspi_2021_07_011 crossref_primary_10_1007_s11749_019_00687_x crossref_primary_10_1080_01621459_2023_2183130 crossref_primary_10_1093_jssam_smaa004 crossref_primary_10_1080_01621459_2016_1222285 crossref_primary_10_1093_biomet_asz001 crossref_primary_10_1111_insr_12528 crossref_primary_10_1080_00949655_2013_833204 crossref_primary_10_1214_16_SS113 crossref_primary_10_21307_stattrans_2021_009 crossref_primary_10_3150_19_BEJ1138 crossref_primary_10_1111_stan_12145 crossref_primary_10_1007_s10260_021_00618_x crossref_primary_10_1007_s42081_020_00083_y crossref_primary_10_2478_jos_2021_0045 crossref_primary_10_1016_j_csda_2012_03_011 crossref_primary_10_1177_1687814019836849 crossref_primary_10_15678_KREM_2024_1004_0207 crossref_primary_10_1093_jssam_smab047 crossref_primary_10_1111_insr_12313 crossref_primary_10_1093_biomet_ast010 crossref_primary_10_1214_15_AOS1348 crossref_primary_10_1093_jssam_smab008 crossref_primary_10_1093_jssam_smab029 crossref_primary_10_3390_stats5020019 crossref_primary_10_1007_s00180_014_0495_0 crossref_primary_10_1177_0282423X251314363 crossref_primary_10_3390_stats5020031 crossref_primary_10_3390_stats5010016 |
Cites_doi | 10.1214/aos/1176350142 10.2307/20076068 10.1214/aos/1176348787 10.1198/jasa.2011.tm09767 10.1007/978-1-4612-2532-4 10.2307/1402588 10.1093/biomet/93.2.269 10.1080/01621459.1988.10478591 10.1111/j.1467-9868.2005.00489.x 10.1093/biomet/76.3.527 10.2307/3315464 |
ContentType | Journal Article |
Copyright | 2012 International Statistical Institute 2012 The Authors. International Statistical Review © 2012 International Statistical Institute Copyright John Wiley & Sons, Inc. Apr 2012 |
Copyright_xml | – notice: 2012 International Statistical Institute – notice: 2012 The Authors. International Statistical Review © 2012 International Statistical Institute – notice: Copyright John Wiley & Sons, Inc. Apr 2012 |
DBID | BSCLL AAYXX CITATION DKI X2L 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1111/j.1751-5823.2011.00166.x |
DatabaseName | Istex CrossRef RePEc IDEAS RePEc Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1751-5823 |
EndPage | 148 |
ExternalDocumentID | 2639049411 blaistatr_v_3a80_3ay_3a2012_3ai_3a1_3ap_3a127_148_htm 10_1111_j_1751_5823_2011_00166_x INSR166 23257170 ark_67375_WNG_VPVR7NH3_J |
Genre | article Feature |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 29J 31~ 33P 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5RE 5VS 66C 6OB 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHHS AAKYL AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABDBF ABEML ABFAN ABIVO ABJNI ABLJU ABPVW ABQDR ABXSQ ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACDIW ACGFO ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADODI ADOZA ADULT ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AELLO AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFVYC AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR AKBRZ ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BHOJU BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DU5 EBS ECEWR EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GIFXF GODZA H.T H.X HF~ HGD HGLYW HQ6 HVGLF HZ~ H~9 IPSME IX1 J0M JAA JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K RBU RNS ROL RPE RX1 SA0 SUPJJ TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 YYP ZZTAW ~02 ~IA ~WT AAHQN AAMMB AAMNL AANHP AAWIL AAYCA ABAWQ ACHJO ACRPL ACUHS ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGLNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIHAF ALRMG ALVPJ AMVHM AAYXX AGHNM CITATION 02 0R 31 3N AAPBV ABHUG ABPTK ACXME ADAWD ADDAD AFVGU AFXKK AGJLS AS BDTQF DKI EFSUC GA HZ IA IPNFZ NF P4A PQEST RIG WT X X2L XFK XHC Y3 7SC 8FD H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c4686-622250a225e13f7b70cf092ff1d5ab6ff13ff681bbc7d3c61778d7333c04b81b3 |
