Orbital Gating Driven by Giant Stark Effect in Tunneling Phototransistors
Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating...
Saved in:
Published in | Advanced Materials Vol. 34; no. 6; pp. e2106625 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley
01.02.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H‐MoTe2 without using external gating bias or slow charge trapping dynamics in photogating. The original self‐gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the dz2‐orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe2 by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 1011 cm–2 by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW–1), and fast switching time (0.5 ms) simultaneously.
Orbital gating is introduced driven by giant Stark effect in tunneling phototransistors based on 2H‐MoTe2 without using external gating bias or slow charge trapping dynamics in conventional photogating, which realizes low dark current, practical photoresponsivity, and fast switching time simultaneously. |
---|---|
AbstractList | Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H-MoTe
without using external gating bias or slow charge trapping dynamics in photogating. The original self-gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the d
2-orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe
by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 10
cm
by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW
), and fast switching time (0.5 ms) simultaneously. Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H‐MoTe2 without using external gating bias or slow charge trapping dynamics in photogating. The original self‐gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the dz2‐orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe2 by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 1011 cm–2 by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW–1), and fast switching time (0.5 ms) simultaneously. Orbital gating is introduced driven by giant Stark effect in tunneling phototransistors based on 2H‐MoTe2 without using external gating bias or slow charge trapping dynamics in conventional photogating, which realizes low dark current, practical photoresponsivity, and fast switching time simultaneously. Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H-MoTe2 without using external gating bias or slow charge trapping dynamics in photogating. The original self-gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the dz 2-orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe2 by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 1011 cm-2 by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW-1 ), and fast switching time (0.5 ms) simultaneously.Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H-MoTe2 without using external gating bias or slow charge trapping dynamics in photogating. The original self-gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the dz 2-orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe2 by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 1011 cm-2 by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW-1 ), and fast switching time (0.5 ms) simultaneously. Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H‐MoTe2 without using external gating bias or slow charge trapping dynamics in photogating. The original self‐gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the dz2‐orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe2 by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 1011 cm–2 by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW–1), and fast switching time (0.5 ms) simultaneously. Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H‐MoTe 2 without using external gating bias or slow charge trapping dynamics in photogating. The original self‐gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the d z 2‐orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe 2 by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 10 11 cm –2 by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW –1 ), and fast switching time (0.5 ms) simultaneously. |
