Orbital Gating Driven by Giant Stark Effect in Tunneling Phototransistors

Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Materials Vol. 34; no. 6; pp. e2106625 - n/a
Main Authors Kim, Eunah, Hwang, Geunwoo, Kim, Dohyun, Won, Dongyeun, Joo, Yanggeun, Zheng, Shoujun, Watanabe, Kenji, Taniguchi, Takashi, Moon, Pilkyung, Kim, Dong‐Wook, Sun, Linfeng, Yang, Heejun
Format Journal Article
LanguageEnglish
Published Germany Wiley 01.02.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H‐MoTe2 without using external gating bias or slow charge trapping dynamics in photogating. The original self‐gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the dz2‐orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe2 by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 1011 cm–2 by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW–1), and fast switching time (0.5 ms) simultaneously. Orbital gating is introduced driven by giant Stark effect in tunneling phototransistors based on 2H‐MoTe2 without using external gating bias or slow charge trapping dynamics in conventional photogating, which realizes low dark current, practical photoresponsivity, and fast switching time simultaneously.
AbstractList Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H-MoTe without using external gating bias or slow charge trapping dynamics in photogating. The original self-gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the d 2-orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 10 cm by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW ), and fast switching time (0.5 ms) simultaneously.
Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H‐MoTe2 without using external gating bias or slow charge trapping dynamics in photogating. The original self‐gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the dz2‐orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe2 by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 1011 cm–2 by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW–1), and fast switching time (0.5 ms) simultaneously. Orbital gating is introduced driven by giant Stark effect in tunneling phototransistors based on 2H‐MoTe2 without using external gating bias or slow charge trapping dynamics in conventional photogating, which realizes low dark current, practical photoresponsivity, and fast switching time simultaneously.
Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H-MoTe2 without using external gating bias or slow charge trapping dynamics in photogating. The original self-gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the dz 2-orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe2 by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 1011 cm-2 by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW-1 ), and fast switching time (0.5 ms) simultaneously.Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H-MoTe2 without using external gating bias or slow charge trapping dynamics in photogating. The original self-gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the dz 2-orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe2 by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 1011 cm-2 by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW-1 ), and fast switching time (0.5 ms) simultaneously.
Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H‐MoTe2 without using external gating bias or slow charge trapping dynamics in photogating. The original self‐gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the dz2‐orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe2 by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 1011 cm–2 by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW–1), and fast switching time (0.5 ms) simultaneously.
Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H‐MoTe 2 without using external gating bias or slow charge trapping dynamics in photogating. The original self‐gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the d z 2‐orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe 2 by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 10 11 cm –2 by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW –1 ), and fast switching time (0.5 ms) simultaneously.
Author Pilkyung Moon
Kenji Watanabe
Heejun Yang
Shoujun Zheng
Yanggeun Joo
Dongyeun Won
Dong-Wook Kim
Takashi Taniguchi
Dohyun Kim
Geunwoo Hwang
Linfeng Sun
Eunah Kim
Author_xml – sequence: 1
  givenname: Eunah
  surname: Kim
  fullname: Kim, Eunah
  organization: Sungkyunkwan University
– sequence: 2
  givenname: Geunwoo
  surname: Hwang
  fullname: Hwang, Geunwoo
  organization: Sungkyunkwan University
– sequence: 3
  givenname: Dohyun
  surname: Kim
  fullname: Kim, Dohyun
  organization: Sungkyunkwan University
– sequence: 4
  givenname: Dongyeun
  surname: Won
  fullname: Won, Dongyeun
  organization: Sungkyunkwan University
– sequence: 5
  givenname: Yanggeun
  surname: Joo
  fullname: Joo, Yanggeun
  organization: Sungkyunkwan University
– sequence: 6
  givenname: Shoujun
  surname: Zheng
  fullname: Zheng, Shoujun
  organization: Sungkyunkwan University
– sequence: 7
  givenname: Kenji
  surname: Watanabe
  fullname: Watanabe, Kenji
  organization: National Institute for Materials Science
– sequence: 8
  givenname: Takashi
  surname: Taniguchi
  fullname: Taniguchi, Takashi
  organization: National Institute for Materials Science
– sequence: 9
  givenname: Pilkyung
  surname: Moon
  fullname: Moon, Pilkyung
  organization: Korea Institute for Advanced Study
– sequence: 10
  givenname: Dong‐Wook
  surname: Kim
  fullname: Kim, Dong‐Wook
  organization: Ewha Womans University
– sequence: 11
  givenname: Linfeng
  surname: Sun
  fullname: Sun, Linfeng
  email: sunlinfeng@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 12
  givenname: Heejun
  orcidid: 0000-0003-0502-0054
  surname: Yang
  fullname: Yang, Heejun
  email: h.yang@kaist.ac.kr
  organization: Korea Advanced Institute of Science and Technology (KAIST)
BackLink https://cir.nii.ac.jp/crid/1873116917767333760$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/34825405$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LHDEUx0NR6tZ67VEG6qGXWV9-zuS4qN0KioJ7D5lMRmNnE5tkLPvfN8tqKYL0knfI5_N4730_oT0fvEXoC4Y5BiCnul_rOQGCQQjCP6AZ5gTXDCTfQzOQlNdSsPYAHaXkOgAOjWgAf0QHlLWEM-AzdHkTO5f1WC11dv6-Oo_u2fqq21RLp32u7rKOP6uLYbAmV85Xq8l7O27J24eQQ47aJ5dyiOkz2h_0mOzRSz1Eq-8Xq7Mf9dXN8vJscVUbJlpeWz2AYJiA0B1QCZLw1hjGur4XQJklQpiBYylJPxBqy5dgnRWdaQhpekMP0bdd26cYfk02ZbV2ydhx1N6GKSkigAERZcOCfn2DPoYp-jJcoUgDrGWMF-r4hZq6te3VU3RrHTfq9UYFYDvAxJBStIMy5WLZBV-2d6PCoLZpqG0a6m8aRZu_0V47vyvInfDbjXbzH1otzq8X_7onO9c7V8bbvrhtKMZC4qakTiltynn_AA-8pIY
CitedBy_id crossref_primary_10_1088_1361_6528_ac5f96
crossref_primary_10_34133_research_0195
crossref_primary_10_1002_inf2_12479
crossref_primary_10_1021_acsaelm_4c01249
crossref_primary_10_1002_adma_202304599
crossref_primary_10_1364_OE_497833
crossref_primary_10_1002_adma_202209089
crossref_primary_10_1007_s10854_023_11735_6
crossref_primary_10_1088_2053_1583_acf5fa
crossref_primary_10_1021_acsnano_4c13215
crossref_primary_10_1021_acsnano_3c03319
crossref_primary_10_1021_acsaelm_4c00562
Cites_doi 10.1038/nnano.2007.380
10.1038/s41565-020-0750-1
10.1002/smll.201603103
10.1002/adma.201906942
10.1021/acsnano.0c00098
10.1021/acsami.8b21315
10.1002/adma.201203731
10.1038/nnano.2012.88
10.1039/C5CS00106D
10.1088/0957-4484/27/44/445201
10.1038/nnano.2010.172
10.1002/adfm.201907945
10.1038/nature15387
10.1038/nnano.2012.60
10.1038/nphoton.2012.314
10.1021/nl502557g
10.1002/smll.201703293
10.1038/srep05209
10.1021/acs.nanolett.6b05381
10.1021/nl4012529
10.1002/advs.201700323
10.1038/nature08105
10.1021/acsami.6b14483
10.1126/sciadv.aav3430
10.1021/nn5007607
10.1126/science.aaa6486
10.1021/nl2005115
10.1039/C8CS00320C
10.1021/acs.nanolett.5b02523
10.1126/science.1218461
10.1038/nnano.2009.292
10.1002/smll.201700268
10.1002/adom.201901402
10.1063/1.4941996
10.1002/adom.201600290
10.1038/ncomms14474
10.1021/nl502339q
10.7567/1347-4065/ab266a
10.1002/adfm.201504408
10.1126/science.1220527
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
– notice: 2022 Wiley‐VCH GmbH
DBID RYH
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202106625
DatabaseName CiNii Complete
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34825405
10_1002_adma_202106625
ADMA202106625
Genre article
Journal Article
GrantInformation_xml – fundername: KAIST‐funded Global Singularity Research Program for 2021
– fundername: Samsung Research Funding & Incubation Center of Samsung Electronics
  funderid: SRFC‐MA1701‐01
– fundername: National Research Foundation of Korea
  funderid: NRF‐2020R1I1A1A01067910
– fundername: National Research Foundation of Korea
  funderid: 2021M3H4A1A03054856
– fundername: National Science Foundation of China
  funderid: 12074260
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 19ZR1436400
– fundername: NYU‐ECNU Institute of Physics at NYU Shanghai
– fundername: Beijing Natural Science Foundation
  funderid: Z210006
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 19ZR1436400
– fundername: National Research Foundation of Korea
  grantid: NRF-2020R1I1A1A01067910
– fundername: National Research Foundation of Korea
  grantid: 2021M3H4A1A03054856
– fundername: KAIST-funded Global Singularity Research Program for 2021
– fundername: NYU-ECNU Institute of Physics at NYU Shanghai
– fundername: Samsung Research Funding & Incubation Center of Samsung Electronics
  grantid: SRFC-MA1701-01
– fundername: Beijing Natural Science Foundation
  grantid: Z210006
– fundername: National Science Foundation of China
  grantid: 12074260
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYH
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
AEUQT
AFPWT
RWI
RWM
WRC
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AETEA
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4685-eaf0641206ab03909258cc44bdd6034e266cf51992df23ecc464be6bc7227dc3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 03:11:49 EDT 2025
Fri Jul 25 03:13:25 EDT 2025
Wed Feb 19 02:27:34 EST 2025
Tue Jul 01 02:33:10 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Wed Jan 22 16:27:13 EST 2025
Thu Jun 26 22:39:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords photoconductivity
van der Waals heterostructures
tunneling
photogating
giant Stark effect
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4685-eaf0641206ab03909258cc44bdd6034e266cf51992df23ecc464be6bc7227dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0502-0054
PMID 34825405
PQID 2627048445
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2604026348
proquest_journals_2627048445
pubmed_primary_34825405
crossref_citationtrail_10_1002_adma_202106625
crossref_primary_10_1002_adma_202106625
wiley_primary_10_1002_adma_202106625_ADMA202106625
nii_cinii_1873116917767333760
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced Materials
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2015; 15
2017; 8
2013; 25
2017; 4
2019; 5
2016; 108
2019; 11
1981; 2
2019; 58
2020; 15
2011; 11
2020; 14
2015; 526
2015; 349
2020; 32
2009; 459
2013; 7
2017; 9
2018; 47
2020; 8
2016; 4
2014; 4
2020; 30
2017; 17
2013; 13
2017; 13
2015; 44
2014; 14
2007; 2
2009; 4
2012; 335
2012; 7
2014; 8
2012; 336
2016; 27
2010; 5
2016; 26
2018; 14
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_1_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Sze S. M. (e_1_2_10_27_1) 1981
e_1_2_10_29_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 25
  start-page: 899
  year: 2013
  publication-title: Adv. Mater.
– volume: 2
  year: 1981
– volume: 7
  start-page: 53
  year: 2013
  publication-title: Nat. Photonics
– volume: 336
  start-page: 1140
  year: 2012
  publication-title: Science
– volume: 13
  start-page: 3576
  year: 2013
  publication-title: Nano Lett.
– volume: 9
  start-page: 5392
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 335
  start-page: 947
  year: 2012
  publication-title: Science
– volume: 14
  start-page: 6231
  year: 2014
  publication-title: Nano Lett.
– volume: 15
  start-page: 7853
  year: 2015
  publication-title: Nano Lett.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 526
  start-page: 91
  year: 2015
  publication-title: Nature
– volume: 11
  start-page: 2291
  year: 2011
  publication-title: Nano Lett.
– volume: 4
  start-page: 5209
  year: 2014
  publication-title: Sci. Rep.
– volume: 108
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 1750
  year: 2016
  publication-title: Adv. Opt. Mater.
– volume: 27
  year: 2016
  publication-title: Nanotechnology
– volume: 8
  start-page: 3895
  year: 2014
  publication-title: ACS Nano
– volume: 17
  start-page: 1970
  year: 2017
  publication-title: Nano Lett.
– volume: 14
  start-page: 6165
  year: 2014
  publication-title: Nano Lett.
– volume: 47
  start-page: 8238
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 901
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 14
  start-page: 4559
  year: 2020
  publication-title: ACS Nano
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 363
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 472
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 58
  year: 2019
  publication-title: Jpn. J. Appl. Phys.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 5
  start-page: 722
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 26
  start-page: 1938
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 44
  start-page: 3691
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 4
  start-page: 839
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 790
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 349
  start-page: 723
  year: 2015
  publication-title: Science
– volume: 459
  start-page: 820
  year: 2009
  publication-title: Nature
– ident: e_1_2_10_6_1
  doi: 10.1038/nnano.2007.380
– ident: e_1_2_10_10_1
  doi: 10.1038/s41565-020-0750-1
– ident: e_1_2_10_14_1
  doi: 10.1002/smll.201603103
– ident: e_1_2_10_9_1
  doi: 10.1002/adma.201906942
– ident: e_1_2_10_22_1
  doi: 10.1021/acsnano.0c00098
– ident: e_1_2_10_37_1
  doi: 10.1021/acsami.8b21315
– ident: e_1_2_10_13_1
  doi: 10.1002/adma.201203731
– ident: e_1_2_10_18_1
  doi: 10.1038/nnano.2012.88
– ident: e_1_2_10_16_1
  doi: 10.1039/C5CS00106D
– ident: e_1_2_10_20_1
  doi: 10.1088/0957-4484/27/44/445201
– ident: e_1_2_10_23_1
  doi: 10.1038/nnano.2010.172
– ident: e_1_2_10_31_1
  doi: 10.1002/adfm.201907945
– ident: e_1_2_10_5_1
  doi: 10.1038/nature15387
– ident: e_1_2_10_7_1
  doi: 10.1038/nnano.2012.60
– ident: e_1_2_10_17_1
  doi: 10.1038/nphoton.2012.314
– ident: e_1_2_10_41_1
  doi: 10.1021/nl502557g
– ident: e_1_2_10_38_1
  doi: 10.1002/smll.201703293
– ident: e_1_2_10_32_1
  doi: 10.1038/srep05209
– ident: e_1_2_10_8_1
  doi: 10.1021/acs.nanolett.6b05381
– ident: e_1_2_10_24_1
  doi: 10.1021/nl4012529
– ident: e_1_2_10_19_1
  doi: 10.1002/advs.201700323
– ident: e_1_2_10_1_1
  doi: 10.1038/nature08105
– ident: e_1_2_10_33_1
  doi: 10.1021/acsami.6b14483
– ident: e_1_2_10_30_1
  doi: 10.1126/sciadv.aav3430
– ident: e_1_2_10_40_1
  doi: 10.1021/nn5007607
– ident: e_1_2_10_11_1
  doi: 10.1126/science.aaa6486
– ident: e_1_2_10_25_1
  doi: 10.1021/nl2005115
– ident: e_1_2_10_15_1
  doi: 10.1039/C8CS00320C
– ident: e_1_2_10_26_1
  doi: 10.1021/acs.nanolett.5b02523
– ident: e_1_2_10_2_1
  doi: 10.1126/science.1218461
– ident: e_1_2_10_4_1
  doi: 10.1038/nnano.2009.292
– ident: e_1_2_10_21_1
  doi: 10.1002/smll.201700268
– ident: e_1_2_10_36_1
  doi: 10.1002/adom.201901402
– ident: e_1_2_10_34_1
  doi: 10.1063/1.4941996
– ident: e_1_2_10_39_1
  doi: 10.1002/adom.201600290
– ident: e_1_2_10_12_1
  doi: 10.1038/ncomms14474
– ident: e_1_2_10_28_1
  doi: 10.1021/nl502339q
– ident: e_1_2_10_35_1
  doi: 10.7567/1347-4065/ab266a
– ident: e_1_2_10_29_1
  doi: 10.1002/adfm.201504408
– ident: e_1_2_10_3_1
  doi: 10.1126/science.1220527
– volume-title: Physics of Semiconductor Devices
  year: 1981
  ident: e_1_2_10_27_1
SSID ssib005076701
ssib027715679
ssj0009606
ssib005900573
Score 2.45962
Snippet Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices...
SourceID proquest
pubmed
crossref
wiley
nii
