Nanoenabled Photothermal Materials for Clean Water Production
Solar‐powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers. The cutting‐edge nanoenabled photothermal materials can exploit a full spectrum of solar radiation with exceptionally high photothermal conv...
Saved in:
Published in | Global challenges Vol. 5; no. 1; pp. 2000055 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.01.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solar‐powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers. The cutting‐edge nanoenabled photothermal materials can exploit a full spectrum of solar radiation with exceptionally high photothermal conversion efficiency. Additionally, photothermal design through heat management and the hierarchy of smooth water‐flow channels have evolved in parallel. Indeed, the integration of all desirable functions into one photothermal layer remains an essential challenge for an effective yield of clean water in remote‐sensing areas. Some nanoenabled photothermal prototypes equipped with unprecedented water evaporation rates have been reported recently for clean water production. Many barriers and difficulties remain, despite the latest scientific and practical implementation developments. This Review seeks to inspire nanoenvironmental research communities to drive onward toward real‐time solar‐driven clean water production.
Nanoenabled photothermal materials and their respective photothermal mechanisms, surface plasmon resonance, non‐radiative relaxation, and lattice vibrations are briefly described. The entire solar‐driven steam generation process, liquid to vapor generation, and vapor condensation along with a theoretical understanding of evaporation rate limitations is discussed. The bifunctional water‐energy nexus is reviewed for simultaneous water and electricity generation. In addition, the decisive challenges of this field are put forward. |
---|---|
AbstractList | Solar-powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers. The cutting-edge nanoenabled photothermal materials can exploit a full spectrum of solar radiation with exceptionally high photothermal conversion efficiency. Additionally, photothermal design through heat management and the hierarchy of smooth water-flow channels have evolved in parallel. Indeed, the integration of all desirable functions into one photothermal layer remains an essential challenge for an effective yield of clean water in remote-sensing areas. Some nanoenabled photothermal prototypes equipped with unprecedented water evaporation rates have been reported recently for clean water production. Many barriers and difficulties remain, despite the latest scientific and practical implementation developments. This Review seeks to inspire nanoenvironmental research communities to drive onward toward real-time solar-driven clean water production. Solar‐powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers. The cutting‐edge nanoenabled photothermal materials can exploit a full spectrum of solar radiation with exceptionally high photothermal conversion efficiency. Additionally, photothermal design through heat management and the hierarchy of smooth water‐flow channels have evolved in parallel. Indeed, the integration of all desirable functions into one photothermal layer remains an essential challenge for an effective yield of clean water in remote‐sensing areas. Some nanoenabled photothermal prototypes equipped with unprecedented water evaporation rates have been reported recently for clean water production. Many barriers and difficulties remain, despite the latest scientific and practical implementation developments. This Review seeks to inspire nanoenvironmental research communities to drive onward toward real‐time solar‐driven clean water production. Nanoenabled photothermal materials and their respective photothermal mechanisms, surface plasmon resonance, non‐radiative relaxation, and lattice vibrations are briefly described. The entire solar‐driven steam generation process, liquid to vapor generation, and vapor condensation along with a theoretical understanding of evaporation rate limitations is discussed. The bifunctional water‐energy nexus is reviewed for simultaneous water and electricity generation. In addition, the decisive challenges of this field are put forward. Solar-powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers. The cutting-edge nanoenabled photothermal materials can exploit a full spectrum of solar radiation with exceptionally high photothermal conversion efficiency. Additionally, photothermal design through heat management and the hierarchy of smooth water-flow channels have evolved in parallel. Indeed, the integration of all desirable functions into one photothermal layer remains an essential challenge for an effective yield of clean water in remote-sensing areas. Some nanoenabled photothermal prototypes equipped with unprecedented water evaporation rates have been reported recently for clean water production. Many barriers and difficulties remain, despite the latest scientific and practical implementation developments. This Review seeks to inspire nanoenvironmental research communities to drive onward toward real-time solar-driven clean water production.Solar-powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers. The cutting-edge nanoenabled photothermal materials can exploit a full spectrum of solar radiation with exceptionally high photothermal conversion efficiency. Additionally, photothermal design through heat management and the hierarchy of smooth water-flow channels have evolved in parallel. Indeed, the integration of all desirable functions into one photothermal layer remains an essential challenge for an effective yield of clean water in remote-sensing areas. Some nanoenabled photothermal prototypes equipped with unprecedented water evaporation rates have been reported recently for clean water production. Many barriers and difficulties remain, despite the latest scientific and practical implementation developments. This Review seeks to inspire nanoenvironmental research communities to drive onward toward real-time solar-driven clean water production. |
