Nanoenabled Photothermal Materials for Clean Water Production

Solar‐powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers. The cutting‐edge nanoenabled photothermal materials can exploit a full spectrum of solar radiation with exceptionally high photothermal conv...

Full description

Saved in:
Bibliographic Details
Published inGlobal challenges Vol. 5; no. 1; pp. 2000055 - n/a
Main Authors Irshad, Muhammad Sultan, Arshad, Naila, Wang, Xianbao
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.01.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solar‐powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers. The cutting‐edge nanoenabled photothermal materials can exploit a full spectrum of solar radiation with exceptionally high photothermal conversion efficiency. Additionally, photothermal design through heat management and the hierarchy of smooth water‐flow channels have evolved in parallel. Indeed, the integration of all desirable functions into one photothermal layer remains an essential challenge for an effective yield of clean water in remote‐sensing areas. Some nanoenabled photothermal prototypes equipped with unprecedented water evaporation rates have been reported recently for clean water production. Many barriers and difficulties remain, despite the latest scientific and practical implementation developments. This Review seeks to inspire nanoenvironmental research communities to drive onward toward real‐time solar‐driven clean water production. Nanoenabled photothermal materials and their respective photothermal mechanisms, surface plasmon resonance, non‐radiative relaxation, and lattice vibrations are briefly described. The entire solar‐driven steam generation process, liquid to vapor generation, and vapor condensation along with a theoretical understanding of evaporation rate limitations is discussed. The bifunctional water‐energy nexus is reviewed for simultaneous water and electricity generation. In addition, the decisive challenges of this field are put forward.
AbstractList Solar-powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers. The cutting-edge nanoenabled photothermal materials can exploit a full spectrum of solar radiation with exceptionally high photothermal conversion efficiency. Additionally, photothermal design through heat management and the hierarchy of smooth water-flow channels have evolved in parallel. Indeed, the integration of all desirable functions into one photothermal layer remains an essential challenge for an effective yield of clean water in remote-sensing areas. Some nanoenabled photothermal prototypes equipped with unprecedented water evaporation rates have been reported recently for clean water production. Many barriers and difficulties remain, despite the latest scientific and practical implementation developments. This Review seeks to inspire nanoenvironmental research communities to drive onward toward real-time solar-driven clean water production.
Solar‐powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers. The cutting‐edge nanoenabled photothermal materials can exploit a full spectrum of solar radiation with exceptionally high photothermal conversion efficiency. Additionally, photothermal design through heat management and the hierarchy of smooth water‐flow channels have evolved in parallel. Indeed, the integration of all desirable functions into one photothermal layer remains an essential challenge for an effective yield of clean water in remote‐sensing areas. Some nanoenabled photothermal prototypes equipped with unprecedented water evaporation rates have been reported recently for clean water production. Many barriers and difficulties remain, despite the latest scientific and practical implementation developments. This Review seeks to inspire nanoenvironmental research communities to drive onward toward real‐time solar‐driven clean water production. Nanoenabled photothermal materials and their respective photothermal mechanisms, surface plasmon resonance, non‐radiative relaxation, and lattice vibrations are briefly described. The entire solar‐driven steam generation process, liquid to vapor generation, and vapor condensation along with a theoretical understanding of evaporation rate limitations is discussed. The bifunctional water‐energy nexus is reviewed for simultaneous water and electricity generation. In addition, the decisive challenges of this field are put forward.
Solar-powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers. The cutting-edge nanoenabled photothermal materials can exploit a full spectrum of solar radiation with exceptionally high photothermal conversion efficiency. Additionally, photothermal design through heat management and the hierarchy of smooth water-flow channels have evolved in parallel. Indeed, the integration of all desirable functions into one photothermal layer remains an essential challenge for an effective yield of clean water in remote-sensing areas. Some nanoenabled photothermal prototypes equipped with unprecedented water evaporation rates have been reported recently for clean water production. Many barriers and difficulties remain, despite the latest scientific and practical implementation developments. This Review seeks to inspire nanoenvironmental research communities to drive onward toward real-time solar-driven clean water production.Solar-powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers. The cutting-edge nanoenabled photothermal materials can exploit a full spectrum of solar radiation with exceptionally high photothermal conversion efficiency. Additionally, photothermal design through heat management and the hierarchy of smooth water-flow channels have evolved in parallel. Indeed, the integration of all desirable functions into one photothermal layer remains an essential challenge for an effective yield of clean water in remote-sensing areas. Some nanoenabled photothermal prototypes equipped with unprecedented water evaporation rates have been reported recently for clean water production. Many barriers and difficulties remain, despite the latest scientific and practical implementation developments. This Review seeks to inspire nanoenvironmental research communities to drive onward toward real-time solar-driven clean water production.
Author Irshad, Muhammad Sultan
Arshad, Naila
Wang, Xianbao
AuthorAffiliation 2 Institute of Quantum Optics and Quantum Information School of Science Xi'an Jiaotong University (XJTU) Xi'an 710049 P. R. China
1 Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials Hubei Key Laboratory of Polymer Materials School of Materials Science and Engineering Hubei University Wuhan 430062 P. R. China
AuthorAffiliation_xml – name: 2 Institute of Quantum Optics and Quantum Information School of Science Xi'an Jiaotong University (XJTU) Xi'an 710049 P. R. China
– name: 1 Ministry‐of‐Education Key Laboratory for the Green Preparation and Application of Functional Materials Hubei Key Laboratory of Polymer Materials School of Materials Science and Engineering Hubei University Wuhan 430062 P. R. China
Author_xml – sequence: 1
  givenname: Muhammad Sultan
  surname: Irshad
  fullname: Irshad, Muhammad Sultan
  organization: Hubei University
– sequence: 2
  givenname: Naila
  surname: Arshad
  fullname: Arshad, Naila
  organization: Xi'an Jiaotong University (XJTU)
– sequence: 3
  givenname: Xianbao
  orcidid: 0000-0001-7765-4027
  surname: Wang
  fullname: Wang, Xianbao
  email: wangxb68@aliyun.com
  organization: Hubei University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33437524$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9PFDEUxxuCAQSuHs0kXrjs2nn9NXPQhGwUTFA5QDg23c4rW9JtsTOD4b-3k8UVSYw9tC_t5_v6vu-9JrsxRSTkTU3nNaXw_tauYA4UaFlC7JADoELOpORy91m8T477_q4gADVlTbNH9hnjTAngB-TDNxMTRrMM2FWXqzSkYYV5bUL11QyYvQl95VKuFgFNrG6mu-oyp260g0_xiLxyhcDjp_OQXH_-dLU4n118P_uyOL2YWS4bMZMOHGupcK0x0NRYO-jEUjkGrVhKrmzLVVMzFIa3VknWOlVMqbJ3oFBZdkg-bvLej8s1dhbjkE3Q99mvTX7UyXj990v0K32bHrRSTSMZlAQnTwly-jFiP-i17y2GYCKmsdfAlRK1AJjQdy_QuzTmWOxNlFCy4cAK9fZ5RdtSfne2APMNYHPq-4xui9RUT9PT0_T0dnpFwF8IrB_M1OXiyId_y9qN7KcP-PifT_TZ4hz-aH8BXROsNg
CitedBy_id crossref_primary_10_1016_j_cej_2023_143047
crossref_primary_10_1016_j_desal_2023_117094
crossref_primary_10_1002_ange_202201900
crossref_primary_10_1002_solr_202100917
crossref_primary_10_1039_D1EN01018B
crossref_primary_10_1039_D2TA08275F
crossref_primary_10_1002_advs_202104181
crossref_primary_10_3390_cryst11121509
crossref_primary_10_1002_gch2_202400080
crossref_primary_10_1016_j_cej_2024_157856
crossref_primary_10_1111_jace_18487
crossref_primary_10_1039_D1NR04197E
crossref_primary_10_1016_j_desal_2022_115984
crossref_primary_10_1021_acs_jpclett_3c02134
crossref_primary_10_3390_nano13081420
crossref_primary_10_1016_j_cej_2021_132759
crossref_primary_10_3390_nano12193296
crossref_primary_10_1016_j_envres_2023_117114
crossref_primary_10_1088_1361_6528_ad5a7b
crossref_primary_10_1002_solr_202100427
crossref_primary_10_1021_acsabm_3c00076
crossref_primary_10_1002_cssc_202201543
crossref_primary_10_1002_smll_202401603
crossref_primary_10_3390_nano12213865
crossref_primary_10_3762_bjnano_14_33
crossref_primary_10_1016_j_cej_2024_148909
crossref_primary_10_1007_s40820_024_01612_0
crossref_primary_10_1039_D2GC00509C
crossref_primary_10_3390_ma16083105
crossref_primary_10_3390_nano13202764
crossref_primary_10_1039_D4TA08905G
crossref_primary_10_1039_D3MA00408B
crossref_primary_10_1002_adfm_202307533
crossref_primary_10_1021_acsenergylett_1c00869
crossref_primary_10_1038_s41598_024_62987_z
crossref_primary_10_1016_j_cis_2024_103304
crossref_primary_10_1063_5_0200505
crossref_primary_10_3390_membranes14070160
crossref_primary_10_1016_j_cej_2023_143472
crossref_primary_10_1021_acsabm_1c00621
crossref_primary_10_1051_epjap_2022220179
crossref_primary_10_1021_acsaem_0c02902
crossref_primary_10_1016_j_solener_2023_112097
crossref_primary_10_1002_adfm_202302351
crossref_primary_10_1021_acsanm_1c01597
crossref_primary_10_1038_s41598_023_40060_5
crossref_primary_10_1007_s00339_024_08023_3
crossref_primary_10_1002_aesr_202200158
crossref_primary_10_1021_acssuschemeng_0c08981
crossref_primary_10_3390_nano10122510
crossref_primary_10_1016_j_seppur_2022_122348
crossref_primary_10_1016_j_cej_2023_143330
crossref_primary_10_1088_1361_6501_ad817d
crossref_primary_10_1002_anie_202201900
crossref_primary_10_1088_2631_8695_abea29
crossref_primary_10_1002_solr_202100888
crossref_primary_10_3390_cryst11121489
crossref_primary_10_1016_j_cej_2024_156450
crossref_primary_10_3390_nano12183206
crossref_primary_10_1016_j_cej_2022_137275
crossref_primary_10_1021_acsapm_4c01204
crossref_primary_10_1002_INMD_20220012
crossref_primary_10_1021_acssuschemeng_3c03161
crossref_primary_10_1021_acsami_4c12476
crossref_primary_10_1002_advs_202205809
crossref_primary_10_1021_acsami_4c12035
crossref_primary_10_1039_D1TA00444A
crossref_primary_10_1021_acs_iecr_2c03170
crossref_primary_10_1039_D4RA05629A
crossref_primary_10_1002_ente_202301190
crossref_primary_10_1016_j_chemosphere_2021_133210
Cites_doi 10.1039/C7TA06384A
10.1016/j.desal.2013.07.006
10.1039/C3PY01196H
10.1038/s41560-018-0260-7
10.1002/aenm.201702149
10.1107/S0108768186097641
10.1088/2053-1591/ab17b5
10.1039/C6EN00573J
10.1021/acssuschemeng.6b03207
10.1016/j.nanoen.2019.03.089
10.1039/C6RA26979F
10.1021/acsami.0c01707
10.1021/nl4003238
10.1016/j.jqsrt.2017.03.012
10.1039/C8EN00156A
10.1038/s41565-018-0097-z
10.1039/D0TA01439G
10.1039/C6TA04199J
10.1016/j.cej.2016.04.098
10.1002/adma.201606762
10.1021/nn901144d
10.1016/j.applthermaleng.2016.12.054
10.1073/pnas.1310131110
10.1002/gch2.201700094
10.1039/C8TA12290C
10.1016/j.enconman.2016.11.053
10.1039/C8EE00220G
10.1039/C6EN00389C
10.1002/aenm.201702884
10.1039/b924553g
10.1021/acsami.6b02071
10.1039/c3ee43825b
10.1039/C9TA00798A
10.1039/c3cs60364d
10.1107/S0365110X67001264
10.1016/j.apenergy.2015.05.060
10.1021/acsami.7b08619
10.1039/C8NR05916K
10.1016/j.ces.2014.05.057
10.1016/j.rser.2014.09.002
10.1088/1361-6528/aae678
10.1002/adma.201603730
10.1016/j.nanoen.2018.12.046
10.1016/j.solener.2009.08.010
10.1021/acsaem.9b00562
10.1039/c2ee21121a
10.1038/nenergy.2016.126
10.1039/C8TA05193C
10.1021/acsnano.7b06025
10.1021/acsnano.9b02301
10.1039/C9TA02913C
10.1039/C5TA05042A
10.1002/gch2.201900003
10.1016/j.rser.2013.04.012
10.1039/C9EE00945K
10.1016/j.nano.2008.10.002
10.1016/j.mtener.2018.04.004
10.1002/gch2.201800001
10.1038/nphoton.2016.75
10.1021/acsami.6b08077
10.1039/C9TA04914B
10.1073/pnas.1613031113
10.1016/j.joule.2018.03.013
10.1021/acsami.0c00606
10.1021/nl201400z
10.1016/j.solener.2017.11.055
10.1039/C9TA01576K
10.1021/acsnano.9b02331
10.1039/C7NR02180A
10.1039/C9TA00041K
10.1016/j.carbon.2017.12.124
10.1039/C9TA04509K
10.1016/j.joule.2018.12.023
10.1126/sciadv.aax0763
10.1016/j.apcatb.2016.01.074
10.1039/C9TA07663H
10.1016/j.solener.2017.08.015
10.1021/jp993438y
10.1002/adfm.201600564
10.1557/mrs.2018.325
10.1038/nmat4281
10.1063/1.1742089
10.1021/acssuschemeng.0c01499
10.1016/j.cej.2018.12.157
10.1038/nnano.2014.311
10.1103/PhysRevB.68.235321
10.1016/j.nanoen.2019.03.087
10.1093/nsr/nwx051
10.1063/1.1698719
10.1039/C7EN00063D
10.1021/ja3079972
10.1016/j.nanoen.2017.09.005
10.1039/C7EN00548B
10.1021/nl503131s
10.1016/j.nanoen.2020.104857
10.1002/solr.201800277
10.1002/adma.201405372
10.1016/j.joule.2018.04.004
10.1016/j.desal.2011.03.042
10.1002/aenm.201701028
10.1039/C7RA03007J
10.1016/j.enconman.2016.09.015
10.1002/adma.201702590
10.1039/C9RA09667A
10.1021/acs.chemmater.8b01739
10.1016/j.applthermaleng.2019.114322
10.1039/C9TA03045J
10.1016/j.nanoen.2018.02.018
10.1007/s10973-019-08634-6
10.1021/acsami.7b01307
10.1002/adma.201500135
10.1021/nn304948h
10.1039/C8TA10227A
10.1021/acsami.8b07434
10.1002/smll.201403777
10.1039/C7TA01361B
10.1021/acs.nanolett.5b03901
10.1002/anie.201701321
10.1002/adsu.201600013
10.1038/s41467-017-02088-w
10.1002/aenm.201601811
10.1139/er-2018-0106
10.1039/C8TA05412F
10.1021/acsami.6b04606
10.1002/adma.201604031
10.1016/j.nanoen.2019.104006
10.1039/C7EE01804E
10.1002/cctc.201901597
10.1002/advs.201600337
10.1002/adma.200800606
10.1039/C6EN00183A
10.1021/acs.est.7b03040
10.1039/C7TA08256H
10.1021/acsnano.7b08196
10.1039/c3nr05112a
10.1016/j.solmat.2017.04.015
10.1038/ncomms5449
10.1002/gch2.202000009
10.1002/adsu.201800108
10.1021/acs.jpcc.5b09604
10.1016/j.nanoen.2016.12.031
10.1039/C6TA03733J
10.1016/j.pnsc.2017.08.010
10.1038/nchem.1006
10.1088/1361-665X/aa80cb
10.1002/gch2.201900098
10.1039/C8MH00386F
10.1039/C7MH01064H
10.1016/j.solmat.2018.05.049
10.1016/S0304-3835(06)80028-5
10.1039/C9EE00692C
10.1103/PhysRevB.57.1390
10.1039/C8EE01146J
10.1016/j.apenergy.2012.10.029
10.1002/smll.201702268
10.1016/j.rser.2017.10.087
10.1002/aenm.201800711
10.1111/j.1551-2916.2008.02870.x
10.1103/PhysRevB.63.205321
10.1063/1.1700524
10.1039/C9TA12211G
10.1016/S0038-092X(02)00118-4
10.1021/jz300426p
10.1039/C9TA05859A
10.1016/j.rser.2015.03.065
10.1016/j.apenergy.2017.08.169
10.1021/acsami.6b11466
10.1002/aenm.201702481
10.1021/j100102a038
10.1021/jp983141k
10.1039/C8GC01347K
10.1039/C9NR10357K
10.1038/s41893-018-0186-x
10.1002/smll.201401071
10.1038/ncomms10103
10.1126/sciadv.1501227
10.1002/aenm.201970119
10.1021/nn304775h
10.1016/j.joule.2018.08.008
10.1039/C6NR03921A
10.1016/j.energy.2019.07.005
10.1016/j.egypro.2017.03.138
10.1002/adsu.201700145
10.1007/s10668-013-9441-5
10.1039/C8TA08829B
10.1073/pnas.1011972107
10.1039/C7TA08972D
10.1002/adma.200800619
10.1002/adma.201807716
10.1007/s11705-019-1824-1
10.1039/C9TA09281A
10.1002/adma.201900498
10.1111/j.1751-1097.2008.00507.x
10.1021/nn2050032
10.1002/adma.201501832
10.3390/w11040696
10.1021/acs.nanolett.8b04157
10.1021/ac00298a002
10.1016/j.apcatb.2017.08.069
10.1016/j.solener.2003.12.012
10.3390/ma9060497
ContentType Journal Article
Copyright 2020 The Authors. Published by Wiley‐VCH GmbH
2020 The Authors. Published by Wiley‐VCH GmbH.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by Wiley‐VCH GmbH
– notice: 2020 The Authors. Published by Wiley‐VCH GmbH.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7X8
5PM
DOI 10.1002/gch2.202000055
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Agricultural & Environmental Science & Pollution Managment
ProQuest Central Essentials
Proquest Central
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Environmental Science Collection
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2056-6646
EndPage n/a
ExternalDocumentID PMC7788632
33437524
10_1002_gch2_202000055
GCH2202000055
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Wuhan Science and Technology Bureau of China
  funderid: 2018010401011280
– fundername: National Key Research and Development Program of China
  funderid: 2016YFA0200200
– fundername: ;
  grantid: 2016YFA0200200
– fundername: Wuhan Science and Technology Bureau of China
  grantid: 2018010401011280
GroupedDBID 0R~
1OC
24P
7XC
8CJ
8FE
8FH
AAHHS
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
D1J
EBS
EDH
EJD
GROUPED_DOAJ
HCIFZ
HYE
IAO
IEP
ITC
KQ8
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PYCSY
RPM
WIN
AAYXX
CITATION
PHGZM
PHGZT
NPM
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c4685-6f2f3905f9aa281e1f2d5b7f3295b647c947813e5a49c7639f70207f70d27e7c3
IEDL.DBID 24P
ISSN 2056-6646
IngestDate Thu Aug 21 13:53:51 EDT 2025
Fri Jul 11 00:04:41 EDT 2025
Fri Jul 25 08:31:19 EDT 2025
Wed Feb 19 02:00:47 EST 2025
Thu Apr 24 23:08:15 EDT 2025
Tue Jul 01 04:22:58 EDT 2025
Wed Jan 22 16:30:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords photothermal
clean water
steam generation
nanoenabled
Language English
License Attribution
2020 The Authors. Published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4685-6f2f3905f9aa281e1f2d5b7f3295b647c947813e5a49c7639f70207f70d27e7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7765-4027
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgch2.202000055
PMID 33437524
PQID 2475768423
PQPubID 4371421
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7788632
proquest_miscellaneous_2477515222
proquest_journals_2475768423
pubmed_primary_33437524
crossref_primary_10_1002_gch2_202000055
crossref_citationtrail_10_1002_gch2_202000055
wiley_primary_10_1002_gch2_202000055_GCH2202000055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Hoboken
PublicationTitle Global challenges
PublicationTitleAlternate Glob Chall
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2009; 85
2019; 11
1967; 22
2009; 83
2019; 13
2019; 12
2016; 300
2019; 19
2020; 12
2020; 10
2013; 7
2019; 163
2017; 157
2018; 46
2018; 6
1952; 20
2018; 9
2010; 20
2018; 8
2018; 3
2018; 2
2018; 5
2012; 134
2009; 92
2018; 1
2019; 27
2014; 14
2018; 30
2013; 110
2008; 20
2017; 167
2010; 4
2005; 78
2014; 10
2017; 206
2019; 7
2018; 185
2019; 9
2018; 220
2019; 3
2019; 6
2019; 5
2019; 31
2019; 30
2019; 2
2002; 73
2016; 10
1996
2013; 103
1999; 103
2017; 132
2011; 3
2016; 16
2018; 20
2019; 183
1996; 98
2014; 43
2017; 51
2016; 4
2016; 1
2016; 2
2016; 3
2000; 104
2019; 44
2017; 56
2018; 12
2018; 11
2018; 10
2016; 26
2016; 8
2016; 9
1994; 98
2018; 14
2018; 13
2017; 5
2017; 7
2017; 41
2017; 1
2013; 25
2017; 4
2019; 57
2013; 326
2011; 11
2016; 188
2017; 194
2018; 82
2017; 110
2019; 361
2017; 114
2017; 9
2011; 276
2020; 8
2018; 130
2015; 48
2013; 15
2020; 4
2019; 60
2014; 5
1986; 42
2013; 13
2019; 65
2015; 41
2017; 32
2016; 113
2020; 139
2014; 7
2014; 6
1953; 21
1998; 57
2014; 116
2015; 14
2015; 6
2021; 5
2015; 3
2017; 26
2010
2017; 27
2015; 11
1986; 58
2015; 10
2017; 29
2016; 127
2011; 38
2016; 120
2001; 63
1955; 23
2012; 3
2011; 108
2015; 27
2004; 18
2020; 74
2017; 11
2017; 10
2018; 159
2015; 154
2003; 68
2009; 5
2012; 6
2012; 5
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_204_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_157_1
e_1_2_9_195_1
e_1_2_9_172_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_129_1
Seyednezhad M. (e_1_2_9_147_1) 2020; 139
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
Perez‐Zúñiga M. G. (e_1_2_9_137_1) 2017; 26
e_1_2_9_205_1
Almond D. P. (e_1_2_9_118_1) 1996
e_1_2_9_5_1
Sharif M. N. (e_1_2_9_12_1) 2019; 27
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_31_1
Li H. (e_1_2_9_187_1) 2021; 5
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_1
Müller‐Steinhagen H. (e_1_2_9_170_1) 2004; 18
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
Shannon M. A. (e_1_2_9_138_1) 2010
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_206_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_197_1
e_1_2_9_28_1
e_1_2_9_174_1
Edition F. (e_1_2_9_192_1) 2011; 38
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_207_1
e_1_2_9_173_1
e_1_2_9_196_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_190_1
e_1_2_9_52_1
e_1_2_9_90_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_200_1
e_1_2_9_2_1
e_1_2_9_115_1
e_1_2_9_199_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_208_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_191_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_76_1
e_1_2_9_91_1
Zhu K. (e_1_2_9_194_1) 2017; 194
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_201_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_198_1
e_1_2_9_27_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_96_1
Cooper T. A. (e_1_2_9_175_1) 2018; 9
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_189_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_181_1
e_1_2_9_62_1
e_1_2_9_202_1
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_193_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_13_1
e_1_2_9_97_1
e_1_2_9_127_1
e_1_2_9_188_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_203_1
e_1_2_9_86_1
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
References_xml – volume: 139
  start-page: 1619
  year: 2020
  publication-title: J. Therm. Anal. Calorim.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 3898
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 696
  year: 2019
  publication-title: Water
– volume: 10
  start-page: 2507
  year: 2020
  publication-title: RSC Adv.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 326
  start-page: 37
  year: 2013
  publication-title: Desalination
– volume: 23
  start-page: 737
  year: 1955
  publication-title: J. Chem. Phys.
– volume: 92
  start-page: 289
  year: 2009
  publication-title: J. Am. Ceram. Soc.
– volume: 63
  year: 2001
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 627
  year: 2013
  publication-title: ACS Nano
– volume: 13
  start-page: 636
  year: 2019
  publication-title: Front. Chem. Sci. Eng.
– volume: 27
  start-page: 1837
  year: 2015
  publication-title: Adv. Mater.
– volume: 8
  start-page: 513
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 103
  start-page: 1165
  year: 1999
  publication-title: J. Phys. Chem. A
– volume: 10
  start-page: 1923
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 393
  year: 2016
  publication-title: Nat. Photonics
– volume: 2
  start-page: 1331
  year: 2018
  publication-title: Joule
– volume: 13
  start-page: 489
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 68
  year: 2003
  publication-title: Phys. Rev. B
– volume: 30
  year: 2019
  publication-title: Nanotechnology
– volume: 6
  start-page: 2550
  year: 2012
  publication-title: ACS Nano
– volume: 13
  start-page: 1736
  year: 2013
  publication-title: Nano Lett.
– volume: 110
  start-page: 268
  year: 2017
  publication-title: Energy Procedia
– volume: 2
  start-page: 1171
  year: 2018
  publication-title: Joule
– volume: 60
  start-page: 567
  year: 2019
  publication-title: Nano Energy
– volume: 10
  start-page: 3234
  year: 2014
  publication-title: Small
– volume: 85
  start-page: 21
  year: 2009
  publication-title: Photochem. Photobiol.
– volume: 26
  year: 2017
  publication-title: Smart Mater. Struct.
– volume: 2
  start-page: 2477
  year: 2018
  publication-title: Joule
– volume: 104
  start-page: 4256
  year: 2000
  publication-title: J. Phys. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 78
  start-page: 603
  year: 2005
  publication-title: Sol. Energy
– volume: 15
  start-page: 1303
  year: 2013
  publication-title: Environ. Dev. Sustainability
– volume: 4
  start-page: 747
  year: 2017
  publication-title: Environ. Sci.: Nano
– volume: 7
  year: 2019
  publication-title: J. Mater, Chem. A
– volume: 83
  start-page: 2165
  year: 2009
  publication-title: Sol. Energy
– volume: 7
  start-page: 586
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 206
  start-page: 63
  year: 2017
  publication-title: Appl. Energy
– volume: 194
  start-page: 98
  year: 2017
  publication-title: Spectrosc. Radiat. Transf.
– volume: 7
  start-page: 8960
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 185
  start-page: 333
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 27
  start-page: 2768
  year: 2015
  publication-title: Adv. Mater.
– volume: 120
  start-page: 2343
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 6
  year: 2015
  publication-title: Nat. Commun.
– volume: 361
  start-page: 999
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 829
  year: 2018
  publication-title: ACS Nano
– volume: 3
  start-page: 1479
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 18
  start-page: 43
  year: 2004
  publication-title: Rev. Technol. Ingenia Inf. QR Acad. Eng.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 4302
  year: 2015
  publication-title: Adv. Mater.
– volume: 82
  start-page: 3833
  year: 2018
  publication-title: Renewable Sustainable Energy Rev.
– volume: 2
  start-page: 4354
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 157
  start-page: 35
  year: 2017
  publication-title: Sol. Energy
– volume: 42
  start-page: 613
  year: 1986
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
– volume: 20
  start-page: 3689
  year: 2018
  publication-title: Green Chem.
– volume: 3
  year: 2019
  publication-title: Global Challenges
– volume: 20
  start-page: 4551
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 1
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: 166
  year: 2018
  publication-title: Mater. Today Energy
– volume: 11
  start-page: 6147
  year: 2019
  publication-title: ChemCatChem
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 12
  start-page: 841
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 114
  start-page: 961
  year: 2017
  publication-title: Appl. Therm. Eng.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 110
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 11
  start-page: 1510
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 507
  year: 2019
  publication-title: Nano Energy
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 59
  year: 2019
  publication-title: MRS Bull.
– volume: 163
  year: 2019
  publication-title: Appl. Therm. Eng.
– volume: 159
  start-page: 800
  year: 2018
  publication-title: Sol. Energy
– volume: 3
  year: 2019
  publication-title: Adv. Sustainable Syst.
– volume: 6
  start-page: 2502
  year: 2014
  publication-title: Nanoscale
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 20
  start-page: 2918
  year: 2008
  publication-title: Adv. Mater.
– volume: 27
  start-page: 531
  year: 2017
  publication-title: Prog. Nat. Sci.: Mater. Int.
– volume: 7
  start-page: 6963
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 6717
  year: 2020
  publication-title: Nanoscale
– volume: 188
  start-page: 245
  year: 2016
  publication-title: Appl. Catal. B: Environ.
– volume: 8
  start-page: 7139
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 2
  year: 2018
  publication-title: Glob. Challenges
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 5
  start-page: 1078
  year: 2018
  publication-title: Environ. Sci.: Nano
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 3
  year: 2019
  publication-title: Sol. RRL
– volume: 103
  start-page: 642
  year: 2013
  publication-title: Appl. Energy
– volume: 7
  start-page: 4815
  year: 2017
  publication-title: RSC Adv.
– volume: 4
  start-page: 2267
  year: 2017
  publication-title: Environ. Sci.: Nano
– volume: 98
  year: 1994
  publication-title: J. Phys. Chem.
– volume: 5
  start-page: 143
  year: 2009
  publication-title: Nanomedicine
– volume: 1
  start-page: 763
  year: 2018
  publication-title: Nat. Sustain.
– volume: 4
  year: 2020
  publication-title: Global Challenges
– volume: 5
  start-page: 4449
  year: 2014
  publication-title: Nat. Commun.
– volume: 11
  start-page: 3873
  year: 2015
  publication-title: Small
– volume: 20
  start-page: 2952
  year: 2008
  publication-title: Adv. Mater.
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 12
  start-page: 1840
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1031
  year: 2018
  publication-title: Nat. Energy
– volume: 5
  start-page: 1143
  year: 2018
  publication-title: Mater. Horiz.
– volume: 60
  start-page: 841
  year: 2019
  publication-title: Nano Energy
– volume: 3
  start-page: 296
  year: 2011
  publication-title: Nat. Chem.
– volume: 14
  start-page: 6533
  year: 2014
  publication-title: Nano Lett.
– volume: 13
  start-page: 7930
  year: 2019
  publication-title: ACS Nano
– volume: 73
  start-page: 327
  year: 2002
  publication-title: Sol. Energy
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 48
  start-page: 152
  year: 2015
  publication-title: Renewable Sustainable Energy Rev.
– volume: 276
  start-page: 1
  year: 2011
  publication-title: Desalination
– volume: 10
  start-page: 25
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 4665
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 5
  start-page: 323
  year: 2018
  publication-title: Mater. Horiz.
– volume: 9
  start-page: 7675
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 567
  year: 2015
  publication-title: Nat. Mater.
– volume: 4
  start-page: 9625
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 623
  year: 1967
  publication-title: Acta Crystallogr.
– volume: 58
  start-page: 811A
  year: 1986
  publication-title: Anal. Chem.
– volume: 46
  start-page: 415
  year: 2018
  publication-title: Nano Energy
– volume: 130
  start-page: 250
  year: 2018
  publication-title: Carbon
– volume: 7
  start-page: 1615
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 220
  start-page: 533
  year: 2018
  publication-title: Appl. Catal. B Environ.
– volume: 13
  start-page: 7913
  year: 2019
  publication-title: ACS Nano
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 32
  start-page: 195
  year: 2017
  publication-title: Nano Energy
– volume: 30
  start-page: 4383
  year: 2018
  publication-title: Chem. Mater.
– volume: 300
  start-page: 98
  year: 2016
  publication-title: Chem. Eng. J.
– volume: 98
  start-page: 169
  year: 1996
  publication-title: Cancer Lett.
– volume: 20
  start-page: 726
  year: 1952
  publication-title: J. Chem. Phys.
– volume: 27
  start-page: 519
  year: 2019
  publication-title: Environ. Rev.
– volume: 11
  start-page: 2560
  year: 2011
  publication-title: Nano Lett.
– volume: 5
  start-page: 70
  year: 2018
  publication-title: Natl. Sci. Rev.
– volume: 16
  start-page: 2159
  year: 2016
  publication-title: Nano Lett.
– volume: 116
  start-page: 704
  year: 2014
  publication-title: Chem. Eng. Sci.
– volume: 21
  start-page: 1927
  year: 1953
  publication-title: J. Chem. Phys.
– volume: 2
  year: 2018
  publication-title: Adv. Sustainable Syst.
– volume: 108
  start-page: 29
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 167
  start-page: 150
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 38
  start-page: 104
  year: 2011
  publication-title: WHO Chron.
– volume: 4
  start-page: 782
  year: 2017
  publication-title: Environ. Sci.: Nano
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 6329
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 709
  year: 2010
  publication-title: ACS Nano
– volume: 6
  year: 2019
  publication-title: Mater. Res. Express
– volume: 41
  start-page: 1080
  year: 2015
  publication-title: Renewable Sustainable Energy Rev.
– volume: 8
  start-page: 9528
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1573
  year: 2014
  publication-title: Polym. Chem.
– volume: 19
  start-page: 400
  year: 2019
  publication-title: Nano Lett.
– volume: 5
  start-page: 7161
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 9194
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  year: 2018
  publication-title: Global Challenges
– volume: 25
  start-page: 351
  year: 2013
  publication-title: Renewable Sustainable Energy Rev.
– year: 1996
– volume: 12
  start-page: 1558
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 963
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 57
  start-page: 1390
  year: 1998
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 7691
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 127
  start-page: 293
  year: 2016
  publication-title: Energy Convers. Manage.
– volume: 4
  start-page: 767
  year: 2017
  publication-title: Environ. Sci.: Nano
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 9
  start-page: 9148
  year: 2017
  publication-title: Nanoscale
– volume: 41
  start-page: 269
  year: 2017
  publication-title: Nano Energy
– volume: 51
  year: 2017
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 497
  year: 2016
  publication-title: Materials
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1241
  year: 2016
  publication-title: Environ. Sci.: Nano
– volume: 183
  start-page: 1032
  year: 2019
  publication-title: Energy
– volume: 5
  year: 2021
  publication-title: Water Res.
– volume: 132
  start-page: 452
  year: 2017
  publication-title: Energy Convers. Manage.
– volume: 1
  year: 2017
  publication-title: Adv. Sustainable Syst.
– volume: 154
  start-page: 480
  year: 2015
  publication-title: Appl. Energy
– start-page: 337
  year: 2010
  end-page: 346
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 26
  start-page: 5368
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 42
  year: 2013
  publication-title: ACS Nano
– volume: 7
  start-page: 2581
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 113
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 4642
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_9_107_1
  doi: 10.1039/C7TA06384A
– ident: e_1_2_9_177_1
  doi: 10.1016/j.desal.2013.07.006
– ident: e_1_2_9_83_1
  doi: 10.1039/C3PY01196H
– volume: 38
  start-page: 104
  year: 2011
  ident: e_1_2_9_192_1
  publication-title: WHO Chron.
– ident: e_1_2_9_17_1
  doi: 10.1038/s41560-018-0260-7
– ident: e_1_2_9_42_1
  doi: 10.1002/aenm.201702149
– ident: e_1_2_9_131_1
  doi: 10.1107/S0108768186097641
– ident: e_1_2_9_125_1
  doi: 10.1088/2053-1591/ab17b5
– ident: e_1_2_9_30_1
  doi: 10.1039/C6EN00573J
– ident: e_1_2_9_80_1
  doi: 10.1021/acssuschemeng.6b03207
– ident: e_1_2_9_21_1
  doi: 10.1016/j.nanoen.2019.03.089
– ident: e_1_2_9_35_1
  doi: 10.1039/C6RA26979F
– ident: e_1_2_9_86_1
  doi: 10.1021/acsami.0c01707
– ident: e_1_2_9_145_1
  doi: 10.1021/nl4003238
– volume: 194
  start-page: 98
  year: 2017
  ident: e_1_2_9_194_1
  publication-title: Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2017.03.012
– ident: e_1_2_9_28_1
  doi: 10.1039/C8EN00156A
– ident: e_1_2_9_25_1
  doi: 10.1038/s41565-018-0097-z
– ident: e_1_2_9_48_1
  doi: 10.1039/D0TA01439G
– ident: e_1_2_9_203_1
  doi: 10.1039/C6TA04199J
– ident: e_1_2_9_14_1
  doi: 10.1016/j.cej.2016.04.098
– ident: e_1_2_9_165_1
  doi: 10.1002/adma.201606762
– ident: e_1_2_9_109_1
  doi: 10.1021/nn901144d
– ident: e_1_2_9_53_1
  doi: 10.1016/j.applthermaleng.2016.12.054
– ident: e_1_2_9_146_1
  doi: 10.1073/pnas.1310131110
– ident: e_1_2_9_4_1
  doi: 10.1002/gch2.201700094
– ident: e_1_2_9_69_1
  doi: 10.1039/C8TA12290C
– ident: e_1_2_9_200_1
  doi: 10.1016/j.enconman.2016.11.053
– ident: e_1_2_9_183_1
  doi: 10.1039/C8EE00220G
– ident: e_1_2_9_40_1
  doi: 10.1039/C6EN00389C
– ident: e_1_2_9_104_1
  doi: 10.1002/aenm.201702884
– ident: e_1_2_9_20_1
  doi: 10.1039/b924553g
– ident: e_1_2_9_148_1
  doi: 10.1021/acsami.6b02071
– ident: e_1_2_9_171_1
  doi: 10.1039/c3ee43825b
– ident: e_1_2_9_68_1
  doi: 10.1039/C9TA00798A
– ident: e_1_2_9_120_1
  doi: 10.1039/c3cs60364d
– ident: e_1_2_9_132_1
  doi: 10.1107/S0365110X67001264
– ident: e_1_2_9_196_1
  doi: 10.1016/j.apenergy.2015.05.060
– ident: e_1_2_9_169_1
  doi: 10.1021/acsami.7b08619
– ident: e_1_2_9_91_1
  doi: 10.1039/C8NR05916K
– ident: e_1_2_9_38_1
  doi: 10.1016/j.ces.2014.05.057
– ident: e_1_2_9_29_1
  doi: 10.1016/j.rser.2014.09.002
– ident: e_1_2_9_92_1
  doi: 10.1088/1361-6528/aae678
– ident: e_1_2_9_78_1
  doi: 10.1002/adma.201603730
– ident: e_1_2_9_33_1
  doi: 10.1016/j.nanoen.2018.12.046
– ident: e_1_2_9_139_1
  doi: 10.1016/j.solener.2009.08.010
– ident: e_1_2_9_181_1
  doi: 10.1021/acsaem.9b00562
– ident: e_1_2_9_2_1
  doi: 10.1039/c2ee21121a
– ident: e_1_2_9_22_1
  doi: 10.1038/nenergy.2016.126
– ident: e_1_2_9_45_1
  doi: 10.1039/C8TA05193C
– ident: e_1_2_9_204_1
  doi: 10.1021/acsnano.7b06025
– ident: e_1_2_9_195_1
  doi: 10.1021/acsnano.9b02301
– ident: e_1_2_9_167_1
  doi: 10.1039/C9TA02913C
– ident: e_1_2_9_205_1
  doi: 10.1039/C5TA05042A
– ident: e_1_2_9_52_1
  doi: 10.1002/gch2.201900003
– ident: e_1_2_9_7_1
  doi: 10.1016/j.rser.2013.04.012
– ident: e_1_2_9_180_1
  doi: 10.1039/C9EE00945K
– ident: e_1_2_9_111_1
  doi: 10.1016/j.nano.2008.10.002
– ident: e_1_2_9_166_1
  doi: 10.1016/j.mtener.2018.04.004
– ident: e_1_2_9_173_1
  doi: 10.1002/gch2.201800001
– ident: e_1_2_9_56_1
  doi: 10.1038/nphoton.2016.75
– ident: e_1_2_9_108_1
  doi: 10.1021/acsami.6b08077
– ident: e_1_2_9_85_1
  doi: 10.1039/C9TA04914B
– ident: e_1_2_9_149_1
  doi: 10.1073/pnas.1613031113
– ident: e_1_2_9_174_1
  doi: 10.1016/j.joule.2018.03.013
– ident: e_1_2_9_143_1
  doi: 10.1021/acsami.0c00606
– ident: e_1_2_9_106_1
  doi: 10.1021/nl201400z
– ident: e_1_2_9_198_1
  doi: 10.1016/j.solener.2017.11.055
– ident: e_1_2_9_190_1
  doi: 10.1039/C9TA01576K
– ident: e_1_2_9_182_1
  doi: 10.1021/acsnano.9b02331
– ident: e_1_2_9_66_1
  doi: 10.1039/C7NR02180A
– ident: e_1_2_9_51_1
  doi: 10.1039/C9TA00041K
– ident: e_1_2_9_54_1
  doi: 10.1016/j.carbon.2017.12.124
– ident: e_1_2_9_70_1
  doi: 10.1039/C9TA04509K
– volume: 18
  start-page: 43
  year: 2004
  ident: e_1_2_9_170_1
  publication-title: Rev. Technol. Ingenia Inf. QR Acad. Eng.
– ident: e_1_2_9_6_1
  doi: 10.1016/j.joule.2018.12.023
– ident: e_1_2_9_13_1
  doi: 10.1126/sciadv.aax0763
– start-page: 337
  volume-title: Nanoscience and Technology: A Collection of Reviws from Nature Journals
  year: 2010
  ident: e_1_2_9_138_1
– ident: e_1_2_9_119_1
  doi: 10.1016/j.apcatb.2016.01.074
– ident: e_1_2_9_153_1
  doi: 10.1039/C9TA07663H
– ident: e_1_2_9_27_1
  doi: 10.1016/j.solener.2017.08.015
– ident: e_1_2_9_129_1
  doi: 10.1021/jp993438y
– ident: e_1_2_9_197_1
  doi: 10.1002/adfm.201600564
– ident: e_1_2_9_160_1
  doi: 10.1557/mrs.2018.325
– ident: e_1_2_9_121_1
  doi: 10.1038/nmat4281
– ident: e_1_2_9_136_1
  doi: 10.1063/1.1742089
– ident: e_1_2_9_37_1
  doi: 10.1021/acssuschemeng.0c01499
– ident: e_1_2_9_99_1
  doi: 10.1016/j.cej.2018.12.157
– ident: e_1_2_9_117_1
  doi: 10.1038/nnano.2014.311
– ident: e_1_2_9_133_1
  doi: 10.1103/PhysRevB.68.235321
– ident: e_1_2_9_156_1
  doi: 10.1016/j.nanoen.2019.03.087
– ident: e_1_2_9_154_1
  doi: 10.1093/nsr/nwx051
– ident: e_1_2_9_134_1
  doi: 10.1063/1.1698719
– ident: e_1_2_9_32_1
  doi: 10.1039/C7EN00063D
– ident: e_1_2_9_113_1
  doi: 10.1021/ja3079972
– ident: e_1_2_9_16_1
  doi: 10.1016/j.nanoen.2017.09.005
– ident: e_1_2_9_41_1
  doi: 10.1039/C7EN00548B
– ident: e_1_2_9_75_1
  doi: 10.1021/nl503131s
– ident: e_1_2_9_162_1
  doi: 10.1016/j.nanoen.2020.104857
– ident: e_1_2_9_95_1
  doi: 10.1002/solr.201800277
– ident: e_1_2_9_130_1
  doi: 10.1002/adma.201405372
– ident: e_1_2_9_103_1
  doi: 10.1016/j.joule.2018.04.004
– ident: e_1_2_9_141_1
  doi: 10.1016/j.desal.2011.03.042
– ident: e_1_2_9_58_1
  doi: 10.1002/aenm.201701028
– ident: e_1_2_9_72_1
  doi: 10.1039/C7RA03007J
– ident: e_1_2_9_61_1
  doi: 10.1016/j.enconman.2016.09.015
– ident: e_1_2_9_189_1
  doi: 10.1002/adma.201702590
– ident: e_1_2_9_87_1
  doi: 10.1039/C9RA09667A
– ident: e_1_2_9_76_1
  doi: 10.1021/acs.chemmater.8b01739
– ident: e_1_2_9_81_1
  doi: 10.1016/j.applthermaleng.2019.114322
– ident: e_1_2_9_24_1
  doi: 10.1039/C9TA03045J
– ident: e_1_2_9_43_1
  doi: 10.1016/j.nanoen.2018.02.018
– volume: 139
  start-page: 1619
  year: 2020
  ident: e_1_2_9_147_1
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-019-08634-6
– ident: e_1_2_9_161_1
  doi: 10.1021/acsami.7b01307
– ident: e_1_2_9_158_1
  doi: 10.1002/adma.201500135
– ident: e_1_2_9_144_1
  doi: 10.1021/nn304948h
– ident: e_1_2_9_186_1
  doi: 10.1039/C8TA10227A
– volume: 5
  start-page: 115770
  year: 2021
  ident: e_1_2_9_187_1
  publication-title: Water Res.
– ident: e_1_2_9_94_1
  doi: 10.1021/acsami.8b07434
– ident: e_1_2_9_100_1
  doi: 10.1002/smll.201403777
– ident: e_1_2_9_19_1
  doi: 10.1039/C7TA01361B
– ident: e_1_2_9_63_1
  doi: 10.1021/acs.nanolett.5b03901
– volume-title: Photothermal Science and Techniques
  year: 1996
  ident: e_1_2_9_118_1
– ident: e_1_2_9_60_1
  doi: 10.1002/anie.201701321
– ident: e_1_2_9_59_1
  doi: 10.1002/adsu.201600013
– volume: 9
  start-page: 1
  year: 2018
  ident: e_1_2_9_175_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02088-w
– ident: e_1_2_9_79_1
  doi: 10.1002/aenm.201601811
– volume: 27
  start-page: 519
  year: 2019
  ident: e_1_2_9_12_1
  publication-title: Environ. Rev.
  doi: 10.1139/er-2018-0106
– ident: e_1_2_9_155_1
  doi: 10.1039/C8TA05412F
– ident: e_1_2_9_199_1
  doi: 10.1021/acsami.6b04606
– ident: e_1_2_9_44_1
  doi: 10.1002/adma.201604031
– ident: e_1_2_9_26_1
  doi: 10.1016/j.nanoen.2019.104006
– ident: e_1_2_9_176_1
  doi: 10.1039/C7EE01804E
– ident: e_1_2_9_201_1
  doi: 10.1002/cctc.201901597
– ident: e_1_2_9_10_1
  doi: 10.1002/advs.201600337
– ident: e_1_2_9_84_1
  doi: 10.1002/adma.200800606
– ident: e_1_2_9_31_1
  doi: 10.1039/C6EN00183A
– ident: e_1_2_9_39_1
  doi: 10.1021/acs.est.7b03040
– ident: e_1_2_9_90_1
  doi: 10.1039/C7TA08256H
– ident: e_1_2_9_163_1
  doi: 10.1073/pnas.1613031113
– ident: e_1_2_9_49_1
  doi: 10.1021/acsnano.7b08196
– ident: e_1_2_9_123_1
  doi: 10.1039/c3nr05112a
– ident: e_1_2_9_172_1
  doi: 10.1016/j.solmat.2017.04.015
– ident: e_1_2_9_150_1
  doi: 10.1038/ncomms5449
– ident: e_1_2_9_11_1
  doi: 10.1002/gch2.202000009
– ident: e_1_2_9_88_1
  doi: 10.1002/adsu.201800108
– ident: e_1_2_9_142_1
  doi: 10.1021/acs.jpcc.5b09604
– ident: e_1_2_9_57_1
  doi: 10.1016/j.nanoen.2016.12.031
– ident: e_1_2_9_184_1
  doi: 10.1039/C6TA03733J
– ident: e_1_2_9_64_1
  doi: 10.1016/j.pnsc.2017.08.010
– ident: e_1_2_9_74_1
  doi: 10.1038/nchem.1006
– volume: 26
  start-page: 105012
  year: 2017
  ident: e_1_2_9_137_1
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa80cb
– ident: e_1_2_9_50_1
  doi: 10.1002/gch2.201900098
– ident: e_1_2_9_23_1
  doi: 10.1039/C8MH00386F
– ident: e_1_2_9_36_1
  doi: 10.1039/C7MH01064H
– ident: e_1_2_9_96_1
  doi: 10.1016/j.solmat.2018.05.049
– ident: e_1_2_9_114_1
  doi: 10.1016/S0304-3835(06)80028-5
– ident: e_1_2_9_188_1
  doi: 10.1039/C9EE00692C
– ident: e_1_2_9_65_1
  doi: 10.1103/PhysRevB.57.1390
– ident: e_1_2_9_208_1
  doi: 10.1039/C8EE01146J
– ident: e_1_2_9_140_1
  doi: 10.1016/j.apenergy.2012.10.029
– ident: e_1_2_9_206_1
  doi: 10.1002/smll.201702268
– ident: e_1_2_9_3_1
  doi: 10.1016/j.rser.2017.10.087
– ident: e_1_2_9_97_1
  doi: 10.1002/aenm.201800711
– ident: e_1_2_9_127_1
  doi: 10.1111/j.1551-2916.2008.02870.x
– ident: e_1_2_9_128_1
  doi: 10.1103/PhysRevB.63.205321
– ident: e_1_2_9_135_1
  doi: 10.1063/1.1700524
– ident: e_1_2_9_18_1
  doi: 10.1039/C9TA12211G
– ident: e_1_2_9_193_1
  doi: 10.1016/S0038-092X(02)00118-4
– ident: e_1_2_9_122_1
  doi: 10.1021/jz300426p
– ident: e_1_2_9_47_1
  doi: 10.1039/C9TA05859A
– ident: e_1_2_9_102_1
  doi: 10.1016/j.rser.2015.03.065
– ident: e_1_2_9_179_1
  doi: 10.1016/j.apenergy.2017.08.169
– ident: e_1_2_9_77_1
  doi: 10.1021/acsami.6b11466
– ident: e_1_2_9_207_1
  doi: 10.1002/aenm.201702481
– ident: e_1_2_9_67_1
  doi: 10.1021/j100102a038
– ident: e_1_2_9_124_1
  doi: 10.1021/jp983141k
– ident: e_1_2_9_46_1
  doi: 10.1039/C8GC01347K
– ident: e_1_2_9_185_1
  doi: 10.1039/C9NR10357K
– ident: e_1_2_9_15_1
  doi: 10.1038/s41893-018-0186-x
– ident: e_1_2_9_152_1
  doi: 10.1002/smll.201401071
– ident: e_1_2_9_55_1
  doi: 10.1038/ncomms10103
– ident: e_1_2_9_62_1
  doi: 10.1126/sciadv.1501227
– ident: e_1_2_9_101_1
  doi: 10.1002/aenm.201970119
– ident: e_1_2_9_112_1
  doi: 10.1021/nn304775h
– ident: e_1_2_9_159_1
  doi: 10.1016/j.joule.2018.08.008
– ident: e_1_2_9_178_1
  doi: 10.1039/C6NR03921A
– ident: e_1_2_9_151_1
  doi: 10.1016/j.energy.2019.07.005
– ident: e_1_2_9_9_1
  doi: 10.1016/j.egypro.2017.03.138
– ident: e_1_2_9_73_1
  doi: 10.1002/adsu.201700145
– ident: e_1_2_9_8_1
  doi: 10.1007/s10668-013-9441-5
– ident: e_1_2_9_164_1
  doi: 10.1039/C8TA08829B
– ident: e_1_2_9_126_1
  doi: 10.1073/pnas.1011972107
– ident: e_1_2_9_89_1
  doi: 10.1039/C7TA08972D
– ident: e_1_2_9_82_1
  doi: 10.1002/adma.200800619
– ident: e_1_2_9_98_1
  doi: 10.1002/adma.201807716
– ident: e_1_2_9_105_1
  doi: 10.1007/s11705-019-1824-1
– ident: e_1_2_9_71_1
  doi: 10.1039/C9TA09281A
– ident: e_1_2_9_191_1
  doi: 10.1002/adma.201900498
– ident: e_1_2_9_168_1
  doi: 10.1038/nenergy.2016.126
– ident: e_1_2_9_115_1
  doi: 10.1111/j.1751-1097.2008.00507.x
– ident: e_1_2_9_116_1
  doi: 10.1021/nn2050032
– ident: e_1_2_9_157_1
  doi: 10.1002/adma.201501832
– ident: e_1_2_9_5_1
  doi: 10.3390/w11040696
– ident: e_1_2_9_93_1
  doi: 10.1021/acs.nanolett.8b04157
– ident: e_1_2_9_110_1
  doi: 10.1021/ac00298a002
– ident: e_1_2_9_202_1
  doi: 10.1016/j.apcatb.2017.08.069
– ident: e_1_2_9_1_1
  doi: 10.1016/j.solener.2003.12.012
– ident: e_1_2_9_34_1
  doi: 10.3390/ma9060497
SSID ssj0002210388
Score 2.4773192
SecondaryResourceType review_article
Snippet Solar‐powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers....
Solar-powered water evaporation is a primitive technology but interest has revived in the last five years due to the use of nanoenabled photothermal absorbers....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2000055
SubjectTerms Alternative energy sources
Carbon
clean water
Climate change
Desalination
Efficiency
Evaporation
Evaporation rate
Graphene
Heat conductivity
Light
Metals
nanoenabled
Nanomaterials
Nanoparticles
photothermal
Photothermal conversion
Polymers
Prototypes
Remote sensing
Review
Reviews
Solar energy
Solar power
Solar radiation
steam generation
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEB50vXgR31ZXqSB6KrZ5tgcRXdRFUBZR9FbaNHEXtPWx-_-dpN2qiHpsM03bmWTyMcl8A7AnDC0iWiRBkTEVMJmHOOeMDIo8x9WYZlwad9riWvTv2OUDf2gCbu_NscqpT3SOuqiUjZEfEia52zSixy-vga0aZXdXmxIaszCHLjiOOzB3enY9uGmjLIRYAnBXlg5X-kAIJqbMjSE5fFRDm4tls1VCm-v3dWX6ATd_npr8imbdcnS-CAsNjvRPasMvwYwul8G7QghcvblIub_v955GiEfd1QocoR-ttMuUKvzBsBq71Ktn7OMqG9fD0EcAiw_prPTv7T1_UNPBoulW4e787LbXD5raCYFiwuYTGGJoEnKTZBmJIx0ZUvBcGkoSngsmVWJzTKnmGUsU-pjESNQDWiksiNRS0TXolFWpN8APtdCoRMSBRrLcksEkOooM07FCNMalB8FUb6lqiMVtfYuntKZEJqnVc9rq2YODVv6lptT4VbI7NUPaTK339HMgeLDbNuOksDsdWamriZORCNQQ-3iwXlutfRWljEpOmAfymz1bAUu4_b2lHA0d8baUcSwo9kmc5f_5-vSi1yft1ebf_7IF88SelnHBnS50xm8TvY1wZ5zvNGP6A3yH-a8
  priority: 102
  providerName: ProQuest
Title Nanoenabled Photothermal Materials for Clean Water Production
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgch2.202000055
https://www.ncbi.nlm.nih.gov/pubmed/33437524
https://www.proquest.com/docview/2475768423
https://www.proquest.com/docview/2477515222
https://pubmed.ncbi.nlm.nih.gov/PMC7788632
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_Uvfgifludo4LoU7HN5_rgg47pEJQhDn0raZu4wWxFt__fS7pVxxDBxzaXtNzlkh-Xu18AToWheUTzOMgVywIm0xB9zsggT1Pcjani0rhsiwfRG7C7F_7yo4q_4oeoA27WM9x6bR1cpZ8X36Shr9nQFlLZUpOQ81Vo2Ppam9RHWL-OshBiCcDdtXS40wdCMDFnbgzJxeIQizvTEtxczpr8iWbddnSzCRszHOlfVYbfghVdbIN3jxC4_HCRcv_M74xHiEfd0w5c4jpaalcplfv9YTlxpVdvOMa9mlTT0EcAi520Kvxn-87vV3SwaLpdGNx0nzq9YHZ3QpAxYesJDDE0DrmJlSLtSEeG5DyVhpKYp4LJLLY1plRzxeIM15jYSNQDWinMidQyo3uwVpSFPgA_1EKjEhEHGslSSwYT6ygyTLczRGNcehDM9ZZkM2Jxe7_FOKkokUli9ZzUevbgvJZ_ryg1fpVszs2QzFzrMyFMcnd6SD04qZvRKexJhyp0OXUyEoEaYh8P9iur1Z-ilFHJCfNALtizFrCE24stxWjoiLelbLcFxTGJs_wff5_cdnqkfjr8T6cjWCc2h8aFfJqwNvmY6mMEQZO05eZ5CxrX3Yf-Y8uFEr4A7QD9iQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH6iw6G9IOiastSVupwiEq-TA0LtsAyFGY0qULmliWMzSDShMKjqn-pv5NlZAKG2J45JHCd5i_3Ffu97AO-kZUXMiiQsMq5DrvIIfc6qsMhznI1ZJpT10RZjOTziX47F8Rz8aXNhXFhlOyb6gbqotFsjX6dcCb9pxDbPf4auapTbXW1LaNRmsW9-_8JftsuNvS3U73tKd7YPB8OwqSoQai5dpL2lFn_0hU2yjPZjE1taiFxZRhORS6504rIvmREZTzR6X2IVQip8_6igyijNsN9HMM-ZjGgP5j9vjydfu1UdSh3huC-Dh8gilJLLlikyousneupyv1x2TORyC2_PhPfg7f0ozdvo2U9_O4uw0OBW8qk2tCWYM-VTCEYIuasLvzJPPpDB2SniX3_0DDZw3K6Mz8wqyGRazXyq1w_sY5TNarMnCJjxJpOV5Js7RyY1_SyaynM4ehCpvoBeWZXmFZDISINCRNxpFc8d-Uxi4thy09eI_oQKIGzlluqGyNzV0zhLawpmmjo5p52cA_jYtT-vKTz-2nKlVUPauPJlemN4AbztLqMTup2VrDTVlW-jEBgi1grgZa217lGMcaYE5QGoO_rsGjiC77tXytOpJ_pWqt-XDPukXvP_eft0dzCk3dHrf3_LG3g8PBwdpAd74_1leEJdpI5fWFqB3uziyqwi1Jrla419E_j-0C51DfX8NKs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrYR4QdyEFjASx1O0ic_NQ4Vg22VL6WqFqOhbmsNmK7VJabdC_DV-HTPOQasKeOpjEq-zmcP-bM98A_BSO1HGokzCMpNFKE0eoc85E5Z5jrOxyJRxPtpipqd78uO-2l-BX10uDIVVdmOiH6jLuqA98iGXRvlDIzF0bVjEfHPy9uR7SBWk6KS1K6fRmMiO_fkDl29nG9ubqOtXnE-2voynYVthICykpqh7xx0u-pVLsoyPYhs7XqrcOMETlWtpioQyMYVVmUwK9MTEGYRX-C1RyY01hcB-b8CqoVXRAFbfb83mn_sdHs6JfNyXxEOUEWotdccaGfHht2JBeWCUKRNRnuHFWfEK1L0asXkRSfupcHIHbrcYlr1rjO4urNjqHgS7CL_rU79Lz16z8dEhYmF_dR82cAyvrc_SKtl8US992tcx9rGbLRsXYAie8Uc2q9hXusfmDRUtms0D2LsWqT6EQVVX9jGwyGqLQkQM6ozMiYgmsXHspB0ViASVCSDs5JYWLak51dY4Shs6Zp6SnNNezgG86dufNHQef2253qkhbd36LP1jhAG86B-jQ9IpS1bZ-ty3MQgSEXcF8KjRWv8qIaQwissAzCV99g2I7Pvyk-pw4Um_jRmNtMA-udf8f_59-mE85f3Vk39_y3O4ia6Uftqe7azBLU5BO36PaR0Gy9Nz-xRR1zJ_1po3g4Pr9qjfoG444A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoenabled+Photothermal+Materials+for+Clean+Water+Production&rft.jtitle=Global+challenges&rft.au=Irshad%2C+Muhammad+Sultan&rft.au=Arshad%2C+Naila&rft.au=Wang%2C+Xianbao&rft.date=2021-01-01&rft.issn=2056-6646&rft.eissn=2056-6646&rft.volume=5&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fgch2.202000055&rft.externalDBID=10.1002%252Fgch2.202000055&rft.externalDocID=GCH2202000055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-6646&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-6646&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-6646&client=summon