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2106625
SubjectTerms Carrier density
Dark current
Dielectrics
Electric fields
giant Stark effect
Illumination
Interlayers
Light
Materials science
Molybdenum compounds
Nanoparticles
Optoelectronic devices
Photoconductivity
photogating
Phototransistors
Potential gradient
Stark effect
Switching
Tellurides
Transistors
tunneling
van der Waals heterostructures
Title Orbital Gating Driven by Giant Stark Effect in Tunneling Phototransistors
URI https://cir.nii.ac.jp/crid/1873116917767333760
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202106625
https://www.ncbi.nlm.nih.gov/pubmed/34825405
https://www.proquest.com/docview/2627048445
https://www.proquest.com/docview/2604026348
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9swEMdPjCf2sPFjGwGKPAmJp0BqO47zWFF-SgyEisRbZDuOqEDp1KYP7K_fXdIGipiQxkukKOfIiX3nr5PzxwB7NvVauUKFwhicoJjYhxjzdFgkMtdGa-81LXC-_KXObuXFXXz3YhV_w4doP7iRZ9Txmhzc2MnhMzTU5DU3CKcsCjU8BmFK2CJVdPPMjyJ5XsP2RBymSuo5tTHih4vFF0alT-Vw-JbgXNSv9QB08hXMvOpN3snDwbSyB-7PK6rjR55tFb7M1CnrNd1pDZZ8uQ6fXzALN-D8amxpoxF2aihjmvXHFC-ZfWKn2NMqhup1_MAaKDIblmwwpUwasry-H1WjisbGGk0y-QaDk-PB0Vk4248hdFLpOPSmQAHT5ZEyNhJplPJYOyelzXMVCelxrHdFTPmsecEF9g2ppPXKuoTzJHfiOyyXo9JvAkNNpG2BUiONJc0oUQaa1HnFrbTGJT6AcN4cmZuxymnLjMesoSzzjN5Q1r6hAPZb-98NpeOflh1sXbwpHbs6EV2iBRHSSAjKDwpgZ97u2cybJxlXPMFIJyUW_9leRj-knyum9KMp2WA45EpIHcCPpr-0VSGAECnjAHjd6u_UMev1L3vt2db_FNqGFU7rNOr08h1YrsZT30H1VNnd2kP-ArIFC68
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMef2DgwDsBgg4z9MBLSTtlS23GcY0XZurFuaOqk3SLbcbRqKEVdeoC_fu8lTUYnEBJcIkWxI8f2e_7aef4Y4KNNvVauUKEwBicoJvYh-jwdFonMtdHae00bnEfnanglT6_jNpqQ9sI0fIhuwY0so_bXZOC0IH34QA01eQ0OwjmLQhG_Ak_pWG_C5w8uHwhSJNBr3J6Iw1RJ3XIbI364nH9pXFopJ5PfSc5lBVsPQUcvwbaFbyJPbg_mlT1wPx9xHf_r617Bi4VAZf2mR63DE1--hue_YAvfwMnFzNJZI-zYUNA0G8zIZTL7gx1jZ6sYCtjZLWu4yGxSsvGcgmko5debaTWtaHis6SR3GzA--jz-NAwXRzKETiodh94UqGF6PFLGRiKNUh5r56S0ea4iIT0O966IKaQ1L7jA7iGVtF5Zl3Ce5E5swmo5Lf07YCiLtC1QbaSxpEklKkGTOq-4lda4xAcQtu2RuQWunE7N-JY1oGWeUQ1lXQ0FsN-l_96AOv6YcgebF19K155ORI-AQUQ1EoJChALYbhs-Wxj0XcYVT9DZSYnZP3SP0RTp_4op_XROadAjciWkDuBt02G6ohBDiMRxALxu9r-UMesPRv3ubutfMu3Bs-F4dJadnZx_eQ9rnLZt1NHm27BazeZ-B8VUZXdrc7kHgJoPyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4Blar2AH1RwtNIlXoKm7UdxzmuWJZHgaJqK3GLbMdRV1RZtGQP7a9nJtkNbNWqElwiRRlHTub1ORl_A_DJpl4rV6hQGIMLFBP7EGOeDotE5tpo7b2mDc4Xl-rkuzy7jq8f7eJv-CHaD27kGXW8Jge_zYvOA2moyWveIFyyKMTwy_BCqiil5g39bw8EUoTPa7Y9EYepknpO2xjxzuL4hbS0XI5Gf0OciwC2zkCDNTDzuTeFJzcH08oeuN9_0Do-5-HewOoMnrJeY09vYcmX7-D1I9LC93D6dWKp0wg7NlQyzfoTCpjM_mLHaGoVQ_g6uWENKzIblWw4pVIakrz6Ma7GFSXHmpvk7gMMB0fDw5Nw1pAhdFLpOPSmQATT5ZEyNhJplPJYOyelzXMVCekx2bsipoLWvOACjUMqab2yLuE8yZ1Yh5VyXPoNYAiKtC0Qa6SxpCUl4kCTOq-4lda4xAcQztWRuRlZOfXM-Jk1NMs8ozeUtW8ogM-t_G1D0_FPyR3ULt6Ujl2diC7RBRGnkRBUIBTA9lzv2cyd7zKueIKhTkocvt9eRkekvyum9OMpyWA85EpIHcDHxl7aqRCDEEHjAHit9f_MMev1L3rt2eZTBu3By6v-IDs_vfyyBa847dmoS823YaWaTP0OIqnK7tbOcg8wGA56
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orbital+Gating+Driven+by+Giant+Stark+Effect+in+Tunneling+Phototransistors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kim%2C+Eunah&rft.au=Hwang%2C+Geunwoo&rft.au=Kim%2C+Dohyun&rft.au=Won%2C+Dongyeun&rft.date=2022-02-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=6&rft.spage=e2106625&rft_id=info:doi/10.1002%2Fadma.202106625&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon