A Theranostic Cellulose Nanocrystal‐Based Drug Delivery System with Enhanced Retention in Pulmonary Metastasis of Melanoma

Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA‐approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium‐177 (177Lu) enables simultane...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 18; pp. e2007705 - n/a
Main Authors Imlimthan, Surachet, Khng, You Cheng, Keinänen, Outi, Zhang, Wenzhong, Airaksinen, Anu J., Kostiainen, Mauri A., Zeglis, Brian M., Santos, Hélder A., Sarparanta, Mirkka
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA‐approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium‐177 (177Lu) enables simultaneous tracking of tracer accumulation with single‐photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177Lu‐labeled CNC NPs loaded with vemurafenib ([177Lu]Lu‐CNC‐V NPs) is developed and the therapeutic effect in BRAF V600E mutation‐harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [177Lu]Lu‐CNC‐V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [177Lu]Lu‐CNC‐V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [177Lu]Lu‐CNC‐V NPs compared to control groups. The enhanced therapeutic efficacy of [177Lu]Lu‐CNC‐V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP‐based drug delivery systems after intravenous administration. This study describes theranostic cellulose nanocrystals ([177Lu]Lu‐cellulose nanocrystals (CNC)‐V nanoparticles (NPs)) for the codelivery of BRAF inhibitor vemurafenib and the radioisotope lutetium‐177 for chemotherapy and radiotherapy of pulmonary metastases of melanoma through enhanced retention in the lung. The [177Lu]Lu‐CNC‐V NPs prolong the survival of syngeneic YUMM1.G1 melanoma tumor‐bearing mice and decrease the tumor burden in the lung over either vemurafenib or radiotherapy alone.
AbstractList Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA-approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium-177 ( 177 Lu) enables simultaneous tracking of tracer accumulation with single-photon emission computed tomography and radiotherapy. Therefore, the co-delivery of 177 Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo . Herein, we developed 177 Lu-labeled CNC NPs loaded with vemurafenib ([ 177 Lu]Lu-CNC-V NPs) and investigated the synergistic chemo/radiotherapeutic effects in BRAF V600E mutation-harboring YUMM1.G1 murine model of lung metastatic melanoma. The [ 177 Lu]Lu-CNC-V NPs demonstrated favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro . In vivo biodistribution revealed significant retention of the [ 177 Lu]Lu-CNC-V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals was doubly increased after treating with [ 177 Lu]Lu-CNC-V NPs compared to control groups. The enhanced therapeutic efficacy of [ 177 Lu]Lu-CNC-V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential clinical translation of theranostic CNC NP-based drug delivery systems after intravenous administration.
Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA‐approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium‐177 (177Lu) enables simultaneous tracking of tracer accumulation with single‐photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177Lu‐labeled CNC NPs loaded with vemurafenib ([177Lu]Lu‐CNC‐V NPs) is developed and the therapeutic effect in BRAF V600E mutation‐harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [177Lu]Lu‐CNC‐V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [177Lu]Lu‐CNC‐V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [177Lu]Lu‐CNC‐V NPs compared to control groups. The enhanced therapeutic efficacy of [177Lu]Lu‐CNC‐V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP‐based drug delivery systems after intravenous administration. This study describes theranostic cellulose nanocrystals ([177Lu]Lu‐cellulose nanocrystals (CNC)‐V nanoparticles (NPs)) for the codelivery of BRAF inhibitor vemurafenib and the radioisotope lutetium‐177 for chemotherapy and radiotherapy of pulmonary metastases of melanoma through enhanced retention in the lung. The [177Lu]Lu‐CNC‐V NPs prolong the survival of syngeneic YUMM1.G1 melanoma tumor‐bearing mice and decrease the tumor burden in the lung over either vemurafenib or radiotherapy alone.
Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA-approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium-177 (177 Lu) enables simultaneous tracking of tracer accumulation with single-photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177 Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177 Lu-labeled CNC NPs loaded with vemurafenib ([177 Lu]Lu-CNC-V NPs) is developed and the therapeutic effect in BRAF V600E mutation-harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [177 Lu]Lu-CNC-V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [177 Lu]Lu-CNC-V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [177 Lu]Lu-CNC-V NPs compared to control groups. The enhanced therapeutic efficacy of [177 Lu]Lu-CNC-V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP-based drug delivery systems after intravenous administration.Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA-approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium-177 (177 Lu) enables simultaneous tracking of tracer accumulation with single-photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177 Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177 Lu-labeled CNC NPs loaded with vemurafenib ([177 Lu]Lu-CNC-V NPs) is developed and the therapeutic effect in BRAF V600E mutation-harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [177 Lu]Lu-CNC-V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [177 Lu]Lu-CNC-V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [177 Lu]Lu-CNC-V NPs compared to control groups. The enhanced therapeutic efficacy of [177 Lu]Lu-CNC-V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP-based drug delivery systems after intravenous administration.
Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA‐approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium‐177 (177Lu) enables simultaneous tracking of tracer accumulation with single‐photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177Lu‐labeled CNC NPs loaded with vemurafenib ([177Lu]Lu‐CNC‐V NPs) is developed and the therapeutic effect in BRAF V600E mutation‐harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [177Lu]Lu‐CNC‐V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [177Lu]Lu‐CNC‐V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [177Lu]Lu‐CNC‐V NPs compared to control groups. The enhanced therapeutic efficacy of [177Lu]Lu‐CNC‐V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP‐based drug delivery systems after intravenous administration.
Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA-approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium-177 ( Lu) enables simultaneous tracking of tracer accumulation with single-photon emission computed tomography and radiotherapy. Therefore, the codelivery of Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, Lu-labeled CNC NPs loaded with vemurafenib ([ Lu]Lu-CNC-V NPs) is developed and the therapeutic effect in BRAF V600E mutation-harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [ Lu]Lu-CNC-V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [ Lu]Lu-CNC-V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [ Lu]Lu-CNC-V NPs compared to control groups. The enhanced therapeutic efficacy of [ Lu]Lu-CNC-V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP-based drug delivery systems after intravenous administration.
Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA‐approved BRAF inhibitors have been used for treatment of metastatic melanoma, but overall therapeutic efficacy has been limited. Lutetium‐177 ( 177 Lu) enables simultaneous tracking of tracer accumulation with single‐photon emission computed tomography and radiotherapy. Therefore, the codelivery of 177 Lu alongside chemotherapeutic agents using nanoparticles (NPs) might improve the therapeutic outcome in metastatic melanoma. Cellulose nanocrystals (CNC NPs) can particularly deliver payloads to lung capillaries in vivo. Herein, 177 Lu‐labeled CNC NPs loaded with vemurafenib ([ 177 Lu]Lu‐CNC‐V NPs) is developed and the therapeutic effect in BRAF V600E mutation‐harboring YUMM1.G1 murine model of lung metastatic melanoma is investigated. The [ 177 Lu]Lu‐CNC‐V NPs demonstrate favorable radiolabel stability, drug release profile, cellular uptake, and cell growth inhibition in vitro. In vivo biodistribution reveals significant retention of the [ 177 Lu]Lu‐CNC‐V NPs in the lung, liver, and spleen. Ultimately, the median survival time of animals is doubly increased after treatment with [ 177 Lu]Lu‐CNC‐V NPs compared to control groups. The enhanced therapeutic efficacy of [ 177 Lu]Lu‐CNC‐V NPs in the lung metastatic melanoma animal model provides convincing evidence for the potential of clinical translation for theranostic CNC NP‐based drug delivery systems after intravenous administration.
Author Kostiainen, Mauri A.
Sarparanta, Mirkka
Zeglis, Brian M.
Imlimthan, Surachet
Airaksinen, Anu J.
Santos, Hélder A.
Khng, You Cheng
Zhang, Wenzhong
Keinänen, Outi
AuthorAffiliation 9 Helsinki Institute of Life Science (HiLIFE), FI-00014 Helsinki, Finland
3 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
7 Department of Radiology, Weill Cornell Medical College, New York 10021, NY, USA
8 Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
1 Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
6 Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
2 Department of Chemistry, Hunter College, The City University of New York, New York, NY 10021, USA
5 Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Finland
4 Turku PET Centre, Department of Chemistry, University of Turku, FI-20521 Turku, Finland
AuthorAffiliation_xml – name: 4 Turku PET Centre, Department of Chemistry, University of Turku, FI-20521 Turku, Finland
– name: 9 Helsinki Institute of Life Science (HiLIFE), FI-00014 Helsinki, Finland
– name: 8 Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
– name: 1 Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
– name: 3 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
– name: 6 Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
– name: 2 Department of Chemistry, Hunter College, The City University of New York, New York, NY 10021, USA
– name: 7 Department of Radiology, Weill Cornell Medical College, New York 10021, NY, USA
– name: 5 Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076 Aalto, Finland
Author_xml – sequence: 1
  givenname: Surachet
  orcidid: 0000-0003-2520-2146
  surname: Imlimthan
  fullname: Imlimthan, Surachet
  organization: University of Helsinki
– sequence: 2
  givenname: You Cheng
  orcidid: 0000-0003-2445-136X
  surname: Khng
  fullname: Khng, You Cheng
  organization: University of Helsinki
– sequence: 3
  givenname: Outi
  orcidid: 0000-0002-3939-6706
  surname: Keinänen
  fullname: Keinänen, Outi
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 4
  givenname: Wenzhong
  orcidid: 0000-0001-9184-0723
  surname: Zhang
  fullname: Zhang, Wenzhong
  organization: University of Helsinki
– sequence: 5
  givenname: Anu J.
  orcidid: 0000-0002-5943-3105
  surname: Airaksinen
  fullname: Airaksinen, Anu J.