Author | Pilkyung Moon Kenji Watanabe Heejun Yang Shoujun Zheng Yanggeun Joo Dongyeun Won Dong-Wook Kim Takashi Taniguchi Dohyun Kim Geunwoo Hwang Linfeng Sun Eunah Kim |
Author_xml | – sequence: 1 givenname: Eunah surname: Kim fullname: Kim, Eunah organization: Sungkyunkwan University – sequence: 2 givenname: Geunwoo surname: Hwang fullname: Hwang, Geunwoo organization: Sungkyunkwan University – sequence: 3 givenname: Dohyun surname: Kim fullname: Kim, Dohyun organization: Sungkyunkwan University – sequence: 4 givenname: Dongyeun surname: Won fullname: Won, Dongyeun organization: Sungkyunkwan University – sequence: 5 givenname: Yanggeun surname: Joo fullname: Joo, Yanggeun organization: Sungkyunkwan University – sequence: 6 givenname: Shoujun surname: Zheng fullname: Zheng, Shoujun organization: Sungkyunkwan University – sequence: 7 givenname: Kenji surname: Watanabe fullname: Watanabe, Kenji organization: National Institute for Materials Science – sequence: 8 givenname: Takashi surname: Taniguchi fullname: Taniguchi, Takashi organization: National Institute for Materials Science – sequence: 9 givenname: Pilkyung surname: Moon fullname: Moon, Pilkyung organization: Korea Institute for Advanced Study – sequence: 10 givenname: Dong‐Wook surname: Kim fullname: Kim, Dong‐Wook organization: Ewha Womans University – sequence: 11 givenname: Linfeng surname: Sun fullname: Sun, Linfeng email: sunlinfeng@bit.edu.cn organization: Beijing Institute of Technology – sequence: 12 givenname: Heejun orcidid: 0000-0003-0502-0054 surname: Yang fullname: Yang, Heejun email: h.yang@kaist.ac.kr organization: Korea Advanced Institute of Science and Technology (KAIST) |
BackLink | https://cir.nii.ac.jp/crid/1873116917767333760$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/34825405$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9LHDEUx0NR6tZ67VEG6qGXWV9-zuS4qN0KioJ7D5lMRmNnE5tkLPvfN8tqKYL0knfI5_N4730_oT0fvEXoC4Y5BiCnul_rOQGCQQjCP6AZ5gTXDCTfQzOQlNdSsPYAHaXkOgAOjWgAf0QHlLWEM-AzdHkTO5f1WC11dv6-Oo_u2fqq21RLp32u7rKOP6uLYbAmV85Xq8l7O27J24eQQ47aJ5dyiOkz2h_0mOzRSz1Eq-8Xq7Mf9dXN8vJscVUbJlpeWz2AYJiA0B1QCZLw1hjGur4XQJklQpiBYylJPxBqy5dgnRWdaQhpekMP0bdd26cYfk02ZbV2ydhx1N6GKSkigAERZcOCfn2DPoYp-jJcoUgDrGWMF-r4hZq6te3VU3RrHTfq9UYFYDvAxJBStIMy5WLZBV-2d6PCoLZpqG0a6m8aRZu_0V47vyvInfDbjXbzH1otzq8X_7onO9c7V8bbvrhtKMZC4qakTiltynn_AA-8pIY |
CitedBy_id | crossref_primary_10_1088_1361_6528_ac5f96 crossref_primary_10_34133_research_0195 crossref_primary_10_1002_inf2_12479 crossref_primary_10_1021_acsaelm_4c01249 crossref_primary_10_1002_adma_202304599 crossref_primary_10_1364_OE_497833 crossref_primary_10_1002_adma_202209089 crossref_primary_10_1007_s10854_023_11735_6 crossref_primary_10_1088_2053_1583_acf5fa crossref_primary_10_1021_acsnano_4c13215 crossref_primary_10_1021_acsnano_3c03319 crossref_primary_10_1021_acsaelm_4c00562 |
Cites_doi | 10.1038/nnano.2007.380 10.1038/s41565-020-0750-1 10.1002/smll.201603103 10.1002/adma.201906942 10.1021/acsnano.0c00098 10.1021/acsami.8b21315 10.1002/adma.201203731 10.1038/nnano.2012.88 10.1039/C5CS00106D 10.1088/0957-4484/27/44/445201 10.1038/nnano.2010.172 10.1002/adfm.201907945 10.1038/nature15387 10.1038/nnano.2012.60 10.1038/nphoton.2012.314 10.1021/nl502557g 10.1002/smll.201703293 10.1038/srep05209 10.1021/acs.nanolett.6b05381 10.1021/nl4012529 10.1002/advs.201700323 10.1038/nature08105 10.1021/acsami.6b14483 10.1126/sciadv.aav3430 10.1021/nn5007607 10.1126/science.aaa6486 10.1021/nl2005115 10.1039/C8CS00320C 10.1021/acs.nanolett.5b02523 10.1126/science.1218461 10.1038/nnano.2009.292 10.1002/smll.201700268 10.1002/adom.201901402 10.1063/1.4941996 10.1002/adom.201600290 10.1038/ncomms14474 10.1021/nl502339q 10.7567/1347-4065/ab266a 10.1002/adfm.201504408 10.1126/science.1220527 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. – notice: 2022 Wiley‐VCH GmbH |
DBID | RYH AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202106625 |
DatabaseName | CiNii Complete CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34825405 10_1002_adma_202106625 ADMA202106625 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: KAIST‐funded Global Singularity Research Program for 2021 – fundername: Samsung Research Funding & Incubation Center of Samsung Electronics funderid: SRFC‐MA1701‐01 – fundername: National Research Foundation of Korea funderid: NRF‐2020R1I1A1A01067910 – fundername: National Research Foundation of Korea funderid: 2021M3H4A1A03054856 – fundername: National Science Foundation of China funderid: 12074260 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 19ZR1436400 – fundername: NYU‐ECNU Institute of Physics at NYU Shanghai – fundername: Beijing Natural Science Foundation funderid: Z210006 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 19ZR1436400 – fundername: National Research Foundation of Korea grantid: NRF-2020R1I1A1A01067910 – fundername: National Research Foundation of Korea grantid: 2021M3H4A1A03054856 – fundername: KAIST-funded Global Singularity Research Program for 2021 – fundername: NYU-ECNU Institute of Physics at NYU Shanghai – fundername: Samsung Research Funding & Incubation Center of Samsung Electronics grantid: SRFC-MA1701-01 – fundername: Beijing Natural Science Foundation grantid: Z210006 – fundername: National Science Foundation of China grantid: 12074260 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYH RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT AEUQT AFPWT RWI RWM WRC .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AETEA AFFNX AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4685-eaf0641206ab03909258cc44bdd6034e266cf51992df23ecc464be6bc7227dc3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 03:11:49 EDT 2025 Fri Jul 25 03:13:25 EDT 2025 Wed Feb 19 02:27:34 EST 2025 Tue Jul 01 02:33:10 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Wed Jan 22 16:27:13 EST 2025 Thu Jun 26 22:39:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | photoconductivity van der Waals heterostructures tunneling photogating giant Stark effect |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4685-eaf0641206ab03909258cc44bdd6034e266cf51992df23ecc464be6bc7227dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0502-0054 |
PMID | 34825405 |
PQID | 2627048445 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2604026348 proquest_journals_2627048445 pubmed_primary_34825405 crossref_citationtrail_10_1002_adma_202106625 crossref_primary_10_1002_adma_202106625 wiley_primary_10_1002_adma_202106625_ADMA202106625 nii_cinii_1873116917767333760 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced Materials |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2015; 15 2017; 8 2013; 25 2017; 4 2019; 5 2016; 108 2019; 11 1981; 2 2019; 58 2020; 15 2011; 11 2020; 14 2015; 526 2015; 349 2020; 32 2009; 459 2013; 7 2017; 9 2018; 47 2020; 8 2016; 4 2014; 4 2020; 30 2017; 17 2013; 13 2017; 13 2015; 44 2014; 14 2007; 2 2009; 4 2012; 335 2012; 7 2014; 8 2012; 336 2016; 27 2010; 5 2016; 26 2018; 14 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 e_1_2_10_1_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Sze S. M. (e_1_2_10_27_1) 1981 e_1_2_10_29_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 25 start-page: 899 year: 2013 publication-title: Adv. Mater. – volume: 2 year: 1981 – volume: 7 start-page: 53 year: 2013 publication-title: Nat. Photonics – volume: 336 start-page: 1140 year: 2012 publication-title: Science – volume: 13 start-page: 3576 year: 2013 publication-title: Nano Lett. – volume: 9 start-page: 5392 