Relationship Between White Matter Hyperintensities, Cortical Thickness, and Cognition
BACKGROUND AND PURPOSE—White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can resu...
Saved in:
Published in | Stroke (1970) Vol. 46; no. 2; pp. 425 - 432 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND AND PURPOSE—White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can result in an additional cognitive impairment. Here, we investigated the relationships between WMH, cortical thickness, and cognition in subjects with cerebral small vessel disease.
METHODS—A total of 426 subjects with cerebral small vessel disease were included, aged between 50 and 85 years, without dementia, and underwent MRI scanning. Cortical thickness analysis was performed, and WMH were manually segmented. Graph theory was applied to examine the relationship between network measures and WMH, and structural covariance matrices were constructed using inter-regional cortical thickness correlations.
RESULTS—Higher WMH load was related to lower cortical thickness in frontotemporal regions, whereas in paracentral regions, this was related to higher cortical thickness. Network analyses revealed that measures of network disruption were associated with WMH and cognitive performance. Furthermore, WMH in specific white matter tracts were related to regional-specific cortical thickness and network measures. Cognitive performances were related to cortical thickness in frontotemporal regions and network measures, and not to WMH, while controlling for cortical thickness.
CONCLUSIONS—These cross-sectional results suggest that cortical changes (regional-specific damage and network breakdown), mediated (in)directly by WMH (tract-specific damage) and other factors (eg, vascular risk factors), might lead to cognitive decline. These findings have implications in understanding the relationship between WMH, cortical morphology, and the possible attendant cognitive decline and eventually dementia. |
---|---|
AbstractList | White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can result in an additional cognitive impairment. Here, we investigated the relationships between WMH, cortical thickness, and cognition in subjects with cerebral small vessel disease.BACKGROUND AND PURPOSEWhite matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can result in an additional cognitive impairment. Here, we investigated the relationships between WMH, cortical thickness, and cognition in subjects with cerebral small vessel disease.A total of 426 subjects with cerebral small vessel disease were included, aged between 50 and 85 years, without dementia, and underwent MRI scanning. Cortical thickness analysis was performed, and WMH were manually segmented. Graph theory was applied to examine the relationship between network measures and WMH, and structural covariance matrices were constructed using inter-regional cortical thickness correlations.METHODSA total of 426 subjects with cerebral small vessel disease were included, aged between 50 and 85 years, without dementia, and underwent MRI scanning. Cortical thickness analysis was performed, and WMH were manually segmented. Graph theory was applied to examine the relationship between network measures and WMH, and structural covariance matrices were constructed using inter-regional cortical thickness correlations.Higher WMH load was related to lower cortical thickness in frontotemporal regions, whereas in paracentral regions, this was related to higher cortical thickness. Network analyses revealed that measures of network disruption were associated with WMH and cognitive performance. Furthermore, WMH in specific white matter tracts were related to regional-specific cortical thickness and network measures. Cognitive performances were related to cortical thickness in frontotemporal regions and network measures, and not to WMH, while controlling for cortical thickness.RESULTSHigher WMH load was related to lower cortical thickness in frontotemporal regions, whereas in paracentral regions, this was related to higher cortical thickness. Network analyses revealed that measures of network disruption were associated with WMH and cognitive performance. Furthermore, WMH in specific white matter tracts were related to regional-specific cortical thickness and network measures. Cognitive performances were related to cortical thickness in frontotemporal regions and network measures, and not to WMH, while controlling for cortical thickness.These cross-sectional results suggest that cortical changes (regional-specific damage and network breakdown), mediated (in)directly by WMH (tract-specific damage) and other factors (eg, vascular risk factors), might lead to cognitive decline. These findings have implications in understanding the relationship between WMH, cortical morphology, and the possible attendant cognitive decline and eventually dementia.CONCLUSIONSThese cross-sectional results suggest that cortical changes (regional-specific damage and network breakdown), mediated (in)directly by WMH (tract-specific damage) and other factors (eg, vascular risk factors), might lead to cognitive decline. These findings have implications in understanding the relationship between WMH, cortical morphology, and the possible attendant cognitive decline and eventually dementia. BACKGROUND AND PURPOSE—White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can result in an additional cognitive impairment. Here, we investigated the relationships between WMH, cortical thickness, and cognition in subjects with cerebral small vessel disease. METHODS—A total of 426 subjects with cerebral small vessel disease were included, aged between 50 and 85 years, without dementia, and underwent MRI scanning. Cortical thickness analysis was performed, and WMH were manually segmented. Graph theory was applied to examine the relationship between network measures and WMH, and structural covariance matrices were constructed using inter-regional cortical thickness correlations. RESULTS—Higher WMH load was related to lower cortical thickness in frontotemporal regions, whereas in paracentral regions, this was related to higher cortical thickness. Network analyses revealed that measures of network disruption were associated with WMH and cognitive performance. Furthermore, WMH in specific white matter tracts were related to regional-specific cortical thickness and network measures. Cognitive performances were related to cortical thickness in frontotemporal regions and network measures, and not to WMH, while controlling for cortical thickness. CONCLUSIONS—These cross-sectional results suggest that cortical changes (regional-specific damage and network breakdown), mediated (in)directly by WMH (tract-specific damage) and other factors (eg, vascular risk factors), might lead to cognitive decline. These findings have implications in understanding the relationship between WMH, cortical morphology, and the possible attendant cognitive decline and eventually dementia. White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized that these lesions are associated with distant cortical atrophy and cortical thickness network measures, which can result in an additional cognitive impairment. Here, we investigated the relationships between WMH, cortical thickness, and cognition in subjects with cerebral small vessel disease. A total of 426 subjects with cerebral small vessel disease were included, aged between 50 and 85 years, without dementia, and underwent MRI scanning. Cortical thickness analysis was performed, and WMH were manually segmented. Graph theory was applied to examine the relationship between network measures and WMH, and structural covariance matrices were constructed using inter-regional cortical thickness correlations. Higher WMH load was related to lower cortical thickness in frontotemporal regions, whereas in paracentral regions, this was related to higher cortical thickness. Network analyses revealed that measures of network disruption were associated with WMH and cognitive performance. Furthermore, WMH in specific white matter tracts were related to regional-specific cortical thickness and network measures. Cognitive performances were related to cortical thickness in frontotemporal regions and network measures, and not to WMH, while controlling for cortical thickness. These cross-sectional results suggest that cortical changes (regional-specific damage and network breakdown), mediated (in)directly by WMH (tract-specific damage) and other factors (eg, vascular risk factors), might lead to cognitive decline. These findings have implications in understanding the relationship between WMH, cortical morphology, and the possible attendant cognitive decline and eventually dementia. |
Author | van Norden, Anouk G.W. Tuladhar, Anil M. van Dijk, Ewoud J. de Leeuw, Frank-Erik Norris, David G. de Laat, Karlijn F. Shumskaya, Elena Reid, Andrew T. |
AuthorAffiliation | From the Department of Neurology, Center for Neuroscience (A.M.T., A.G.W.v.N., E.J.v.D., F.-E.d.L.), Centre for Cognitive Neuroimaging (E.S., D.G.N.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Institute of Neuroscience and Medicine (INM-1), Research Center Julich, Julich, Germany (A.T.R.); Department of Neurology, HagaZiekenhuis Den Haag, Den Haag, The Netherlands (K.F.d.L.); Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany (D.G.N.); and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands (D.G.N.) |
AuthorAffiliation_xml | – name: From the Department of Neurology, Center for Neuroscience (A.M.T., A.G.W.v.N., E.J.v.D., F.-E.d.L.), Centre for Cognitive Neuroimaging (E.S., D.G.N.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Institute of Neuroscience and Medicine (INM-1), Research Center Julich, Julich, Germany (A.T.R.); Department of Neurology, HagaZiekenhuis Den Haag, Den Haag, The Netherlands (K.F.d.L.); Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany (D.G.N.); and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands (D.G.N.) |
Author_xml | – sequence: 1 givenname: Anil surname: Tuladhar middlename: M. fullname: Tuladhar, Anil M. organization: From the Department of Neurology, Center for Neuroscience (A.M.T., A.G.W.v.N., E.J.v.D., F.-E.d.L.), Centre for Cognitive Neuroimaging (E.S., D.G.N.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Institute of Neuroscience and Medicine (INM-1), Research Center Julich, Julich, Germany (A.T.R.); Department of Neurology, HagaZiekenhuis Den Haag, Den Haag, The Netherlands (K.F.d.L.); Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany (D.G.N.); and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands (D.G.N.) – sequence: 2 givenname: Andrew surname: Reid middlename: T. fullname: Reid, Andrew T. – sequence: 3 givenname: Elena surname: Shumskaya fullname: Shumskaya, Elena – sequence: 4 givenname: Karlijn surname: de Laat middlename: F. fullname: de Laat, Karlijn F. – sequence: 5 givenname: Anouk surname: van Norden middlename: G.W. fullname: van Norden, Anouk G.W. – sequence: 6 givenname: Ewoud surname: van Dijk middlename: J. fullname: van Dijk, Ewoud J. – sequence: 7 givenname: David surname: Norris middlename: G. fullname: Norris, David G. – sequence: 8 givenname: Frank-Erik surname: de Leeuw fullname: de Leeuw, Frank-Erik |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25572411$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMFu1DAURS1URKeFP0AoSxZNsR3bcdgNo5apWlSpTMXSekleiKnHGWyPRv173E7bBQtYPd2ne-7iHJEDP3kk5D2jp4wp9un76ub68my-nOcoTimtmVCvyIxJLkqhuD4gM0qrpuSiaQ7JUYy_KKW80vINOeRS1lwwNiO3N-gg2cnH0W6KL5h2iL74MdqExTdICUOxvN9gsD6hjzZZjCfFYgrJduCK1Wi7O48x_8D3-f_T24ext-T1AC7iu6d7TG7Pz1aLZXl1_fViMb8qO6G0KkXfQtdpWfdaSipBAagWUfZSDXWrBJdYt5WGCnk1tA2rQFfQNxwkE7SWQ3VMPu53N2H6vcWYzNrGDp0Dj9M2GqayDa50zXP1w1N1266xN5tg1xDuzbOKXPi8L3RhijHgYDqbHtWkANYZRs2Dd_PiPUdh9t4zLP6Cn_f_g-k9tptcVh3v3HaHwYwILo3_Rv8AoJWY9g |
CitedBy_id | crossref_primary_10_1177_1747493019874732 crossref_primary_10_3233_JAD_230687 crossref_primary_10_1007_s10519_024_10194_x crossref_primary_10_1038_s41598_020_66013_w crossref_primary_10_1016_j_cccb_2024_100218 crossref_primary_10_1212_WNL_0000000000007772 crossref_primary_10_3389_fnagi_2022_961661 crossref_primary_10_1007_s00062_020_00928_9 crossref_primary_10_1177_1747493019851291 crossref_primary_10_1016_j_nbd_2022_105750 crossref_primary_10_1093_pm_pnaa271 crossref_primary_10_1002_hbm_22959 crossref_primary_10_1097_WNR_0000000000002031 crossref_primary_10_1093_gerona_glad182 crossref_primary_10_1016_j_neuint_2017_02_002 crossref_primary_10_1002_hbm_23922 crossref_primary_10_1007_s00415_018_9077_3 crossref_primary_10_1016_j_advms_2022_06_002 crossref_primary_10_1016_j_neurobiolaging_2021_11_007 crossref_primary_10_3389_fnagi_2024_1429098 crossref_primary_10_3389_fnagi_2022_782738 crossref_primary_10_1002_dad2_12022 crossref_primary_10_2139_ssrn_4155270 crossref_primary_10_1002_hbm_23479 crossref_primary_10_1002_hbm_23754 crossref_primary_10_1017_S0033291715000811 crossref_primary_10_1161_CIRCRESAHA_116_308426 crossref_primary_10_1016_j_neuroscience_2021_05_013 crossref_primary_10_1002_hbm_23032 crossref_primary_10_12677_IJPN_2016_52004 crossref_primary_10_1017_S0954422418000185 crossref_primary_10_1002_agm2_12073 crossref_primary_10_1016_j_jalz_2016_12_007 crossref_primary_10_1109_ACCESS_2018_2871977 crossref_primary_10_1016_j_nicl_2019_102037 crossref_primary_10_3389_fnins_2020_598868 crossref_primary_10_1016_j_bspc_2016_10_007 crossref_primary_10_1002_hbm_24877 crossref_primary_10_1016_j_jalz_2016_06_2363 crossref_primary_10_1016_j_nicl_2015_07_002 crossref_primary_10_3233_JAD_210587 crossref_primary_10_3389_fnagi_2023_1267434 crossref_primary_10_1002_hbm_26656 crossref_primary_10_1038_s41467_024_53689_1 crossref_primary_10_1186_s12883_016_0638_8 crossref_primary_10_1007_s11682_016_9531_8 crossref_primary_10_1111_bpa_12460 crossref_primary_10_1007_s00429_016_1264_3 crossref_primary_10_1016_j_jalz_2016_06_004 crossref_primary_10_1038_s41582_018_0014_y crossref_primary_10_1016_j_nicl_2019_102048 crossref_primary_10_1111_ene_14593 crossref_primary_10_3389_fneur_2020_00250 crossref_primary_10_3390_brainsci13040616 crossref_primary_10_1177_0271678X20974170 crossref_primary_10_3389_fneur_2021_752762 crossref_primary_10_1161_STROKEAHA_116_015084 crossref_primary_10_1017_S1041610224000607 crossref_primary_10_1097_PSY_0000000000000448 crossref_primary_10_3389_fnins_2024_1473462 crossref_primary_10_3389_fneur_2022_800614 crossref_primary_10_1016_j_ajog_2017_03_008 crossref_primary_10_1016_j_jns_2021_117518 crossref_primary_10_1016_j_nicl_2022_103200 crossref_primary_10_1161_STROKEAHA_116_016044 crossref_primary_10_1177_0271678X15625352 crossref_primary_10_1177_2396987318776088 crossref_primary_10_4103_0028_3886_271245 crossref_primary_10_1007_s12975_016_0473_7 crossref_primary_10_1016_j_neurobiolaging_2022_02_008 crossref_primary_10_1161_JAHA_123_031573 crossref_primary_10_1016_j_jns_2025_123460 crossref_primary_10_1007_s11357_022_00538_y crossref_primary_10_1016_j_pneurobio_2016_04_005 crossref_primary_10_1161_HYP_0000000000000053 crossref_primary_10_7717_peerj_9632 crossref_primary_10_1016_j_metrad_2025_100133 crossref_primary_10_1177_0883073816654143 crossref_primary_10_1093_gerona_glz279 crossref_primary_10_1093_brain_aww009 crossref_primary_10_1002_hbm_24284 crossref_primary_10_1093_eurheartj_ehz100 crossref_primary_10_1016_j_neurobiolaging_2017_12_006 crossref_primary_10_1111_nyas_12765 crossref_primary_10_18632_aging_202977 crossref_primary_10_3233_JAD_190521 crossref_primary_10_1007_s10548_023_00973_w crossref_primary_10_1016_j_neuroimage_2025_121065 crossref_primary_10_1002_dad2_12060 crossref_primary_10_1016_j_nicl_2020_102325 crossref_primary_10_1007_s11682_016_9571_0 crossref_primary_10_1212_WNL_0000000000208010 crossref_primary_10_1210_clinem_dgab135 crossref_primary_10_1007_s11357_021_00399_x crossref_primary_10_1002_brb3_438 crossref_primary_10_1016_j_neurobiolaging_2015_08_029 crossref_primary_10_1093_brain_aww008 crossref_primary_10_3390_genes14091814 crossref_primary_10_1016_j_neuroimage_2023_120461 crossref_primary_10_1093_brain_awad220 crossref_primary_10_1038_s42003_022_03073_w crossref_primary_10_1155_2017_4050536 crossref_primary_10_3389_fnhum_2023_1276994 crossref_primary_10_1017_cjn_2019_47 crossref_primary_10_1016_j_ejrad_2020_108967 crossref_primary_10_1002_alz_13845 crossref_primary_10_1007_s10278_023_00958_y crossref_primary_10_1161_STROKEAHA_117_017646 crossref_primary_10_1016_j_neurobiolaging_2022_03_013 crossref_primary_10_1161_STROKEAHA_115_011229 crossref_primary_10_1161_STROKEAHA_116_015724 crossref_primary_10_1002_jnr_24525 crossref_primary_10_1186_s13195_018_0432_5 crossref_primary_10_3389_fneur_2022_831357 crossref_primary_10_1001_jamanetworkopen_2021_25166 crossref_primary_10_1212_WNL_0000000000013140 crossref_primary_10_1007_s12264_021_00657_0 crossref_primary_10_1016_j_ynirp_2022_100153 crossref_primary_10_1002_hbm_25876 crossref_primary_10_1016_j_nicl_2018_09_025 crossref_primary_10_1212_CON_0000000000001508 crossref_primary_10_3389_fneur_2019_00483 crossref_primary_10_1002_hbm_24826 crossref_primary_10_1016_j_neuroimage_2016_04_030 crossref_primary_10_3389_fneur_2019_01174 |
Cites_doi | 10.1093/brain/awq343 10.1093/brain/awh553 10.1016/S1474-4422(13)70124-8 10.1007/s00415-006-0133-z 10.1093/brain/awp089 10.1006/nimg.2001.1037 10.1016/j.neuroimage.2013.05.054 10.1098/rstb.2005.1637 10.1038/nrn3465 10.1038/nn.2412 10.1002/1531-8249(199912)46:6<827::AID-ANA4>3.0.CO;2-H 10.1212/WNL.0b013e3182749f39 10.1016/j.neuroimage.2011.08.017 10.1016/j.nicl.2013.06.006 10.1073/pnas.070039597 10.1002/1531-8249(200002)47:2<145::AID-ANA3>3.0.CO;2-P 10.1016/j.neurobiolaging.2004.05.002 10.1093/cercor/9.4.366 10.3758/BF03206553 10.1016/j.neuroimage.2006.01.042 10.1093/cercor/bhs187 10.1037/0894-4105.14.2.224 10.1002/ana.20630 10.3389/fnhum.2013.00624 10.1523/JNEUROSCI.0141-08.2008 10.1002/hbm.20994 10.1093/cercor/bhq291 10.1006/nimg.2001.0978 10.1038/nrn2575 10.1016/j.neurobiolaging.2011.08.010 10.1371/journal.pone.0058921 10.1186/1471-2377-11-29 10.1016/j.neurobiolaging.2008.10.015 10.1001/archneurol.2007.23 10.1159/000226117 10.1073/pnas.090504197 10.1038/nn.3045 10.1016/j.cortex.2008.04.001 10.1136/bmj.c3666 10.1159/000226774 10.1385/NI:2:3:353 10.1523/JNEUROSCI.0357-05.2005 10.1016/j.neuroimage.2005.08.057 10.1038/385313a0 10.1093/cercor/bhn232 |
ContentType | Journal Article |
Copyright | 2015 American Heart Association, Inc. |
Copyright_xml | – notice: 2015 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/STROKEAHA.114.007146 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4628 |
EndPage | 432 |
ExternalDocumentID | 25572411 10_1161_STROKEAHA_114_007146 10.1161/STROKEAHA.114.007146 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3C .55 .GJ .XZ .Z2 01R 0R~ 123 1J1 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5RE 5VS 6PF 71W 77Y 7O~ A9M AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AAQQT AARTV AASCR AASOK AAUEB AAXQO AAYEP AAYJJ ABASU ABBUW ABDIG ABJNI ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACCJW ACDDN ACDOF ACEWG ACGFS ACGOD ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEBDS AEETU AENEX AFBFQ AFDTB AFEXH AFFNX AFMBP AFNMH AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC AYCSE BAWUL BCGUY BOYCO BQLVK BS7 C45 CS3 DIK DIWNM DU5 DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B M18 N4W N9A N~7 N~B N~M O9- OAG OAH OB3 OCUKA ODA ODMTH OGROG OHYEH OK1 OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ R58 RAH RIG RLZ S4R S4S T8P TEORI TSPGW V2I VVN W3M W8F WH7 WOQ WOW X3V X3W X7M XXN XYM YFH YHZ YQJ YYP ZB8 ZGI ZZMQN AAYXX ADGHP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4686-4dbacc857d85505a6aa6bee5d56f7b6425e7b38a3e23fb913a83ad92a514075f3 |
ISSN | 0039-2499 1524-4628 |
IngestDate | Fri Jul 11 16:39:30 EDT 2025 Mon Jul 21 05:48:03 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Tue Jul 01 03:31:43 EDT 2025 Fri May 16 03:54:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | cognition |
Language | English |
License | 2015 American Heart Association, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4686-4dbacc857d85505a6aa6bee5d56f7b6425e7b38a3e23fb913a83ad92a514075f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/STROKEAHA.114.007146 |
PMID | 25572411 |
PQID | 1652426872 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1652426872 pubmed_primary_25572411 crossref_citationtrail_10_1161_STROKEAHA_114_007146 crossref_primary_10_1161_STROKEAHA_114_007146 wolterskluwer_health_10_1161_STROKEAHA_114_007146 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-February |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-February |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Stroke (1970) |
PublicationTitleAlternate | Stroke |
PublicationYear | 2015 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_4_2 doi: 10.1093/brain/awq343 – ident: e_1_3_3_5_2 doi: 10.1093/brain/awh553 – ident: e_1_3_3_3_2 doi: 10.1016/S1474-4422(13)70124-8 – ident: e_1_3_3_8_2 doi: 10.1007/s00415-006-0133-z – ident: e_1_3_3_16_2 doi: 10.1093/brain/awp089 – ident: e_1_3_3_33_2 doi: 10.1006/nimg.2001.1037 – ident: e_1_3_3_20_2 doi: 10.1016/j.neuroimage.2013.05.054 – ident: e_1_3_3_15_2 doi: 10.1098/rstb.2005.1637 – ident: e_1_3_3_21_2 doi: 10.1038/nrn3465 – ident: e_1_3_3_46_2 doi: 10.1038/nn.2412 – ident: e_1_3_3_2_2 doi: 10.1002/1531-8249(199912)46:6<827::AID-ANA4>3.0.CO;2-H – ident: e_1_3_3_6_2 doi: 10.1212/WNL.0b013e3182749f39 – ident: e_1_3_3_24_2 doi: 10.1016/j.neuroimage.2011.08.017 – ident: e_1_3_3_7_2 doi: 10.1016/j.nicl.2013.06.006 – ident: e_1_3_3_45_2 doi: 10.1073/pnas.070039597 – ident: e_1_3_3_36_2 doi: 10.1002/1531-8249(200002)47:2<145::AID-ANA3>3.0.CO;2-P – ident: e_1_3_3_39_2 doi: 10.1016/j.neurobiolaging.2004.05.002 – ident: e_1_3_3_31_2 doi: 10.1093/cercor/9.4.366 – ident: e_1_3_3_34_2 doi: 10.3758/BF03206553 – ident: e_1_3_3_19_2 doi: 10.1016/j.neuroimage.2006.01.042 – ident: e_1_3_3_29_2 doi: 10.1093/cercor/bhs187 – ident: e_1_3_3_40_2 doi: 10.1037/0894-4105.14.2.224 – ident: e_1_3_3_42_2 doi: 10.1002/ana.20630 – ident: e_1_3_3_22_2 doi: 10.3389/fnhum.2013.00624 – ident: e_1_3_3_14_2 doi: 10.1523/JNEUROSCI.0141-08.2008 – ident: e_1_3_3_18_2 doi: 10.1002/hbm.20994 – ident: e_1_3_3_28_2 doi: 10.1093/cercor/bhq291 – ident: e_1_3_3_32_2 doi: 10.1006/nimg.2001.0978 – ident: e_1_3_3_13_2 doi: 10.1038/nrn2575 – ident: e_1_3_3_10_2 doi: 10.1016/j.neurobiolaging.2011.08.010 – ident: e_1_3_3_23_2 doi: 10.1371/journal.pone.0058921 – ident: e_1_3_3_17_2 doi: 10.1186/1471-2377-11-29 – ident: e_1_3_3_44_2 doi: 10.1016/j.neurobiolaging.2008.10.015 – ident: e_1_3_3_38_2 doi: 10.1001/archneurol.2007.23 – ident: e_1_3_3_9_2 doi: 10.1159/000226117 – ident: e_1_3_3_30_2 doi: 10.1073/pnas.090504197 – ident: e_1_3_3_35_2 doi: 10.1038/nn.3045 – ident: e_1_3_3_41_2 doi: 10.1016/j.cortex.2008.04.001 – ident: e_1_3_3_37_2 doi: 10.1136/bmj.c3666 – ident: e_1_3_3_11_2 doi: 10.1159/000226774 – ident: e_1_3_3_25_2 doi: 10.1385/NI:2:3:353 – ident: e_1_3_3_27_2 doi: 10.1523/JNEUROSCI.0357-05.2005 – ident: e_1_3_3_12_2 doi: 10.1016/j.neuroimage.2005.08.057 – ident: e_1_3_3_26_2 doi: 10.1038/385313a0 – ident: e_1_3_3_43_2 doi: 10.1093/cercor/bhn232 |
SSID | ssj0002385 |
Score | 2.5168824 |
Snippet | BACKGROUND AND PURPOSE—White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions... White matter hyperintensities (WMH) are associated with clinically heterogeneous symptoms that cannot be explained by these lesions alone. It is hypothesized... |
SourceID | proquest pubmed crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 425 |
SubjectTerms | Aged Aged, 80 and over Atrophy - diagnosis Atrophy - epidemiology Atrophy - psychology Cerebral Cortex - pathology Cerebral Small Vessel Diseases - diagnosis Cerebral Small Vessel Diseases - epidemiology Cerebral Small Vessel Diseases - psychology Cognition Disorders - diagnosis Cognition Disorders - epidemiology Cognition Disorders - psychology Cohort Studies Female Humans Male Middle Aged Prospective Studies Single-Blind Method White Matter - pathology |
Title | Relationship Between White Matter Hyperintensities, Cortical Thickness, and Cognition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25572411 https://www.proquest.com/docview/1652426872 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbKkBATQrxT3hQkvmUpdWIn6ccybaoYBUFTad-ic-KooVUydanQ-CP8Xc6xk6V0GrAvUZTWbuV7cr47P3dHyDuZQRZ6LHGoEOig4L0DAXAnSHhAMwAKddb79LM_mbOPp_y01_vVYS1tKjFIfl6ZV3ITqeIzlKvKkv0PybaT4gO8R_niFSWM13-ScctkU4yrD4ZxVbe8s6d13Ux7cqEqGWuauiqdWsdFy7UOYEeLPFkqVddQOA81l8hIypiss2pdLmtLlI6CYSdyEG1WkC40QXtc5Ct7OmiPb2TeoUvaUfvBbKHaKcMFaEqZLNpdIZX2J4DKJKit8u-FfTzoxiQob2jMDYqaw6YJvq1VF2g7BE-VG-ygCzjqamQTlMw7jrFWr0wnSZudmunI6O4m4KtNYBZ9-3JyNJ6MVTlkVSG9iXVul9e-fsAtcttF_0O1xjj5elmGHu0c3RrD_HmTk4nzvL9qlm2bZ8eR2Sf3fpSKG3G-rFMjOgZO9IDcN56JNdYwe0h6snhE7kwN9-IxmXfRZhm0WTXaLI0260-0HVgN1qwWawcWIs1qkfaEzI-PosOJY5pyOAnzQ99hqYAkCXmQqlJ4HHwAX0jJU-5ngUBvlstAeCF40vUyMaIehB6kIxfQMkfzNPOekr2iLORzYnFAZZBxlqZDwTgwkVAmQtcTdJhwxtI-8ZplixNTsV41TlnFtefq07hdbJVcH-vF7hOnHXWmK7b85ftvG4nEqFrVeRkUstycx9TnyoANA7dPnmlRtTOiJx6g8Uv7hG7JLtbpy9f-4osbjHlJ7l6-aK_IXrXeyNdoDlfiTQ3N321IrpM |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationship+Between+White+Matter+Hyperintensities%2C+Cortical+Thickness%2C+and+Cognition&rft.jtitle=Stroke+%281970%29&rft.au=Tuladhar%2C+Anil+M.&rft.au=Reid%2C+Andrew+T.&rft.au=Shumskaya%2C+Elena&rft.au=de+Laat%2C+Karlijn+F.&rft.date=2015-02-01&rft.pub=American+Heart+Association%2C+Inc&rft.issn=0039-2499&rft.volume=46&rft.issue=2&rft.spage=425&rft.epage=432&rft_id=info:doi/10.1161%2FSTROKEAHA.114.007146&rft.externalDocID=10.1161%2FSTROKEAHA.114.007146 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-2499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-2499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-2499&client=summon |