  organization: University of Turku
– sequence: 6
  givenname: Mauri A.
  orcidid: 0000-0002-8282-2379
  surname: Kostiainen
  fullname: Kostiainen, Mauri A.
  organization: Aalto University
– sequence: 7
  givenname: Brian M.
  orcidid: 0000-0002-9091-744X
  surname: Zeglis
  fullname: Zeglis, Brian M.
  organization: Weill Cornell Medical College
– sequence: 8
  givenname: Hélder A.
  orcidid: 0000-0001-7850-6309
  surname: Santos
  fullname: Santos, Hélder A.
  organization: Helsinki Institute of Life Science (HiLIFE)
– sequence: 9
  givenname: Mirkka
  orcidid: 0000-0002-2956-4366
  surname: Sarparanta
  fullname: Sarparanta, Mirkka
  email: mirkka.sarparanta@helsinki.fi
  organization: University of Helsinki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33738957$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URC-wZYkssWGT4Mt4bG-QSlouUgqIlrXlOCeNK4_d2jOtIrHoI_QZeRIcpQSohFj5cr7_9zn-99FOTBEQek7JmBLCXpcuhDEjjBApiXiE9mhL-ahVTO9s95Tsov1SLgjhlDXyCdrlXHKlhdxD3w_x2RKyjan03uEJhDCEVAB_qlcur0pvw4_bu7e2wBwf5eEcH0Hw15BX-LQWocM3vl_i47i00VXkK_QQe58i9hF_GUKXoq3sCfS2WhVfcFrUU6junX2KHi9sKPDsfj1A394dn00-jKaf33-cHE5HrmmVGLk5lZQLmElnuVaSWCpBCKJdS1UzV8QRKYgEqTRw2WrJ7UwoSfViroEB4Qfozcb3cph1MHe1w2yDucy-q82ZZL35uxL90pyna6NoNWa0Gry6N8jpaoDSm84XV__KRkhDMUwQ3vCWEVHRlw_QizTkWMerFGNMN4q3lXrxZ0fbVn4FU4HxBnA5lZJhsUUoMevkzTp5s02-CpoHAud7u06iTuTDv2V6I7vxAVb_ecScnkynv7U_AR1bxXs
CitedBy_id crossref_primary_10_26599_PBM_2023_9260026
crossref_primary_10_1016_j_jddst_2024_106432
crossref_primary_10_3390_pharmaceutics14102090
crossref_primary_10_2147_DDDT_S463545
crossref_primary_10_1021_acsbiomaterials_1c01631
crossref_primary_10_1089_adt_2024_045
crossref_primary_10_1186_s41181_022_00161_4
crossref_primary_10_1016_j_mtsust_2024_100865
crossref_primary_10_1002_smll_202409701
crossref_primary_10_1016_j_drudis_2024_103913
crossref_primary_10_3390_pharmaceutics14050917
crossref_primary_10_1186_s41181_024_00266_y
crossref_primary_10_3390_pharmaceutics16030404
crossref_primary_10_1016_j_molstruc_2023_137045
crossref_primary_10_1002_smll_202303634
crossref_primary_10_1016_j_ijbiomac_2024_130807
crossref_primary_10_1021_acs_molpharmaceut_2c00775
crossref_primary_10_1002_cnma_202400449
crossref_primary_10_1002_chem_202303298
crossref_primary_10_1021_acsmaterialslett_2c00867
crossref_primary_10_1021_acsanm_4c05058
crossref_primary_10_1016_j_bios_2025_117403
crossref_primary_10_1002_smll_202206487
crossref_primary_10_1039_D3NA00397C
crossref_primary_10_1016_j_jddst_2022_103933
crossref_primary_10_1016_j_foodres_2024_114741
crossref_primary_10_1021_acsami_4c13523
crossref_primary_10_1016_j_ijpharm_2023_123143
crossref_primary_10_1016_j_carres_2023_108899
crossref_primary_10_1016_j_carbpol_2022_119432
crossref_primary_10_1016_j_jddst_2024_105417
crossref_primary_10_1016_j_ijbiomac_2024_130839
crossref_primary_10_1016_j_ijbiomac_2024_131829
crossref_primary_10_1007_s10570_024_06353_2
Cites_doi 10.1007/s10570-013-9954-y
10.1074/jbc.M113.532432
10.2340/00015555-2035
10.1016/j.bcp.2010.04.020
10.1002/adhm.201400641
10.1371/journal.pone.0156689
10.1016/j.jconrel.2009.10.014
10.1007/s12094-012-0766-6
10.1080/07388551.2016.1189871
10.3390/cancers11081176
10.1016/j.carbpol.2010.04.073
10.1002/jbm.a.36856
10.1007/s10637-013-9928-9
10.1016/S0360-3016(98)00325-3
10.1016/j.bbamcr.2006.03.014
10.1021/acs.biomac.8b01313
10.20892/j.issn.2095-3941.2017.0052
10.1021/acs.molpharmaceut.9b00746
10.1158/1078-0432.CCR-1169-3
10.1016/j.nucmedbio.2019.11.002
10.7150/thno.44772
10.1021/acs.biomac.5b01598
10.1039/C6CS00636A
10.3390/ma9121002
10.1038/nature23291
10.2147/IJN.S146315
10.1038/s41388-018-0171-x
10.7150/thno.17098
10.1016/j.bioorg.2020.104100
10.1038/nrc3760
10.1080/17425247.2016.1182491
10.1007/s13139-014-0315-z
10.2967/jnumed.118.220566
10.2147/IJN.S16749
10.1055/s-2001-9917
10.1038/nprot.2006.339
10.3389/fonc.2019.00268
10.3390/ijms18071527
10.1016/j.apradiso.2019.01.021
10.1038/s41392-017-0004-3
10.1002/anie.202002433
10.1146/annurev-bioeng-071811-150124
10.1586/era.10.170
10.1021/jp304630q
10.1073/pnas.1105026109
10.1038/sj.onc.1206701
10.2147/OTT.S119428
10.1039/C7PY01603D
10.1021/bm049300p
10.1136/jcp.2005.035105
10.1080/15384047.2019.1640032
10.1039/C4NR01756K
10.1007/s10570-006-9061-4
10.3390/ijms17050736
10.18632/oncotarget.19836
10.7150/thno.22980
10.1111/pcmr.12498
10.21037/atm.2016.06.07
10.1002/anie.200460587
10.1038/382813a0
10.1038/nature17038
10.1038/modpathol.2017.104
10.1093/annonc/mdv139
10.1007/s10570-015-0803-z
ContentType Journal Article
Copyright 2021 The Authors. Small published by Wiley‐VCH GmbH
2021 The Authors. Small published by Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Small published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Small published by Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
DOI 10.1002/smll.202007705
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Materials Research Database
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID PMC8175021
33738957
10_1002_smll_202007705
SMLL202007705
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Academy of Finland
  funderid: 318422; 278056; 298481; 302102; 331659
– fundername: NIBIB NIH HHS
  grantid: R21 EB030275
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: R01 CA240963
– fundername: NCI NIH HHS
  grantid: U01 CA221046
GroupedDBID ---
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AASGY
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EJD
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c4685-cd17135eb7ca39870a17e5509c6184d80c07507e789e376973ab58719fd9e2e03
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Aug 21 18:19:55 EDT 2025
Thu Jul 10 22:47:04 EDT 2025
Fri Jul 25 12:17:36 EDT 2025
Mon Jul 21 06:00:26 EDT 2025
Tue Jul 01 02:11:02 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Wed Jan 22 16:29:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords vemurafenib
theranostic nanosystem
drug delivery system
cellulose nanocrystal
metastatic melanoma
Lutetium-177
Language English
License Attribution-NonCommercial
2021 The Authors. Small published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4685-cd17135eb7ca39870a17e5509c6184d80c07507e789e376973ab58719fd9e2e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9184-0723
0000-0002-9091-744X
0000-0002-8282-2379
0000-0002-3939-6706
0000-0002-2956-4366
0000-0003-2520-2146
0000-0003-2445-136X
0000-0001-7850-6309
0000-0002-5943-3105
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202007705
PMID 33738957
PQID 2522294836
PQPubID 1046358
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8175021
proquest_miscellaneous_2503436205
proquest_journals_2522294836
pubmed_primary_33738957
crossref_primary_10_1002_smll_202007705
crossref_citationtrail_10_1002_smll_202007705
wiley_primary_10_1002_smll_202007705_SMLL202007705
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2017; 8
2019; 11
1999; 49
2013; 20
2017; 46
1996; 382
2006; 1763
2019; 16
2010; 141
2001; 49
2020; 10
2012; 14
1998; 42
2018; 9
2018; 8
2019; 60
2018; 3
2015; 49
2019; 20
2017; 37
2014; 14
2007; 60
2018; 31
2014; 6
2018; 37
2014; 289
2019; 9
2015; 4
2006; 13
2015; 95
2019; 2
2016; 529
2015; 10
2019; 146
2006; 1
2020; 102
2016; 17
2010; 80
2005; 44
2020; 108
2016; 13
2012; 109
2016; 11
2010; 82
2017; 548
2004; 10
2016; 4
2011; 2011
2016; 6
2015; 26
2020; 80–81
2017; 14
2013; 31
2017; 12
2005; 6
2018; 52
2017; 18
2016; 29
2021; 60
2012; 116
2016; 9
2003; 22
2016; 23
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
Amreddy N. (e_1_2_8_67_1) 2015; 10
e_1_2_8_27_1
e_1_2_8_48_1
Wang X. (e_1_2_8_47_1) 2019; 2
Leonardi G. C. (e_1_2_8_1_1) 2018; 52
Ullman‐Cullere M. H. (e_1_2_8_68_1) 1999; 49
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 146
  start-page: 24
  year: 2019
  publication-title: Appl. Radiat. Isot.
– volume: 20
  start-page: 1747
  year: 2013
  publication-title: Cellulose
– volume: 80–81
  start-page: 1
  year: 2020
  publication-title: Nucl. Med. Biol.
– volume: 20
  start-page: 674
  year: 2019
  publication-title: Biomacromolecules
– volume: 4
  start-page: 237
  year: 2016
  publication-title: Ann. Transl. Med.
– volume: 60
  start-page: 66
  year: 2021
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 60
  start-page: 27
  year: 2007
  publication-title: J. Clin. Pathol.
– volume: 108
  start-page: 770
  year: 2020
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 2011
  start-page: 321
  year: 2011
  publication-title: Int. J. Nanomed.
– volume: 22
  start-page: 5885
  year: 2003
  publication-title: Oncogene
– volume: 31
  start-page: 1136
  year: 2013
  publication-title: Invest. New Drugs
– volume: 11
  year: 2016
  publication-title: PLoS One
– volume: 10
  start-page: 5802
  year: 2020
  publication-title: Theranostics
– volume: 26
  start-page: 1238
  year: 2015
  publication-title: Ann. Oncol.
– volume: 37
  start-page: 3183
  year: 2018
  publication-title: Oncogene
– volume: 49
  start-page: 35
  year: 2001
  publication-title: Thorac. Cardiovasc. Surg.
– volume: 82
  start-page: 329
  year: 2010
  publication-title: Carbohydr. Polym.
– volume: 3
  start-page: 7
  year: 2018
  publication-title: Signal Transduction Targeted Ther.
– volume: 80
  start-page: 762
  year: 2010
  publication-title: Biochem. Pharmacol.
– volume: 9
  start-page: 1002
  year: 2016
  publication-title: Materials
– volume: 2
  start-page: 141
  year: 2019
  publication-title: Cancer Drug Resist.
– volume: 14
  start-page: 455
  year: 2014
  publication-title: Nat. Rev. Cancer
– volume: 9
  start-page: 7149
  year: 2016
  publication-title: OncoTargets Ther.
– volume: 10
  start-page: 6773
  year: 2015
  publication-title: Int. J. Nanomed.
– volume: 10
  start-page: 1811
  year: 2010
  publication-title: Expert Rev. Anticancer Ther.
– volume: 17
  start-page: 649
  year: 2016
  publication-title: Biomacromolecules
– volume: 42
  start-page: 921
  year: 1998
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 9
  start-page: 268
  year: 2019
  publication-title: Front. Oncol.
– volume: 382
  start-page: 813
  year: 1996
  publication-title: Nature
– volume: 6
  start-page: 1048
  year: 2005
  publication-title: Biomacromolecules
– volume: 13
  start-page: 171
  year: 2006
  publication-title: Cellulose
– volume: 95
  start-page: 516
  year: 2015
  publication-title: Acta Derm.‐Venereol.
– volume: 52
  start-page: 1071
  year: 2018
  publication-title: Int. J. Oncol.
– volume: 13
  start-page: 1243
  year: 2016
  publication-title: Expert Opin. Drug Delivery
– volume: 9
  start-page: 259
  year: 2018
  publication-title: Polym. Chem.
– volume: 17
  start-page: 736
  year: 2016
  publication-title: Int. J. Mol. Sci.
– volume: 14
  start-page: 228
  year: 2017
  publication-title: Cancer Biol. Med.
– volume: 49
  start-page: 85
  year: 2015
  publication-title: Nucl. Med. Mol. Imaging
– volume: 60
  start-page: 13S
  year: 2019
  publication-title: J. Nucl. Med.
– volume: 289
  year: 2014
  publication-title: J. Biol. Chem.
– volume: 37
  start-page: 510
  year: 2017
  publication-title: Crit. Rev. Biotechnol.
– volume: 6
  start-page: 2039
  year: 2016
  publication-title: Theranostics
– volume: 18
  start-page: 1527
  year: 2017
  publication-title: Int. J. Mol. Sci.
– volume: 116
  start-page: 8901
  year: 2012
  publication-title: J. Phys. Chem. B
– volume: 46
  start-page: 4218
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 590
  year: 2016
  publication-title: Pigm. Cell Melanoma Res.
– volume: 4
  start-page: 874
  year: 2015
  publication-title: Adv. Healthcare Mater.
– volume: 11
  start-page: 1176
  year: 2019
  publication-title: Cancers
– volume: 12
  start-page: 7291
  year: 2017
  publication-title: Int. J. Nanomed.
– volume: 14
  start-page: 1
  year: 2012
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 109
  start-page: E353
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 548
  start-page: 234
  year: 2017
  publication-title: Nature
– volume: 1
  start-page: 2315
  year: 2006
  publication-title: Nat. Protoc.
– volume: 141
  start-page: 320
  year: 2010
  publication-title: J. Controlled Release
– volume: 10
  start-page: 1753
  year: 2004
  publication-title: Clin. Cancer Res.
– volume: 1763
  start-page: 690
  year: 2006
  publication-title: Biochim. Biophys. Acta
– volume: 31
  start-page: 24
  year: 2018
  publication-title: Mod. Pathol.
– volume: 6
  start-page: 7764
  year: 2014
  publication-title: Nanoscale
– volume: 529
  start-page: 298
  year: 2016
  publication-title: Nature
– volume: 8
  start-page: 2799
  year: 2018
  publication-title: Theranostics
– volume: 102
  year: 2020
  publication-title: Bioorg. Chem.
– volume: 14
  start-page: 83
  year: 2012
  publication-title: Clin. Transl. Oncol.
– volume: 44
  start-page: 3358
  year: 2005
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 23
  start-page: 439
  year: 2016
  publication-title: Cellulose
– volume: 20
  start-page: 1366
  year: 2019
  publication-title: Cancer Biol. Ther.
– volume: 16
  start-page: 4416
  year: 2019
  publication-title: Mol. Pharm.
– volume: 8
  year: 2017
  publication-title: Oncotarget
– volume: 49
  start-page: 319
  year: 1999
  publication-title: Lab. Anim. Sci.
– ident: e_1_2_8_42_1
  doi: 10.1007/s10570-013-9954-y
– ident: e_1_2_8_13_1
  doi: 10.1074/jbc.M113.532432
– ident: e_1_2_8_3_1
  doi: 10.2340/00015555-2035
– ident: e_1_2_8_23_1
  doi: 10.1016/j.bcp.2010.04.020
– ident: e_1_2_8_56_1
  doi: 10.1002/adhm.201400641
– ident: e_1_2_8_48_1
  doi: 10.1371/journal.pone.0156689
– ident: e_1_2_8_55_1
  doi: 10.1016/j.jconrel.2009.10.014
– ident: e_1_2_8_22_1
  doi: 10.1007/s12094-012-0766-6
– ident: e_1_2_8_27_1
  doi: 10.1080/07388551.2016.1189871
– ident: e_1_2_8_14_1
  doi: 10.3390/cancers11081176
– ident: e_1_2_8_65_1
  doi: 10.1016/j.carbpol.2010.04.073
– ident: e_1_2_8_32_1
  doi: 10.1002/jbm.a.36856
– ident: e_1_2_8_49_1
  doi: 10.1007/s10637-013-9928-9
– ident: e_1_2_8_50_1
  doi: 10.1016/S0360-3016(98)00325-3
– ident: e_1_2_8_40_1
  doi: 10.1016/j.bbamcr.2006.03.014
– ident: e_1_2_8_31_1
  doi: 10.1021/acs.biomac.8b01313
– ident: e_1_2_8_25_1
  doi: 10.20892/j.issn.2095-3941.2017.0052
– ident: e_1_2_8_59_1
  doi: 10.1021/acs.molpharmaceut.9b00746
– ident: e_1_2_8_12_1
  doi: 10.1158/1078-0432.CCR-1169-3
– ident: e_1_2_8_35_1
  doi: 10.1016/j.nucmedbio.2019.11.002
– volume: 49
  start-page: 319
  year: 1999
  ident: e_1_2_8_68_1
  publication-title: Lab. Anim. Sci.
– ident: e_1_2_8_61_1
  doi: 10.7150/thno.44772
– ident: e_1_2_8_33_1
  doi: 10.1021/acs.biomac.5b01598
– ident: e_1_2_8_44_1
  doi: 10.1039/C6CS00636A
– ident: e_1_2_8_43_1
  doi: 10.3390/ma9121002
– ident: e_1_2_8_10_1
  doi: 10.1038/nature23291
– ident: e_1_2_8_21_1
  doi: 10.2147/IJN.S146315
– ident: e_1_2_8_11_1
  doi: 10.1038/s41388-018-0171-x
– ident: e_1_2_8_36_1
  doi: 10.7150/thno.17098
– ident: e_1_2_8_60_1
  doi: 10.1016/j.bioorg.2020.104100
– ident: e_1_2_8_6_1
  doi: 10.1038/nrc3760
– ident: e_1_2_8_34_1
  doi: 10.1080/17425247.2016.1182491
– ident: e_1_2_8_57_1
  doi: 10.1007/s13139-014-0315-z
– ident: e_1_2_8_18_1
  doi: 10.2967/jnumed.118.220566
– ident: e_1_2_8_41_1
  doi: 10.2147/IJN.S16749
– ident: e_1_2_8_63_1
  doi: 10.1055/s-2001-9917
– ident: e_1_2_8_46_1
  doi: 10.1038/nprot.2006.339
– ident: e_1_2_8_16_1
  doi: 10.3389/fonc.2019.00268
– volume: 52
  start-page: 1071
  year: 2018
  ident: e_1_2_8_1_1
  publication-title: Int. J. Oncol.
– ident: e_1_2_8_17_1
  doi: 10.3390/ijms18071527
– ident: e_1_2_8_20_1
  doi: 10.1016/j.apradiso.2019.01.021
– ident: e_1_2_8_24_1
  doi: 10.1038/s41392-017-0004-3
– ident: e_1_2_8_30_1
  doi: 10.1002/anie.202002433
– ident: e_1_2_8_39_1
  doi: 10.1146/annurev-bioeng-071811-150124
– ident: e_1_2_8_4_1
  doi: 10.1586/era.10.170
– ident: e_1_2_8_38_1
  doi: 10.1021/jp304630q
– ident: e_1_2_8_7_1
  doi: 10.1073/pnas.1105026109
– ident: e_1_2_8_52_1
  doi: 10.1038/sj.onc.1206701
– ident: e_1_2_8_53_1
  doi: 10.2147/OTT.S119428
– ident: e_1_2_8_45_1
  doi: 10.1039/C7PY01603D
– ident: e_1_2_8_29_1
  doi: 10.1021/bm049300p
– ident: e_1_2_8_62_1
  doi: 10.1136/jcp.2005.035105
– ident: e_1_2_8_2_1
  doi: 10.1080/15384047.2019.1640032
– ident: e_1_2_8_37_1
  doi: 10.1039/C4NR01756K
– ident: e_1_2_8_28_1
  doi: 10.1007/s10570-006-9061-4
– volume: 2
  start-page: 141
  year: 2019
  ident: e_1_2_8_47_1
  publication-title: Cancer Drug Resist.
– ident: e_1_2_8_19_1
  doi: 10.3390/ijms17050736
– ident: e_1_2_8_8_1
  doi: 10.18632/oncotarget.19836
– ident: e_1_2_8_58_1
  doi: 10.7150/thno.22980
– volume: 10
  start-page: 6773
  year: 2015
  ident: e_1_2_8_67_1
  publication-title: Int. J. Nanomed.
– ident: e_1_2_8_54_1
  doi: 10.1111/pcmr.12498
– ident: e_1_2_8_15_1
  doi: 10.21037/atm.2016.06.07
– ident: e_1_2_8_26_1
  doi: 10.1002/anie.200460587
– ident: e_1_2_8_51_1
  doi: 10.1038/382813a0
– ident: e_1_2_8_5_1
  doi: 10.1038/nature17038
– ident: e_1_2_8_9_1
  doi: 10.1038/modpathol.2017.104
– ident: e_1_2_8_64_1
  doi: 10.1093/annonc/mdv139
– ident: e_1_2_8_66_1
  doi: 10.1007/s10570-015-0803-z
SSID ssj0031247
Score 2.510121
Snippet Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA‐approved BRAF inhibitors...
Metastatic melanoma can be difficult to detect until at the advanced state that decreases the survival rate of patients. Several FDA-approved BRAF inhibitors...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2007705
SubjectTerms Animals
Capillaries
Cell Line, Tumor
Cellulose
cellulose nanocrystal
Computed tomography
drug delivery system
Drug Delivery Systems
Humans
Lungs
Lutetium
Lutetium isotopes
Lutetium‐177
Melanoma
Melanoma - drug therapy
Metastasis
metastatic melanoma
Mice
Mutation
Nanocrystals
Nanoparticles
Nanotechnology
Payloads
Photon emission
Precision Medicine
Radiation therapy
Spleen
Survival
theranostic nanosystem
Tissue Distribution
vemurafenib
Title A Theranostic Cellulose Nanocrystal‐Based Drug Delivery System with Enhanced Retention in Pulmonary Metastasis of Melanoma
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202007705
https://www.ncbi.nlm.nih.gov/pubmed/33738957
https://www.proquest.com/docview/2522294836
https://www.proquest.com/docview/2503436205
https://pubmed.ncbi.nlm.nih.gov/PMC8175021
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61nNpD348ARa5UqadA1k7i-Eh5CFVshShI3CLH9sKqIak2mwOIQ38Cv5Ff0hlnN90tqiq1R8uP2M6M57M9_gbgw8CgGUpFGvLCZmEspEWdEzq0mpsiRryQjeih8PBLenAafz5LzhZe8Xf8EP2BG2mGX69JwXXRbP0iDW0uS7o6oLM26UlMyWGLUNFxzx8l0Hj56Cpos0Ii3pqzNkZ8a7n6slW6BzXve0wuIllvivafgp4PovNA-bbZTotNc_0bv-P_jPIZPJnhVLbdCdZzeOCqF_B4gb3wJdxssxN6vVXVxPXMdlxZtmXdOIYrdm0mV4g7y7sft5_QTlq2O2nP2S52BlXninU86YwOgdledeG9ENgx4XeSEzau2FFbooJgv9nQTTU21YwbVo8wVWLrl_oVnO7vnewchLNgDqGJ0ywJjR1QNEBXSKOFwlVCD6TD7ZEyFHLGZpEh8CKdzJTDRU-hwBQJ7ubUyCrHXSRew0pVV-4tsIILoRFqKpsQlVCWGZU66QyXEW42RzaAcP4zczNjOqeAG2XecTTznGY172c1gI99-e8dx8cfS67PZSOf6XqT84RioseZSAN432ejltLVi65c3VKZSMSIFaiJN50o9Z8SRC6lEhmAXBKyvgAxgC_nVOMLzwSeIfhDkBYA9zL0l97nX4eHh31q9V8qrcEjTk493uNzHVamk9a9Q1Q2LTbgIY-PNrz-_QTJMjIR
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHqByAA9-UlAJGQuKUNmsnsX0s3VYL7FaobCVuUWJ76Yo0qTabQxEHHoFn5EmYSTahS4WQ4BjF8SbZGc_fzvg3AC8HBsNQLGKfZ1b5oZAWfU6kvk25yULUC2pGG4UnR_HoJHz7MeqyCWkvTMuH6BfcyDOa8ZocnBakd39RQ6uznL4d0GKbJIrpdSrrTfj84XFPkBIYvpr6Khi1fEJvddzGgO-uX78el66Izas5k5e1bBOMDu9A1j1Gm4PyeadeZjvmy2-Ex_96zrtweyVV2V5rW_fgmivuw61LAMMH8HWPTWkDV1ES7pntuzyv87JyDAft0iwuUHrmP759f42h0rLhov7Ehng36D0XrEWlM1oHZgfFaZOIwI5JwpOpsHnB3tc5-gjeOJu4ZYpdVfOKlTM8yrH3s_QhnBweTPdH_qqeg2_CWEW-sQMqCOgyaVKhcaBIB9LhDEkbqjpjVWBIv0gnlXY47mm0mSzCCZ2eWe24C8Qj2CjKwj0GlnEhUlSb2kZEE1LK6NhJZ7gMcL45sx743b-ZmBXsnGpu5EmLaeYJvdWkf6sevOrbn7eYjz-23O6MI1m5e5XwiMqih0rEHrzoT6Oj0teXtHBlTW0CEaJcoC42W1vqf0oQX0pH0gO5ZmV9A4KAr58p5qcNDFyh_kOd5gFvjOgvd598mIzH_dHWv1z0HG6MppNxMn5z9O4J3OSU49MkgG7DxnJRu6co0pbZs8YNfwKX_jVW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB5KCqU9hP7XSdqqUOjJxCvZlnRMs1nSdjcsbQK5GVuSmwXHDuv1IZBDHiHP2CfpjL3r7hJKoUehHxvNjOaTNPoG4OPAoBuKRezzzCo_FNKizYnUtyk3WYh4QeX0UHhyEh-fhV_Po_O1V_wdP0R_4EaW0a7XZOBXNt__QxpaXxZ0dUBnbZJITB_SjR8FdfFwulqLBXqvNr0KOi2fmLdWtI0B39_sv-mW7mHN-yGT61C29UWjp7C9BJHsoJP6M3jgyufwZI1a8AXcHLBTelpVVkTEzA5dUTRFVTuGy2ll5tcICotft3ef0YlZNpw3P9kQ5wP1-pp1JOaMTmjZUXnRhgiw7wSuSYhsVrJpU6D24tSxiVukOFQ9q1mVY6nA0S_Tl3A2Ojo9PPaXmRZ8E8Yq8o0dUKo-l0mTCo0mnA6kw72LNpQPxqrAELKQTirtcEXSKM0swq2Wzq123AXiFWyVVeneAMu4ECniQG0j4vlRyujYSWe4DHAnmFsP_NVEJ2ZJQ07ZMIqkI1DmCQkm6QXjwae-_VVHwPHXlnsruSVLQ6wTHlHC8lCJ2IMPfTWaEN2LpKWrGmoTiBAdOQ3xuhNz_ylBzE86kh7IDQXoGxA992ZNObtoaboVIjNEUB7wVlX-8ffJj8l43Jd2_qfTe3g0HY6S8ZeTb7vwmFPwTRuZuQdbi3nj3iJ6WmTvWgP5DfRPEpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Theranostic+Cellulose+Nanocrystal-Based+Drug+Delivery+System+with+Enhanced+Retention+in+Pulmonary+Metastasis+of+Melanoma&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Imlimthan%2C+Surachet&rft.au=Khng%2C+You+Cheng&rft.au=Kein%C3%A4nen%2C+Outi&rft.au=Zhang%2C+Wenzhong&rft.date=2021-05-01&rft.eissn=1613-6829&rft.volume=17&rft.issue=18&rft.spage=e2007705&rft_id=info:doi/10.1002%2Fsmll.202007705&rft_id=info%3Apmid%2F33738957&rft.externalDocID=33738957
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon