Volume changes under strain resulting from the incorporation of rubber granulates into a rubber matrix
The strength of an elastomer is in part determined by the size of the intrinsic flaws that are present. It has been observed that the incorporation of rubber granulates into a virgin matrix results in a reduction in strength and this has previously been attributed to an increase in the intrinsic fla...
Saved in:
Published in | Journal of polymer science. Part B, Polymer physics Vol. 45; no. 23; pp. 3169 - 3180 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.12.2007
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The strength of an elastomer is in part determined by the size of the intrinsic flaws that are present. It has been observed that the incorporation of rubber granulates into a virgin matrix results in a reduction in strength and this has previously been attributed to an increase in the intrinsic flaw size. The precise nature of this intrinsic flaw is the subject of this investigation. Fundamental questions concerning the change in flaw size with strain and the reduction in strength resulting from a weaker interface have been investigated using volume change experiments. Initial experiments on carbon black filled rubber with no granulates incorporated have shown no significant volume change under strain. This contrasts with granulate filled materials whose experimentally measured volume changes with strain were seen to be substantially greater. Microstructural finite element analysis has revealed how this change in volume might result from a net increase in the flaw size with increasing strain. This work suggests that flaw size increases in a characteristic way with strain for materials where the matrix and granulates have a similar modulus, whereas a modulus mismatch between the matrix and the recycled granulate results in much larger volume changes and hence greater flaw size which also appears to increase with strain. This work emphasizes the importance in practical applications of matching the modulus of recycled granulate materials to that of the new virgin material in the matrix. This article introduces a novel technique for examining small changes in the interfacial bonding mechanisms under strain such as that caused by surface modification techniques. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3169-3180, 2007 |
---|---|
AbstractList | The strength of an elastomer is in part determined by the size of the intrinsic flaws that are present. It has been observed that the incorporation of rubber granulates into a virgin matrix results in a reduction in strength and this has previously been attributed to an increase in the intrinsic flaw size. The precise nature of this intrinsic flaw is the subject of this investigation. Fundamental questions concerning the change in flaw size with strain and the reduction in strength resulting from a weaker interface have been investigated using volume change experiments. Initial experiments on carbon black filled rubber with no granulates incorporated have shown no significant volume change under strain. This contrasts with granulate filled materials whose experimentally measured volume changes with strain were seen to be substantially greater. Microstructural finite element analysis has revealed how this change in volume might result from a net increase in the flaw size with increasing strain. This work suggests that flaw size increases in a characteristic way with strain for materials where the matrix and granulates have a similar modulus, whereas a modulus mismatch between the matrix and the recycled granulate results in much larger volume changes and hence greater flaw size which also appears to increase with strain. This work emphasizes the importance in practical applications of matching the modulus of recycled granulate materials to that of the new virgin material in the matrix. This article introduces a novel technique for examining small changes in the interfacial bonding mechanisms under strain such as that caused by surface modification techniques. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3169-3180, 2007 The strength of an elastomer is in part determined by the size of the intrinsic flaws that are present. It has been observed that the incorporation of rubber granulates into a virgin matrix results in a reduction in strength and this has previously been attributed to an increase in the intrinsic flaw size. The precise nature of this intrinsic flaw is the subject of this investigation. Fundamental questions concerning the change in flaw size with strain and the reduction in strength resulting from a weaker interface have been investigated using volume change experiments. Initial experiments on carbon black filled rubber with no granulates incorporated have shown no significant volume change under strain. This contrasts with granulate filled materials whose experimentally measured volume changes with strain were seen to be substantially greater. Microstructural finite element analysis has revealed how this change in volume might result from a net increase in the flaw size with increasing strain. This work suggests that flaw size increases in a characteristic way with strain for materials where the matrix and granulates have a similar modulus, whereas a modulus mismatch between the matrix and the recycled granulate results in much larger volume changes and hence greater flaw size which also appears to increase with strain. This work emphasizes the importance in practical applications of matching the modulus of recycled granulate materials to that of the new virgin material in the matrix. This article introduces a novel technique for examining small changes in the interfacial bonding mechanisms under strain such as that caused by surface modification techniques. |
Author | Kumar, P. Thomas, A. G. Busfield, J. J. C. Fukahori, Y. |
Author_xml | – sequence: 1 fullname: Kumar, P – sequence: 2 fullname: Fukahori, Y – sequence: 3 fullname: Thomas, A.G – sequence: 4 fullname: Busfield, J.J.C |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19560536$$DView record in Pascal Francis |
BookMark | eNqFkcFu1DAQhi1UJLaFCy-AL3BAShnbseMcoYKl0qpFKoWj5TjO1uDYWzsR7dvjbVqQEILTHOb7ZjTzH6KDEINF6DmBYwJA3-yi744pYYQ_QisCbVtBLeUBWoGUTSWoEE_QYc7fAEqPtys0fIl-Hi02VzpsbcZz6G3CeUraBZxsnv3kwhYPKY54urLYBRPTLiY9uRhwHHCau64Y26TD7PVURrgwRawfGqOekrt5ih4P2mf77L4eocsP7z-ffKw25-vTk7ebytRC8qoTmpiOF5HVQnPScUYaMUDPNRUaOgKMEdFz0UnaMxA9bbQEagkM0tQ1YUfo1TJ3l-L1bPOkRpeN9V4HG-es6qZuoWH0vyArq8oyWcCX96DORvuh3GlcVrvkRp1uFWm5AM5E4V4vnEkx52SH3wiofTZqn426y6bA8Ads3HT30v3j_d8Vsig_nLe3_xiuPp1v3j041eK4PNmbX45O35VoWMPV17O1ggtKODS1Whf-xcIPOiq9TeXOywsKhAFIyvb_-Ak9uLvc |
CODEN | JPLPAY |
CitedBy_id | crossref_primary_10_1016_j_polymer_2019_122086 crossref_primary_10_1016_j_wear_2009_11_019 crossref_primary_10_1002_app_31991 crossref_primary_10_1002_polb_22285 crossref_primary_10_1002_app_32524 |
Cites_doi | 10.1016/0921-5093(89)90351-1 10.1007/BF00351245 10.5254/1.3538514 10.1016/0022-5096(76)90007-7 10.5254/1.3538289 10.1063/1.1710039 10.1002/app.1964.070080129 10.1039/tf946420b033 10.1122/1.548933 10.5254/1.3535928 10.1007/BF01161444 10.1177/009524439602800305 10.1063/1.1658026 10.1007/BF01026985 10.1007/BF01154959 10.1007/BF00550265 10.1179/174328905X59728 10.5254/1.3544819 10.1039/tf9504601101 10.1002/app.1971.070150115 10.1016/0032-3861(78)90093-9 10.5254/1.3547299 10.5254/1.3547678 10.1016/j.compscitech.2006.10.012 10.1063/1.1722959 10.1002/app.10575 10.5254/1.3548167 10.5254/1.3535089 10.1002/pol.1970.150080615 10.5254/1.3534972 10.1063/1.1735272 |
ContentType | Journal Article |
Copyright | Copyright © 2007 Wiley Periodicals, Inc. 2008 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2007 Wiley Periodicals, Inc. – notice: 2008 INIST-CNRS |
DBID | FBQ BSCLL AAYXX CITATION IQODW 7SR 7U5 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1002/polb.21315 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics Applied Sciences |
EISSN | 1099-0488 |
EndPage | 3180 |
ExternalDocumentID | 19560536 10_1002_polb_21315 POLB21315 ark_67375_WNG_0S215074_G US201300823303 |
Genre | article |
GroupedDBID | -~X .GA .Y3 05W 10A 1L6 1OB 1OC 1ZS 31~ 4.4 4ZD 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 6TJ 7PT 8-1 8UM 930 A03 AAEVG AAHHS AANLZ AAXRX AAZKR ABCQN ABCUV ABHUG ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXME ACXQS ADAWD ADDAD ADEOM ADIZJ ADMGS ADOZA ADXAS AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFVGU AFZJQ AGJLS AI. AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZFZN BDRZF BFHJK BRXPI BY8 CS3 DCZOG DR2 DRFUL DRSTM EBS EJD F00 F5P FBQ FEDTE G-S GNP GODZA GYXMG HBH HF~ HHY HHZ HVGLF IX1 KQQ LATKE LAW LEEKS LH4 LOXES LP6 LP7 LUTES LYRES M6T MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM P2P P2W P4D QB0 QRW RIWAO RNS ROL RWB RWI RYL SAMSI SUPJJ TN5 UB1 UPT V2E VH1 W99 WH7 WIH WJL WOHZO WQJ WXSBR XG1 XPP XV2 YQT ZZTAW AAHBH AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AAYXX ADMLS AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7SR 7U5 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c4685-b6a1cb5bbe346a51b53176f0d5a26a0b103316d56b82d306d27a802e10f8c4413 |
IEDL.DBID | DR2 |
ISSN | 0887-6266 |
IngestDate | Fri Jul 11 09:41:32 EDT 2025 Fri Jul 11 15:05:58 EDT 2025 Mon Jul 21 09:16:39 EDT 2025 Thu Apr 24 23:00:39 EDT 2025 Tue Jul 01 01:14:02 EDT 2025 Wed Jan 22 16:16:28 EST 2025 Wed Oct 30 09:52:32 EDT 2024 Wed Dec 27 19:21:41 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | SBR interfaces Stress strain relation debonding recycling Volume expansion Experimental study finite element analysis Cavitation Modeling Heterogeneous mixture Finite element method Tensile stress Vulcanizate rubber flaws Recycled material Elongation (mechanics) Aggregate(materials) |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4685-b6a1cb5bbe346a51b53176f0d5a26a0b103316d56b82d306d27a802e10f8c4413 |
Notes | http://dx.doi.org/10.1002/polb.21315 ArticleID:POLB21315 ark:/67375/WNG-0S215074-G istex:9806CCC88A21791BDC04D5E7B264229B4CE1823F ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 31030338 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_47490732 proquest_miscellaneous_31030338 pascalfrancis_primary_19560536 crossref_primary_10_1002_polb_21315 crossref_citationtrail_10_1002_polb_21315 wiley_primary_10_1002_polb_21315_POLB21315 istex_primary_ark_67375_WNG_0S215074_G fao_agris_US201300823303 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 December 2007 |
PublicationDateYYYYMMDD | 2007-12-01 |
PublicationDate_xml | – month: 12 year: 2007 text: 1 December 2007 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY |
PublicationTitle | Journal of polymer science. Part B, Polymer physics |
PublicationTitleAlternate | J. Polym. Sci. B Polym. Phys |
PublicationYear | 2007 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley |
References | Myhre, M.;Mackillop, D. A. Rubber Chem Technol 2002, 75, 429. Smith, T. L. J Rheol 1962, 6, 61. Gent, A. N.;Tompkins, D. A. J Appl Phys 1969, 40, 2520. Swor, R. A.;Jensen, L. W.;Budzol, M. Rubber Chem Technol 1980, 53, 1215. Mullins, L.;Tobin, N. R. Trans Inst Rubber Ind 1957, 33, 2. Christensen, R. G.;Hoeve, C. A. J. J Polym Sci Part A-1 Polym Chem 1970, 8, 1503. Gent, A. N.;Lindley, P. B.;Thomas, A. G. J Appl Polym Sci 1964, 8, 455. Fukahori, Y.;Seki, W. J Mater Sci 1993, 28, 4471. Burford, R. P.;Pittolo, M. Rubber Chem Technol 1982, 55, 1233. Khasanovich, T. N. J Appl Phys 1959, 30, 948. Burgoyne, M. D.;Leaker, G. R.;Krekic, Z. Rubber Chem Technol 1976, 49, 375. Yeoh, O. H. Rubber Chem Technol 1990, 63, 792. Treloar, L. R. G. Polymer 1978, 19, 1414. Ogden, R. W. J Mech Phys Solids 1976, 24, 323. Burford, R. P.;Pittolo, M. J Mater Sci 1984, 19, 3059. Fedors, R. F.;Landel, R. F. Rubber Chem Technol 1970, 43, 887. Dierkes, W. J Elastomers Plast 1996, 28, 257. Myhre, M. J.;Mackillop, D. A. Rubber World 1996, 214, 42. Goebel, J. C.;Tobolsky, A. V. Rubber Chem Technol 1971, 44, 1391. Stringfellow, R.;Abeyaratne, R.; Mater Sci Eng A Struct Mater 1989, 112, 127-131. Busfield, J. J. C.;Jha, V.;Liang, H.;Papadopoulos, I. C.;Thomas, A. G. Plast Rubber Compos Process Appl 2005, 34, 349. Kumar, P.;Fukahori, Y.;Thomas, A. G.;Busfield, J. J. C. Rubber Chem Technol 2007, 80, 24-39. Fukahori, Y.;Seki, W. J Mater Sci 1993, 28, 4143. Hewitt, F. G.;Anthony, R. L. J Appl Phys 1958, 29, 1411. Gibala, D.;Hamed, G. R.;Zhao, J. Rubber Chem Technol 1998, 71, 861. Gent, A. N.;Park, B. J Mater Sci 1984, 19, 1947. Valanis, K. C.;Landel, R. F. J Appl Phys 1967, 38, 2997. Sekhar, N.;Van Der Hoff, B. M. E. J Appl Polym Sci 1971, 15, 169. Gee, G.;Stern, J.;Treloar, L. R. G. Trans Faraday Soc 1950, 46, 1101. Gee, G. Trans Faraday Soc 1946, 42, B033. Reichert, W. F.;Hopfenmueller, M. K.;Goeritz, D. J Mater Sci 1987, 22, 3470. Wu, D. Y.;Bateman, S.;Partlett, M. Compos Sci Technol 2007, 67 1909. Han, S. C.;Han, M. H. J Appl Polym Sci 2002, 85, 2491. 1957; 33 1946; 42 1970; 8 1971; 44 1976; 24 1993; 28 1950; 46 1989; 112 2002; 75 1964; 8 1962; 6 1982; 55 1978; 19 1976; 49 1990; 63 1987; 22 1959; 30 1996; 28 2002; 85 1980; 53 1958; 29 1969; 40 1971; 15 2007; 80 1970; 43 1984; 19 1998; 71 1967; 38 1996; 214 1956; 1 2007; 67 2005; 34 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_13_2 e_1_2_6_34_2 Myhre M. J. (e_1_2_6_35_2) 1996; 214 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 Rivlin R. S. (e_1_2_6_32_2) 1956 e_1_2_6_20_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 Mullins L. (e_1_2_6_19_2) 1957; 33 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – reference: Goebel, J. C.;Tobolsky, A. V. Rubber Chem Technol 1971, 44, 1391. – reference: Smith, T. L. J Rheol 1962, 6, 61. – reference: Fukahori, Y.;Seki, W. J Mater Sci 1993, 28, 4471. – reference: Valanis, K. C.;Landel, R. F. J Appl Phys 1967, 38, 2997. – reference: Mullins, L.;Tobin, N. R. Trans Inst Rubber Ind 1957, 33, 2. – reference: Gent, A. N.;Tompkins, D. A. J Appl Phys 1969, 40, 2520. – reference: Myhre, M.;Mackillop, D. A. Rubber Chem Technol 2002, 75, 429. – reference: Gent, A. N.;Lindley, P. B.;Thomas, A. G. J Appl Polym Sci 1964, 8, 455. – reference: Myhre, M. J.;Mackillop, D. A. Rubber World 1996, 214, 42. – reference: Gee, G.;Stern, J.;Treloar, L. R. G. Trans Faraday Soc 1950, 46, 1101. – reference: Yeoh, O. H. Rubber Chem Technol 1990, 63, 792. – reference: Han, S. C.;Han, M. H. J Appl Polym Sci 2002, 85, 2491. – reference: Burford, R. P.;Pittolo, M. Rubber Chem Technol 1982, 55, 1233. – reference: Ogden, R. W. J Mech Phys Solids 1976, 24, 323. – reference: Swor, R. A.;Jensen, L. W.;Budzol, M. Rubber Chem Technol 1980, 53, 1215. – reference: Wu, D. Y.;Bateman, S.;Partlett, M. Compos Sci Technol 2007, 67 1909. – reference: Hewitt, F. G.;Anthony, R. L. J Appl Phys 1958, 29, 1411. – reference: Burgoyne, M. D.;Leaker, G. R.;Krekic, Z. Rubber Chem Technol 1976, 49, 375. – reference: Treloar, L. R. G. Polymer 1978, 19, 1414. – reference: Gent, A. N.;Park, B. J Mater Sci 1984, 19, 1947. – reference: Fedors, R. F.;Landel, R. F. Rubber Chem Technol 1970, 43, 887. – reference: Burford, R. P.;Pittolo, M. J Mater Sci 1984, 19, 3059. – reference: Sekhar, N.;Van Der Hoff, B. M. E. J Appl Polym Sci 1971, 15, 169. – reference: Khasanovich, T. N. J Appl Phys 1959, 30, 948. – reference: Stringfellow, R.;Abeyaratne, R.; Mater Sci Eng A Struct Mater 1989, 112, 127-131. – reference: Fukahori, Y.;Seki, W. J Mater Sci 1993, 28, 4143. – reference: Gee, G. Trans Faraday Soc 1946, 42, B033. – reference: Kumar, P.;Fukahori, Y.;Thomas, A. G.;Busfield, J. J. C. Rubber Chem Technol 2007, 80, 24-39. – reference: Christensen, R. G.;Hoeve, C. A. J. J Polym Sci Part A-1 Polym Chem 1970, 8, 1503. – reference: Busfield, J. J. C.;Jha, V.;Liang, H.;Papadopoulos, I. C.;Thomas, A. G. Plast Rubber Compos Process Appl 2005, 34, 349. – reference: Reichert, W. F.;Hopfenmueller, M. K.;Goeritz, D. J Mater Sci 1987, 22, 3470. – reference: Dierkes, W. J Elastomers Plast 1996, 28, 257. – reference: Gibala, D.;Hamed, G. R.;Zhao, J. Rubber Chem Technol 1998, 71, 861. – volume: 28 start-page: 4143 year: 1993 publication-title: J Mater Sci – volume: 28 start-page: 257 year: 1996 publication-title: J Elastomers Plast – volume: 15 start-page: 169 year: 1971 publication-title: J Appl Polym Sci – volume: 112 start-page: 127 year: 1989 end-page: 131 publication-title: Mater Sci Eng A Struct Mater – volume: 46 start-page: 1101 year: 1950 publication-title: Trans Faraday Soc – volume: 8 start-page: 455 year: 1964 publication-title: J Appl Polym Sci – volume: 19 start-page: 1947 year: 1984 publication-title: J Mater Sci – volume: 19 start-page: 3059 year: 1984 publication-title: J Mater Sci – volume: 22 start-page: 3470 year: 1987 publication-title: J Mater Sci – volume: 33 start-page: 2 year: 1957 publication-title: Trans Inst Rubber Ind – volume: 19 start-page: 1414 year: 1978 publication-title: Polymer – volume: 40 start-page: 2520 year: 1969 publication-title: J Appl Phys – volume: 24 start-page: 323 year: 1976 publication-title: J Mech Phys Solids – volume: 214 start-page: 42 year: 1996 publication-title: Rubber World – volume: 75 start-page: 429 year: 2002 publication-title: Rubber Chem Technol – volume: 67 start-page: 1909 year: 2007 publication-title: Compos Sci Technol – volume: 28 start-page: 4471 year: 1993 publication-title: J Mater Sci – volume: 71 start-page: 861 year: 1998 publication-title: Rubber Chem Technol – volume: 6 start-page: 61 year: 1962 publication-title: J Rheol – volume: 30 start-page: 948 year: 1959 publication-title: J Appl Phys – volume: 44 start-page: 1391 year: 1971 publication-title: Rubber Chem Technol – volume: 8 start-page: 1503 year: 1970 publication-title: J Polym Sci Part A‐1 Polym Chem – volume: 80 start-page: 24 year: 2007 end-page: 39 publication-title: Rubber Chem Technol – volume: 43 start-page: 887 year: 1970 publication-title: Rubber Chem Technol – volume: 34 start-page: 349 year: 2005 publication-title: Plast Rubber Compos Process Appl – volume: 38 start-page: 2997 year: 1967 publication-title: J Appl Phys – volume: 49 start-page: 375 year: 1976 publication-title: Rubber Chem Technol – volume: 53 start-page: 1215 year: 1980 publication-title: Rubber Chem Technol – volume: 55 start-page: 1233 year: 1982 publication-title: Rubber Chem Technol – volume: 63 start-page: 792 year: 1990 publication-title: Rubber Chem Technol – volume: 1 start-page: 761 year: 1956 – volume: 29 start-page: 1411 year: 1958 publication-title: J Appl Phys – volume: 42 start-page: B033 year: 1946 publication-title: Trans Faraday Soc – volume: 85 start-page: 2491 year: 2002 publication-title: J Appl Polym Sci – ident: e_1_2_6_15_2 doi: 10.1016/0921-5093(89)90351-1 – ident: e_1_2_6_16_2 doi: 10.1007/BF00351245 – volume: 33 start-page: 2 year: 1957 ident: e_1_2_6_19_2 publication-title: Trans Inst Rubber Ind – ident: e_1_2_6_5_2 doi: 10.5254/1.3538514 – start-page: 761 volume-title: Rheology: Theory and Applications year: 1956 ident: e_1_2_6_32_2 – ident: e_1_2_6_23_2 doi: 10.1016/0022-5096(76)90007-7 – ident: e_1_2_6_31_2 doi: 10.5254/1.3538289 – ident: e_1_2_6_28_2 doi: 10.1063/1.1710039 – ident: e_1_2_6_9_2 doi: 10.1002/app.1964.070080129 – ident: e_1_2_6_24_2 doi: 10.1039/tf946420b033 – ident: e_1_2_6_27_2 doi: 10.1122/1.548933 – ident: e_1_2_6_10_2 doi: 10.5254/1.3535928 – ident: e_1_2_6_14_2 doi: 10.1007/BF01161444 – ident: e_1_2_6_34_2 doi: 10.1177/009524439602800305 – ident: e_1_2_6_8_2 doi: 10.1063/1.1658026 – ident: e_1_2_6_11_2 doi: 10.1007/BF01026985 – ident: e_1_2_6_17_2 doi: 10.1007/BF01154959 – ident: e_1_2_6_12_2 doi: 10.1007/BF00550265 – ident: e_1_2_6_30_2 doi: 10.1179/174328905X59728 – ident: e_1_2_6_21_2 doi: 10.5254/1.3544819 – ident: e_1_2_6_18_2 doi: 10.1039/tf9504601101 – ident: e_1_2_6_13_2 doi: 10.1002/app.1971.070150115 – ident: e_1_2_6_22_2 doi: 10.1016/0032-3861(78)90093-9 – ident: e_1_2_6_25_2 doi: 10.5254/1.3547299 – ident: e_1_2_6_2_2 doi: 10.5254/1.3547678 – ident: e_1_2_6_33_2 doi: 10.1016/j.compscitech.2006.10.012 – ident: e_1_2_6_26_2 doi: 10.1063/1.1722959 – ident: e_1_2_6_4_2 doi: 10.1002/app.10575 – ident: e_1_2_6_7_2 doi: 10.5254/1.3548167 – ident: e_1_2_6_6_2 doi: 10.5254/1.3535089 – ident: e_1_2_6_20_2 doi: 10.1002/pol.1970.150080615 – volume: 214 start-page: 42 year: 1996 ident: e_1_2_6_35_2 publication-title: Rubber World – ident: e_1_2_6_3_2 doi: 10.5254/1.3534972 – ident: e_1_2_6_29_2 doi: 10.1063/1.1735272 |
SSID | ssj0009959 |
Score | 1.9064298 |
Snippet | The strength of an elastomer is in part determined by the size of the intrinsic flaws that are present. It has been observed that the incorporation of rubber... |
SourceID | proquest pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3169 |
SubjectTerms | Applied sciences debonding Exact sciences and technology finite element analysis flaws interfaces Mechanical properties Organic polymers Physicochemistry of polymers physics polymers Properties and characterization recycling rubber soot |
Title | Volume changes under strain resulting from the incorporation of rubber granulates into a rubber matrix |
URI | https://api.istex.fr/ark:/67375/WNG-0S215074-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpolb.21315 https://www.proquest.com/docview/31030338 https://www.proquest.com/docview/47490732 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_OA9EXP07l6scZUASF7rVpk7bgix7eHaKneK7ei4SkSRa5sz22u3D41zuTbnddUUHfCp20TDKZ_JLM_AbgceW9LlJnY4T2dZw7i36wsibGpUvI3AtXFpTv_PZIHo7z1yfiZAOeD7kwPT_E8sCNZkbw1zTBtel2V6Sh5-2ZGfE0CxnmFKxFiOjDijuKiLQGmk9E7XLJTcp3V03XVqNLXreIUal7LyhGUnfYTb6vb7EGQH-GsWEd2r8OXwYN-vCT09F8Zkb191_IHf9XxRtwbQFQ2Yveom7Chmu24MreUBduCy6HoNG6uwX-U3BtrE8e7hjlo01ZF6pOMNzGU6xiM2GUwcIQZzIiguh5k9EYWOvZdG4Mtpig8lRFDD_xtZm1TA8vvlH9gIvbMN5_9XHvMF7UbYjrXJYiNlKntREomOVSi9TgPC-kT6zQXOrEpEmWpdIKaUpucctieaHLhLs08WWN8Cy7A5tN27htYFXtrLSaQKLNrSi0NrLGPWmhM19p6SN4Ooyfqhek5qTlmerpmLmiPlShDyN4tJQ976k8fiu1jWag9AR9rBofc7rZpdtIXOojeBJsY9laT08pLq4Q6vPRgUqOOaHrXB1EsLNmPKvf0W5UZDKCh4M1KRw9uqPRjWvnnQpl37Ks_LNEXuQV-mUewbNgO3_RRb1_9-ZleLr7L8L34Go4wQ5BO_dhczaduwcIvWZmJ0yxHxHuKO8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BEBovfAzQwsdmCYQEUrrEiZ3kESa2Al1BbGV7s-w4rtBGMjWtNPHXc-f0gyJAgrdIOSeyfT7_zr77HcDzwjmdxZUNEdqXYVpZtIOFNSFuXUKmTlR5RvnOR0PZH6Xvz8TZPDaHcmE6fojlgRutDG-vaYHTgfTeijX0srkwPR4nlGJ-g0p6e4_q84o9iqi0FkSfiNvlkp2U763aru1H151uEKXSAF9RlKRucaBcV-FiDYL-DGT9TnRwpyu32noCQwpAOe_NpqZXfv-F3vG_O3kXbs8xKnvdKdU9uFbVW7C5vygNtwU3fdxo2d4H98VbN9blD7eMUtImrPWFJxh68hSuWI8ZJbEwhJqMuCA66mTUB9Y4NpkZgy3G2HsqJIaf-FpPG6YXL75RCYGrBzA6eHuy3w_npRvCMpW5CI3UcWkECiap1CI2uNQz6SIrNJc6MnGUJLG0QpqcW_RaLM90HvEqjlxeIkJLHsJG3dTVNrCirKy0mnCiTa3ItDayRLc004krtHQBvFxMoCrnvObUywvVMTJzRWOo_BgG8Gwpe9mxefxWahv1QOkxmlk1OuZ0uUsXkrjbB_DCK8eytZ6cU2hcJtTp8FBFx5wAdqoOA9hZ057V78ghFYkMYHehTgpnj65pdF01s1b5ym9Jkv9ZIs3SAk0zD-CVV56_9EV9-jh4458e_YvwLmz2T44GavBu-OEx3PIH2j6G5wlsTCez6ikisanZ8evtB4SfLQo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NIR5feAzQwmOzBEICKV1edhKJL7DRDRhlYivsC7LsOK7QRlI1rTTx13PnNC1FgATfIuWc6Ozz-Wf77ncAT3JrVRqWxkdoX_hJadAP5kb7uHRxkVheZinlO78fiINh8vaUn67Biy4XpuWHWBy40cxw_pom-NjYnSVp6Lg-170ojCnD_HIigoxseu_jkjyKmLQ6nk-E7WJBThrtLNuuLEeXrKoRpFL_XlCQpGqwn2xb4GIFgf6MY91C1L8JXzoV2viTs95sqnvF91_YHf9Xx1twY45Q2cvWpG7DWlltwLXdrjDcBlxxUaNFcwfsJ-fbWJs93DBKSJuwxpWdYLiPp2DFasQohYUh0GTEBNESJ6M1sNqyyUxrbDFC5amMGH7iazWtmepefKMCAhd3Ydh_fbJ74M8LN_hFIjLua6HCQnMUjBOheKhxoqfCBoarSKhAh0Ech8JwobPI4J7FRKnKgqgMA5sViM_ie7Be1VW5CSwvSiOMIpRoEsNTpbQocFOaqtjmSlgPnnXjJ4s5qzlpeS5bPuZIUh9K14cePF7Ijlsuj99KbaIZSDVCJyuHxxFd7dJ1JK71Hjx1trForSZnFBiXcvl5sC-D44jgdSL3PdhaMZ7l72g7ymPhwXZnTRJHjy5pVFXWs0a6um9xnP1ZIkmTHB1z5MFzZzt_0UUefTh85Z7u_4vwNlw92uvLwzeDdw_gujvNdgE8D2F9OpmVjxCGTfWWm20_APuWK8I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volume+changes+under+strain+resulting+from+the+incorporation+of+rubber+granulates+into+a+rubber+matrix&rft.jtitle=Journal+of+polymer+science.+Part+B%2C+Polymer+physics&rft.au=Kumar%2C+P.&rft.au=Fukahori%2C+Y.&rft.au=Thomas%2C+A.+G.&rft.au=Busfield%2C+J.+J.+C.&rft.date=2007-12-01&rft.issn=0887-6266&rft.eissn=1099-0488&rft.volume=45&rft.issue=23&rft.spage=3169&rft.epage=3180&rft_id=info:doi/10.1002%2Fpolb.21315&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_polb_21315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6266&client=summon |