IEDL.DBID | DR2 |
ISSN | 0306-7734 |
IngestDate | Fri Jul 25 18:58:16 EDT 2025 Wed Aug 18 03:11:05 EDT 2021 Tue Jul 01 00:48:46 EDT 2025 Thu Apr 24 23:09:30 EDT 2025 Wed Jan 22 16:46:01 EST 2025 Thu Jul 03 21:14:03 EDT 2025 Wed Oct 30 09:48:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4686-622250a225e13f7b70cf092ff1d5ab6ff13ff681bbc7d3c61778d7333c04b81b3 |
Notes | ark:/67375/WNG-VPVR7NH3-J ArticleID:INSR166 istex:165A00788CB3C6301F175DF5DC4A3E65FEF24DE4 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1004484382 |
PQPubID | 105652 |
PageCount | 22 |
ParticipantIDs | proquest_journals_1004484382 repec_primary_blaistatr_v_3a80_3ay_3a2012_3ai_3a1_3ap_3a127_148_htm crossref_primary_10_1111_j_1751_5823_2011_00166_x crossref_citationtrail_10_1111_j_1751_5823_2011_00166_x wiley_primary_10_1111_j_1751_5823_2011_00166_x_INSR166 jstor_primary_23257170 istex_primary_ark_67375_WNG_VPVR7NH3_J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2012 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: April 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Hoboken |
PublicationSeriesTitle | International Statistical Review |
PublicationTitle | International statistical review |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Blackwell Publishing International Statistical Institute John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Publishing – name: International Statistical Institute – name: John Wiley & Sons, Inc |
References | Binder, D.A. (1983). On the variances of asymptotically normal estimators from complex surveys. Int. Statist. Rev., 51, 279-292. Sitter, R.R. (1992). Comparing three bootstrap methods for survey data. Canad. J. Statist., 20, 135-154. Rao, J.N.K. & Wu, C.F.J. (1988). Resampling inference with complex survey data. J. Amer. Statist. Assoc., 83, 231-241. Särndal, C.-E., Swensson, B. & Wretman, J.H. (1989). The weighted residual technique for estimating the variance of the general regression estimator of the finite population total. Biometrika, 76, 527-537. Chipperfield, J. & Preston, J. (2007). Efficient bootstrap for business surveys. Survey Methodol., 33, 167-172. Bertail, P. & Combris, P. (1997). Bootstrap généralisé d'un sondage. Annales d'économie et de statistique, 46, 49-83. Antal, E. & Tillé, Y. (2011). A direct bootstrap method for complex sampling designs from a finite population. J. Amer. Statist. Assoc., 106, 534-543. Thompson, M.E. & Wu, C. (2008). Simulation-based randomized systematic PPS sampling under substitution of units. Survey Methodol., 34, 3-10. Fattorini, L. (2006). Applying the Horvitz-Thompson criterion in complex designs: a computer-intensive perspective for estimating inclusion probabilities. Biometrika, 93, 269-278. Mason, D.M. & Newton, M.A. (1992). A rank statistics approach to the consistency of a general bootstrap. Ann. Statist., 20, 1611-1624. Rao, J.N.K., Wu, C.F.J. & Yue, K. (1992). Some recent work on resampling methods for complex surveys. Survey Methodol., 18, 209-217. Valliant, R. (2002). Variance estimation for the general regression estimator. Survey Methodol., 28, 103-114. Berger, Y.G. & Skinner, C.J. (2005). A jackknife variance estimator for unequal probability sampling. J. R. Statist. Soc. Ser. B, 67, 79-89. Nigam, A.K. & Rao, J.N.K. (1996). On balanced bootstrap for stratified multistage samples. Statist. Sinica, 6, 199-214. Barbe, P. & Bertail, P. (1995). The Weighted Bootstrap. Monograph, Lecture Notes in Statistics. New York : Springer-Verlag. Särndal, C.-E. (1996). Efficient estimators with simple variance in unequal probability sampling. J. Amer. Statist. Assoc., 91, 1289-1300. Wu, C.F.J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Stat., 14, 1261-1295. 2006; 93 2002; 28 2011; 106 1989; 76 2001 1997; 46 1986; 14 2009 2008 1992; 18 1983; 51 2007 2008; 34 1995 1988; 83 1980 1996; 91 1992; 20 2007; 33 2005; 67 1989 1996; 6 Fay R.E. (e_1_2_11_11_1) 1989 Saavedra P.J. (e_1_2_11_18_1) 2001 e_1_2_11_10_1 e_1_2_11_21_1 Rao J.N.K. (e_1_2_11_17_1) 1992; 18 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_24_1 e_1_2_11_8_1 e_1_2_11_7_1 Thompson M.E. (e_1_2_11_22_1) 2008; 34 e_1_2_11_5_1 Gross S. (e_1_2_11_12_1) 1980 e_1_2_11_16_1 e_1_2_11_3_1 Beaumont J.‐F. (e_1_2_11_4_1) 2009 e_1_2_11_2_1 e_1_2_11_19_1 Valliant R. (e_1_2_11_23_1) 2002; 28 Nigam A.K. (e_1_2_11_15_1) 1996; 6 Bertail P. (e_1_2_11_6_1) 1997; 46 Chipperfield J. (e_1_2_11_9_1) 2007; 33 Särndal C.‐E. (e_1_2_11_20_1) 1996; 91 |
References_xml | – reference: Bertail, P. & Combris, P. (1997). Bootstrap généralisé d'un sondage. Annales d'économie et de statistique, 46, 49-83. – reference: Valliant, R. (2002). Variance estimation for the general regression estimator. Survey Methodol., 28, 103-114. – reference: Berger, Y.G. & Skinner, C.J. (2005). A jackknife variance estimator for unequal probability sampling. J. R. Statist. Soc. Ser. B, 67, 79-89. – reference: Rao, J.N.K., Wu, C.F.J. & Yue, K. (1992). Some recent work on resampling methods for complex surveys. Survey Methodol., 18, 209-217. – reference: Barbe, P. & Bertail, P. (1995). The Weighted Bootstrap. Monograph, Lecture Notes in Statistics. New York : Springer-Verlag. – reference: Chipperfield, J. & Preston, J. (2007). Efficient bootstrap for business surveys. Survey Methodol., 33, 167-172. – reference: Binder, D.A. (1983). On the variances of asymptotically normal estimators from complex surveys. Int. Statist. Rev., 51, 279-292. – reference: Rao, J.N.K. & Wu, C.F.J. (1988). Resampling inference with complex survey data. J. Amer. Statist. Assoc., 83, 231-241. – reference: Mason, D.M. & Newton, M.A. (1992). A rank statistics approach to the consistency of a general bootstrap. Ann. Statist., 20, 1611-1624. – reference: Sitter, R.R. (1992). Comparing three bootstrap methods for survey data. Canad. J. Statist., 20, 135-154. – reference: Thompson, M.E. & Wu, C. (2008). Simulation-based randomized systematic PPS sampling under substitution of units. Survey Methodol., 34, 3-10. – reference: Wu, C.F.J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Stat., 14, 1261-1295. – reference: Fattorini, L. (2006). Applying the Horvitz-Thompson criterion in complex designs: a computer-intensive perspective for estimating inclusion probabilities. Biometrika, 93, 269-278. – reference: Särndal, C.-E., Swensson, B. & Wretman, J.H. (1989). The weighted residual technique for estimating the variance of the general regression estimator of the finite population total. Biometrika, 76, 527-537. – reference: Särndal, C.-E. (1996). Efficient estimators with simple variance in unequal probability sampling. J. Amer. Statist. Assoc., 91, 1289-1300. – reference: Antal, E. & Tillé, Y. (2011). A direct bootstrap method for complex sampling designs from a finite population. J. Amer. Statist. Assoc., 106, 534-543. – reference: Nigam, A.K. & Rao, J.N.K. (1996). On balanced bootstrap for stratified multistage samples. Statist. Sinica, 6, 199-214. – volume: 18 start-page: 209 year: 1992 end-page: 217 article-title: Some recent work on resampling methods for complex surveys publication-title: Survey Methodol. – volume: 34 start-page: 3 year: 2008 end-page: 10 article-title: Simulation‐based randomized systematic PPS sampling under substitution of units publication-title: Survey Methodol. – volume: 76 start-page: 527 year: 1989 end-page: 537 article-title: The weighted residual technique for estimating the variance of the general regression estimator of the finite population total publication-title: Biometrika – year: 2009 – volume: 46 start-page: 49 year: 1997 end-page: 83 article-title: Bootstrap généralisé d’un sondage publication-title: Annales d’économie et de statistique – volume: 6 start-page: 199 year: 1996 end-page: 214 article-title: On balanced bootstrap for stratified multistage samples publication-title: Statist. Sinica – volume: 20 start-page: 135 year: 1992 end-page: 154 article-title: Comparing three bootstrap methods for survey data publication-title: Canad. J. Statist. – volume: 106 start-page: 534 year: 2011 end-page: 543 article-title: A direct bootstrap method for complex sampling designs from a finite population publication-title: J. Amer. Statist. Assoc. – year: 2007 – year: 2008 – year: 2001 – volume: 28 start-page: 103 year: 2002 end-page: 114 article-title: Variance estimation for the general regression estimator publication-title: Survey Methodol. – volume: 93 start-page: 269 year: 2006 end-page: 278 article-title: Applying the Horvitz‐Thompson criterion in complex designs: a computer‐intensive perspective for estimating inclusion probabilities publication-title: Biometrika – year: 1995 – volume: 20 start-page: 1611 year: 1992 end-page: 1624 article-title: A rank statistics approach to the consistency of a general bootstrap publication-title: Ann. Statist. – start-page: 212 year: 1989 end-page: 217 – volume: 33 start-page: 167 year: 2007 end-page: 172 article-title: Efficient bootstrap for business surveys publication-title: Survey Methodol. – volume: 83 start-page: 231 year: 1988 end-page: 241 article-title: Resampling inference with complex survey data publication-title: J. Amer. Statist. Assoc. – volume: 91 start-page: 1289 year: 1996 end-page: 1300 article-title: Efficient estimators with simple variance in unequal probability sampling publication-title: J. Amer. Statist. Assoc. – volume: 67 start-page: 79 year: 2005 end-page: 89 article-title: A jackknife variance estimator for unequal probability sampling publication-title: J. R. Statist. Soc. – volume: 51 start-page: 279 year: 1983 end-page: 292 article-title: On the variances of asymptotically normal estimators from complex surveys publication-title: Int. Statist. Rev. – start-page: 181 year: 1980 end-page: 184 – volume: 14 start-page: 1261 year: 1986 end-page: 1295 article-title: Jackknife, bootstrap and other resampling methods in regression analysis publication-title: Ann. Stat. – ident: e_1_2_11_24_1 doi: 10.1214/aos/1176350142 – volume: 46 start-page: 49 year: 1997 ident: e_1_2_11_6_1 article-title: Bootstrap généralisé d’un sondage publication-title: Annales d’économie et de statistique doi: 10.2307/20076068 – ident: e_1_2_11_13_1 – volume: 18 start-page: 209 year: 1992 ident: e_1_2_11_17_1 article-title: Some recent work on resampling methods for complex surveys publication-title: Survey Methodol. – volume-title: Proceedings of the Section on Survey Research Methods year: 2001 ident: e_1_2_11_18_1 – volume: 28 start-page: 103 year: 2002 ident: e_1_2_11_23_1 article-title: Variance estimation for the general regression estimator publication-title: Survey Methodol. – ident: e_1_2_11_14_1 doi: 10.1214/aos/1176348787 – ident: e_1_2_11_2_1 doi: 10.1198/jasa.2011.tm09767 – volume: 91 start-page: 1289 year: 1996 ident: e_1_2_11_20_1 article-title: Efficient estimators with simple variance in unequal probability sampling publication-title: J. Amer. Statist. Assoc. – ident: e_1_2_11_3_1 doi: 10.1007/978-1-4612-2532-4 – ident: e_1_2_11_7_1 doi: 10.2307/1402588 – ident: e_1_2_11_10_1 doi: 10.1093/biomet/93.2.269 – volume-title: Proceedings of the 57th Session of the International Statistical Institute year: 2009 ident: e_1_2_11_4_1 – volume: 33 start-page: 167 year: 2007 ident: e_1_2_11_9_1 article-title: Efficient bootstrap for business surveys publication-title: Survey Methodol. – volume: 6 start-page: 199 year: 1996 ident: e_1_2_11_15_1 article-title: On balanced bootstrap for stratified multistage samples publication-title: Statist. Sinica – ident: e_1_2_11_16_1 doi: 10.1080/01621459.1988.10478591 – start-page: 212 volume-title: Proceedings of the Section on Survey Research Methods year: 1989 ident: e_1_2_11_11_1 – start-page: 181 volume-title: Proceedings of the Section on Survey Research Methods year: 1980 ident: e_1_2_11_12_1 – ident: e_1_2_11_5_1 doi: 10.1111/j.1467-9868.2005.00489.x – ident: e_1_2_11_19_1 doi: 10.1093/biomet/76.3.527 – ident: e_1_2_11_8_1 – ident: e_1_2_11_21_1 doi: 10.2307/3315464 – volume: 34 start-page: 3 year: 2008 ident: e_1_2_11_22_1 article-title: Simulation‐based randomized systematic PPS sampling under substitution of units publication-title: Survey Methodol. |
SSID | ssj0003284 |
Score | 2.0973585 |
Snippet | We study the generalized bootstrap technique under general sampling designs. We focus mainly on bootstrap variance estimation but we also investigate the... Résumé Nous étudions la technique du bootstrap généralisé pour des plans de sondage généraux. Nous nous concentrons principalement sur l’estimation bootstrap... Nous étudions la technique du bootstrap généralisé pour des plans de sondage généraux. Nous nous concentrons principalement sur l’estimation bootstrap de la... |
SourceID | proquest repec crossref wiley jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 127 |
SubjectTerms | Bootstrap method Bootstrap weight Confidence interval estimating equation Estimating techniques Estimation methods Estimators Gaussian distributions generalized regression estimator Poisson distribution Population estimates pseudo-population Sample size Sampling Sampling distributions Sampling errors Simulation Statistical variance Survey sampling variance estimation weighted bootstrap |
Title | On the Generalized Bootstrap for Sample Surveys with Special Attention to Poisson Sampling |
URI | https://api.istex.fr/ark:/67375/WNG-VPVR7NH3-J/fulltext.pdf https://www.jstor.org/stable/23257170 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1751-5823.2011.00166.x http://econpapers.repec.org/article/blaistatr/v_3a80_3ay_3a2012_3ai_3a1_3ap_3a127-148.htm https://www.proquest.com/docview/1004484382 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQdtmF3xOBMfmAuKVK4sR2jjAY3RBlatmYuFi2G4uqo6kydxr763nPSQOdOEyIg-MoyrPsl_fs7zkvXwh5pV2ZC2dKQG7cxLnhZWyEk5hFWJTOOJ0I_MD504gPT_Pj8-K8y3_Cb2Fafoh-ww09I8zX6ODaXG46uSjSuJAZ65g4Ab3wAeLJlHGk0X83_s0kxTLZMklBAC0Ey28l9fytoY2VahuVfr1OWtyAo9tNtazsJrgNq9PhAzJfj6tNSpkPVt4M7M0tysf_M_CH5H4HYumb1uoekXvV4jHZQdza0j4_Id8-LyhAS9qxWs9uqil9W9ceN1aWFIAynWjkJaaTVXMFxkRxP5hOYIQzbNj7NguT-pqe1GAbcBoEYKF9Sk4P3385GMbdbxxim3PJY44hZaLhUKXMCSMS65Iycy6dFtpwqJlzHOCzsWLKLEAqIaeCMWaT3MBltku2FvWiegaPzCUWJgxZOC0gstMa8U8K7Za2qHjFIyLWj0zZjuMcf7Vxof6IdUB5CpWnUHkqKE9dRyTtJZctz8cdZF4Hq-gFdDPHPDlRqK-jD-rs5GwsRkOmjiOyG8ymvxFgbAFxdBKRvbUdqW7uuFSBw0_iC9qIHATb6uXMhcaowjfqSjEtEzj8hAKdyqCaQUmhLLHOBER1Un33PyLCgzndeVzqaDQZw9nzfxV8QXawS22C0x7Z8s2qegnYzZt98MqPR_vBN38B0cwykQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYmehiX_UbLBpsP026pkjixk-OAscIgQy0wtItlu7FW0TVVSBHjr997Thoo2gFNOzi2ojwnfnm2v-e8fCbkg7JZLKzOALlx7ceaZ74WNsUowiSz2qpA4A_ORzkfnMYH58l5ux0Q_gvT8EN0C27YM9x4jR0cF6RXe7lIQj9JI9ZScQJ84X0AlD24UYCe2O7wlkuKRWnDJQUutBAsvhfW87eaVuaqHqr9ehm2uAJIe1UxL8wqvHXz095TMl22rAlLuegvat03N_dIH_9T05-RJy2OpZ8aw3tOHhWzF2QdoWvD_PyS_Pg2o4AuaUtsPbkpxnS7LGtcW5lTwMp0pJCamI4W1RXYE8UlYTqCJk6w4rpuAjFpXdLjEswDik4A5tpX5HTv88nOwG93cvBNzFPuc_QqAwWHImRWaBEYG2SRteE4UZpDzqzlgKC1EWNmAFWJdCwYYyaINZxmG2RtVs6K1_DObGBgzEgTqwQ4d0ohBAqh3swkBS-4R8TynUnT0pzjbhtTecfdAeVJVJ5E5UmnPHntkbCTnDdUHw-Q-ejMohNQ1QWGyolEfs-_yLPjs6HIB0weeGTD2U13ISDZBFzpwCObS0OS7fBxKR2NX4rfaD2y44yrk9NThY5FXckryVQawOE3JHioCLIJpBDSHPNIgGOXyp_1L49wZ08Pbpfcz0dDKL35V8H35PHg5OhQHu7nX9-SdXy8Jt5pk6zV1aLYAihX63eui_4B0101tw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQKqFd-D0RGOAD4pYqqRM7OcKgdANC1bIxcbFsJ9aqjiYK6TT21_OekwY6cZgQB8dRlGfZL8_295znz4S8VDaNhNUpIDeu_Ujz1NfCJhhFGKdWWxUI3OD8KeOT4-joND7t4p9wL0zLD9EvuGHPcOM1dvAqt9udXMShHycj1jFxAnrhQ8CTg4gDsECANPtNJcVGSUslBR60ECy6FtXzt5K2pqoBav1yE7W4hUcHdVEVZhvduulpfJcsNw1ro1KWw3Wjh-bqGufj_2n5PXKnQ7H0dWt298mtYvWA7CJwbXmfH5Jvn1cUsCXtaK0XV0VO35RlgysrFQWkTOcKiYnpfF1fgDVRXBCmc2jhAgtumjYMkzYlnZZgHHDrBGCmfUSOx---HEz87hwH30Q84T5HnzJQcClCZoUWgbFBOrI2zGOlOeTMWg74WRuRMwOYSiS5YIyZINLwmO2RnVW5Kh7DJ7OBgREjia0S4NophQAohHJTExe84B4Rm08mTUdyjmdtnMs_nB1QnkTlSVSedMqTlx4Je8mqJfq4gcwrZxW9gKqXGCgnYvk1ey9PpiczkU2YPPLInjOb_kXAsTE40oFH9jd2JLvB44d0JH4J_qH1yIGzrV5Onyt0K5paXkimkgAuPyFBpUaQLSCFkCrMRwLcukSeNd89wp053bhd8jCbz-Duyb8KviC3p2_H8uNh9uEp2cXatcFO-2SnqdfFM8BxjX7uOugv7G00Zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Generalized+Bootstrap+for+Sample+Surveys+with+Special+Attention+to+Poisson+Sampling&rft.jtitle=International+statistical+review&rft.au=Beaumont%2C+Jean-Fran%C3%A7ois&rft.au=Patak%2C+Zdenek&rft.date=2012-04-01&rft.pub=Blackwell+Publishing&rft.issn=0306-7734&rft.eissn=1751-5823&rft.volume=80&rft.issue=1&rft.spage=127&rft.epage=148&rft_id=info:doi/10.1111%2Fj.1751-5823.2011.00166.x&rft.externalDocID=23257170 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-7734&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-7734&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-7734&client=summon |