Author | Irshad, Muhammad Sultan Arshad, Naila Wang, Xianbao |
AuthorAffiliation | 2 Institute of Quantum Optics and Quantum Information School of Science Xi'an Jiaotong University (XJTU) Xi'an 710049 P. R. China 1 Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials Hubei Key Laboratory of Polymer Materials School of Materials Science and Engineering Hubei University Wuhan 430062 P. R. China |
AuthorAffiliation_xml | – name: 2 Institute of Quantum Optics and Quantum Information School of Science Xi'an Jiaotong University (XJTU) Xi'an 710049 P. R. China – name: 1 Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials Hubei Key Laboratory of Polymer Materials School of Materials Science and Engineering Hubei University Wuhan 430062 P. R. China |
Author_xml | – sequence: 1 givenname: Muhammad Sultan surname: Irshad fullname: Irshad, Muhammad Sultan organization: Hubei University – sequence: 2 givenname: Naila surname: Arshad fullname: Arshad, Naila organization: Xi'an Jiaotong University (XJTU) – sequence: 3 givenname: Xianbao orcidid: 0000-0001-7765-4027 surname: Wang fullname: Wang, Xianbao email: wangxb68@aliyun.com organization: Hubei University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33437524$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9PFDEUxxuCAQSuHs0kXrjs2nn9NXPQhGwUTFA5QDg23c4rW9JtsTOD4b-3k8UVSYw9tC_t5_v6vu-9JrsxRSTkTU3nNaXw_tauYA4UaFlC7JADoELOpORy91m8T477_q4gADVlTbNH9hnjTAngB-TDNxMTRrMM2FWXqzSkYYV5bUL11QyYvQl95VKuFgFNrG6mu-oyp260g0_xiLxyhcDjp_OQXH_-dLU4n118P_uyOL2YWS4bMZMOHGupcK0x0NRYO-jEUjkGrVhKrmzLVVMzFIa3VknWOlVMqbJ3oFBZdkg-bvLej8s1dhbjkE3Q99mvTX7UyXj990v0K32bHrRSTSMZlAQnTwly-jFiP-i17y2GYCKmsdfAlRK1AJjQdy_QuzTmWOxNlFCy4cAK9fZ5RdtSfne2APMNYHPq-4xui9RUT9PT0_T0dnpFwF8IrB_M1OXiyId_y9qN7KcP-PifT_TZ4hz-aH8BXROsNg |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_143047 crossref_primary_10_1016_j_desal_2023_117094 crossref_primary_10_1002_ange_202201900 crossref_primary_10_1002_solr_202100917 crossref_primary_10_1039_D1EN01018B crossref_primary_10_1039_D2TA08275F crossref_primary_10_1002_advs_202104181 crossref_primary_10_3390_cryst11121509 crossref_primary_10_1002_gch2_202400080 crossref_primary_10_1016_j_cej_2024_157856 crossref_primary_10_1111_jace_18487 crossref_primary_10_1039_D1NR04197E crossref_primary_10_1016_j_desal_2022_115984 crossref_primary_10_1021_acs_jpclett_3c02134 crossref_primary_10_3390_nano13081420 crossref_primary_10_1016_j_cej_2021_132759 crossref_primary_10_3390_nano12193296 crossref_primary_10_1016_j_envres_2023_117114 crossref_primary_10_1088_1361_6528_ad5a7b crossref_primary_10_1002_solr_202100427 crossref_primary_10_1021_acsabm_3c00076 crossref_primary_10_1002_cssc_202201543 crossref_primary_10_1002_smll_202401603 crossref_primary_10_3390_nano12213865 crossref_primary_10_3762_bjnano_14_33 crossref_primary_10_1016_j_cej_2024_148909 crossref_primary_10_1007_s40820_024_01612_0 crossref_primary_10_1039_D2GC00509C crossref_primary_10_3390_ma16083105 crossref_primary_10_3390_nano13202764 crossref_primary_10_1039_D4TA08905G crossref_primary_10_1039_D3MA00408B crossref_primary_10_1002_adfm_202307533 crossref_primary_10_1021_acsenergylett_1c00869 crossref_primary_10_1038_s41598_024_62987_z crossref_primary_10_1016_j_cis_2024_103304 crossref_primary_10_1063_5_0200505 crossref_primary_10_3390_membranes14070160 crossref_primary_10_1016_j_cej_2023_143472 crossref_primary_10_1021_acsabm_1c00621 crossref_primary_10_1051_epjap_2022220179 crossref_primary_10_1021_acsaem_0c02902 crossref_primary_10_1016_j_solener_2023_112097 crossref_primary_10_1002_adfm_202302351 crossref_primary_10_1021_acsanm_1c01597 crossref_primary_10_1038_s41598_023_40060_5 crossref_primary_10_1007_s00339_024_08023_3 crossref_primary_10_1002_aesr_202200158 crossref_primary_10_1021_acssuschemeng_0c08981 crossref_primary_10_3390_nano10122510 crossref_primary_10_1016_j_seppur_2022_122348 crossref_primary_10_1016_j_cej_2023_143330 crossref_primary_10_1088_1361_6501_ad817d crossref_primary_10_1002_anie_202201900 crossref_primary_10_1088_2631_8695_abea29 crossref_primary_10_1002_solr_202100888 crossref_primary_10_3390_cryst11121489 crossref_primary_10_1016_j_cej_2024_156450 crossref_primary_10_3390_nano12183206 crossref_primary_10_1016_j_cej_2022_137275 crossref_primary_10_1021_acsapm_4c01204 crossref_primary_10_1002_INMD_20220012 crossref_primary_10_1021_acssuschemeng_3c03161 crossref_primary_10_1021_acsami_4c12476 crossref_primary_10_1002_advs_202205809 crossref_primary_10_1021_acsami_4c12035 crossref_primary_10_1039_D1TA00444A crossref_primary_10_1021_acs_iecr_2c03170 crossref_primary_10_1039_D4RA05629A crossref_primary_10_1002_ente_202301190 crossref_primary_10_1016_j_chemosphere_2021_133210 |
Cites_doi | 10.1039/C7TA06384A 10.1016/j.desal.2013.07.006 10.1039/C3PY01196H 10.1038/s41560-018-0260-7 10.1002/aenm.201702149 10.1107/S0108768186097641 10.1088/2053-1591/ab17b5 10.1039/C6EN00573J 10.1021/acssuschemeng.6b03207 10.1016/j.nanoen.2019.03.089 10.1039/C6RA26979F 10.1021/acsami.0c01707 10.1021/nl4003238 10.1016/j.jqsrt.2017.03.012 10.1039/C8EN00156A 10.1038/s41565-018-0097-z 10.1039/D0TA01439G 10.1039/C6TA04199J 10.1016/j.cej.2016.04.098 10.1002/adma.201606762 10.1021/nn901144d 10.1016/j.applthermaleng.2016.12.054 10.1073/pnas.1310131110 10.1002/gch2.201700094 10.1039/C8TA12290C 10.1016/j.enconman.2016.11.053 10.1039/C8EE00220G 10.1039/C6EN00389C 10.1002/aenm.201702884 10.1039/b924553g 10.1021/acsami.6b02071 10.1039/c3ee43825b 10.1039/C9TA00798A 10.1039/c3cs60364d 10.1107/S0365110X67001264 10.1016/j.apenergy.2015.05.060 10.1021/acsami.7b08619 10.1039/C8NR05916K 10.1016/j.ces.2014.05.057 10.1016/j.rser.2014.09.002 10.1088/1361-6528/aae678 10.1002/adma.201603730 10.1016/j.nanoen.2018.12.046 10.1016/j.solener.2009.08.010 10.1021/acsaem.9b00562 10.1039/c2ee21121a 10.1038/nenergy.2016.126 10.1039/C8TA05193C 10.1021/acsnano.7b06025 10.1021/acsnano.9b02301 10.1039/C9TA02913C 10.1039/C5TA05042A 10.1002/gch2.201900003 10.1016/j.rser.2013.04.012 10.1039/C9EE00945K 10.1016/j.nano.2008.10.002 10.1016/j.mtener.2018.04.004 10.1002/gch2.201800001 10.1038/nphoton.2016.75 10.1021/acsami.6b08077 10.1039/C9TA04914B 10.1073/pnas.1613031113 10.1016/j.joule.2018.03.013 10.1021/acsami.0c00606 10.1021/nl201400z 10.1016/j.solener.2017.11.055 10.1039/C9TA01576K 10.1021/acsnano.9b02331 10.1039/C7NR02180A 10.1039/C9TA00041K 10.1016/j.carbon.2017.12.124 10.1039/C9TA04509K 10.1016/j.joule.2018.12.023 10.1126/sciadv.aax0763 10.1016/j.apcatb.2016.01.074 10.1039/C9TA07663H 10.1016/j.solener.2017.08.015 10.1021/jp993438y 10.1002/adfm.201600564 10.1557/mrs.2018.325 10.1038/nmat4281 10.1063/1.1742089 10.1021/acssuschemeng.0c01499 10.1016/j.cej.2018.12.157 10.1038/nnano.2014.311 10.1103/PhysRevB.68.235321 10.1016/j.nanoen.2019.03.087 10.1093/nsr/nwx051 10.1063/1.1698719 10.1039/C7EN00063D 10.1021/ja3079972 10.1016/j.nanoen.2017.09.005 10.1039/C7EN00548B 10.1021/nl503131s 10.1016/j.nanoen.2020.104857 10.1002/solr.201800277 10.1002/adma.201405372 10.1016/j.joule.2018.04.004 10.1016/j.desal.2011.03.042 10.1002/aenm.201701028 10.1039/C7RA03007J 10.1016/j.enconman.2016.09.015 10.1002/adma.201702590 10.1039/C9RA09667A 10.1021/acs.chemmater.8b01739 10.1016/j.applthermaleng.2019.114322 10.1039/C9TA03045J 10.1016/j.nanoen.2018.02.018 10.1007/s10973-019-08634-6 10.1021/acsami.7b01307 10.1002/adma.201500135 10.1021/nn304948h 10.1039/C8TA10227A 10.1021/acsami.8b07434 10.1002/smll.201403777 10.1039/C7TA01361B 10.1021/acs.nanolett.5b03901 10.1002/anie.201701321 10.1002/adsu.201600013 10.1038/s41467-017-02088-w 10.1002/aenm.201601811 10.1139/er-2018-0106 10.1039/C8TA05412F 10.1021/acsami.6b04606 10.1002/adma.201604031 10.1016/j.nanoen.2019.104006 10.1039/C7EE01804E 10.1002/cctc.201901597 10.1002/advs.201600337 10.1002/adma.200800606 10.1039/C6EN00183A 10.1021/acs.est.7b03040 10.1039/C7TA08256H 10.1021/acsnano.7b08196 10.1039/c3nr05112a 10.1016/j.solmat.2017.04.015 10.1038/ncomms5449 10.1002/gch2.202000009 10.1002/adsu.201800108 10.1021/acs.jpcc.5b09604 10.1016/j.nanoen.2016.12.031 10.1039/C6TA03733J 10.1016/j.pnsc.2017.08.010 10.1038/nchem.1006 10.1088/1361-665X/aa80cb 10.1002/gch2.201900098 10.1039/C8MH00386F 10.1039/C7MH01064H 10.1016/j.solmat.2018.05.049 10.1016/S0304-3835(06)80028-5 10.1039/C9EE00692C 10.1103/PhysRevB.57.1390 10.1039/C8EE01146J 10.1016/j.apenergy.2012.10.029 10.1002/smll.201702268 10.1016/j.rser.2017.10.087 10.1002/aenm.201800711 10.1111/j.1551-2916.2008.02870.x 10.1103/PhysRevB.63.205321 10.1063/1.1700524 10.1039/C9TA12211G 10.1016/S0038-092X(02)00118-4 10.1021/jz300426p 10.1039/C9TA05859A 10.1016/j.rser.2015.03.065 10.1016/j.apenergy.2017.08.169 10.1021/acsami.6b11466 10.1002/aenm.201702481 10.1021/j100102a038 10.1021/jp983141k 10.1039/C8GC01347K 10.1039/C9NR10357K 10.1038/s41893-018-0186-x 10.1002/smll.201401071 10.1038/ncomms10103 10.1126/sciadv.1501227 10.1002/aenm.201970119 10.1021/nn304775h 10.1016/j.joule.2018.08.008 10.1039/C6NR03921A 10.1016/j.energy.2019.07.005 10.1016/j.egypro.2017.03.138 10.1002/adsu.201700145 10.1007/s10668-013-9441-5 10.1039/C8TA08829B 10.1073/pnas.1011972107 10.1039/C7TA08972D 10.1002/adma.200800619 10.1002/adma.201807716 10.1007/s11705-019-1824-1 10.1039/C9TA09281A 10.1002/adma.201900498 10.1111/j.1751-1097.2008.00507.x 10.1021/nn2050032 10.1002/adma.201501832 10.3390/w11040696 10.1021/acs.nanolett.8b04157 10.1021/ac00298a002 10.1016/j.apcatb.2017.08.069 10.1016/j.solener.2003.12.012 10.3390/ma9060497 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by Wiley‐VCH GmbH 2020 The Authors. Published by Wiley‐VCH GmbH. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Published by Wiley‐VCH GmbH – notice: 2020 The Authors. Published by Wiley‐VCH GmbH. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY 7X8 5PM |
DOI | 10.1002/gch2.202000055 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science & Pollution Managment ProQuest Central Essentials Proquest Central Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central Environmental Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 2056-6646 |
EndPage | n/a |
ExternalDocumentID | PMC7788632 33437524 10_1002_gch2_202000055 GCH2202000055 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Wuhan Science and Technology Bureau of China funderid: 2018010401011280 – fundername: National Key Research and Development Program of China funderid: 2016YFA0200200 – fundername: ; grantid: 2016YFA0200200 – fundername: Wuhan Science and Technology Bureau of China grantid: 2018010401011280 |
GroupedDBID | 0R~ 1OC 24P 7XC 8CJ 8FE 8FH AAHHS ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BCNDV BENPR BHPHI BKSAR CCPQU D1J EBS EDH EJD GROUPED_DOAJ HCIFZ HYE IAO IEP ITC KQ8 M~E OK1 PATMY PCBAR PIMPY PROAC PYCSY RPM WIN AAYXX CITATION PHGZM PHGZT NPM AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c4685-6f2f3905f9aa281e1f2d5b7f3295b647c947813e5a49c7639f70207f70d27e7c3 |
IEDL.DBID | 24P |
ISSN | 2056-6646 |
IngestDate | Thu Aug 21 13:53:51 EDT 2025 Fri Jul 11 00:04:41 EDT 2025 Fri Jul 25 08:31:19 EDT 2025 Wed Feb 19 02:00:47 EST 2025 Thu Apr 24 23:08:15 EDT 2025 Tue Jul 01 04:22:58 EDT 2025 Wed Jan 22 16:30:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | photothermal clean water steam generation nanoenabled |
Language | English |
License | Attribution 2020 The Authors. Published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4685-6f2f3905f9aa281e1f2d5b7f3295b647c947813e5a49c7639f70207f70d27e7c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7765-4027 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgch2.202000055 |
PMID | 33437524 |
PQID | 2475768423 |
PQPubID | 4371421 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7788632 proquest_miscellaneous_2477515222 proquest_journals_2475768423 pubmed_primary_33437524 crossref_primary_10_1002_gch2_202000055 crossref_citationtrail_10_1002_gch2_202000055 wiley_primary_10_1002_gch2_202000055_GCH2202000055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Hoboken |
PublicationTitle | Global challenges |
PublicationTitleAlternate | Glob Chall |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2009; 85 2019; 11 1967; 22 2009; 83 2019; 13 2019; 12 2016; 300 2019; 19 2020; 12 2020; 10 2013; 7 2019; 163 2017; 157 2018; 46 2018; 6 1952; 20 2018; 9 2010; 20 2018; 8 2018; 3 2018; 2 2018; 5 2012; 134 2009; 92 2018; 1 2019; 27 2014; 14 2018; 30 2013; 110 2008; 20 2017; 167 2010; 4 2005; 78 2014; 10 2017; 206 2019; 7 2018; 185 2019; 9 2018; 220 2019; 3 2019; 6 2019; 5 2019; 31 2019; 30 2019; 2 2002; 73 2016; 10 1996 2013; 103 1999; 103 2017; 132 2011; 3 2016; 16 2018; 20 2019; 183 1996; 98 2014; 43 2017; 51 2016; 4 2016; 1 2016; 2 2016; 3 2000; 104 2019; 44 2017; 56 2018; 12 2018; 11 2018; 10 2016; 26 2016; 8 2016; 9 1994; 98 2018; 14 2018; 13 2017; 5 2017; 7 2017; 41 2017; 1 2013; 25 2017; 4 2019; 57 2013; 326 2011; 11 2016; 188 2017; 194 2018; 82 2017; 110 2019; 361 2017; 114 2017; 9 2011; 276 2020; 8 2018; 130 2015; 48 2013; 15 2020; 4 2019; 60 2014; 5 1986; 42 2013; 13 2019; 65 2015; 41 2017; 32 2016; 113 2020; 139 2014; 7 2014; 6 1953; 21 1998; 57 2014; 116 2015; 14 2015; 6 2021; 5 2015; 3 2017; 26 2010 2017; 27 2015; 11 1986; 58 2015; 10 2017; 29 2016; 127 2011; 38 2016; 120 2001; 63 1955; 23 2012; 3 2011; 108 2015; 27 2004; 18 2020; 74 2017; 11 2017; 10 2018; 159 2015; 154 2003; 68 2009; 5 2012; 6 2012; 5 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_204_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_157_1 e_1_2_9_195_1 e_1_2_9_172_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_129_1 Seyednezhad M. (e_1_2_9_147_1) 2020; 139 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 Perez‐Zúñiga M. G. (e_1_2_9_137_1) 2017; 26 e_1_2_9_205_1 Almond D. P. (e_1_2_9_118_1) 1996 e_1_2_9_5_1 Sharif M. N. (e_1_2_9_12_1) 2019; 27 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_31_1 Li H. (e_1_2_9_187_1) 2021; 5 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_16_1 Müller‐Steinhagen H. (e_1_2_9_170_1) 2004; 18 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 Shannon M. A. (e_1_2_9_138_1) 2010 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_206_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_197_1 e_1_2_9_28_1 e_1_2_9_174_1 Edition F. (e_1_2_9_192_1) 2011; 38 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_207_1 e_1_2_9_173_1 e_1_2_9_196_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_190_1 e_1_2_9_52_1 e_1_2_9_90_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_200_1 e_1_2_9_2_1 e_1_2_9_115_1 e_1_2_9_199_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_208_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_191_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_76_1 e_1_2_9_91_1 Zhu K. (e_1_2_9_194_1) 2017; 194 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_201_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_198_1 e_1_2_9_27_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_96_1 Cooper T. A. (e_1_2_9_175_1) 2018; 9 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_189_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_181_1 e_1_2_9_62_1 e_1_2_9_202_1 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_4_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_193_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_13_1 e_1_2_9_97_1 e_1_2_9_127_1 e_1_2_9_188_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_203_1 e_1_2_9_86_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 |
References_xml | – volume: 139 start-page: 1619 year: 2020 publication-title: J. Therm. Anal. Calorim. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 3898 year: 2014 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 696 year: 2019 publication-title: Water – volume: 10 start-page: 2507 year: 2020 publication-title: RSC Adv. – volume: 14 year: 2018 publication-title: Small – volume: 326 start-page: 37 year: 2013 publication-title: Desalination – volume: 23 start-page: 737 year: 1955 publication-title: J. Chem. Phys. – volume: 92 start-page: 289 year: 2009 publication-title: J. Am. Ceram. Soc. – volume: 63 year: 2001 publication-title: Phys. Rev. B – volume: 7 start-page: 627 year: 2013 publication-title: ACS Nano – volume: 13 start-page: 636 year: 2019 publication-title: Front. Chem. Sci. Eng. – volume: 27 start-page: 1837 year: 2015 publication-title: Adv. Mater. – volume: 8 start-page: 513 year: 2020 publication-title: J. Mater. Chem. A – volume: 103 start-page: 1165 year: 1999 publication-title: J. Phys. Chem. A – volume: 10 start-page: 1923 year: 2017 publication-title: Energy Environ. Sci. – volume: 10 start-page: 393 year: 2016 publication-title: Nat. Photonics – volume: 2 start-page: 1331 year: 2018 publication-title: Joule – volume: 13 start-page: 489 year: 2018 publication-title: Nat. Nanotechnol. – volume: 68 year: 2003 publication-title: Phys. Rev. B – volume: 30 year: 2019 publication-title: Nanotechnology – volume: 6 start-page: 2550 year: 2012 publication-title: ACS Nano – volume: 13 start-page: 1736 year: 2013 publication-title: Nano Lett. – volume: 110 start-page: 268 year: 2017 publication-title: Energy Procedia – volume: 2 start-page: 1171 year: 2018 publication-title: Joule – volume: 60 start-page: 567 year: 2019 publication-title: Nano Energy – volume: 10 start-page: 3234 year: 2014 publication-title: Small – volume: 85 start-page: 21 year: 2009 publication-title: Photochem. Photobiol. – volume: 26 year: 2017 publication-title: Smart Mater. Struct. – volume: 2 start-page: 2477 year: 2018 publication-title: Joule – volume: 104 start-page: 4256 year: 2000 publication-title: J. Phys. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 78 start-page: 603 year: 2005 publication-title: Sol. Energy – volume: 15 start-page: 1303 year: 2013 publication-title: Environ. Dev. Sustainability – volume: 4 start-page: 747 year: 2017 publication-title: Environ. Sci.: Nano – volume: 7 year: 2019 publication-title: J. Mater, Chem. A – volume: 83 start-page: 2165 year: 2009 publication-title: Sol. Energy – volume: 7 start-page: 586 year: 2019 publication-title: J. Mater. Chem. A – volume: 206 start-page: 63 year: 2017 publication-title: Appl. Energy – volume: 194 start-page: 98 year: 2017 publication-title: Spectrosc. Radiat. Transf. – volume: 7 start-page: 8960 year: 2019 publication-title: J. Mater. Chem. A – volume: 185 start-page: 333 year: 2018 publication-title: Sol. Energy Mater. Sol. Cells – volume: 27 start-page: 2768 year: 2015 publication-title: Adv. Mater. – volume: 120 start-page: 2343 year: 2016 publication-title: J. Phys. Chem. C – volume: 6 year: 2015 publication-title: Nat. Commun. – volume: 361 start-page: 999 year: 2019 publication-title: Chem. Eng. J. – volume: 12 start-page: 829 year: 2018 publication-title: ACS Nano – volume: 3 start-page: 1479 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 18 start-page: 43 year: 2004 publication-title: Rev. Technol. Ingenia Inf. QR Acad. Eng. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 27 start-page: 4302 year: 2015 publication-title: Adv. Mater. – volume: 82 start-page: 3833 year: 2018 publication-title: Renewable Sustainable Energy Rev. – volume: 2 start-page: 4354 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 157 start-page: 35 year: 2017 publication-title: Sol. Energy – volume: 42 start-page: 613 year: 1986 publication-title: Acta Crystallogr., Sect. B: Struct. Sci. – volume: 20 start-page: 3689 year: 2018 publication-title: Green Chem. – volume: 3 year: 2019 publication-title: Global Challenges – volume: 20 start-page: 4551 year: 2010 publication-title: J. Mater. Chem. – volume: 9 start-page: 1 year: 2018 publication-title: Nat. Commun. – volume: 8 start-page: 166 year: 2018 publication-title: Mater. Today Energy – volume: 11 start-page: 6147 year: 2019 publication-title: ChemCatChem – volume: 8 year: 2016 publication-title: Nanoscale – volume: 12 start-page: 841 year: 2019 publication-title: Energy Environ. Sci. – volume: 114 start-page: 961 year: 2017 publication-title: Appl. Therm. Eng. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 110 year: 2013 publication-title: Proc. Natl. Acad. Sci. USA – volume: 11 start-page: 1510 year: 2018 publication-title: Energy Environ. Sci. – volume: 57 start-page: 507 year: 2019 publication-title: Nano Energy – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 59 year: 2019 publication-title: MRS Bull. – volume: 163 year: 2019 publication-title: Appl. Therm. Eng. – volume: 159 start-page: 800 year: 2018 publication-title: Sol. Energy – volume: 3 year: 2019 publication-title: Adv. Sustainable Syst. – volume: 6 start-page: 2502 year: 2014 publication-title: Nanoscale – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 20 start-page: 2918 year: 2008 publication-title: Adv. Mater. – volume: 27 start-page: 531 year: 2017 publication-title: Prog. Nat. Sci.: Mater. Int. – volume: 7 start-page: 6963 year: 2019 publication-title: J. Mater. Chem. A – volume: 12 start-page: 6717 year: 2020 publication-title: Nanoscale – volume: 188 start-page: 245 year: 2016 publication-title: Appl. Catal. B: Environ. – volume: 8 start-page: 7139 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 2 year: 2018 publication-title: Glob. Challenges – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 5 start-page: 1078 year: 2018 publication-title: Environ. Sci.: Nano – volume: 65 year: 2019 publication-title: Nano Energy – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 3 year: 2019 publication-title: Sol. RRL – volume: 103 start-page: 642 year: 2013 publication-title: Appl. Energy – volume: 7 start-page: 4815 year: 2017 publication-title: RSC Adv. – volume: 4 start-page: 2267 year: 2017 publication-title: Environ. Sci.: Nano – volume: 98 year: 1994 publication-title: J. Phys. Chem. – volume: 5 start-page: 143 year: 2009 publication-title: Nanomedicine – volume: 1 start-page: 763 year: 2018 publication-title: Nat. Sustain. – volume: 4 year: 2020 publication-title: Global Challenges – volume: 5 start-page: 4449 year: 2014 publication-title: Nat. Commun. – volume: 11 start-page: 3873 year: 2015 publication-title: Small – volume: 20 start-page: 2952 year: 2008 publication-title: Adv. Mater. – volume: 74 year: 2020 publication-title: Nano Energy – volume: 12 start-page: 1840 year: 2019 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1031 year: 2018 publication-title: Nat. Energy – volume: 5 start-page: 1143 year: 2018 publication-title: Mater. Horiz. – volume: 60 start-page: 841 year: 2019 publication-title: Nano Energy – volume: 3 start-page: 296 year: 2011 publication-title: Nat. Chem. – volume: 14 start-page: 6533 year: 2014 publication-title: Nano Lett. – volume: 13 start-page: 7930 year: 2019 publication-title: ACS Nano – volume: 73 start-page: 327 year: 2002 publication-title: Sol. Energy – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 48 start-page: 152 year: 2015 publication-title: Renewable Sustainable Energy Rev. – volume: 276 start-page: 1 year: 2011 publication-title: Desalination – volume: 10 start-page: 25 year: 2015 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 4665 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 5 start-page: 323 year: 2018 publication-title: Mater. Horiz. – volume: 9 start-page: 7675 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 567 year: 2015 publication-title: Nat. Mater. – volume: 4 start-page: 9625 year: 2016 publication-title: J. Mater. Chem. A – volume: 22 start-page: 623 year: 1967 publication-title: Acta Crystallogr. – volume: 58 start-page: 811A year: 1986 publication-title: Anal. Chem. – volume: 46 start-page: 415 year: 2018 publication-title: Nano Energy – volume: 130 start-page: 250 year: 2018 publication-title: Carbon – volume: 7 start-page: 1615 year: 2014 publication-title: Energy Environ. Sci. – volume: 220 start-page: 533 year: 2018 publication-title: Appl. Catal. B Environ. – volume: 13 start-page: 7913 year: 2019 publication-title: ACS Nano – volume: 11 year: 2017 publication-title: ACS Nano – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 32 start-page: 195 year: 2017 publication-title: Nano Energy – volume: 30 start-page: 4383 year: 2018 publication-title: Chem. Mater. – volume: 300 start-page: 98 year: 2016 publication-title: Chem. Eng. J. – volume: 98 start-page: 169 year: 1996 publication-title: Cancer Lett. – volume: 20 start-page: 726 year: 1952 publication-title: J. Chem. Phys. – volume: 27 start-page: 519 year: 2019 publication-title: Environ. Rev. – volume: 11 start-page: 2560 year: 2011 publication-title: Nano Lett. – volume: 5 start-page: 70 year: 2018 publication-title: Natl. Sci. Rev. – volume: 16 start-page: 2159 year: 2016 publication-title: Nano Lett. – volume: 116 start-page: 704 year: 2014 publication-title: Chem. Eng. Sci. – volume: 21 start-page: 1927 year: 1953 publication-title: J. Chem. Phys. – volume: 2 year: 2018 publication-title: Adv. Sustainable Syst. – volume: 108 start-page: 29 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 167 start-page: 150 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 38 start-page: 104 year: 2011 publication-title: WHO Chron. – volume: 4 start-page: 782 year: 2017 publication-title: Environ. Sci.: Nano – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 56 start-page: 6329 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 709 year: 2010 publication-title: ACS Nano – volume: 6 year: 2019 publication-title: Mater. Res. Express – volume: 41 start-page: 1080 year: 2015 publication-title: Renewable Sustainable Energy Rev. – volume: 8 start-page: 9528 year: 2020 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 1573 year: 2014 publication-title: Polym. Chem. – volume: 19 start-page: 400 year: 2019 publication-title: Nano Lett. – volume: 5 start-page: 7161 year: 2012 publication-title: Energy Environ. Sci. – volume: 8 start-page: 9194 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 2 year: 2018 publication-title: Global Challenges – volume: 25 start-page: 351 year: 2013 publication-title: Renewable Sustainable Energy Rev. – year: 1996 – volume: 12 start-page: 1558 year: 2019 publication-title: Energy Environ. Sci. – volume: 6 start-page: 963 year: 2018 publication-title: J. Mater. Chem. A – volume: 57 start-page: 1390 year: 1998 publication-title: Phys. Rev. B – volume: 5 start-page: 7691 year: 2017 publication-title: J. Mater. Chem. A – volume: 127 start-page: 293 year: 2016 publication-title: Energy Convers. Manage. – volume: 4 start-page: 767 year: 2017 publication-title: Environ. Sci.: Nano – volume: 10 year: 2018 publication-title: Nanoscale – volume: 9 start-page: 9148 year: 2017 publication-title: Nanoscale – volume: 41 start-page: 269 year: 2017 publication-title: Nano Energy – volume: 51 year: 2017 publication-title: Environ. Sci. Technol. – volume: 9 start-page: 497 year: 2016 publication-title: Materials – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 1241 year: 2016 publication-title: Environ. Sci.: Nano – volume: 183 start-page: 1032 year: 2019 publication-title: Energy – volume: 5 year: 2021 publication-title: Water Res. – volume: 132 start-page: 452 year: 2017 publication-title: Energy Convers. Manage. – volume: 1 year: 2017 publication-title: Adv. Sustainable Syst. – volume: 154 start-page: 480 year: 2015 publication-title: Appl. Energy – start-page: 337 year: 2010 end-page: 346 – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 26 start-page: 5368 year: 2016 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 42 year: 2013 publication-title: ACS Nano – volume: 7 start-page: 2581 year: 2019 publication-title: J. Mater. Chem. A – volume: 113 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 4642 year: 2018 publication-title: J. Mater. Chem. A – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_9_107_1 doi: 10.1039/C7TA06384A – ident: e_1_2_9_177_1 doi: 10.1016/j.desal.2013.07.006 – ident: e_1_2_9_83_1 doi: 10.1039/C3PY01196H – volume: 38 start-page: 104 year: 2011 ident: e_1_2_9_192_1 publication-title: WHO Chron. – ident: e_1_2_9_17_1 doi: 10.1038/s41560-018-0260-7 – ident: e_1_2_9_42_1 doi: 10.1002/aenm.201702149 – ident: e_1_2_9_131_1 doi: 10.1107/S0108768186097641 – ident: e_1_2_9_125_1 doi: 10.1088/2053-1591/ab17b5 – ident: e_1_2_9_30_1 doi: 10.1039/C6EN00573J – ident: e_1_2_9_80_1 doi: 10.1021/acssuschemeng.6b03207 – ident: e_1_2_9_21_1 doi: 10.1016/j.nanoen.2019.03.089 – ident: e_1_2_9_35_1 doi: 10.1039/C6RA26979F – ident: e_1_2_9_86_1 doi: 10.1021/acsami.0c01707 – ident: e_1_2_9_145_1 doi: 10.1021/nl4003238 – volume: 194 start-page: 98 year: 2017 ident: e_1_2_9_194_1 publication-title: Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2017.03.012 – ident: e_1_2_9_28_1 doi: 10.1039/C8EN00156A – ident: e_1_2_9_25_1 doi: 10.1038/s41565-018-0097-z – ident: e_1_2_9_48_1 doi: 10.1039/D0TA01439G – ident: e_1_2_9_203_1 doi: 10.1039/C6TA04199J – ident: e_1_2_9_14_1 doi: 10.1016/j.cej.2016.04.098 – ident: e_1_2_9_165_1 doi: 10.1002/adma.201606762 – ident: e_1_2_9_109_1 doi: 10.1021/nn901144d – ident: e_1_2_9_53_1 doi: 10.1016/j.applthermaleng.2016.12.054 – ident: e_1_2_9_146_1 doi: 10.1073/pnas.1310131110 – ident: e_1_2_9_4_1 doi: 10.1002/gch2.201700094 – ident: e_1_2_9_69_1 doi: 10.1039/C8TA12290C – ident: e_1_2_9_200_1 doi: 10.1016/j.enconman.2016.11.053 – ident: e_1_2_9_183_1 doi: 10.1039/C8EE00220G – ident: e_1_2_9_40_1 doi: 10.1039/C6EN00389C – ident: e_1_2_9_104_1 doi: 10.1002/aenm.201702884 – ident: e_1_2_9_20_1 doi: 10.1039/b924553g – ident: e_1_2_9_148_1 doi: 10.1021/acsami.6b02071 – ident: e_1_2_9_171_1 doi: 10.1039/c3ee43825b – ident: e_1_2_9_68_1 doi: 10.1039/C9TA00798A – ident: e_1_2_9_120_1 doi: 10.1039/c3cs60364d – ident: e_1_2_9_132_1 doi: 10.1107/S0365110X67001264 – ident: e_1_2_9_196_1 doi: 10.1016/j.apenergy.2015.05.060 – ident: e_1_2_9_169_1 doi: 10.1021/acsami.7b08619 – ident: e_1_2_9_91_1 doi: 10.1039/C8NR05916K – ident: e_1_2_9_38_1 doi: 10.1016/j.ces.2014.05.057 – ident: e_1_2_9_29_1 doi: 10.1016/j.rser.2014.09.002 – ident: e_1_2_9_92_1 doi: 10.1088/1361-6528/aae678 – ident: e_1_2_9_78_1 doi: 10.1002/adma.201603730 – ident: e_1_2_9_33_1 doi: 10.1016/j.nanoen.2018.12.046 – ident: e_1_2_9_139_1 doi: 10.1016/j.solener.2009.08.010 – ident: e_1_2_9_181_1 doi: 10.1021/acsaem.9b00562 – ident: e_1_2_9_2_1 doi: 10.1039/c2ee21121a – ident: e_1_2_9_22_1 doi: 10.1038/nenergy.2016.126 – ident: e_1_2_9_45_1 doi: 10.1039/C8TA05193C – ident: e_1_2_9_204_1 doi: 10.1021/acsnano.7b06025 – ident: e_1_2_9_195_1 doi: 10.1021/acsnano.9b02301 – ident: e_1_2_9_167_1 doi: 10.1039/C9TA02913C – ident: e_1_2_9_205_1 doi: 10.1039/C5TA05042A – ident: e_1_2_9_52_1 doi: 10.1002/gch2.201900003 – ident: e_1_2_9_7_1 doi: 10.1016/j.rser.2013.04.012 – ident: e_1_2_9_180_1 doi: 10.1039/C9EE00945K – ident: e_1_2_9_111_1 doi: 10.1016/j.nano.2008.10.002 – ident: e_1_2_9_166_1 doi: 10.1016/j.mtener.2018.04.004 – ident: e_1_2_9_173_1 doi: 10.1002/gch2.201800001 – ident: e_1_2_9_56_1 doi: 10.1038/nphoton.2016.75 – ident: e_1_2_9_108_1 doi: 10.1021/acsami.6b08077 – ident: e_1_2_9_85_1 doi: 10.1039/C9TA04914B – ident: e_1_2_9_149_1 doi: 10.1073/pnas.1613031113 – ident: e_1_2_9_174_1 doi: 10.1016/j.joule.2018.03.013 – ident: e_1_2_9_143_1 doi: 10.1021/acsami.0c00606 – ident: e_1_2_9_106_1 doi: 10.1021/nl201400z – ident: e_1_2_9_198_1 doi: 10.1016/j.solener.2017.11.055 – ident: e_1_2_9_190_1 doi: 10.1039/C9TA01576K – ident: e_1_2_9_182_1 doi: 10.1021/acsnano.9b02331 – ident: e_1_2_9_66_1 doi: 10.1039/C7NR02180A – ident: e_1_2_9_51_1 doi: 10.1039/C9TA00041K – ident: e_1_2_9_54_1 doi: 10.1016/j.carbon.2017.12.124 – ident: e_1_2_9_70_1 doi: 10.1039/C9TA04509K – volume: 18 start-page: 43 year: 2004 ident: e_1_2_9_170_1 publication-title: Rev. Technol. Ingenia Inf. QR Acad. Eng. – ident: e_1_2_9_6_1 doi: 10.1016/j.joule.2018.12.023 – ident: e_1_2_9_13_1 doi: 10.1126/sciadv.aax0763 – start-page: 337 volume-title: Nanoscience and Technology: A Collection of Reviws from Nature Journals year: 2010 ident: e_1_2_9_138_1 – ident: e_1_2_9_119_1 doi: 10.1016/j.apcatb.2016.01.074 – ident: e_1_2_9_153_1 doi: 10.1039/C9TA07663H – ident: e_1_2_9_27_1 doi: 10.1016/j.solener.2017.08.015 – ident: e_1_2_9_129_1 doi: 10.1021/jp993438y – ident: e_1_2_9_197_1 doi: 10.1002/adfm.201600564 – ident: e_1_2_9_160_1 doi: 10.1557/mrs.2018.325 – ident: e_1_2_9_121_1 doi: 10.1038/nmat4281 – ident: e_1_2_9_136_1 doi: 10.1063/1.1742089 – ident: e_1_2_9_37_1 doi: 10.1021/acssuschemeng.0c01499 – ident: e_1_2_9_99_1 doi: 10.1016/j.cej.2018.12.157 – ident: e_1_2_9_117_1 doi: 10.1038/nnano.2014.311 – ident: e_1_2_9_133_1 doi: 10.1103/PhysRevB.68.235321 – ident: e_1_2_9_156_1 doi: 10.1016/j.nanoen.2019.03.087 – ident: e_1_2_9_154_1 doi: 10.1093/nsr/nwx051 – ident: e_1_2_9_134_1 doi: 10.1063/1.1698719 – ident: e_1_2_9_32_1 doi: 10.1039/C7EN00063D – ident: e_1_2_9_113_1 doi: 10.1021/ja3079972 – ident: e_1_2_9_16_1 doi: 10.1016/j.nanoen.2017.09.005 – ident: e_1_2_9_41_1 doi: 10.1039/C7EN00548B – ident: e_1_2_9_75_1 doi: 10.1021/nl503131s – ident: e_1_2_9_162_1 doi: 10.1016/j.nanoen.2020.104857 – ident: e_1_2_9_95_1 doi: 10.1002/solr.201800277 – ident: e_1_2_9_130_1 doi: 10.1002/adma.201405372 – ident: e_1_2_9_103_1 doi: 10.1016/j.joule.2018.04.004 – ident: e_1_2_9_141_1 doi: 10.1016/j.desal.2011.03.042 – ident: e_1_2_9_58_1 doi: 10.1002/aenm.201701028 – ident: e_1_2_9_72_1 doi: 10.1039/C7RA03007J – ident: e_1_2_9_61_1 doi: 10.1016/j.enconman.2016.09.015 – ident: e_1_2_9_189_1 doi: 10.1002/adma.201702590 – ident: e_1_2_9_87_1 doi: 10.1039/C9RA09667A – ident: e_1_2_9_76_1 doi: 10.1021/acs.chemmater.8b01739 – ident: e_1_2_9_81_1 doi: 10.1016/j.applthermaleng.2019.114322 – ident: e_1_2_9_24_1 doi: 10.1039/C9TA03045J – ident: e_1_2_9_43_1 doi: 10.1016/j.nanoen.2018.02.018 – volume: 139 start-page: 1619 year: 2020 ident: e_1_2_9_147_1 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-019-08634-6 – ident: e_1_2_9_161_1 doi: 10.1021/acsami.7b01307 – ident: e_1_2_9_158_1 doi: 10.1002/adma.201500135 – ident: e_1_2_9_144_1 doi: 10.1021/nn304948h – ident: e_1_2_9_186_1 doi: 10.1039/C8TA10227A – volume: 5 start-page: 115770 year: 2021 ident: e_1_2_9_187_1 publication-title: Water Res. – ident: e_1_2_9_94_1 doi: 10.1021/acsami.8b07434 – ident: e_1_2_9_100_1 doi: 10.1002/smll.201403777 – ident: e_1_2_9_19_1 doi: 10.1039/C7TA01361B – ident: e_1_2_9_63_1 doi: 10.1021/acs.nanolett.5b03901 – volume-title: Photothermal Science and Techniques year: 1996 ident: e_1_2_9_118_1 – ident: e_1_2_9_60_1 doi: 10.1002/anie.201701321 – ident: e_1_2_9_59_1 doi: 10.1002/adsu.201600013 – volume: 9 start-page: 1 year: 2018 ident: e_1_2_9_175_1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02088-w – ident: e_1_2_9_79_1 doi: 10.1002/aenm.201601811 – volume: 27 start-page: 519 year: 2019 ident: e_1_2_9_12_1 publication-title: Environ. Rev. doi: 10.1139/er-2018-0106 – ident: e_1_2_9_155_1 doi: 10.1039/C8TA05412F – ident: e_1_2_9_199_1 doi: 10.1021/acsami.6b04606 – ident: e_1_2_9_44_1 doi: 10.1002/adma.201604031 – ident: e_1_2_9_26_1 doi: 10.1016/j.nanoen.2019.104006 – ident: e_1_2_9_176_1 doi: 10.1039/C7EE01804E – ident: e_1_2_9_201_1 doi: 10.1002/cctc.201901597 – ident: e_1_2_9_10_1 doi: 10.1002/advs.201600337 – ident: e_1_2_9_84_1 doi: 10.1002/adma.200800606 – ident: e_1_2_9_31_1 doi: 10.1039/C6EN00183A – ident: e_1_2_9_39_1 doi: 10.1021/acs.est.7b03040 – ident: e_1_2_9_90_1 doi: 10.1039/C7TA08256H – ident: e_1_2_9_163_1 doi: 10.1073/pnas.1613031113 – ident: e_1_2_9_49_1 doi: 10.1021/acsnano.7b08196 – ident: e_1_2_9_123_1 doi: 10.1039/c3nr05112a – ident: e_1_2_9_172_1 doi: 10.1016/j.solmat.2017.04.015 – ident: e_1_2_9_150_1 doi: 10.1038/ncomms5449 – ident: e_1_2_9_11_1 doi: 10.1002/gch2.202000009 – ident: e_1_2_9_88_1 doi: 10.1002/adsu.201800108 – ident: e_1_2_9_142_1 doi: 10.1021/acs.jpcc.5b09604 – ident: e_1_2_9_57_1 doi: 10.1016/j.nanoen.2016.12.031 – ident: e_1_2_9_184_1 doi: 10.1039/C6TA03733J – ident: e_1_2_9_64_1 doi: 10.1016/j.pnsc.2017.08.010 – ident: e_1_2_9_74_1 doi: 10.1038/nchem.1006 – volume: 26 start-page: 105012 year: 2017 ident: e_1_2_9_137_1 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aa80cb – ident: e_1_2_9_50_1 doi: 10.1002/gch2.201900098 – ident: e_1_2_9_23_1 doi: 10.1039/C8MH00386F – ident: e_1_2_9_36_1 doi: 10.1039/C7MH01064H – ident: e_1_2_9_96_1 doi: 10.1016/j.solmat.2018.05.049 – ident: e_1_2_9_114_1 doi: 10.1016/S0304-3835(06)80028-5 – ident: e_1_2_9_188_1 doi: 10.1039/C9EE00692C – ident: e_1_2_9_65_1 doi: 10.1103/PhysRevB.57.1390 – ident: e_1_2_9_208_1 doi: 10.1039/C8EE01146J – ident: e_1_2_9_140_1 doi: 10.1016/j.apenergy.2012.10.029 – ident: e_1_2_9_206_1 doi: 10.1002/smll.201702268 – ident: e_1_2_9_3_1 doi: 10.1016/j.rser.2017.10.087 – ident: e_1_2_9_97_1 doi: 10.1002/aenm.201800711 – ident: e_1_2_9_127_1 doi: 10.1111/j.1551-2916.2008.02870.x – ident: e_1_2_9_128_1 doi: 10.1103/PhysRevB.63.205321 – ident: e_1_2_9_135_1 doi: 10.1063/1.1700524 – ident: e_1_2_9_18_1 doi: 10.1039/C9TA12211G – ident: e_1_2_9_193_1 doi: 10.1016/S0038-092X(02)00118-4 – ident: e_1_2_9_122_1 doi: 10.1021/jz300426p – ident: e_1_2_9_47_1 doi: 10.1039/C9TA05859A – ident: e_1_2_9_102_1 doi: 10.1016/j.rser.2015.03.065 – ident: e_1_2_9_179_1 doi: 10.1016/j.apenergy.2017.08.169 – ident: e_1_2_9_77_1 doi: 10.1021/acsami.6b11466 – ident: e_1_2_9_207_1 doi: 10.1002/aenm.201702481 – ident: e_1_2_9_67_1 doi: 10.1021/j100102a038 – ident: e_1_2_9_124_1 doi: 10.1021/jp983141k – ident: e_1_2_9_46_1 doi: 10.1039/C8GC01347K – ident: e_1_2_9_185_1 doi: 10.1039/C9NR10357K – ident: e_1_2_9_15_1 doi: 10.1038/s41893-018-0186-x – ident: e_1_2_9_152_1 doi: 10.1002/smll.201401071 – ident: e_1_2_9_55_1 doi: 10.1038/ncomms10103 – ident: e_1_2_9_62_1 doi: 10.1126/sciadv.1501227 – ident: e_1_2_9_101_1 doi: 10.1002/aenm.201970119 – ident: e_1_2_9_112_1 doi: 10.1021/nn304775h – ident: e_1_2_9_159_1 doi: 10.1016/j.joule.2018.08.008 – ident: e_1_2_9_178_1 doi: 10.1039/C6NR03921A – ident: e_1_2_9_151_1 doi: 10.1016/j.energy.2019.07.005 – ident: e_1_2_9_9_1 doi: 10.1016/j.egypro.2017.03.138 – ident: e_1_2_9_73_1 doi: 10.1002/adsu.201700145 – ident: e_1_2_9_8_1 doi: 10.1007/s10668-013-9441-5 – ident: e_1_2_9_164_1 doi: 10.1039/C8TA08829B – ident: e_1_2_9_126_1 doi: 10.1073/pnas.1011972107 – ident: e_1_2_9_89_1 doi: 10.1039/C7TA08972D – ident: e_1_2_9_82_1 doi: 10.1002/adma.200800619 – ident: e_1_2_9_98_1 doi: 10.1002/adma.201807716 – ident: e_1_2_9_105_1 doi: 10.1007/s11705-019-1824-1 – ident: e_1_2_9_71_1 doi: 10.1039/C9TA09281A – ident: e_1_2_9_191_1 doi: 10.1002/adma.201900498 – ident: e_1_2_9_168_1 doi: 10.1038/nenergy.2016.126 – ident: e_1_2_9_115_1 doi: 10.1111/j.1751-1097.2008.00507.x – ident: e_1_2_9_116_1 doi: 10.1021/nn2050032 – ident: e_1_2_9_157_1 doi: 10.1002/adma.201501832 – ident: e_1_2_9_5_1 doi: 10.3390/w11040696 – ident: e_1_2_9_93_1 doi: 10.1021/acs.nanolett.8b04157 – ident: e_1_2_9_110_1 doi: 10.1021/ac00298a002 – ident: e_1_2_9_202_1 doi: 10.1016/j.apcatb.2017.08.069 – ident: e_1_2_9_1_1 doi: 10.1016/j.solener.2003.12.012 – ident: e_1_2_9_34_1 doi: 10.3390/ma9060497 |
SSID | ssj0002210388 |
Score | 2.4773192 |
SecondaryResourceType | review_article |
Snippet | Solar‐powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers.... Solar-powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers.... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2000055 |
SubjectTerms | Alternative energy sources Carbon clean water Climate change Desalination Efficiency Evaporation Evaporation rate Graphene Heat conductivity Light Metals nanoenabled Nanomaterials Nanoparticles photothermal Photothermal conversion Polymers Prototypes Remote sensing Review Reviews Solar energy Solar power Solar radiation steam generation |
SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEB50vXgR31ZXqSB6KrZ5tgcRXdRFUBZR9FbaNHEXtPWx-_-dpN2qiHpsM03bmWTyMcl8A7AnDC0iWiRBkTEVMJmHOOeMDIo8x9WYZlwad9riWvTv2OUDf2gCbu_NscqpT3SOuqiUjZEfEia52zSixy-vga0aZXdXmxIaszCHLjiOOzB3enY9uGmjLIRYAnBXlg5X-kAIJqbMjSE5fFRDm4tls1VCm-v3dWX6ATd_npr8imbdcnS-CAsNjvRPasMvwYwul8G7QghcvblIub_v955GiEfd1QocoR-ttMuUKvzBsBq71Ktn7OMqG9fD0EcAiw_prPTv7T1_UNPBoulW4e787LbXD5raCYFiwuYTGGJoEnKTZBmJIx0ZUvBcGkoSngsmVWJzTKnmGUsU-pjESNQDWiksiNRS0TXolFWpN8APtdCoRMSBRrLcksEkOooM07FCNMalB8FUb6lqiMVtfYuntKZEJqnVc9rq2YODVv6lptT4VbI7NUPaTK339HMgeLDbNuOksDsdWamriZORCNQQ-3iwXlutfRWljEpOmAfymz1bAUu4_b2lHA0d8baUcSwo9kmc5f_5-vSi1yft1ebf_7IF88SelnHBnS50xm8TvY1wZ5zvNGP6A3yH-a8 priority: 102 providerName: ProQuest |
Title | Nanoenabled Photothermal Materials for Clean Water Production |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgch2.202000055 https://www.ncbi.nlm.nih.gov/pubmed/33437524 https://www.proquest.com/docview/2475768423 https://www.proquest.com/docview/2477515222 https://pubmed.ncbi.nlm.nih.gov/PMC7788632 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_Uvfgifludo4LoU7HN5_rgg47pEJQhDn0raZu4wWxFt__fS7pVxxDBxzaXtNzlkh-Xu18AToWheUTzOMgVywIm0xB9zsggT1Pcjani0rhsiwfRG7C7F_7yo4q_4oeoA27WM9x6bR1cpZ8X36Shr9nQFlLZUpOQ81Vo2Ppam9RHWL-OshBiCcDdtXS40wdCMDFnbgzJxeIQizvTEtxczpr8iWbddnSzCRszHOlfVYbfghVdbIN3jxC4_HCRcv_M74xHiEfd0w5c4jpaalcplfv9YTlxpVdvOMa9mlTT0EcAi520Kvxn-87vV3SwaLpdGNx0nzq9YHZ3QpAxYesJDDE0DrmJlSLtSEeG5DyVhpKYp4LJLLY1plRzxeIM15jYSNQDWinMidQyo3uwVpSFPgA_1EKjEhEHGslSSwYT6ygyTLczRGNcehDM9ZZkM2Jxe7_FOKkokUli9ZzUevbgvJZ_ryg1fpVszs2QzFzrMyFMcnd6SD04qZvRKexJhyp0OXUyEoEaYh8P9iur1Z-ilFHJCfNALtizFrCE24stxWjoiLelbLcFxTGJs_wff5_cdnqkfjr8T6cjWCc2h8aFfJqwNvmY6mMEQZO05eZ5CxrX3Yf-Y8uFEr4A7QD9iQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH6iw6G9IOiastSVupwiEq-TA0LtsAyFGY0qULmliWMzSDShMKjqn-pv5NlZAKG2J45JHCd5i_3Ffu97AO-kZUXMiiQsMq5DrvIIfc6qsMhznI1ZJpT10RZjOTziX47F8Rz8aXNhXFhlOyb6gbqotFsjX6dcCb9pxDbPf4auapTbXW1LaNRmsW9-_8JftsuNvS3U73tKd7YPB8OwqSoQai5dpL2lFn_0hU2yjPZjE1taiFxZRhORS6504rIvmREZTzR6X2IVQip8_6igyijNsN9HMM-ZjGgP5j9vjydfu1UdSh3huC-Dh8gilJLLlikyousneupyv1x2TORyC2_PhPfg7f0ozdvo2U9_O4uw0OBW8qk2tCWYM-VTCEYIuasLvzJPPpDB2SniX3_0DDZw3K6Mz8wqyGRazXyq1w_sY5TNarMnCJjxJpOV5Js7RyY1_SyaynM4ehCpvoBeWZXmFZDISINCRNxpFc8d-Uxi4thy09eI_oQKIGzlluqGyNzV0zhLawpmmjo5p52cA_jYtT-vKTz-2nKlVUPauPJlemN4AbztLqMTup2VrDTVlW-jEBgi1grgZa217lGMcaYE5QGoO_rsGjiC77tXytOpJ_pWqt-XDPukXvP_eft0dzCk3dHrf3_LG3g8PBwdpAd74_1leEJdpI5fWFqB3uziyqwi1Jrla419E_j-0C51DfX8NKs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYR4QdyEFjASx1O0ic_NQ4Vg22VL6WqFqOhbmsNmK7VJabdC_DV-HTPOQasKeOpjEq-zmcP-bM98A_BSO1HGokzCMpNFKE0eoc85E5Z5jrOxyJRxPtpipqd78uO-2l-BX10uDIVVdmOiH6jLuqA98iGXRvlDIzF0bVjEfHPy9uR7SBWk6KS1K6fRmMiO_fkDl29nG9ubqOtXnE-2voynYVthICykpqh7xx0u-pVLsoyPYhs7XqrcOMETlWtpioQyMYVVmUwK9MTEGYRX-C1RyY01hcB-b8CqoVXRAFbfb83mn_sdHs6JfNyXxEOUEWotdccaGfHht2JBeWCUKRNRnuHFWfEK1L0asXkRSfupcHIHbrcYlr1rjO4urNjqHgS7CL_rU79Lz16z8dEhYmF_dR82cAyvrc_SKtl8US992tcx9rGbLRsXYAie8Uc2q9hXusfmDRUtms0D2LsWqT6EQVVX9jGwyGqLQkQM6ozMiYgmsXHspB0ViASVCSDs5JYWLak51dY4Shs6Zp6SnNNezgG86dufNHQef2253qkhbd36LP1jhAG86B-jQ9IpS1bZ-ty3MQgSEXcF8KjRWv8qIaQwissAzCV99g2I7Pvyk-pw4Um_jRmNtMA-udf8f_59-mE85f3Vk39_y3O4ia6Uftqe7azBLU5BO36PaR0Gy9Nz-xRR1zJ_1po3g4Pr9qjfoG444A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoenabled+Photothermal+Materials+for+Clean+Water+Production&rft.jtitle=Global+challenges&rft.au=Irshad%2C+Muhammad+Sultan&rft.au=Arshad%2C+Naila&rft.au=Wang%2C+Xianbao&rft.date=2021-01-01&rft.issn=2056-6646&rft.eissn=2056-6646&rft.volume=5&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fgch2.202000055&rft.externalDBID=10.1002%252Fgch2.202000055&rft.externalDocID=GCH2202000055 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-6646&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-6646&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-6646&client=summon |