A Theranostic Cellulose Nanocrystal‐Based Drug Delivery System with Enhanced Retention in Pulmonary Metastasis of Melanoma
Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA‐approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium‐177 (177Lu) enables simultane...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 18; pp. e2007705 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA‐approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium‐177 (177Lu) enables simultaneous tracking of tracer accumulation with single‐photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177Lu‐labeled CNC NPs loaded with vemurafenib ([177Lu]Lu‐CNC‐V NPs) is developed and the therapeutic effect in BRAF V600E mutation‐harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [177Lu]Lu‐CNC‐V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [177Lu]Lu‐CNC‐V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [177Lu]Lu‐CNC‐V NPs compared to control groups. The enhanced therapeutic efficacy of [177Lu]Lu‐CNC‐V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP‐based drug delivery systems after intravenous administration.
This study describes theranostic cellulose nanocrystals ([177Lu]Lu‐cellulose nanocrystals (CNC)‐V nanoparticles (NPs)) for the codelivery of BRAF inhibitor vemurafenib and the radioisotope lutetium‐177 for chemotherapy and radiotherapy of pulmonary metastases of melanoma through enhanced retention in the lung. The [177Lu]Lu‐CNC‐V NPs prolong the survival of syngeneic YUMM1.G1 melanoma tumor‐bearing mice and decrease the tumor burden in the lung over either vemurafenib or radiotherapy alone. |
---|---|
AbstractList | Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA-approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium-177 (
177
Lu) enables simultaneous tracking of tracer accumulation with single-photon emission computed tomography and radiotherapy. Therefore, the co-delivery of
177
Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries
in vivo
. Herein, we developed
177
Lu-labeled CNC NPs loaded with vemurafenib ([
177
Lu]Lu-CNC-V NPs) and investigated the synergistic chemo/radiotherapeutic effects in BRAF V600E mutation-harboring YUMM1.G1 murine model of lung metastatic melanoma. The [
177
Lu]Lu-CNC-V NPs demonstrated favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition
in vitro
.
In vivo
biodistribution revealed significant retention of the [
177
Lu]Lu-CNC-V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals was doubly increased after treating with [
177
Lu]Lu-CNC-V NPs compared to control groups. The enhanced therapeutic efficacy of [
177
Lu]Lu-CNC-V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential clinical translation of theranostic CNC NP-based drug delivery systems after intravenous administration. Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA‐approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium‐177 (177Lu) enables simultaneous tracking of tracer accumulation with single‐photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177Lu‐labeled CNC NPs loaded with vemurafenib ([177Lu]Lu‐CNC‐V NPs) is developed and the therapeutic effect in BRAF V600E mutation‐harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [177Lu]Lu‐CNC‐V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [177Lu]Lu‐CNC‐V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [177Lu]Lu‐CNC‐V NPs compared to control groups. The enhanced therapeutic efficacy of [177Lu]Lu‐CNC‐V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP‐based drug delivery systems after intravenous administration. This study describes theranostic cellulose nanocrystals ([177Lu]Lu‐cellulose nanocrystals (CNC)‐V nanoparticles (NPs)) for the codelivery of BRAF inhibitor vemurafenib and the radioisotope lutetium‐177 for chemotherapy and radiotherapy of pulmonary metastases of melanoma through enhanced retention in the lung. The [177Lu]Lu‐CNC‐V NPs prolong the survival of syngeneic YUMM1.G1 melanoma tumor‐bearing mice and decrease the tumor burden in the lung over either vemurafenib or radiotherapy alone. Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA-approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium-177 (177 Lu) enables simultaneous tracking of tracer accumulation with single-photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177 Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177 Lu-labeled CNC NPs loaded with vemurafenib ([177 Lu]Lu-CNC-V NPs) is developed and the therapeutic effect in BRAF V600E mutation-harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [177 Lu]Lu-CNC-V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [177 Lu]Lu-CNC-V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [177 Lu]Lu-CNC-V NPs compared to control groups. The enhanced therapeutic efficacy of [177 Lu]Lu-CNC-V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP-based drug delivery systems after intravenous administration.Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA-approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium-177 (177 Lu) enables simultaneous tracking of tracer accumulation with single-photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177 Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177 Lu-labeled CNC NPs loaded with vemurafenib ([177 Lu]Lu-CNC-V NPs) is developed and the therapeutic effect in BRAF V600E mutation-harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [177 Lu]Lu-CNC-V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [177 Lu]Lu-CNC-V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [177 Lu]Lu-CNC-V NPs compared to control groups. The enhanced therapeutic efficacy of [177 Lu]Lu-CNC-V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP-based drug delivery systems after intravenous administration. Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA‐approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium‐177 (177Lu) enables simultaneous tracking of tracer accumulation with single‐photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177Lu‐labeled CNC NPs loaded with vemurafenib ([177Lu]Lu‐CNC‐V NPs) is developed and the therapeutic effect in BRAF V600E mutation‐harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [177Lu]Lu‐CNC‐V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [177Lu]Lu‐CNC‐V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [177Lu]Lu‐CNC‐V NPs compared to control groups. The enhanced therapeutic efficacy of [177Lu]Lu‐CNC‐V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP‐based drug delivery systems after intravenous administration. Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA-approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium-177 ( Lu) enables simultaneous tracking of tracer accumulation with single-photon emission computed tomography and radiotherapy. Therefore, the codelivery of Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, Lu-labeled CNC NPs loaded with vemurafenib ([ Lu]Lu-CNC-V NPs) is developed and the therapeutic effect in BRAF V600E mutation-harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [ Lu]Lu-CNC-V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [ Lu]Lu-CNC-V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [ Lu]Lu-CNC-V NPs compared to control groups. The enhanced therapeutic efficacy of [ Lu]Lu-CNC-V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP-based drug delivery systems after intravenous administration. Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA‐approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium‐177 ( 177 Lu) enables simultaneous tracking of tracer accumulation with single‐photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177 Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177 Lu‐labeled CNC NPs loaded with vemurafenib ([ 177 Lu]Lu‐CNC‐V NPs) is developed and the therapeutic effect in BRAF V600E mutation‐harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [ 177 Lu]Lu‐CNC‐V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [ 177 Lu]Lu‐CNC‐V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [ 177 Lu]Lu‐CNC‐V NPs compared to control groups. The enhanced therapeutic efficacy of [ 177 Lu]Lu‐CNC‐V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP‐based drug delivery systems after intravenous administration. |
Author | Kostiainen, Mauri A. Sarparanta, Mirkka Zeglis, Brian M. Imlimthan, Surachet Airaksinen, Anu J. Santos, Hélder A. Khng, You Cheng Zhang, Wenzhong Keinänen, Outi |
AuthorAffiliation | 9 Helsinki Institute of Life Science (HiLIFE), FI-00014 Helsinki, Finland 3 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA 7 Department of Radiology, Weill Cornell Medical College, New York 10021, NY, USA 8 Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland 1 Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland 6 Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY 10016, USA 2 Department of Chemistry, Hunter College, The City University of New York, New York, NY 10021, USA 5 Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Finland 4 Turku PET Centre, Department of Chemistry, University of Turku, FI-20521 Turku, Finland |
AuthorAffiliation_xml | – name: 4 Turku PET Centre, Department of Chemistry, University of Turku, FI-20521 Turku, Finland – name: 9 Helsinki Institute of Life Science (HiLIFE), FI-00014 Helsinki, Finland – name: 8 Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland – name: 1 Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland – name: 3 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA – name: 6 Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY 10016, USA – name: 2 Department of Chemistry, Hunter College, The City University of New York, New York, NY 10021, USA – name: 7 Department of Radiology, Weill Cornell Medical College, New York 10021, NY, USA – name: 5 Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Finland |
Author_xml | – sequence: 1 givenname: Surachet orcidid: 0000-0003-2520-2146 surname: Imlimthan fullname: Imlimthan, Surachet organization: University of Helsinki – sequence: 2 givenname: You Cheng orcidid: 0000-0003-2445-136X surname: Khng fullname: Khng, You Cheng organization: University of Helsinki – sequence: 3 givenname: Outi orcidid: 0000-0002-3939-6706 surname: Keinänen fullname: Keinänen, Outi organization: Memorial Sloan Kettering Cancer Center – sequence: 4 givenname: Wenzhong orcidid: 0000-0001-9184-0723 surname: Zhang fullname: Zhang, Wenzhong organization: University of Helsinki – sequence: 5 givenname: Anu J. orcidid: 0000-0002-5943-3105 surname: Airaksinen fullname: Airaksinen, Anu J. organization: University of Turku – sequence: 6 givenname: Mauri A. orcidid: 0000-0002-8282-2379 surname: Kostiainen fullname: Kostiainen, Mauri A. organization: Aalto University – sequence: 7 givenname: Brian M. orcidid: 0000-0002-9091-744X surname: Zeglis fullname: Zeglis, Brian M. organization: Weill Cornell Medical College – sequence: 8 givenname: Hélder A. orcidid: 0000-0001-7850-6309 surname: Santos fullname: Santos, Hélder A. organization: Helsinki Institute of Life Science (HiLIFE) – sequence: 9 givenname: Mirkka orcidid: 0000-0002-2956-4366 surname: Sarparanta fullname: Sarparanta, Mirkka email: mirkka.sarparanta@helsinki.fi organization: University of Helsinki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33738957$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URC-wZYkssWGT4Mt4bG-QSlouUgqIlrXlOCeNK4_d2jOtIrHoI_QZeRIcpQSohFj5cr7_9zn-99FOTBEQek7JmBLCXpcuhDEjjBApiXiE9mhL-ahVTO9s95Tsov1SLgjhlDXyCdrlXHKlhdxD3w_x2RKyjan03uEJhDCEVAB_qlcur0pvw4_bu7e2wBwf5eEcH0Hw15BX-LQWocM3vl_i47i00VXkK_QQe58i9hF_GUKXoq3sCfS2WhVfcFrUU6junX2KHi9sKPDsfj1A394dn00-jKaf33-cHE5HrmmVGLk5lZQLmElnuVaSWCpBCKJdS1UzV8QRKYgEqTRw2WrJ7UwoSfViroEB4Qfozcb3cph1MHe1w2yDucy-q82ZZL35uxL90pyna6NoNWa0Gry6N8jpaoDSm84XV__KRkhDMUwQ3vCWEVHRlw_QizTkWMerFGNMN4q3lXrxZ0fbVn4FU4HxBnA5lZJhsUUoMevkzTp5s02-CpoHAud7u06iTuTDv2V6I7vxAVb_ecScnkynv7U_AR1bxXs |
CitedBy_id | crossref_primary_10_26599_PBM_2023_9260026 crossref_primary_10_1016_j_jddst_2024_106432 crossref_primary_10_3390_pharmaceutics14102090 crossref_primary_10_2147_DDDT_S463545 crossref_primary_10_1021_acsbiomaterials_1c01631 crossref_primary_10_1089_adt_2024_045 crossref_primary_10_1186_s41181_022_00161_4 crossref_primary_10_1016_j_mtsust_2024_100865 crossref_primary_10_1002_smll_202409701 crossref_primary_10_1016_j_drudis_2024_103913 crossref_primary_10_3390_pharmaceutics14050917 crossref_primary_10_1186_s41181_024_00266_y crossref_primary_10_3390_pharmaceutics16030404 crossref_primary_10_1016_j_molstruc_2023_137045 crossref_primary_10_1002_smll_202303634 crossref_primary_10_1016_j_ijbiomac_2024_130807 crossref_primary_10_1021_acs_molpharmaceut_2c00775 crossref_primary_10_1002_cnma_202400449 crossref_primary_10_1002_chem_202303298 crossref_primary_10_1021_acsmaterialslett_2c00867 crossref_primary_10_1021_acsanm_4c05058 crossref_primary_10_1016_j_bios_2025_117403 crossref_primary_10_1002_smll_202206487 crossref_primary_10_1039_D3NA00397C crossref_primary_10_1016_j_jddst_2022_103933 crossref_primary_10_1016_j_foodres_2024_114741 crossref_primary_10_1021_acsami_4c13523 crossref_primary_10_1016_j_ijpharm_2023_123143 crossref_primary_10_1016_j_carres_2023_108899 crossref_primary_10_1016_j_carbpol_2022_119432 crossref_primary_10_1016_j_jddst_2024_105417 crossref_primary_10_1016_j_ijbiomac_2024_130839 crossref_primary_10_1016_j_ijbiomac_2024_131829 crossref_primary_10_1007_s10570_024_06353_2 |
Cites_doi | 10.1007/s10570-013-9954-y 10.1074/jbc.M113.532432 10.2340/00015555-2035 10.1016/j.bcp.2010.04.020 10.1002/adhm.201400641 10.1371/journal.pone.0156689 10.1016/j.jconrel.2009.10.014 10.1007/s12094-012-0766-6 10.1080/07388551.2016.1189871 10.3390/cancers11081176 10.1016/j.carbpol.2010.04.073 10.1002/jbm.a.36856 10.1007/s10637-013-9928-9 10.1016/S0360-3016(98)00325-3 10.1016/j.bbamcr.2006.03.014 10.1021/acs.biomac.8b01313 10.20892/j.issn.2095-3941.2017.0052 10.1021/acs.molpharmaceut.9b00746 10.1158/1078-0432.CCR-1169-3 10.1016/j.nucmedbio.2019.11.002 10.7150/thno.44772 10.1021/acs.biomac.5b01598 10.1039/C6CS00636A 10.3390/ma9121002 10.1038/nature23291 10.2147/IJN.S146315 10.1038/s41388-018-0171-x 10.7150/thno.17098 10.1016/j.bioorg.2020.104100 10.1038/nrc3760 10.1080/17425247.2016.1182491 10.1007/s13139-014-0315-z 10.2967/jnumed.118.220566 10.2147/IJN.S16749 10.1055/s-2001-9917 10.1038/nprot.2006.339 10.3389/fonc.2019.00268 10.3390/ijms18071527 10.1016/j.apradiso.2019.01.021 10.1038/s41392-017-0004-3 10.1002/anie.202002433 10.1146/annurev-bioeng-071811-150124 10.1586/era.10.170 10.1021/jp304630q 10.1073/pnas.1105026109 10.1038/sj.onc.1206701 10.2147/OTT.S119428 10.1039/C7PY01603D 10.1021/bm049300p 10.1136/jcp.2005.035105 10.1080/15384047.2019.1640032 10.1039/C4NR01756K 10.1007/s10570-006-9061-4 10.3390/ijms17050736 10.18632/oncotarget.19836 10.7150/thno.22980 10.1111/pcmr.12498 10.21037/atm.2016.06.07 10.1002/anie.200460587 10.1038/382813a0 10.1038/nature17038 10.1038/modpathol.2017.104 10.1093/annonc/mdv139 10.1007/s10570-015-0803-z |
ContentType | Journal Article |
Copyright | 2021 The Authors. Small published by Wiley‐VCH GmbH 2021 The Authors. Small published by Wiley-VCH GmbH. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Small published by Wiley‐VCH GmbH – notice: 2021 The Authors. Small published by Wiley-VCH GmbH. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
DOI | 10.1002/smll.202007705 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | PMC8175021 33738957 10_1002_smll_202007705 SMLL202007705 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Academy of Finland funderid: 318422; 278056; 298481; 302102; 331659 – fundername: NIBIB NIH HHS grantid: R21 EB030275 – fundername: NCI NIH HHS grantid: P30 CA008748 – fundername: NCI NIH HHS grantid: R01 CA240963 – fundername: NCI NIH HHS grantid: U01 CA221046 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 24P 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
ID | FETCH-LOGICAL-c4685-cd17135eb7ca39870a17e5509c6184d80c07507e789e376973ab58719fd9e2e03 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Aug 21 18:19:55 EDT 2025 Thu Jul 10 22:47:04 EDT 2025 Fri Jul 25 12:17:36 EDT 2025 Mon Jul 21 06:00:26 EDT 2025 Tue Jul 01 02:11:02 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Wed Jan 22 16:29:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | vemurafenib theranostic nanosystem drug delivery system cellulose nanocrystal metastatic melanoma Lutetium-177 |
Language | English |
License | Attribution-NonCommercial 2021 The Authors. Small published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4685-cd17135eb7ca39870a17e5509c6184d80c07507e789e376973ab58719fd9e2e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9184-0723 0000-0002-9091-744X 0000-0002-8282-2379 0000-0002-3939-6706 0000-0002-2956-4366 0000-0003-2520-2146 0000-0003-2445-136X 0000-0001-7850-6309 0000-0002-5943-3105 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202007705 |
PMID | 33738957 |
PQID | 2522294836 |
PQPubID | 1046358 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8175021 proquest_miscellaneous_2503436205 proquest_journals_2522294836 pubmed_primary_33738957 crossref_primary_10_1002_smll_202007705 crossref_citationtrail_10_1002_smll_202007705 wiley_primary_10_1002_smll_202007705_SMLL202007705 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 2017; 8 2019; 11 1999; 49 2013; 20 2017; 46 1996; 382 2006; 1763 2019; 16 2010; 141 2001; 49 2020; 10 2012; 14 1998; 42 2018; 9 2018; 8 2019; 60 2018; 3 2015; 49 2019; 20 2017; 37 2014; 14 2007; 60 2018; 31 2014; 6 2018; 37 2014; 289 2019; 9 2015; 4 2006; 13 2015; 95 2019; 2 2016; 529 2015; 10 2019; 146 2006; 1 2020; 102 2016; 17 2010; 80 2005; 44 2020; 108 2016; 13 2012; 109 2016; 11 2010; 82 2017; 548 2004; 10 2016; 4 2011; 2011 2016; 6 2015; 26 2020; 80–81 2017; 14 2013; 31 2017; 12 2005; 6 2018; 52 2017; 18 2016; 29 2021; 60 2012; 116 2016; 9 2003; 22 2016; 23 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 Amreddy N. (e_1_2_8_67_1) 2015; 10 e_1_2_8_27_1 e_1_2_8_48_1 Wang X. (e_1_2_8_47_1) 2019; 2 Leonardi G. C. (e_1_2_8_1_1) 2018; 52 Ullman‐Cullere M. H. (e_1_2_8_68_1) 1999; 49 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 146 start-page: 24 year: 2019 publication-title: Appl. Radiat. Isot. – volume: 20 start-page: 1747 year: 2013 publication-title: Cellulose – volume: 80–81 start-page: 1 year: 2020 publication-title: Nucl. Med. Biol. – volume: 20 start-page: 674 year: 2019 publication-title: Biomacromolecules – volume: 4 start-page: 237 year: 2016 publication-title: Ann. Transl. Med. – volume: 60 start-page: 66 year: 2021 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 60 start-page: 27 year: 2007 publication-title: J. Clin. Pathol. – volume: 108 start-page: 770 year: 2020 publication-title: J. Biomed. Mater. Res., Part A – volume: 2011 start-page: 321 year: 2011 publication-title: Int. J. Nanomed. – volume: 22 start-page: 5885 year: 2003 publication-title: Oncogene – volume: 31 start-page: 1136 year: 2013 publication-title: Invest. New Drugs – volume: 11 year: 2016 publication-title: PLoS One – volume: 10 start-page: 5802 year: 2020 publication-title: Theranostics – volume: 26 start-page: 1238 year: 2015 publication-title: Ann. Oncol. – volume: 37 start-page: 3183 year: 2018 publication-title: Oncogene – volume: 49 start-page: 35 year: 2001 publication-title: Thorac. Cardiovasc. Surg. – volume: 82 start-page: 329 year: 2010 publication-title: Carbohydr. Polym. – volume: 3 start-page: 7 year: 2018 publication-title: Signal Transduction Targeted Ther. – volume: 80 start-page: 762 year: 2010 publication-title: Biochem. Pharmacol. – volume: 9 start-page: 1002 year: 2016 publication-title: Materials – volume: 2 start-page: 141 year: 2019 publication-title: Cancer Drug Resist. – volume: 14 start-page: 455 year: 2014 publication-title: Nat. Rev. Cancer – volume: 9 start-page: 7149 year: 2016 publication-title: OncoTargets Ther. – volume: 10 start-page: 6773 year: 2015 publication-title: Int. J. Nanomed. – volume: 10 start-page: 1811 year: 2010 publication-title: Expert Rev. Anticancer Ther. – volume: 17 start-page: 649 year: 2016 publication-title: Biomacromolecules – volume: 42 start-page: 921 year: 1998 publication-title: Int. J. Radiat. Oncol. Biol. Phys. – volume: 9 start-page: 268 year: 2019 publication-title: Front. Oncol. – volume: 382 start-page: 813 year: 1996 publication-title: Nature – volume: 6 start-page: 1048 year: 2005 publication-title: Biomacromolecules – volume: 13 start-page: 171 year: 2006 publication-title: Cellulose – volume: 95 start-page: 516 year: 2015 publication-title: Acta Derm.‐Venereol. – volume: 52 start-page: 1071 year: 2018 publication-title: Int. J. Oncol. – volume: 13 start-page: 1243 year: 2016 publication-title: Expert Opin. Drug Delivery – volume: 9 start-page: 259 year: 2018 publication-title: Polym. Chem. – volume: 17 start-page: 736 year: 2016 publication-title: Int. J. Mol. Sci. – volume: 14 start-page: 228 year: 2017 publication-title: Cancer Biol. Med. – volume: 49 start-page: 85 year: 2015 publication-title: Nucl. Med. Mol. Imaging – volume: 60 start-page: 13S year: 2019 publication-title: J. Nucl. Med. – volume: 289 year: 2014 publication-title: J. Biol. Chem. – volume: 37 start-page: 510 year: 2017 publication-title: Crit. Rev. Biotechnol. – volume: 6 start-page: 2039 year: 2016 publication-title: Theranostics – volume: 18 start-page: 1527 year: 2017 publication-title: Int. J. Mol. Sci. – volume: 116 start-page: 8901 year: 2012 publication-title: J. Phys. Chem. B – volume: 46 start-page: 4218 year: 2017 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 590 year: 2016 publication-title: Pigm. Cell Melanoma Res. – volume: 4 start-page: 874 year: 2015 publication-title: Adv. Healthcare Mater. – volume: 11 start-page: 1176 year: 2019 publication-title: Cancers – volume: 12 start-page: 7291 year: 2017 publication-title: Int. J. Nanomed. – volume: 14 start-page: 1 year: 2012 publication-title: Annu. Rev. Biomed. Eng. – volume: 109 start-page: E353 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 548 start-page: 234 year: 2017 publication-title: Nature – volume: 1 start-page: 2315 year: 2006 publication-title: Nat. Protoc. – volume: 141 start-page: 320 year: 2010 publication-title: J. Controlled Release – volume: 10 start-page: 1753 year: 2004 publication-title: Clin. Cancer Res. – volume: 1763 start-page: 690 year: 2006 publication-title: Biochim. Biophys. Acta – volume: 31 start-page: 24 year: 2018 publication-title: Mod. Pathol. – volume: 6 start-page: 7764 year: 2014 publication-title: Nanoscale – volume: 529 start-page: 298 year: 2016 publication-title: Nature – volume: 8 start-page: 2799 year: 2018 publication-title: Theranostics – volume: 102 year: 2020 publication-title: Bioorg. Chem. – volume: 14 start-page: 83 year: 2012 publication-title: Clin. Transl. Oncol. – volume: 44 start-page: 3358 year: 2005 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 23 start-page: 439 year: 2016 publication-title: Cellulose – volume: 20 start-page: 1366 year: 2019 publication-title: Cancer Biol. Ther. – volume: 16 start-page: 4416 year: 2019 publication-title: Mol. Pharm. – volume: 8 year: 2017 publication-title: Oncotarget – volume: 49 start-page: 319 year: 1999 publication-title: Lab. Anim. Sci. – ident: e_1_2_8_42_1 doi: 10.1007/s10570-013-9954-y – ident: e_1_2_8_13_1 doi: 10.1074/jbc.M113.532432 – ident: e_1_2_8_3_1 doi: 10.2340/00015555-2035 – ident: e_1_2_8_23_1 doi: 10.1016/j.bcp.2010.04.020 – ident: e_1_2_8_56_1 doi: 10.1002/adhm.201400641 – ident: e_1_2_8_48_1 doi: 10.1371/journal.pone.0156689 – ident: e_1_2_8_55_1 doi: 10.1016/j.jconrel.2009.10.014 – ident: e_1_2_8_22_1 doi: 10.1007/s12094-012-0766-6 – ident: e_1_2_8_27_1 doi: 10.1080/07388551.2016.1189871 – ident: e_1_2_8_14_1 doi: 10.3390/cancers11081176 – ident: e_1_2_8_65_1 doi: 10.1016/j.carbpol.2010.04.073 – ident: e_1_2_8_32_1 doi: 10.1002/jbm.a.36856 – ident: e_1_2_8_49_1 doi: 10.1007/s10637-013-9928-9 – ident: e_1_2_8_50_1 doi: 10.1016/S0360-3016(98)00325-3 – ident: e_1_2_8_40_1 doi: 10.1016/j.bbamcr.2006.03.014 – ident: e_1_2_8_31_1 doi: 10.1021/acs.biomac.8b01313 – ident: e_1_2_8_25_1 doi: 10.20892/j.issn.2095-3941.2017.0052 – ident: e_1_2_8_59_1 doi: 10.1021/acs.molpharmaceut.9b00746 – ident: e_1_2_8_12_1 doi: 10.1158/1078-0432.CCR-1169-3 – ident: e_1_2_8_35_1 doi: 10.1016/j.nucmedbio.2019.11.002 – volume: 49 start-page: 319 year: 1999 ident: e_1_2_8_68_1 publication-title: Lab. Anim. Sci. – ident: e_1_2_8_61_1 doi: 10.7150/thno.44772 – ident: e_1_2_8_33_1 doi: 10.1021/acs.biomac.5b01598 – ident: e_1_2_8_44_1 doi: 10.1039/C6CS00636A – ident: e_1_2_8_43_1 doi: 10.3390/ma9121002 – ident: e_1_2_8_10_1 doi: 10.1038/nature23291 – ident: e_1_2_8_21_1 doi: 10.2147/IJN.S146315 – ident: e_1_2_8_11_1 doi: 10.1038/s41388-018-0171-x – ident: e_1_2_8_36_1 doi: 10.7150/thno.17098 – ident: e_1_2_8_60_1 doi: 10.1016/j.bioorg.2020.104100 – ident: e_1_2_8_6_1 doi: 10.1038/nrc3760 – ident: e_1_2_8_34_1 doi: 10.1080/17425247.2016.1182491 – ident: e_1_2_8_57_1 doi: 10.1007/s13139-014-0315-z – ident: e_1_2_8_18_1 doi: 10.2967/jnumed.118.220566 – ident: e_1_2_8_41_1 doi: 10.2147/IJN.S16749 – ident: e_1_2_8_63_1 doi: 10.1055/s-2001-9917 – ident: e_1_2_8_46_1 doi: 10.1038/nprot.2006.339 – ident: e_1_2_8_16_1 doi: 10.3389/fonc.2019.00268 – volume: 52 start-page: 1071 year: 2018 ident: e_1_2_8_1_1 publication-title: Int. J. Oncol. – ident: e_1_2_8_17_1 doi: 10.3390/ijms18071527 – ident: e_1_2_8_20_1 doi: 10.1016/j.apradiso.2019.01.021 – ident: e_1_2_8_24_1 doi: 10.1038/s41392-017-0004-3 – ident: e_1_2_8_30_1 doi: 10.1002/anie.202002433 – ident: e_1_2_8_39_1 doi: 10.1146/annurev-bioeng-071811-150124 – ident: e_1_2_8_4_1 doi: 10.1586/era.10.170 – ident: e_1_2_8_38_1 doi: 10.1021/jp304630q – ident: e_1_2_8_7_1 doi: 10.1073/pnas.1105026109 – ident: e_1_2_8_52_1 doi: 10.1038/sj.onc.1206701 – ident: e_1_2_8_53_1 doi: 10.2147/OTT.S119428 – ident: e_1_2_8_45_1 doi: 10.1039/C7PY01603D – ident: e_1_2_8_29_1 doi: 10.1021/bm049300p – ident: e_1_2_8_62_1 doi: 10.1136/jcp.2005.035105 – ident: e_1_2_8_2_1 doi: 10.1080/15384047.2019.1640032 – ident: e_1_2_8_37_1 doi: 10.1039/C4NR01756K – ident: e_1_2_8_28_1 doi: 10.1007/s10570-006-9061-4 – volume: 2 start-page: 141 year: 2019 ident: e_1_2_8_47_1 publication-title: Cancer Drug Resist. – ident: e_1_2_8_19_1 doi: 10.3390/ijms17050736 – ident: e_1_2_8_8_1 doi: 10.18632/oncotarget.19836 – ident: e_1_2_8_58_1 doi: 10.7150/thno.22980 – volume: 10 start-page: 6773 year: 2015 ident: e_1_2_8_67_1 publication-title: Int. J. Nanomed. – ident: e_1_2_8_54_1 doi: 10.1111/pcmr.12498 – ident: e_1_2_8_15_1 doi: 10.21037/atm.2016.06.07 – ident: e_1_2_8_26_1 doi: 10.1002/anie.200460587 – ident: e_1_2_8_51_1 doi: 10.1038/382813a0 – ident: e_1_2_8_5_1 doi: 10.1038/nature17038 – ident: e_1_2_8_9_1 doi: 10.1038/modpathol.2017.104 – ident: e_1_2_8_64_1 doi: 10.1093/annonc/mdv139 – ident: e_1_2_8_66_1 doi: 10.1007/s10570-015-0803-z |
SSID | ssj0031247 |
Score | 2.510121 |
Snippet | Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA‐approved BRAF inhibitors... Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA-approved BRAF inhibitors... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2007705 |
SubjectTerms | Animals Capillaries Cell Line, Tumor Cellulose cellulose nanocrystal Computed tomography drug delivery system Drug Delivery Systems Humans Lungs Lutetium Lutetium isotopes Lutetium‐177 Melanoma Melanoma - drug therapy Metastasis metastatic melanoma Mice Mutation Nanocrystals Nanoparticles Nanotechnology Payloads Photon emission Precision Medicine Radiation therapy Spleen Survival theranostic nanosystem Tissue Distribution vemurafenib |
Title | A Theranostic Cellulose Nanocrystal‐Based Drug Delivery System with Enhanced Retention in Pulmonary Metastasis of Melanoma |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202007705 https://www.ncbi.nlm.nih.gov/pubmed/33738957 https://www.proquest.com/docview/2522294836 https://www.proquest.com/docview/2503436205 https://pubmed.ncbi.nlm.nih.gov/PMC8175021 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61nNpD348ARa5UqadA1k7i-Eh5CFVshShI3CLH9sKqIak2mwOIQ38Cv5Ff0hlnN90tqiq1R8uP2M6M57M9_gbgw8CgGUpFGvLCZmEspEWdEzq0mpsiRryQjeih8PBLenAafz5LzhZe8Xf8EP2BG2mGX69JwXXRbP0iDW0uS7o6oLM26UlMyWGLUNFxzx8l0Hj56Cpos0Ii3pqzNkZ8a7n6slW6BzXve0wuIllvivafgp4PovNA-bbZTotNc_0bv-P_jPIZPJnhVLbdCdZzeOCqF_B4gb3wJdxssxN6vVXVxPXMdlxZtmXdOIYrdm0mV4g7y7sft5_QTlq2O2nP2S52BlXninU86YwOgdledeG9ENgx4XeSEzau2FFbooJgv9nQTTU21YwbVo8wVWLrl_oVnO7vnewchLNgDqGJ0ywJjR1QNEBXSKOFwlVCD6TD7ZEyFHLGZpEh8CKdzJTDRU-hwBQJ7ubUyCrHXSRew0pVV-4tsIILoRFqKpsQlVCWGZU66QyXEW42RzaAcP4zczNjOqeAG2XecTTznGY172c1gI99-e8dx8cfS67PZSOf6XqT84RioseZSAN432ejltLVi65c3VKZSMSIFaiJN50o9Z8SRC6lEhmAXBKyvgAxgC_nVOMLzwSeIfhDkBYA9zL0l97nX4eHh31q9V8qrcEjTk493uNzHVamk9a9Q1Q2LTbgIY-PNrz-_QTJMjIR |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHqByAA9-UlAJGQuKUNmsnsX0s3VYL7FaobCVuUWJ76Yo0qTabQxEHHoFn5EmYSTahS4WQ4BjF8SbZGc_fzvg3AC8HBsNQLGKfZ1b5oZAWfU6kvk25yULUC2pGG4UnR_HoJHz7MeqyCWkvTMuH6BfcyDOa8ZocnBakd39RQ6uznL4d0GKbJIrpdSrrTfj84XFPkBIYvpr6Khi1fEJvddzGgO-uX78el66Izas5k5e1bBOMDu9A1j1Gm4PyeadeZjvmy2-Ex_96zrtweyVV2V5rW_fgmivuw61LAMMH8HWPTWkDV1ES7pntuzyv87JyDAft0iwuUHrmP759f42h0rLhov7Ehng36D0XrEWlM1oHZgfFaZOIwI5JwpOpsHnB3tc5-gjeOJu4ZYpdVfOKlTM8yrH3s_QhnBweTPdH_qqeg2_CWEW-sQMqCOgyaVKhcaBIB9LhDEkbqjpjVWBIv0gnlXY47mm0mSzCCZ2eWe24C8Qj2CjKwj0GlnEhUlSb2kZEE1LK6NhJZ7gMcL45sx743b-ZmBXsnGpu5EmLaeYJvdWkf6sevOrbn7eYjz-23O6MI1m5e5XwiMqih0rEHrzoT6Oj0teXtHBlTW0CEaJcoC42W1vqf0oQX0pH0gO5ZmV9A4KAr58p5qcNDFyh_kOd5gFvjOgvd598mIzH_dHWv1z0HG6MppNxMn5z9O4J3OSU49MkgG7DxnJRu6co0pbZs8YNfwKX_jVW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5KCqU9hP7XSdqqUOjJxCvZlnRMs1nSdjcsbQK5GVuSmwXHDuv1IZBDHiHP2CfpjL3r7hJKoUehHxvNjOaTNPoG4OPAoBuKRezzzCo_FNKizYnUtyk3WYh4QeX0UHhyEh-fhV_Po_O1V_wdP0R_4EaW0a7XZOBXNt__QxpaXxZ0dUBnbZJITB_SjR8FdfFwulqLBXqvNr0KOi2fmLdWtI0B39_sv-mW7mHN-yGT61C29UWjp7C9BJHsoJP6M3jgyufwZI1a8AXcHLBTelpVVkTEzA5dUTRFVTuGy2ll5tcICotft3ef0YlZNpw3P9kQ5wP1-pp1JOaMTmjZUXnRhgiw7wSuSYhsVrJpU6D24tSxiVukOFQ9q1mVY6nA0S_Tl3A2Ojo9PPaXmRZ8E8Yq8o0dUKo-l0mTCo0mnA6kw72LNpQPxqrAELKQTirtcEXSKM0swq2Wzq123AXiFWyVVeneAMu4ECniQG0j4vlRyujYSWe4DHAnmFsP_NVEJ2ZJQ07ZMIqkI1DmCQkm6QXjwae-_VVHwPHXlnsruSVLQ6wTHlHC8lCJ2IMPfTWaEN2LpKWrGmoTiBAdOQ3xuhNz_ylBzE86kh7IDQXoGxA992ZNObtoaboVIjNEUB7wVlX-8ffJj8l43Jd2_qfTe3g0HY6S8ZeTb7vwmFPwTRuZuQdbi3nj3iJ6WmTvWgP5DfRPEpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Theranostic+Cellulose+Nanocrystal-Based+Drug+Delivery+System+with+Enhanced+Retention+in+Pulmonary+Metastasis+of+Melanoma&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Imlimthan%2C+Surachet&rft.au=Khng%2C+You+Cheng&rft.au=Kein%C3%A4nen%2C+Outi&rft.au=Zhang%2C+Wenzhong&rft.date=2021-05-01&rft.eissn=1613-6829&rft.volume=17&rft.issue=18&rft.spage=e2007705&rft_id=info:doi/10.1002%2Fsmll.202007705&rft_id=info%3Apmid%2F33738957&rft.externalDocID=33738957 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |