Volume changes under strain resulting from the incorporation of rubber granulates into a rubber matrix

The strength of an elastomer is in part determined by the size of the intrinsic flaws that are present. It has been observed that the incorporation of rubber granulates into a virgin matrix results in a reduction in strength and this has previously been attributed to an increase in the intrinsic fla...

Full description

Saved in:
Bibliographic Details
Published inJournal of polymer science. Part B, Polymer physics Vol. 45; no. 23; pp. 3169 - 3180
Main Authors Kumar, P, Fukahori, Y, Thomas, A.G, Busfield, J.J.C
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.12.2007
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The strength of an elastomer is in part determined by the size of the intrinsic flaws that are present. It has been observed that the incorporation of rubber granulates into a virgin matrix results in a reduction in strength and this has previously been attributed to an increase in the intrinsic flaw size. The precise nature of this intrinsic flaw is the subject of this investigation. Fundamental questions concerning the change in flaw size with strain and the reduction in strength resulting from a weaker interface have been investigated using volume change experiments. Initial experiments on carbon black filled rubber with no granulates incorporated have shown no significant volume change under strain. This contrasts with granulate filled materials whose experimentally measured volume changes with strain were seen to be substantially greater. Microstructural finite element analysis has revealed how this change in volume might result from a net increase in the flaw size with increasing strain. This work suggests that flaw size increases in a characteristic way with strain for materials where the matrix and granulates have a similar modulus, whereas a modulus mismatch between the matrix and the recycled granulate results in much larger volume changes and hence greater flaw size which also appears to increase with strain. This work emphasizes the importance in practical applications of matching the modulus of recycled granulate materials to that of the new virgin material in the matrix. This article introduces a novel technique for examining small changes in the interfacial bonding mechanisms under strain such as that caused by surface modification techniques. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3169-3180, 2007
AbstractList The strength of an elastomer is in part determined by the size of the intrinsic flaws that are present. It has been observed that the incorporation of rubber granulates into a virgin matrix results in a reduction in strength and this has previously been attributed to an increase in the intrinsic flaw size. The precise nature of this intrinsic flaw is the subject of this investigation. Fundamental questions concerning the change in flaw size with strain and the reduction in strength resulting from a weaker interface have been investigated using volume change experiments. Initial experiments on carbon black filled rubber with no granulates incorporated have shown no significant volume change under strain. This contrasts with granulate filled materials whose experimentally measured volume changes with strain were seen to be substantially greater. Microstructural finite element analysis has revealed how this change in volume might result from a net increase in the flaw size with increasing strain. This work suggests that flaw size increases in a characteristic way with strain for materials where the matrix and granulates have a similar modulus, whereas a modulus mismatch between the matrix and the recycled granulate results in much larger volume changes and hence greater flaw size which also appears to increase with strain. This work emphasizes the importance in practical applications of matching the modulus of recycled granulate materials to that of the new virgin material in the matrix. This article introduces a novel technique for examining small changes in the interfacial bonding mechanisms under strain such as that caused by surface modification techniques. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3169-3180, 2007
The strength of an elastomer is in part determined by the size of the intrinsic flaws that are present. It has been observed that the incorporation of rubber granulates into a virgin matrix results in a reduction in strength and this has previously been attributed to an increase in the intrinsic flaw size. The precise nature of this intrinsic flaw is the subject of this investigation. Fundamental questions concerning the change in flaw size with strain and the reduction in strength resulting from a weaker interface have been investigated using volume change experiments. Initial experiments on carbon black filled rubber with no granulates incorporated have shown no significant volume change under strain. This contrasts with granulate filled materials whose experimentally measured volume changes with strain were seen to be substantially greater. Microstructural finite element analysis has revealed how this change in volume might result from a net increase in the flaw size with increasing strain. This work suggests that flaw size increases in a characteristic way with strain for materials where the matrix and granulates have a similar modulus, whereas a modulus mismatch between the matrix and the recycled granulate results in much larger volume changes and hence greater flaw size which also appears to increase with strain. This work emphasizes the importance in practical applications of matching the modulus of recycled granulate materials to that of the new virgin material in the matrix. This article introduces a novel technique for examining small changes in the interfacial bonding mechanisms under strain such as that caused by surface modification techniques.
Author Kumar, P.
Thomas, A. G.
Busfield, J. J. C.
Fukahori, Y.
Author_xml – sequence: 1
  fullname: Kumar, P
– sequence: 2
  fullname: Fukahori, Y
– sequence: 3
  fullname: Thomas, A.G
– sequence: 4
  fullname: Busfield, J.J.C
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19560536$$DView record in Pascal Francis
BookMark eNqFkcFu1DAQhi1UJLaFCy-AL3BAShnbseMcoYKl0qpFKoWj5TjO1uDYWzsR7dvjbVqQEILTHOb7ZjTzH6KDEINF6DmBYwJA3-yi744pYYQ_QisCbVtBLeUBWoGUTSWoEE_QYc7fAEqPtys0fIl-Hi02VzpsbcZz6G3CeUraBZxsnv3kwhYPKY54urLYBRPTLiY9uRhwHHCau64Y26TD7PVURrgwRawfGqOekrt5ih4P2mf77L4eocsP7z-ffKw25-vTk7ebytRC8qoTmpiOF5HVQnPScUYaMUDPNRUaOgKMEdFz0UnaMxA9bbQEagkM0tQ1YUfo1TJ3l-L1bPOkRpeN9V4HG-es6qZuoWH0vyArq8oyWcCX96DORvuh3GlcVrvkRp1uFWm5AM5E4V4vnEkx52SH3wiofTZqn426y6bA8Ads3HT30v3j_d8Vsig_nLe3_xiuPp1v3j041eK4PNmbX45O35VoWMPV17O1ggtKODS1Whf-xcIPOiq9TeXOywsKhAFIyvb_-Ak9uLvc
CODEN JPLPAY
CitedBy_id crossref_primary_10_1016_j_polymer_2019_122086
crossref_primary_10_1016_j_wear_2009_11_019
crossref_primary_10_1002_app_31991
crossref_primary_10_1002_polb_22285
crossref_primary_10_1002_app_32524
Cites_doi 10.1016/0921-5093(89)90351-1
10.1007/BF00351245
10.5254/1.3538514
10.1016/0022-5096(76)90007-7
10.5254/1.3538289
10.1063/1.1710039
10.1002/app.1964.070080129
10.1039/tf946420b033
10.1122/1.548933
10.5254/1.3535928
10.1007/BF01161444
10.1177/009524439602800305
10.1063/1.1658026
10.1007/BF01026985
10.1007/BF01154959
10.1007/BF00550265
10.1179/174328905X59728
10.5254/1.3544819
10.1039/tf9504601101
10.1002/app.1971.070150115
10.1016/0032-3861(78)90093-9
10.5254/1.3547299
10.5254/1.3547678
10.1016/j.compscitech.2006.10.012
10.1063/1.1722959
10.1002/app.10575
10.5254/1.3548167
10.5254/1.3535089
10.1002/pol.1970.150080615
10.5254/1.3534972
10.1063/1.1735272
ContentType Journal Article
Copyright Copyright © 2007 Wiley Periodicals, Inc.
2008 INIST-CNRS
Copyright_xml – notice: Copyright © 2007 Wiley Periodicals, Inc.
– notice: 2008 INIST-CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7SR
7U5
8FD
JG9
L7M
7S9
L.6
DOI 10.1002/polb.21315
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
Applied Sciences
EISSN 1099-0488
EndPage 3180
ExternalDocumentID 19560536
10_1002_polb_21315
POLB21315
ark_67375_WNG_0S215074_G
US201300823303
Genre article
GroupedDBID -~X
.GA
.Y3
05W
10A
1L6
1OB
1OC
1ZS
31~
4.4
4ZD
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
6TJ
7PT
8-1
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAXRX
AAZKR
ABCQN
ABCUV
ABHUG
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADDAD
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AI.
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZFZN
BDRZF
BFHJK
BRXPI
BY8
CS3
DCZOG
DR2
DRFUL
DRSTM
EBS
EJD
F00
F5P
FBQ
FEDTE
G-S
GNP
GODZA
GYXMG
HBH
HF~
HHY
HHZ
HVGLF
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LOXES
LP6
LP7
LUTES
LYRES
M6T
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
P2P
P2W
P4D
QB0
QRW
RIWAO
RNS
ROL
RWB
RWI
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
VH1
W99
WH7
WIH
WJL
WOHZO
WQJ
WXSBR
XG1
XPP
XV2
YQT
ZZTAW
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AAYXX
ADMLS
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7SR
7U5
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c4685-b6a1cb5bbe346a51b53176f0d5a26a0b103316d56b82d306d27a802e10f8c4413
IEDL.DBID DR2
ISSN 0887-6266
IngestDate Fri Jul 11 09:41:32 EDT 2025
Fri Jul 11 15:05:58 EDT 2025
Mon Jul 21 09:16:39 EDT 2025
Thu Apr 24 23:00:39 EDT 2025
Tue Jul 01 01:14:02 EDT 2025
Wed Jan 22 16:16:28 EST 2025
Wed Oct 30 09:52:32 EDT 2024
Wed Dec 27 19:21:41 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords SBR
interfaces
Stress strain relation
debonding
recycling
Volume expansion
Experimental study
finite element analysis
Cavitation
Modeling
Heterogeneous mixture
Finite element method
Tensile stress
Vulcanizate
rubber
flaws
Recycled material
Elongation (mechanics)
Aggregate(materials)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4685-b6a1cb5bbe346a51b53176f0d5a26a0b103316d56b82d306d27a802e10f8c4413
Notes http://dx.doi.org/10.1002/polb.21315
ArticleID:POLB21315
ark:/67375/WNG-0S215074-G
istex:9806CCC88A21791BDC04D5E7B264229B4CE1823F
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 31030338
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_47490732
proquest_miscellaneous_31030338
pascalfrancis_primary_19560536
crossref_primary_10_1002_polb_21315
crossref_citationtrail_10_1002_polb_21315
wiley_primary_10_1002_polb_21315_POLB21315
istex_primary_ark_67375_WNG_0S215074_G
fao_agris_US201300823303
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 December 2007
PublicationDateYYYYMMDD 2007-12-01
PublicationDate_xml – month: 12
  year: 2007
  text: 1 December 2007
  day: 01
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
PublicationTitle Journal of polymer science. Part B, Polymer physics
PublicationTitleAlternate J. Polym. Sci. B Polym. Phys
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Myhre, M.;Mackillop, D. A. Rubber Chem Technol 2002, 75, 429.
Smith, T. L. J Rheol 1962, 6, 61.
Gent, A. N.;Tompkins, D. A. J Appl Phys 1969, 40, 2520.
Swor, R. A.;Jensen, L. W.;Budzol, M. Rubber Chem Technol 1980, 53, 1215.
Mullins, L.;Tobin, N. R. Trans Inst Rubber Ind 1957, 33, 2.
Christensen, R. G.;Hoeve, C. A. J. J Polym Sci Part A-1 Polym Chem 1970, 8, 1503.
Gent, A. N.;Lindley, P. B.;Thomas, A. G. J Appl Polym Sci 1964, 8, 455.
Fukahori, Y.;Seki, W. J Mater Sci 1993, 28, 4471.
Burford, R. P.;Pittolo, M. Rubber Chem Technol 1982, 55, 1233.
Khasanovich, T. N. J Appl Phys 1959, 30, 948.
Burgoyne, M. D.;Leaker, G. R.;Krekic, Z. Rubber Chem Technol 1976, 49, 375.
Yeoh, O. H. Rubber Chem Technol 1990, 63, 792.
Treloar, L. R. G. Polymer 1978, 19, 1414.
Ogden, R. W. J Mech Phys Solids 1976, 24, 323.
Burford, R. P.;Pittolo, M. J Mater Sci 1984, 19, 3059.
Fedors, R. F.;Landel, R. F. Rubber Chem Technol 1970, 43, 887.
Dierkes, W. J Elastomers Plast 1996, 28, 257.
Myhre, M. J.;Mackillop, D. A. Rubber World 1996, 214, 42.
Goebel, J. C.;Tobolsky, A. V. Rubber Chem Technol 1971, 44, 1391.
Stringfellow, R.;Abeyaratne, R.; Mater Sci Eng A Struct Mater 1989, 112, 127-131.
Busfield, J. J. C.;Jha, V.;Liang, H.;Papadopoulos, I. C.;Thomas, A. G. Plast Rubber Compos Process Appl 2005, 34, 349.
Kumar, P.;Fukahori, Y.;Thomas, A. G.;Busfield, J. J. C. Rubber Chem Technol 2007, 80, 24-39.
Fukahori, Y.;Seki, W. J Mater Sci 1993, 28, 4143.
Hewitt, F. G.;Anthony, R. L. J Appl Phys 1958, 29, 1411.
Gibala, D.;Hamed, G. R.;Zhao, J. Rubber Chem Technol 1998, 71, 861.
Gent, A. N.;Park, B. J Mater Sci 1984, 19, 1947.
Valanis, K. C.;Landel, R. F. J Appl Phys 1967, 38, 2997.
Sekhar, N.;Van Der Hoff, B. M. E. J Appl Polym Sci 1971, 15, 169.
Gee, G.;Stern, J.;Treloar, L. R. G. Trans Faraday Soc 1950, 46, 1101.
Gee, G. Trans Faraday Soc 1946, 42, B033.
Reichert, W. F.;Hopfenmueller, M. K.;Goeritz, D. J Mater Sci 1987, 22, 3470.
Wu, D. Y.;Bateman, S.;Partlett, M. Compos Sci Technol 2007, 67 1909.
Han, S. C.;Han, M. H. J Appl Polym Sci 2002, 85, 2491.
1957; 33
1946; 42
1970; 8
1971; 44
1976; 24
1993; 28
1950; 46
1989; 112
2002; 75
1964; 8
1962; 6
1982; 55
1978; 19
1976; 49
1990; 63
1987; 22
1959; 30
1996; 28
2002; 85
1980; 53
1958; 29
1969; 40
1971; 15
2007; 80
1970; 43
1984; 19
1998; 71
1967; 38
1996; 214
1956; 1
2007; 67
2005; 34
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_13_2
e_1_2_6_34_2
Myhre M. J. (e_1_2_6_35_2) 1996; 214
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
Rivlin R. S. (e_1_2_6_32_2) 1956
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
Mullins L. (e_1_2_6_19_2) 1957; 33
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Goebel, J. C.;Tobolsky, A. V. Rubber Chem Technol 1971, 44, 1391.
– reference: Smith, T. L. J Rheol 1962, 6, 61.
– reference: Fukahori, Y.;Seki, W. J Mater Sci 1993, 28, 4471.
– reference: Valanis, K. C.;Landel, R. F. J Appl Phys 1967, 38, 2997.
– reference: Mullins, L.;Tobin, N. R. Trans Inst Rubber Ind 1957, 33, 2.
– reference: Gent, A. N.;Tompkins, D. A. J Appl Phys 1969, 40, 2520.
– reference: Myhre, M.;Mackillop, D. A. Rubber Chem Technol 2002, 75, 429.
– reference: Gent, A. N.;Lindley, P. B.;Thomas, A. G. J Appl Polym Sci 1964, 8, 455.
– reference: Myhre, M. J.;Mackillop, D. A. Rubber World 1996, 214, 42.
– reference: Gee, G.;Stern, J.;Treloar, L. R. G. Trans Faraday Soc 1950, 46, 1101.
– reference: Yeoh, O. H. Rubber Chem Technol 1990, 63, 792.
– reference: Han, S. C.;Han, M. H. J Appl Polym Sci 2002, 85, 2491.
– reference: Burford, R. P.;Pittolo, M. Rubber Chem Technol 1982, 55, 1233.
– reference: Ogden, R. W. J Mech Phys Solids 1976, 24, 323.
– reference: Swor, R. A.;Jensen, L. W.;Budzol, M. Rubber Chem Technol 1980, 53, 1215.
– reference: Wu, D. Y.;Bateman, S.;Partlett, M. Compos Sci Technol 2007, 67 1909.
– reference: Hewitt, F. G.;Anthony, R. L. J Appl Phys 1958, 29, 1411.
– reference: Burgoyne, M. D.;Leaker, G. R.;Krekic, Z. Rubber Chem Technol 1976, 49, 375.
– reference: Treloar, L. R. G. Polymer 1978, 19, 1414.
– reference: Gent, A. N.;Park, B. J Mater Sci 1984, 19, 1947.
– reference: Fedors, R. F.;Landel, R. F. Rubber Chem Technol 1970, 43, 887.
– reference: Burford, R. P.;Pittolo, M. J Mater Sci 1984, 19, 3059.
– reference: Sekhar, N.;Van Der Hoff, B. M. E. J Appl Polym Sci 1971, 15, 169.
– reference: Khasanovich, T. N. J Appl Phys 1959, 30, 948.
– reference: Stringfellow, R.;Abeyaratne, R.; Mater Sci Eng A Struct Mater 1989, 112, 127-131.
– reference: Fukahori, Y.;Seki, W. J Mater Sci 1993, 28, 4143.
– reference: Gee, G. Trans Faraday Soc 1946, 42, B033.
– reference: Kumar, P.;Fukahori, Y.;Thomas, A. G.;Busfield, J. J. C. Rubber Chem Technol 2007, 80, 24-39.
– reference: Christensen, R. G.;Hoeve, C. A. J. J Polym Sci Part A-1 Polym Chem 1970, 8, 1503.
– reference: Busfield, J. J. C.;Jha, V.;Liang, H.;Papadopoulos, I. C.;Thomas, A. G. Plast Rubber Compos Process Appl 2005, 34, 349.
– reference: Reichert, W. F.;Hopfenmueller, M. K.;Goeritz, D. J Mater Sci 1987, 22, 3470.
– reference: Dierkes, W. J Elastomers Plast 1996, 28, 257.
– reference: Gibala, D.;Hamed, G. R.;Zhao, J. Rubber Chem Technol 1998, 71, 861.
– volume: 28
  start-page: 4143
  year: 1993
  publication-title: J Mater Sci
– volume: 28
  start-page: 257
  year: 1996
  publication-title: J Elastomers Plast
– volume: 15
  start-page: 169
  year: 1971
  publication-title: J Appl Polym Sci
– volume: 112
  start-page: 127
  year: 1989
  end-page: 131
  publication-title: Mater Sci Eng A Struct Mater
– volume: 46
  start-page: 1101
  year: 1950
  publication-title: Trans Faraday Soc
– volume: 8
  start-page: 455
  year: 1964
  publication-title: J Appl Polym Sci
– volume: 19
  start-page: 1947
  year: 1984
  publication-title: J Mater Sci
– volume: 19
  start-page: 3059
  year: 1984
  publication-title: J Mater Sci
– volume: 22
  start-page: 3470
  year: 1987
  publication-title: J Mater Sci
– volume: 33
  start-page: 2
  year: 1957
  publication-title: Trans Inst Rubber Ind
– volume: 19
  start-page: 1414
  year: 1978
  publication-title: Polymer
– volume: 40
  start-page: 2520
  year: 1969
  publication-title: J Appl Phys
– volume: 24
  start-page: 323
  year: 1976
  publication-title: J Mech Phys Solids
– volume: 214
  start-page: 42
  year: 1996
  publication-title: Rubber World
– volume: 75
  start-page: 429
  year: 2002
  publication-title: Rubber Chem Technol
– volume: 67
  start-page: 1909
  year: 2007
  publication-title: Compos Sci Technol
– volume: 28
  start-page: 4471
  year: 1993
  publication-title: J Mater Sci
– volume: 71
  start-page: 861
  year: 1998
  publication-title: Rubber Chem Technol
– volume: 6
  start-page: 61
  year: 1962
  publication-title: J Rheol
– volume: 30
  start-page: 948
  year: 1959
  publication-title: J Appl Phys
– volume: 44
  start-page: 1391
  year: 1971
  publication-title: Rubber Chem Technol
– volume: 8
  start-page: 1503
  year: 1970
  publication-title: J Polym Sci Part A‐1 Polym Chem
– volume: 80
  start-page: 24
  year: 2007
  end-page: 39
  publication-title: Rubber Chem Technol
– volume: 43
  start-page: 887
  year: 1970
  publication-title: Rubber Chem Technol
– volume: 34
  start-page: 349
  year: 2005
  publication-title: Plast Rubber Compos Process Appl
– volume: 38
  start-page: 2997
  year: 1967
  publication-title: J Appl Phys
– volume: 49
  start-page: 375
  year: 1976
  publication-title: Rubber Chem Technol
– volume: 53
  start-page: 1215
  year: 1980
  publication-title: Rubber Chem Technol
– volume: 55
  start-page: 1233
  year: 1982
  publication-title: Rubber Chem Technol
– volume: 63
  start-page: 792
  year: 1990
  publication-title: Rubber Chem Technol
– volume: 1
  start-page: 761
  year: 1956
– volume: 29
  start-page: 1411
  year: 1958
  publication-title: J Appl Phys
– volume: 42
  start-page: B033
  year: 1946
  publication-title: Trans Faraday Soc
– volume: 85
  start-page: 2491
  year: 2002
  publication-title: J Appl Polym Sci
– ident: e_1_2_6_15_2
  doi: 10.1016/0921-5093(89)90351-1
– ident: e_1_2_6_16_2
  doi: 10.1007/BF00351245
– volume: 33
  start-page: 2
  year: 1957
  ident: e_1_2_6_19_2
  publication-title: Trans Inst Rubber Ind
– ident: e_1_2_6_5_2
  doi: 10.5254/1.3538514
– start-page: 761
  volume-title: Rheology: Theory and Applications
  year: 1956
  ident: e_1_2_6_32_2
– ident: e_1_2_6_23_2
  doi: 10.1016/0022-5096(76)90007-7
– ident: e_1_2_6_31_2
  doi: 10.5254/1.3538289
– ident: e_1_2_6_28_2
  doi: 10.1063/1.1710039
– ident: e_1_2_6_9_2
  doi: 10.1002/app.1964.070080129
– ident: e_1_2_6_24_2
  doi: 10.1039/tf946420b033
– ident: e_1_2_6_27_2
  doi: 10.1122/1.548933
– ident: e_1_2_6_10_2
  doi: 10.5254/1.3535928
– ident: e_1_2_6_14_2
  doi: 10.1007/BF01161444
– ident: e_1_2_6_34_2
  doi: 10.1177/009524439602800305
– ident: e_1_2_6_8_2
  doi: 10.1063/1.1658026
– ident: e_1_2_6_11_2
  doi: 10.1007/BF01026985
– ident: e_1_2_6_17_2
  doi: 10.1007/BF01154959
– ident: e_1_2_6_12_2
  doi: 10.1007/BF00550265
– ident: e_1_2_6_30_2
  doi: 10.1179/174328905X59728
– ident: e_1_2_6_21_2
  doi: 10.5254/1.3544819
– ident: e_1_2_6_18_2
  doi: 10.1039/tf9504601101
– ident: e_1_2_6_13_2
  doi: 10.1002/app.1971.070150115
– ident: e_1_2_6_22_2
  doi: 10.1016/0032-3861(78)90093-9
– ident: e_1_2_6_25_2
  doi: 10.5254/1.3547299
– ident: e_1_2_6_2_2
  doi: 10.5254/1.3547678
– ident: e_1_2_6_33_2
  doi: 10.1016/j.compscitech.2006.10.012
– ident: e_1_2_6_26_2
  doi: 10.1063/1.1722959
– ident: e_1_2_6_4_2
  doi: 10.1002/app.10575
– ident: e_1_2_6_7_2
  doi: 10.5254/1.3548167
– ident: e_1_2_6_6_2
  doi: 10.5254/1.3535089
– ident: e_1_2_6_20_2
  doi: 10.1002/pol.1970.150080615
– volume: 214
  start-page: 42
  year: 1996
  ident: e_1_2_6_35_2
  publication-title: Rubber World
– ident: e_1_2_6_3_2
  doi: 10.5254/1.3534972
– ident: e_1_2_6_29_2
  doi: 10.1063/1.1735272
SSID ssj0009959
Score 1.9064298
Snippet The strength of an elastomer is in part determined by the size of the intrinsic flaws that are present. It has been observed that the incorporation of rubber...
SourceID proquest
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3169
SubjectTerms Applied sciences
debonding
Exact sciences and technology
finite element analysis
flaws
interfaces
Mechanical properties
Organic polymers
Physicochemistry of polymers
physics
polymers
Properties and characterization
recycling
rubber
soot
Title Volume changes under strain resulting from the incorporation of rubber granulates into a rubber matrix
URI https://api.istex.fr/ark:/67375/WNG-0S215074-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.21315
https://www.proquest.com/docview/31030338
https://www.proquest.com/docview/47490732
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OA9EXP07l6scZUASF7rVpk7bgix7eHaKneK7ei4SkSRa5sz22u3D41zuTbnddUUHfCp20TDKZ_JLM_AbgceW9LlJnY4T2dZw7i36wsibGpUvI3AtXFpTv_PZIHo7z1yfiZAOeD7kwPT_E8sCNZkbw1zTBtel2V6Sh5-2ZGfE0CxnmFKxFiOjDijuKiLQGmk9E7XLJTcp3V03XVqNLXreIUal7LyhGUnfYTb6vb7EGQH-GsWEd2r8OXwYN-vCT09F8Zkb191_IHf9XxRtwbQFQ2Yveom7Chmu24MreUBduCy6HoNG6uwX-U3BtrE8e7hjlo01ZF6pOMNzGU6xiM2GUwcIQZzIiguh5k9EYWOvZdG4Mtpig8lRFDD_xtZm1TA8vvlH9gIvbMN5_9XHvMF7UbYjrXJYiNlKntREomOVSi9TgPC-kT6zQXOrEpEmWpdIKaUpucctieaHLhLs08WWN8Cy7A5tN27htYFXtrLSaQKLNrSi0NrLGPWmhM19p6SN4Ooyfqhek5qTlmerpmLmiPlShDyN4tJQ976k8fiu1jWag9AR9rBofc7rZpdtIXOojeBJsY9laT08pLq4Q6vPRgUqOOaHrXB1EsLNmPKvf0W5UZDKCh4M1KRw9uqPRjWvnnQpl37Ks_LNEXuQV-mUewbNgO3_RRb1_9-ZleLr7L8L34Go4wQ5BO_dhczaduwcIvWZmJ0yxHxHuKO8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BEBovfAzQwsdmCYQEUrrEiZ3kESa2Al1BbGV7s-w4rtBGMjWtNPHXc-f0gyJAgrdIOSeyfT7_zr77HcDzwjmdxZUNEdqXYVpZtIOFNSFuXUKmTlR5RvnOR0PZH6Xvz8TZPDaHcmE6fojlgRutDG-vaYHTgfTeijX0srkwPR4nlGJ-g0p6e4_q84o9iqi0FkSfiNvlkp2U763aru1H151uEKXSAF9RlKRucaBcV-FiDYL-DGT9TnRwpyu32noCQwpAOe_NpqZXfv-F3vG_O3kXbs8xKnvdKdU9uFbVW7C5vygNtwU3fdxo2d4H98VbN9blD7eMUtImrPWFJxh68hSuWI8ZJbEwhJqMuCA66mTUB9Y4NpkZgy3G2HsqJIaf-FpPG6YXL75RCYGrBzA6eHuy3w_npRvCMpW5CI3UcWkECiap1CI2uNQz6SIrNJc6MnGUJLG0QpqcW_RaLM90HvEqjlxeIkJLHsJG3dTVNrCirKy0mnCiTa3ItDayRLc004krtHQBvFxMoCrnvObUywvVMTJzRWOo_BgG8Gwpe9mxefxWahv1QOkxmlk1OuZ0uUsXkrjbB_DCK8eytZ6cU2hcJtTp8FBFx5wAdqoOA9hZ057V78ghFYkMYHehTgpnj65pdF01s1b5ym9Jkv9ZIs3SAk0zD-CVV56_9EV9-jh4458e_YvwLmz2T44GavBu-OEx3PIH2j6G5wlsTCez6ikisanZ8evtB4SfLQo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NIR5feAzQwmOzBEICKV1edhKJL7DRDRhlYivsC7LsOK7QRlI1rTTx13PnNC1FgATfIuWc6Ozz-Wf77ncAT3JrVRqWxkdoX_hJadAP5kb7uHRxkVheZinlO78fiINh8vaUn67Biy4XpuWHWBy40cxw_pom-NjYnSVp6Lg-170ojCnD_HIigoxseu_jkjyKmLQ6nk-E7WJBThrtLNuuLEeXrKoRpFL_XlCQpGqwn2xb4GIFgf6MY91C1L8JXzoV2viTs95sqnvF91_YHf9Xx1twY45Q2cvWpG7DWlltwLXdrjDcBlxxUaNFcwfsJ-fbWJs93DBKSJuwxpWdYLiPp2DFasQohYUh0GTEBNESJ6M1sNqyyUxrbDFC5amMGH7iazWtmepefKMCAhd3Ydh_fbJ74M8LN_hFIjLua6HCQnMUjBOheKhxoqfCBoarSKhAh0Ech8JwobPI4J7FRKnKgqgMA5sViM_ie7Be1VW5CSwvSiOMIpRoEsNTpbQocFOaqtjmSlgPnnXjJ4s5qzlpeS5bPuZIUh9K14cePF7Ijlsuj99KbaIZSDVCJyuHxxFd7dJ1JK71Hjx1trForSZnFBiXcvl5sC-D44jgdSL3PdhaMZ7l72g7ymPhwXZnTRJHjy5pVFXWs0a6um9xnP1ZIkmTHB1z5MFzZzt_0UUefTh85Z7u_4vwNlw92uvLwzeDdw_gujvNdgE8D2F9OpmVjxCGTfWWm20_APuWK8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volume+changes+under+strain+resulting+from+the+incorporation+of+rubber+granulates+into+a+rubber+matrix&rft.jtitle=Journal+of+polymer+science.+Part+B%2C+Polymer+physics&rft.au=Kumar%2C+P.&rft.au=Fukahori%2C+Y.&rft.au=Thomas%2C+A.+G.&rft.au=Busfield%2C+J.+J.+C.&rft.date=2007-12-01&rft.issn=0887-6266&rft.eissn=1099-0488&rft.volume=45&rft.issue=23&rft.spage=3169&rft.epage=3180&rft_id=info:doi/10.1002%2Fpolb.21315&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_polb_21315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6266&client=summon