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 335 start-page: 947 year: 2012 publication-title: Science – volume: 14 start-page: 6231 year: 2014 publication-title: Nano Lett. – volume: 15 start-page: 7853 year: 2015 publication-title: Nano Lett. – volume: 14 year: 2018 publication-title: Small – volume: 8 year: 2020 publication-title: Adv. Opt. Mater. – volume: 526 start-page: 91 year: 2015 publication-title: Nature – volume: 11 start-page: 2291 year: 2011 publication-title: Nano Lett. – volume: 4 start-page: 5209 year: 2014 publication-title: Sci. Rep. – volume: 108 year: 2016 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 1750 year: 2016 publication-title: Adv. Opt. Mater. – volume: 27 year: 2016 publication-title: Nanotechnology – volume: 8 start-page: 3895 year: 2014 publication-title: ACS Nano – volume: 17 start-page: 1970 year: 2017 publication-title: Nano Lett. – volume: 14 start-page: 6165 year: 2014 publication-title: Nano Lett. – volume: 47 start-page: 8238 year: 2018 publication-title: Chem. Soc. Rev. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 901 year: 2020 publication-title: Nat. Nanotechnol. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 14 start-page: 4559 year: 2020 publication-title: ACS Nano – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 363 year: 2012 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 472 year: 2012 publication-title: Nat. Nanotechnol. – volume: 58 year: 2019 publication-title: Jpn. J. Appl. Phys. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 5 start-page: 722 year: 2010 publication-title: Nat. Nanotechnol. – volume: 26 start-page: 1938 year: 2016 publication-title: Adv. Funct. Mater. – volume: 44 start-page: 3691 year: 2015 publication-title: Chem. Soc. Rev. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 4 start-page: 839 year: 2009 publication-title: Nat. Nanotechnol. – volume: 2 start-page: 790 year: 2007 publication-title: Nat. Nanotechnol. – volume: 13 year: 2017 publication-title: Small – volume: 349 start-page: 723 year: 2015 publication-title: Science – volume: 459 start-page: 820 year: 2009 publication-title: Nature – ident: e_1_2_10_6_1 doi: 10.1038/nnano.2007.380 – ident: e_1_2_10_10_1 doi: 10.1038/s41565-020-0750-1 – ident: e_1_2_10_14_1 doi: 10.1002/smll.201603103 – ident: e_1_2_10_9_1 doi: 10.1002/adma.201906942 – ident: e_1_2_10_22_1 doi: 10.1021/acsnano.0c00098 – ident: e_1_2_10_37_1 doi: 10.1021/acsami.8b21315 – ident: e_1_2_10_13_1 doi: 10.1002/adma.201203731 – ident: e_1_2_10_18_1 doi: 10.1038/nnano.2012.88 – ident: e_1_2_10_16_1 doi: 10.1039/C5CS00106D – ident: e_1_2_10_20_1 doi: 10.1088/0957-4484/27/44/445201 – ident: e_1_2_10_23_1 doi: 10.1038/nnano.2010.172 – ident: e_1_2_10_31_1 doi: 10.1002/adfm.201907945 – ident: e_1_2_10_5_1 doi: 10.1038/nature15387 – ident: e_1_2_10_7_1 doi: 10.1038/nnano.2012.60 – ident: e_1_2_10_17_1 doi: 10.1038/nphoton.2012.314 – ident: e_1_2_10_41_1 doi: 10.1021/nl502557g – ident: e_1_2_10_38_1 doi: 10.1002/smll.201703293 – ident: e_1_2_10_32_1 doi: 10.1038/srep05209 – ident: e_1_2_10_8_1 doi: 10.1021/acs.nanolett.6b05381 – ident: e_1_2_10_24_1 doi: 10.1021/nl4012529 – ident: e_1_2_10_19_1 doi: 10.1002/advs.201700323 – ident: e_1_2_10_1_1 doi: 10.1038/nature08105 – ident: e_1_2_10_33_1 doi: 10.1021/acsami.6b14483 – ident: e_1_2_10_30_1 doi: 10.1126/sciadv.aav3430 – ident: e_1_2_10_40_1 doi: 10.1021/nn5007607 – ident: e_1_2_10_11_1 doi: 10.1126/science.aaa6486 – ident: e_1_2_10_25_1 doi: 10.1021/nl2005115 – ident: e_1_2_10_15_1 doi: 10.1039/C8CS00320C – ident: e_1_2_10_26_1 doi: 10.1021/acs.nanolett.5b02523 – ident: e_1_2_10_2_1 doi: 10.1126/science.1218461 – ident: e_1_2_10_4_1 doi: 10.1038/nnano.2009.292 – ident: e_1_2_10_21_1 doi: 10.1002/smll.201700268 – ident: e_1_2_10_36_1 doi: 10.1002/adom.201901402 – ident: e_1_2_10_34_1 doi: 10.1063/1.4941996 – ident: e_1_2_10_39_1 doi: 10.1002/adom.201600290 – ident: e_1_2_10_12_1 doi: 10.1038/ncomms14474 – ident: e_1_2_10_28_1 doi: 10.1021/nl502339q – ident: e_1_2_10_35_1 doi: 10.7567/1347-4065/ab266a – ident: e_1_2_10_29_1 doi: 10.1002/adfm.201504408 – ident: e_1_2_10_3_1 doi: 10.1126/science.1220527 – volume-title: Physics of Semiconductor Devices year: 1981 ident: e_1_2_10_27_1 |
SSID | ssib005076701 ssib027715679 ssj0009606 ssib005900573 |
Score | 2.45962 |
Snippet | Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices... |
SourceID | proquest pubmed crossref wiley nii |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2106625 |
SubjectTerms | Carrier density Dark current Dielectrics Electric fields giant Stark effect Illumination Interlayers Light Materials science Molybdenum compounds Nanoparticles Optoelectronic devices Photoconductivity photogating Phototransistors Potential gradient Stark effect Switching Tellurides Transistors tunneling van der Waals heterostructures |
Title | Orbital Gating Driven by Giant Stark Effect in Tunneling Phototransistors |
URI | https://cir.nii.ac.jp/crid/1873116917767333760 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202106625 https://www.ncbi.nlm.nih.gov/pubmed/34825405 https://www.proquest.com/docview/2627048445 https://www.proquest.com/docview/2604026348 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fT9swEMdPjCf2sPFjGwGKPAmJp0BqO47zWFF-SgyEisRbZDuOqEDp1KYP7K_fXdIGipiQxkukKOfIiX3nr5PzxwB7NvVauUKFwhicoJjYhxjzdFgkMtdGa-81LXC-_KXObuXFXXz3YhV_w4doP7iRZ9Txmhzc2MnhMzTU5DU3CKcsCjU8BmFK2CJVdPPMjyJ5XsP2RBymSuo5tTHih4vFF0alT-Vw-JbgXNSv9QB08hXMvOpN3snDwbSyB-7PK6rjR55tFb7M1CnrNd1pDZZ8uQ6fXzALN-D8amxpoxF2aihjmvXHFC-ZfWKn2NMqhup1_MAaKDIblmwwpUwasry-H1WjisbGGk0y-QaDk-PB0Vk4248hdFLpOPSmQAHT5ZEyNhJplPJYOyelzXMVCelxrHdFTPmsecEF9g2ppPXKuoTzJHfiOyyXo9JvAkNNpG2BUiONJc0oUQaa1HnFrbTGJT6AcN4cmZuxymnLjMesoSzzjN5Q1r6hAPZb-98NpeOflh1sXbwpHbs6EV2iBRHSSAjKDwpgZ97u2cybJxlXPMFIJyUW_9leRj-knyum9KMp2WA45EpIHcCPpr-0VSGAECnjAHjd6u_UMev1L3vt2db_FNqGFU7rNOr08h1YrsZT30H1VNnd2kP-ArIFC68 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMef2DgwDsBgg4z9MBLSTtlS23GcY0XZurFuaOqk3SLbcbRqKEVdeoC_fu8lTUYnEBJcIkWxI8f2e_7aef4Y4KNNvVauUKEwBicoJvYh-jwdFonMtdHae00bnEfnanglT6_jNpqQ9sI0fIhuwY0so_bXZOC0IH34QA01eQ0OwjmLQhG_Ak_pWG_C5w8uHwhSJNBr3J6Iw1RJ3XIbI364nH9pXFopJ5PfSc5lBVsPQUcvwbaFbyJPbg_mlT1wPx9xHf_r617Bi4VAZf2mR63DE1--hue_YAvfwMnFzNJZI-zYUNA0G8zIZTL7gx1jZ6sYCtjZLWu4yGxSsvGcgmko5debaTWtaHis6SR3GzA--jz-NAwXRzKETiodh94UqGF6PFLGRiKNUh5r56S0ea4iIT0O966IKaQ1L7jA7iGVtF5Zl3Ce5E5swmo5Lf07YCiLtC1QbaSxpEklKkGTOq-4lda4xAcQtu2RuQWunE7N-JY1oGWeUQ1lXQ0FsN-l_96AOv6YcgebF19K155ORI-AQUQ1EoJChALYbhs-Wxj0XcYVT9DZSYnZP3SP0RTp_4op_XROadAjciWkDuBt02G6ohBDiMRxALxu9r-UMesPRv3ubutfMu3Bs-F4dJadnZx_eQ9rnLZt1NHm27BazeZ-B8VUZXdrc7kHgJoPyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4Blar2AH1RwtNIlXoKm7UdxzmuWJZHgaJqK3GLbMdRV1RZtGQP7a9nJtkNbNWqElwiRRlHTub1ORl_A_DJpl4rV6hQGIMLFBP7EGOeDotE5tpo7b2mDc4Xl-rkuzy7jq8f7eJv-CHaD27kGXW8Jge_zYvOA2moyWveIFyyKMTwy_BCqiil5g39bw8EUoTPa7Y9EYepknpO2xjxzuL4hbS0XI5Gf0OciwC2zkCDNTDzuTeFJzcH08oeuN9_0Do-5-HewOoMnrJeY09vYcmX7-D1I9LC93D6dWKp0wg7NlQyzfoTCpjM_mLHaGoVQ_g6uWENKzIblWw4pVIakrz6Ma7GFSXHmpvk7gMMB0fDw5Nw1pAhdFLpOPSmQATT5ZEyNhJplPJYOyelzXMVCekx2bsipoLWvOACjUMqab2yLuE8yZ1Yh5VyXPoNYAiKtC0Qa6SxpCUl4kCTOq-4lda4xAcQztWRuRlZOfXM-Jk1NMs8ozeUtW8ogM-t_G1D0_FPyR3ULt6Ujl2diC7RBRGnkRBUIBTA9lzv2cyd7zKueIKhTkocvt9eRkekvyum9OMpyWA85EpIHcDHxl7aqRCDEEHjAHit9f_MMev1L3rt2eZTBu3By6v-IDs_vfyyBa847dmoS823YaWaTP0OIqnK7tbOcg8wGA56 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orbital+Gating+Driven+by+Giant+Stark+Effect+in+Tunneling+Phototransistors&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Kim%2C+Eunah&rft.au=Hwang%2C+Geunwoo&rft.au=Kim%2C+Dohyun&rft.au=Won%2C+Dongyeun&rft.date=2022-02-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=6&rft.spage=e2106625&rft_id=info:doi/10.1002%2Fadma.202106625&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |