Relationship Between White Matter Hyperintensities, Cortical Thickness, and Cognition

BACKGROUND AND PURPOSE—White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can resu...

Full description

Saved in:
Bibliographic Details
Published inStroke (1970) Vol. 46; no. 2; pp. 425 - 432
Main Authors Tuladhar, Anil M., Reid, Andrew T., Shumskaya, Elena, de Laat, Karlijn F., van Norden, Anouk G.W., van Dijk, Ewoud J., Norris, David G., de Leeuw, Frank-Erik
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND AND PURPOSE—White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can result in an additional cognitive impairment. Here, we investigated the relationships between WMH, cortical thickness, and cognition in subjects with cerebral small vessel disease. METHODS—A total of 426 subjects with cerebral small vessel disease were included, aged between 50 and 85 years, without dementia, and underwent MRI scanning. Cortical thickness analysis was performed, and WMH were manually segmented. Graph theory was applied to examine the relationship between network measures and WMH, and structural covariance matrices were constructed using inter-regional cortical thickness correlations. RESULTS—Higher WMH load was related to lower cortical thickness in frontotemporal regions, whereas in paracentral regions, this was related to higher cortical thickness. Network analyses revealed that measures of network disruption were associated with WMH and cognitive performance. Furthermore, WMH in specific white matter tracts were related to regional-specific cortical thickness and network measures. Cognitive performances were related to cortical thickness in frontotemporal regions and network measures, and not to WMH, while controlling for cortical thickness. CONCLUSIONS—These cross-sectional results suggest that cortical changes (regional-specific damage and network breakdown), mediated (in)directly by WMH (tract-specific damage) and other factors (eg, vascular risk factors), might lead to cognitive decline. These findings have implications in understanding the relationship between WMH, cortical morphology, and the possible attendant cognitive decline and eventually dementia.
AbstractList White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can result in an additional cognitive impairment. Here, we investigated the relationships between WMH, cortical thickness, and cognition in subjects with cerebral small vessel disease.BACKGROUND AND PURPOSEWhite matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can result in an additional cognitive impairment. Here, we investigated the relationships between WMH, cortical thickness, and cognition in subjects with cerebral small vessel disease.A total of 426 subjects with cerebral small vessel disease were included, aged between 50 and 85 years, without dementia, and underwent MRI scanning. Cortical thickness analysis was performed, and WMH were manually segmented. Graph theory was applied to examine the relationship between network measures and WMH, and structural covariance matrices were constructed using inter-regional cortical thickness correlations.METHODSA total of 426 subjects with cerebral small vessel disease were included, aged between 50 and 85 years, without dementia, and underwent MRI scanning. Cortical thickness analysis was performed, and WMH were manually segmented. Graph theory was applied to examine the relationship between network measures and WMH, and structural covariance matrices were constructed using inter-regional cortical thickness correlations.Higher WMH load was related to lower cortical thickness in frontotemporal regions, whereas in paracentral regions, this was related to higher cortical thickness. Network analyses revealed that measures of network disruption were associated with WMH and cognitive performance. Furthermore, WMH in specific white matter tracts were related to regional-specific cortical thickness and network measures. Cognitive performances were related to cortical thickness in frontotemporal regions and network measures, and not to WMH, while controlling for cortical thickness.RESULTSHigher WMH load was related to lower cortical thickness in frontotemporal regions, whereas in paracentral regions, this was related to higher cortical thickness. Network analyses revealed that measures of network disruption were associated with WMH and cognitive performance. Furthermore, WMH in specific white matter tracts were related to regional-specific cortical thickness and network measures. Cognitive performances were related to cortical thickness in frontotemporal regions and network measures, and not to WMH, while controlling for cortical thickness.These cross-sectional results suggest that cortical changes (regional-specific damage and network breakdown), mediated (in)directly by WMH (tract-specific damage) and other factors (eg, vascular risk factors), might lead to cognitive decline. These findings have implications in understanding the relationship between WMH, cortical morphology, and the possible attendant cognitive decline and eventually dementia.CONCLUSIONSThese cross-sectional results suggest that cortical changes (regional-specific damage and network breakdown), mediated (in)directly by WMH (tract-specific damage) and other factors (eg, vascular risk factors), might lead to cognitive decline. These findings have implications in understanding the relationship between WMH, cortical morphology, and the possible attendant cognitive decline and eventually dementia.
BACKGROUND AND PURPOSE—White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can result in an additional cognitive impairment. Here, we investigated the relationships between WMH, cortical thickness, and cognition in subjects with cerebral small vessel disease. METHODS—A total of 426 subjects with cerebral small vessel disease were included, aged between 50 and 85 years, without dementia, and underwent MRI scanning. Cortical thickness analysis was performed, and WMH were manually segmented. Graph theory was applied to examine the relationship between network measures and WMH, and structural covariance matrices were constructed using inter-regional cortical thickness correlations. RESULTS—Higher WMH load was related to lower cortical thickness in frontotemporal regions, whereas in paracentral regions, this was related to higher cortical thickness. Network analyses revealed that measures of network disruption were associated with WMH and cognitive performance. Furthermore, WMH in specific white matter tracts were related to regional-specific cortical thickness and network measures. Cognitive performances were related to cortical thickness in frontotemporal regions and network measures, and not to WMH, while controlling for cortical thickness. CONCLUSIONS—These cross-sectional results suggest that cortical changes (regional-specific damage and network breakdown), mediated (in)directly by WMH (tract-specific damage) and other factors (eg, vascular risk factors), might lead to cognitive decline. These findings have implications in understanding the relationship between WMH, cortical morphology, and the possible attendant cognitive decline and eventually dementia.
White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can result in an additional cognitive impairment. Here, we investigated the relationships between WMH, cortical thickness, and cognition in subjects with cerebral small vessel disease. A total of 426 subjects with cerebral small vessel disease were included, aged between 50 and 85 years, without dementia, and underwent MRI scanning. Cortical thickness analysis was performed, and WMH were manually segmented. Graph theory was applied to examine the relationship between network measures and WMH, and structural covariance matrices were constructed using inter-regional cortical thickness correlations. Higher WMH load was related to lower cortical thickness in frontotemporal regions, whereas in paracentral regions, this was related to higher cortical thickness. Network analyses revealed that measures of network disruption were associated with WMH and cognitive performance. Furthermore, WMH in specific white matter tracts were related to regional-specific cortical thickness and network measures. Cognitive performances were related to cortical thickness in frontotemporal regions and network measures, and not to WMH, while controlling for cortical thickness. These cross-sectional results suggest that cortical changes (regional-specific damage and network breakdown), mediated (in)directly by WMH (tract-specific damage) and other factors (eg, vascular risk factors), might lead to cognitive decline. These findings have implications in understanding the relationship between WMH, cortical morphology, and the possible attendant cognitive decline and eventually dementia.
Author van Norden, Anouk G.W.
Tuladhar, Anil M.
van Dijk, Ewoud J.
de Leeuw, Frank-Erik
Norris, David G.
de Laat, Karlijn F.
Shumskaya, Elena
Reid, Andrew T.
AuthorAffiliation From the Department of Neurology, Center for Neuroscience (A.M.T., A.G.W.v.N., E.J.v.D., F.-E.d.L.), Centre for Cognitive Neuroimaging (E.S., D.G.N.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Institute of Neuroscience and Medicine (INM-1), Research Center Julich, Julich, Germany (A.T.R.); Department of Neurology, HagaZiekenhuis Den Haag, Den Haag, The Netherlands (K.F.d.L.); Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany (D.G.N.); and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands (D.G.N.)
AuthorAffiliation_xml – name: From the Department of Neurology, Center for Neuroscience (A.M.T., A.G.W.v.N., E.J.v.D., F.-E.d.L.), Centre for Cognitive Neuroimaging (E.S., D.G.N.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Institute of Neuroscience and Medicine (INM-1), Research Center Julich, Julich, Germany (A.T.R.); Department of Neurology, HagaZiekenhuis Den Haag, Den Haag, The Netherlands (K.F.d.L.); Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany (D.G.N.); and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands (D.G.N.)
Author_xml – sequence: 1
  givenname: Anil
  surname: Tuladhar
  middlename: M.
  fullname: Tuladhar, Anil M.
  organization: From the Department of Neurology, Center for Neuroscience (A.M.T., A.G.W.v.N., E.J.v.D., F.-E.d.L.), Centre for Cognitive Neuroimaging (E.S., D.G.N.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Institute of Neuroscience and Medicine (INM-1), Research Center Julich, Julich, Germany (A.T.R.); Department of Neurology, HagaZiekenhuis Den Haag, Den Haag, The Netherlands (K.F.d.L.); Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany (D.G.N.); and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands (D.G.N.)
– sequence: 2
  givenname: Andrew
  surname: Reid
  middlename: T.
  fullname: Reid, Andrew T.
– sequence: 3
  givenname: Elena
  surname: Shumskaya
  fullname: Shumskaya, Elena
– sequence: 4
  givenname: Karlijn
  surname: de Laat
  middlename: F.
  fullname: de Laat, Karlijn F.
– sequence: 5
  givenname: Anouk
  surname: van Norden
  middlename: G.W.
  fullname: van Norden, Anouk G.W.
– sequence: 6
  givenname: Ewoud
  surname: van Dijk
  middlename: J.
  fullname: van Dijk, Ewoud J.
– sequence: 7
  givenname: David
  surname: Norris
  middlename: G.
  fullname: Norris, David G.
– sequence: 8
  givenname: Frank-Erik
  surname: de Leeuw
  fullname: de Leeuw, Frank-Erik
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25572411$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFu1DAURS1URKeFP0AoSxZNsR3bcdgNo5apWlSpTMXSekleiKnHGWyPRv173E7bBQtYPd2ne-7iHJEDP3kk5D2jp4wp9un76ub68my-nOcoTimtmVCvyIxJLkqhuD4gM0qrpuSiaQ7JUYy_KKW80vINOeRS1lwwNiO3N-gg2cnH0W6KL5h2iL74MdqExTdICUOxvN9gsD6hjzZZjCfFYgrJduCK1Wi7O48x_8D3-f_T24ext-T1AC7iu6d7TG7Pz1aLZXl1_fViMb8qO6G0KkXfQtdpWfdaSipBAagWUfZSDXWrBJdYt5WGCnk1tA2rQFfQNxwkE7SWQ3VMPu53N2H6vcWYzNrGDp0Dj9M2GqayDa50zXP1w1N1266xN5tg1xDuzbOKXPi8L3RhijHgYDqbHtWkANYZRs2Dd_PiPUdh9t4zLP6Cn_f_g-k9tptcVh3v3HaHwYwILo3_Rv8AoJWY9g
CitedBy_id crossref_primary_10_1177_1747493019874732
crossref_primary_10_3233_JAD_230687
crossref_primary_10_1007_s10519_024_10194_x
crossref_primary_10_1038_s41598_020_66013_w
crossref_primary_10_1016_j_cccb_2024_100218
crossref_primary_10_1212_WNL_0000000000007772
crossref_primary_10_3389_fnagi_2022_961661
crossref_primary_10_1007_s00062_020_00928_9
crossref_primary_10_1177_1747493019851291
crossref_primary_10_1016_j_nbd_2022_105750
crossref_primary_10_1093_pm_pnaa271
crossref_primary_10_1002_hbm_22959
crossref_primary_10_1097_WNR_0000000000002031
crossref_primary_10_1093_gerona_glad182
crossref_primary_10_1016_j_neuint_2017_02_002
crossref_primary_10_1002_hbm_23922
crossref_primary_10_1007_s00415_018_9077_3
crossref_primary_10_1016_j_advms_2022_06_002
crossref_primary_10_1016_j_neurobiolaging_2021_11_007
crossref_primary_10_3389_fnagi_2024_1429098
crossref_primary_10_3389_fnagi_2022_782738
crossref_primary_10_1002_dad2_12022
crossref_primary_10_2139_ssrn_4155270
crossref_primary_10_1002_hbm_23479
crossref_primary_10_1002_hbm_23754
crossref_primary_10_1017_S0033291715000811
crossref_primary_10_1161_CIRCRESAHA_116_308426
crossref_primary_10_1016_j_neuroscience_2021_05_013
crossref_primary_10_1002_hbm_23032
crossref_primary_10_12677_IJPN_2016_52004
crossref_primary_10_1017_S0954422418000185
crossref_primary_10_1002_agm2_12073
crossref_primary_10_1016_j_jalz_2016_12_007
crossref_primary_10_1109_ACCESS_2018_2871977
crossref_primary_10_1016_j_nicl_2019_102037
crossref_primary_10_3389_fnins_2020_598868
crossref_primary_10_1016_j_bspc_2016_10_007
crossref_primary_10_1002_hbm_24877
crossref_primary_10_1016_j_jalz_2016_06_2363
crossref_primary_10_1016_j_nicl_2015_07_002
crossref_primary_10_3233_JAD_210587
crossref_primary_10_3389_fnagi_2023_1267434
crossref_primary_10_1002_hbm_26656
crossref_primary_10_1038_s41467_024_53689_1
crossref_primary_10_1186_s12883_016_0638_8
crossref_primary_10_1007_s11682_016_9531_8
crossref_primary_10_1111_bpa_12460
crossref_primary_10_1007_s00429_016_1264_3
crossref_primary_10_1016_j_jalz_2016_06_004
crossref_primary_10_1038_s41582_018_0014_y
crossref_primary_10_1016_j_nicl_2019_102048
crossref_primary_10_1111_ene_14593
crossref_primary_10_3389_fneur_2020_00250
crossref_primary_10_3390_brainsci13040616
crossref_primary_10_1177_0271678X20974170
crossref_primary_10_3389_fneur_2021_752762
crossref_primary_10_1161_STROKEAHA_116_015084
crossref_primary_10_1017_S1041610224000607
crossref_primary_10_1097_PSY_0000000000000448
crossref_primary_10_3389_fnins_2024_1473462
crossref_primary_10_3389_fneur_2022_800614
crossref_primary_10_1016_j_ajog_2017_03_008
crossref_primary_10_1016_j_jns_2021_117518
crossref_primary_10_1016_j_nicl_2022_103200
crossref_primary_10_1161_STROKEAHA_116_016044
crossref_primary_10_1177_0271678X15625352
crossref_primary_10_1177_2396987318776088
crossref_primary_10_4103_0028_3886_271245
crossref_primary_10_1007_s12975_016_0473_7
crossref_primary_10_1016_j_neurobiolaging_2022_02_008
crossref_primary_10_1161_JAHA_123_031573
crossref_primary_10_1016_j_jns_2025_123460
crossref_primary_10_1007_s11357_022_00538_y
crossref_primary_10_1016_j_pneurobio_2016_04_005
crossref_primary_10_1161_HYP_0000000000000053
crossref_primary_10_7717_peerj_9632
crossref_primary_10_1016_j_metrad_2025_100133
crossref_primary_10_1177_0883073816654143
crossref_primary_10_1093_gerona_glz279
crossref_primary_10_1093_brain_aww009
crossref_primary_10_1002_hbm_24284
crossref_primary_10_1093_eurheartj_ehz100
crossref_primary_10_1016_j_neurobiolaging_2017_12_006
crossref_primary_10_1111_nyas_12765
crossref_primary_10_18632_aging_202977
crossref_primary_10_3233_JAD_190521
crossref_primary_10_1007_s10548_023_00973_w
crossref_primary_10_1016_j_neuroimage_2025_121065
crossref_primary_10_1002_dad2_12060
crossref_primary_10_1016_j_nicl_2020_102325
crossref_primary_10_1007_s11682_016_9571_0
crossref_primary_10_1212_WNL_0000000000208010
crossref_primary_10_1210_clinem_dgab135
crossref_primary_10_1007_s11357_021_00399_x
crossref_primary_10_1002_brb3_438
crossref_primary_10_1016_j_neurobiolaging_2015_08_029
crossref_primary_10_1093_brain_aww008
crossref_primary_10_3390_genes14091814
crossref_primary_10_1016_j_neuroimage_2023_120461
crossref_primary_10_1093_brain_awad220
crossref_primary_10_1038_s42003_022_03073_w
crossref_primary_10_1155_2017_4050536
crossref_primary_10_3389_fnhum_2023_1276994
crossref_primary_10_1017_cjn_2019_47
crossref_primary_10_1016_j_ejrad_2020_108967
crossref_primary_10_1002_alz_13845
crossref_primary_10_1007_s10278_023_00958_y
crossref_primary_10_1161_STROKEAHA_117_017646
crossref_primary_10_1016_j_neurobiolaging_2022_03_013
crossref_primary_10_1161_STROKEAHA_115_011229
crossref_primary_10_1161_STROKEAHA_116_015724
crossref_primary_10_1002_jnr_24525
crossref_primary_10_1186_s13195_018_0432_5
crossref_primary_10_3389_fneur_2022_831357
crossref_primary_10_1001_jamanetworkopen_2021_25166
crossref_primary_10_1212_WNL_0000000000013140
crossref_primary_10_1007_s12264_021_00657_0
crossref_primary_10_1016_j_ynirp_2022_100153
crossref_primary_10_1002_hbm_25876
crossref_primary_10_1016_j_nicl_2018_09_025
crossref_primary_10_1212_CON_0000000000001508
crossref_primary_10_3389_fneur_2019_00483
crossref_primary_10_1002_hbm_24826
crossref_primary_10_1016_j_neuroimage_2016_04_030
crossref_primary_10_3389_fneur_2019_01174
Cites_doi 10.1093/brain/awq343
10.1093/brain/awh553
10.1016/S1474-4422(13)70124-8
10.1007/s00415-006-0133-z
10.1093/brain/awp089
10.1006/nimg.2001.1037
10.1016/j.neuroimage.2013.05.054
10.1098/rstb.2005.1637
10.1038/nrn3465
10.1038/nn.2412
10.1002/1531-8249(199912)46:6<827::AID-ANA4>3.0.CO;2-H
10.1212/WNL.0b013e3182749f39
10.1016/j.neuroimage.2011.08.017
10.1016/j.nicl.2013.06.006
10.1073/pnas.070039597
10.1002/1531-8249(200002)47:2<145::AID-ANA3>3.0.CO;2-P
10.1016/j.neurobiolaging.2004.05.002
10.1093/cercor/9.4.366
10.3758/BF03206553
10.1016/j.neuroimage.2006.01.042
10.1093/cercor/bhs187
10.1037/0894-4105.14.2.224
10.1002/ana.20630
10.3389/fnhum.2013.00624
10.1523/JNEUROSCI.0141-08.2008
10.1002/hbm.20994
10.1093/cercor/bhq291
10.1006/nimg.2001.0978
10.1038/nrn2575
10.1016/j.neurobiolaging.2011.08.010
10.1371/journal.pone.0058921
10.1186/1471-2377-11-29
10.1016/j.neurobiolaging.2008.10.015
10.1001/archneurol.2007.23
10.1159/000226117
10.1073/pnas.090504197
10.1038/nn.3045
10.1016/j.cortex.2008.04.001
10.1136/bmj.c3666
10.1159/000226774
10.1385/NI:2:3:353
10.1523/JNEUROSCI.0357-05.2005
10.1016/j.neuroimage.2005.08.057
10.1038/385313a0
10.1093/cercor/bhn232
ContentType Journal Article
Copyright 2015 American Heart Association, Inc.
Copyright_xml – notice: 2015 American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/STROKEAHA.114.007146
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4628
EndPage 432
ExternalDocumentID 25572411
10_1161_STROKEAHA_114_007146
10.1161/STROKEAHA.114.007146
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3C
.55
.GJ
.XZ
.Z2
01R
0R~
123
1J1
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5RE
5VS
6PF
71W
77Y
7O~
A9M
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AAQQT
AARTV
AASCR
AASOK
AAUEB
AAXQO
AAYEP
AAYJJ
ABASU
ABBUW
ABDIG
ABJNI
ABPXF
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACCJW
ACDDN
ACDOF
ACEWG
ACGFS
ACGOD
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFBFQ
AFDTB
AFEXH
AFFNX
AFMBP
AFNMH
AFSOK
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
AYCSE
BAWUL
BCGUY
BOYCO
BQLVK
BS7
C45
CS3
DIK
DIWNM
DU5
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
J5H
JF9
JG8
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
M18
N4W
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB3
OCUKA
ODA
ODMTH
OGROG
OHYEH
OK1
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
R58
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TSPGW
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YHZ
YQJ
YYP
ZB8
ZGI
ZZMQN
AAYXX
ADGHP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4686-4dbacc857d85505a6aa6bee5d56f7b6425e7b38a3e23fb913a83ad92a514075f3
ISSN 0039-2499
1524-4628
IngestDate Fri Jul 11 16:39:30 EDT 2025
Mon Jul 21 05:48:03 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Tue Jul 01 03:31:43 EDT 2025
Fri May 16 03:54:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords cognition
Language English
License 2015 American Heart Association, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4686-4dbacc857d85505a6aa6bee5d56f7b6425e7b38a3e23fb913a83ad92a514075f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/STROKEAHA.114.007146
PMID 25572411
PQID 1652426872
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1652426872
pubmed_primary_25572411
crossref_citationtrail_10_1161_STROKEAHA_114_007146
crossref_primary_10_1161_STROKEAHA_114_007146
wolterskluwer_health_10_1161_STROKEAHA_114_007146
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-February
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-February
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Stroke (1970)
PublicationTitleAlternate Stroke
PublicationYear 2015
Publisher American Heart Association, Inc
Publisher_xml – name: American Heart Association, Inc
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_4_2
  doi: 10.1093/brain/awq343
– ident: e_1_3_3_5_2
  doi: 10.1093/brain/awh553
– ident: e_1_3_3_3_2
  doi: 10.1016/S1474-4422(13)70124-8
– ident: e_1_3_3_8_2
  doi: 10.1007/s00415-006-0133-z
– ident: e_1_3_3_16_2
  doi: 10.1093/brain/awp089
– ident: e_1_3_3_33_2
  doi: 10.1006/nimg.2001.1037
– ident: e_1_3_3_20_2
  doi: 10.1016/j.neuroimage.2013.05.054
– ident: e_1_3_3_15_2
  doi: 10.1098/rstb.2005.1637
– ident: e_1_3_3_21_2
  doi: 10.1038/nrn3465
– ident: e_1_3_3_46_2
  doi: 10.1038/nn.2412
– ident: e_1_3_3_2_2
  doi: 10.1002/1531-8249(199912)46:6<827::AID-ANA4>3.0.CO;2-H
– ident: e_1_3_3_6_2
  doi: 10.1212/WNL.0b013e3182749f39
– ident: e_1_3_3_24_2
  doi: 10.1016/j.neuroimage.2011.08.017
– ident: e_1_3_3_7_2
  doi: 10.1016/j.nicl.2013.06.006
– ident: e_1_3_3_45_2
  doi: 10.1073/pnas.070039597
– ident: e_1_3_3_36_2
  doi: 10.1002/1531-8249(200002)47:2<145::AID-ANA3>3.0.CO;2-P
– ident: e_1_3_3_39_2
  doi: 10.1016/j.neurobiolaging.2004.05.002
– ident: e_1_3_3_31_2
  doi: 10.1093/cercor/9.4.366
– ident: e_1_3_3_34_2
  doi: 10.3758/BF03206553
– ident: e_1_3_3_19_2
  doi: 10.1016/j.neuroimage.2006.01.042
– ident: e_1_3_3_29_2
  doi: 10.1093/cercor/bhs187
– ident: e_1_3_3_40_2
  doi: 10.1037/0894-4105.14.2.224
– ident: e_1_3_3_42_2
  doi: 10.1002/ana.20630
– ident: e_1_3_3_22_2
  doi: 10.3389/fnhum.2013.00624
– ident: e_1_3_3_14_2
  doi: 10.1523/JNEUROSCI.0141-08.2008
– ident: e_1_3_3_18_2
  doi: 10.1002/hbm.20994
– ident: e_1_3_3_28_2
  doi: 10.1093/cercor/bhq291
– ident: e_1_3_3_32_2
  doi: 10.1006/nimg.2001.0978
– ident: e_1_3_3_13_2
  doi: 10.1038/nrn2575
– ident: e_1_3_3_10_2
  doi: 10.1016/j.neurobiolaging.2011.08.010
– ident: e_1_3_3_23_2
  doi: 10.1371/journal.pone.0058921
– ident: e_1_3_3_17_2
  doi: 10.1186/1471-2377-11-29
– ident: e_1_3_3_44_2
  doi: 10.1016/j.neurobiolaging.2008.10.015
– ident: e_1_3_3_38_2
  doi: 10.1001/archneurol.2007.23
– ident: e_1_3_3_9_2
  doi: 10.1159/000226117
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.090504197
– ident: e_1_3_3_35_2
  doi: 10.1038/nn.3045
– ident: e_1_3_3_41_2
  doi: 10.1016/j.cortex.2008.04.001
– ident: e_1_3_3_37_2
  doi: 10.1136/bmj.c3666
– ident: e_1_3_3_11_2
  doi: 10.1159/000226774
– ident: e_1_3_3_25_2
  doi: 10.1385/NI:2:3:353
– ident: e_1_3_3_27_2
  doi: 10.1523/JNEUROSCI.0357-05.2005
– ident: e_1_3_3_12_2
  doi: 10.1016/j.neuroimage.2005.08.057
– ident: e_1_3_3_26_2
  doi: 10.1038/385313a0
– ident: e_1_3_3_43_2
  doi: 10.1093/cercor/bhn232
SSID ssj0002385
Score 2.5168824
Snippet BACKGROUND AND PURPOSE—White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions...
White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized...
SourceID proquest
pubmed
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 425
SubjectTerms Aged
Aged, 80 and over
Atrophy - diagnosis
Atrophy - epidemiology
Atrophy - psychology
Cerebral Cortex - pathology
Cerebral Small Vessel Diseases - diagnosis
Cerebral Small Vessel Diseases - epidemiology
Cerebral Small Vessel Diseases - psychology
Cognition Disorders - diagnosis
Cognition Disorders - epidemiology
Cognition Disorders - psychology
Cohort Studies
Female
Humans
Male
Middle Aged
Prospective Studies
Single-Blind Method
White Matter - pathology
Title Relationship Between White Matter Hyperintensities, Cortical Thickness, and Cognition
URI https://www.ncbi.nlm.nih.gov/pubmed/25572411
https://www.proquest.com/docview/1652426872
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbKkBATQrxT3hQkvmUpdWIn6ccybaoYBUFTad-ic-KooVUydanQ-CP8Xc6xk6V0GrAvUZTWbuV7cr47P3dHyDuZQRZ6LHGoEOig4L0DAXAnSHhAMwAKddb79LM_mbOPp_y01_vVYS1tKjFIfl6ZV3ITqeIzlKvKkv0PybaT4gO8R_niFSWM13-ScctkU4yrD4ZxVbe8s6d13Ux7cqEqGWuauiqdWsdFy7UOYEeLPFkqVddQOA81l8hIypiss2pdLmtLlI6CYSdyEG1WkC40QXtc5Ct7OmiPb2TeoUvaUfvBbKHaKcMFaEqZLNpdIZX2J4DKJKit8u-FfTzoxiQob2jMDYqaw6YJvq1VF2g7BE-VG-ygCzjqamQTlMw7jrFWr0wnSZudmunI6O4m4KtNYBZ9-3JyNJ6MVTlkVSG9iXVul9e-fsAtcttF_0O1xjj5elmGHu0c3RrD_HmTk4nzvL9qlm2bZ8eR2Sf3fpSKG3G-rFMjOgZO9IDcN56JNdYwe0h6snhE7kwN9-IxmXfRZhm0WTXaLI0260-0HVgN1qwWawcWIs1qkfaEzI-PosOJY5pyOAnzQ99hqYAkCXmQqlJ4HHwAX0jJU-5ngUBvlstAeCF40vUyMaIehB6kIxfQMkfzNPOekr2iLORzYnFAZZBxlqZDwTgwkVAmQtcTdJhwxtI-8ZplixNTsV41TlnFtefq07hdbJVcH-vF7hOnHXWmK7b85ftvG4nEqFrVeRkUstycx9TnyoANA7dPnmlRtTOiJx6g8Uv7hG7JLtbpy9f-4osbjHlJ7l6-aK_IXrXeyNdoDlfiTQ3N321IrpM
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationship+Between+White+Matter+Hyperintensities%2C+Cortical+Thickness%2C+and+Cognition&rft.jtitle=Stroke+%281970%29&rft.au=Tuladhar%2C+Anil+M.&rft.au=Reid%2C+Andrew+T.&rft.au=Shumskaya%2C+Elena&rft.au=de+Laat%2C+Karlijn+F.&rft.date=2015-02-01&rft.pub=American+Heart+Association%2C+Inc&rft.issn=0039-2499&rft.volume=46&rft.issue=2&rft.spage=425&rft.epage=432&rft_id=info:doi/10.1161%2FSTROKEAHA.114.007146&rft.externalDocID=10.1161%2FSTROKEAHA.114.007146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-2499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-2499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-2499&client=summon