IL-12 and IL-23: master regulators of innate and adaptive immunity

Initiation of an effective immune response requires close interactions between innate and adaptive immunity. Recent advances in the field of cytokine biology have led to an increased understanding of how myeloid cell‐derived factors regulate the immune system to protect the host from infections and...

Full description

Saved in:
Bibliographic Details
Published inImmunological reviews Vol. 202; no. 1; pp. 96 - 105
Main Authors Langrish, Claire L., McKenzie, Brent S., Wilson, Nicholas J., De Waal Malefyt, Rene, Kastelein, Robert A., Cua, Daniel J.
Format Journal Article
LanguageEnglish
Published Oxford, UK; Malden, USA Munksgaard International Publishers 01.12.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Initiation of an effective immune response requires close interactions between innate and adaptive immunity. Recent advances in the field of cytokine biology have led to an increased understanding of how myeloid cell‐derived factors regulate the immune system to protect the host from infections and prevent tumor development. In this review, we focus on the function of interleukin (IL)‐23, a new member of the IL‐12 family of regulatory cytokines produced by activated macrophages and dendritic cells. We propose that IL‐12 and IL‐23 promote two distinct immunological pathways that have separate but complementary functions. IL‐12 is required for antimicrobial responses to intracellular pathogens, whereas IL‐23 is likely to be important for the recruitment and activation of a range of inflammatory cells that is required for the induction of chronic inflammation and granuloma formation. These two cytokines work in concert to regulate cellular immune responses critical for host defense and tumor suppression.
AbstractList Initiation of an effective immune response requires close interactions between innate and adaptive immunity. Recent advances in the field of cytokine biology have led to an increased understanding of how myeloid cell‐derived factors regulate the immune system to protect the host from infections and prevent tumor development. In this review, we focus on the function of interleukin (IL)‐23, a new member of the IL‐12 family of regulatory cytokines produced by activated macrophages and dendritic cells. We propose that IL‐12 and IL‐23 promote two distinct immunological pathways that have separate but complementary functions. IL‐12 is required for antimicrobial responses to intracellular pathogens, whereas IL‐23 is likely to be important for the recruitment and activation of a range of inflammatory cells that is required for the induction of chronic inflammation and granuloma formation. These two cytokines work in concert to regulate cellular immune responses critical for host defense and tumor suppression.
Initiation of an effective immune response requires close interactions between innate and adaptive immunity. Recent advances in the field of cytokine biology have led to an increased understanding of how myeloid cell-derived factors regulate the immune system to protect the host from infections and prevent tumor development. In this review, we focus on the function of interleukin (IL)-23, a new member of the IL-12 family of regulatory cytokines produced by activated macrophages and dendritic cells. We propose that IL-12 and IL-23 promote two distinct immunological pathways that have separate but complementary functions. IL-12 is required for antimicrobial responses to intracellular pathogens, whereas IL-23 is likely to be important for the recruitment and activation of a range of inflammatory cells that is required for the induction of chronic inflammation and granuloma formation. These two cytokines work in concert to regulate cellular immune responses critical for host defense and tumor suppression.Initiation of an effective immune response requires close interactions between innate and adaptive immunity. Recent advances in the field of cytokine biology have led to an increased understanding of how myeloid cell-derived factors regulate the immune system to protect the host from infections and prevent tumor development. In this review, we focus on the function of interleukin (IL)-23, a new member of the IL-12 family of regulatory cytokines produced by activated macrophages and dendritic cells. We propose that IL-12 and IL-23 promote two distinct immunological pathways that have separate but complementary functions. IL-12 is required for antimicrobial responses to intracellular pathogens, whereas IL-23 is likely to be important for the recruitment and activation of a range of inflammatory cells that is required for the induction of chronic inflammation and granuloma formation. These two cytokines work in concert to regulate cellular immune responses critical for host defense and tumor suppression.
Author Langrish, Claire L.
Wilson, Nicholas J.
McKenzie, Brent S.
Kastelein, Robert A.
Cua, Daniel J.
De Waal Malefyt, Rene
Author_xml – sequence: 1
  givenname: Claire L.
  surname: Langrish
  fullname: Langrish, Claire L.
  organization: Discovery Research, DNAX Research Inc., Palo Alto, CA, USA
– sequence: 2
  givenname: Brent S.
  surname: McKenzie
  fullname: McKenzie, Brent S.
  organization: Discovery Research, DNAX Research Inc., Palo Alto, CA, USA
– sequence: 3
  givenname: Nicholas J.
  surname: Wilson
  fullname: Wilson, Nicholas J.
  organization: Experimental Pharmacology and Pathology, DNAX Research Inc., Palo Alto, CA, USA
– sequence: 4
  givenname: Rene
  surname: De Waal Malefyt
  fullname: De Waal Malefyt, Rene
  organization: Experimental Pharmacology and Pathology, DNAX Research Inc., Palo Alto, CA, USA
– sequence: 5
  givenname: Robert A.
  surname: Kastelein
  fullname: Kastelein, Robert A.
  organization: Discovery Research, DNAX Research Inc., Palo Alto, CA, USA
– sequence: 6
  givenname: Daniel J.
  surname: Cua
  fullname: Cua, Daniel J.
  email: daniel.cua@dnax.org
  organization: Discovery Research, DNAX Research Inc., Palo Alto, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15546388$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2P0zAQhi20iO0u_AWUE7cEO_6IgxASrGCpVEAgoIjLyHEmyCUfxXag_fe426UHLuCL5_C878y8c0HOxmlEQjJGC5be401BGZV5qWtVlJSKgtKSiWJ3hyyYojSnSn45I4sTdE4uQthQyipeinvknEkpFNd6QV4sVzkrMzO2WapK_iQbTIjoM4_f5t7EyYds6jI3jibiDWZas43uJ2ZuGObRxf19crczfcAHt_8l-fTq5cer1_nq3fXy6vkqt0JpkZcNbyzajrXI0mC2lVrXaTiUylrFKNa6402NtbSqsV1biarhtpJdaihsq_kleXT03frpx4whwuCCxb43I05zAFXRqlZcJfDhLTg3A7aw9W4wfg9_tk7AsyNg_RSCxw6siya6aYzeuB4YhUPMsIFDgnBIEA4xw03MsEsG-i-DU49_S58epb9cj_v_1sHyzYdUJHl-lLt0pd1Jbvz3tD-vJKzfXgMV6_fis_gKa_4bdsyhwA
CitedBy_id crossref_primary_10_1002_hbm_23252
crossref_primary_10_1016_j_diabres_2010_03_014
crossref_primary_10_1097_SHK_0000000000000207
crossref_primary_10_3389_fmicb_2017_01393
crossref_primary_10_1111_jdv_14868
crossref_primary_10_1007_s11926_021_01027_5
crossref_primary_10_1155_2012_715190
crossref_primary_10_1016_j_molimm_2006_09_001
crossref_primary_10_1155_2022_2944156
crossref_primary_10_1177_0218492309338100
crossref_primary_10_1177_1759720X20977777
crossref_primary_10_1007_s40744_015_0010_2
crossref_primary_10_1016_j_micinf_2005_09_007
crossref_primary_10_1002_ibd_20463
crossref_primary_10_1016_j_jaut_2018_11_002
crossref_primary_10_1038_s41598_018_23539_4
crossref_primary_10_2174_1389450121666191218123203
crossref_primary_10_4049_jimmunol_176_11_6802
crossref_primary_10_1016_j_smim_2005_05_010
crossref_primary_10_1097_CJI_0b013e318193d31e
crossref_primary_10_1164_rccm_200911_1775OC
crossref_primary_10_1002_eji_200636643
crossref_primary_10_1155_2016_3463104
crossref_primary_10_1371_journal_pone_0030434
crossref_primary_10_3389_fimmu_2024_1435054
crossref_primary_10_1016_j_jneuroim_2006_03_020
crossref_primary_10_1586_1744666X_2014_883920
crossref_primary_10_1016_j_bbrc_2010_02_153
crossref_primary_10_3389_fnins_2024_1451060
crossref_primary_10_3389_fphar_2020_00129
crossref_primary_10_1016_j_cellimm_2015_01_015
crossref_primary_10_1080_1744666X_2018_1532291
crossref_primary_10_2527_jas_2008_1187
crossref_primary_10_1371_journal_pone_0074108
crossref_primary_10_1111_j_1365_2249_2006_03215_x
crossref_primary_10_1371_journal_pone_0074225
crossref_primary_10_1111_j_1365_2567_2007_02601_x
crossref_primary_10_1016_j_lungcan_2012_10_003
crossref_primary_10_1016_j_cmpb_2008_06_002
crossref_primary_10_1111_aji_13055
crossref_primary_10_3390_medicina57111251
crossref_primary_10_1016_j_pharmthera_2006_12_004
crossref_primary_10_1111_j_1600_065X_2011_01037_x
crossref_primary_10_1016_j_psychres_2006_08_005
crossref_primary_10_1038_mt_2008_121
crossref_primary_10_1038_mi_2008_7
crossref_primary_10_1371_journal_pone_0132348
crossref_primary_10_1080_02648725_2013_801228
crossref_primary_10_1089_jir_2023_0190
crossref_primary_10_1089_scd_2017_0025
crossref_primary_10_1007_s00535_006_1926_7
crossref_primary_10_1073_pnas_1121231109
crossref_primary_10_1097_BOR_0b013e328303204b
crossref_primary_10_1016_j_jaci_2010_12_002
crossref_primary_10_1016_j_clim_2008_01_019
crossref_primary_10_1111_aji_13064
crossref_primary_10_23736_S0026_4806_23_08466_5
crossref_primary_10_1038_s41598_017_17752_w
crossref_primary_10_4049_jimmunol_175_12_7905
crossref_primary_10_1111_j_1574_695X_2007_00233_x
crossref_primary_10_4049_jimmunol_177_9_6122
crossref_primary_10_1155_2014_590409
crossref_primary_10_2147_IJN_S250960
crossref_primary_10_1007_s00430_015_0440_z
crossref_primary_10_1159_000536601
crossref_primary_10_1177_0961203313498799
crossref_primary_10_1016_j_jmb_2008_08_001
crossref_primary_10_1016_j_bbrc_2010_10_114
crossref_primary_10_3390_biologics1020012
crossref_primary_10_1016_j_imbio_2007_11_007
crossref_primary_10_1016_j_bbi_2010_05_003
crossref_primary_10_4049_jimmunol_180_8_5157
crossref_primary_10_1016_S1016_8478_23_13229_8
crossref_primary_10_1186_1472_6807_12_22
crossref_primary_10_3390_ijms19113605
crossref_primary_10_1038_nrrheum_2012_170
crossref_primary_10_1097_MD_0000000000000613
crossref_primary_10_1038_cr_2009_128
crossref_primary_10_1371_journal_pone_0055756
crossref_primary_10_1371_journal_pone_0245169
crossref_primary_10_1111_j_1365_2567_2011_03522_x
crossref_primary_10_1016_j_bbrep_2023_101438
crossref_primary_10_1002_art_33494
crossref_primary_10_1177_1753425916669862
crossref_primary_10_1074_jbc_M710013200
crossref_primary_10_1016_j_cmi_2018_02_002
crossref_primary_10_2174_1381612825666190405141410
crossref_primary_10_1017_S003118201400095X
crossref_primary_10_1371_journal_pone_0141265
crossref_primary_10_1038_sj_icb_7100027
crossref_primary_10_1111_aji_13016
crossref_primary_10_1155_2008_349185
crossref_primary_10_1155_2013_425915
crossref_primary_10_1038_sj_icb_7100146
crossref_primary_10_1186_1477_7827_7_84
crossref_primary_10_1371_journal_ppat_1000836
crossref_primary_10_1371_journal_pone_0181449
crossref_primary_10_1136_annrheumdis_2016_209351
crossref_primary_10_1128_JVI_00315_09
crossref_primary_10_1371_journal_pone_0071905
crossref_primary_10_1093_infdis_jir336
crossref_primary_10_1128_IAI_00971_07
crossref_primary_10_1182_blood_2006_09_045641
crossref_primary_10_1182_blood_2008_08_175448
crossref_primary_10_1002_ibd_20523
crossref_primary_10_1016_j_livsci_2015_05_007
crossref_primary_10_1021_jm801365a
crossref_primary_10_3390_cancers2020436
crossref_primary_10_1038_srep12946
crossref_primary_10_1016_j_cyto_2014_11_003
crossref_primary_10_1038_ni0307_232
crossref_primary_10_3390_molecules21101321
crossref_primary_10_4049_jimmunol_1601549
crossref_primary_10_1128_IAI_73_9_5782_5788_2005
crossref_primary_10_1016_j_vaccine_2011_04_090
crossref_primary_10_1196_annals_1406_032
crossref_primary_10_1038_sj_ki_5002196
crossref_primary_10_1007_s00251_014_0796_z
crossref_primary_10_1002_hep_21340
crossref_primary_10_4078_jrd_2023_0041
crossref_primary_10_1146_annurev_immunol_030409_101225
crossref_primary_10_1016_j_micinf_2012_03_005
crossref_primary_10_1084_jem_20061082
crossref_primary_10_1189_jlb_1009652
crossref_primary_10_1371_journal_pntd_0005684
crossref_primary_10_1016_j_micinf_2009_03_005
crossref_primary_10_1097_MD_0000000000003772
crossref_primary_10_1016_j_cyto_2008_07_017
crossref_primary_10_1007_s10753_016_0453_9
crossref_primary_10_1371_journal_pone_0105351
crossref_primary_10_1016_j_crohns_2013_08_002
crossref_primary_10_1084_jem_20050193
crossref_primary_10_1111_1365_2435_12273
crossref_primary_10_4049_jimmunol_1700655
crossref_primary_10_1080_09546630802206686
crossref_primary_10_1093_jmcb_mjp001
crossref_primary_10_1111_j_1365_2249_2009_03961_x
crossref_primary_10_1016_j_cellimm_2006_11_002
crossref_primary_10_4049_jimmunol_177_6_4072
crossref_primary_10_3892_mmr_2022_12824
crossref_primary_10_1016_j_freeradbiomed_2015_02_003
crossref_primary_10_3389_fimmu_2017_00044
crossref_primary_10_1177_1535370218824547
crossref_primary_10_1093_bioinformatics_bty556
crossref_primary_10_1016_j_ebiom_2017_08_001
crossref_primary_10_1021_acsmacrolett_2c00742
crossref_primary_10_1038_jid_2011_304
crossref_primary_10_1128_JVI_01877_06
crossref_primary_10_1002_eji_200636484
crossref_primary_10_3389_fimmu_2017_00294
crossref_primary_10_1002_eji_200737395
crossref_primary_10_1002_jcp_26604
crossref_primary_10_1007_s11481_009_9188_9
crossref_primary_10_1111_cei_12441
crossref_primary_10_1038_ni_3347
crossref_primary_10_1111_j_1365_3083_2009_02361_x
crossref_primary_10_4049_jimmunol_178_3_1357
crossref_primary_10_1038_gene_2008_31
crossref_primary_10_1097_01_qco_0000224818_42729_67
crossref_primary_10_1128_IAI_00403_09
crossref_primary_10_1158_0008_5472_CAN_05_1682
crossref_primary_10_1016_j_clim_2008_10_011
crossref_primary_10_1016_j_bbi_2013_10_016
crossref_primary_10_1111_1756_185X_12674
crossref_primary_10_4049_jimmunol_178_1_186
crossref_primary_10_1371_journal_pone_0141550
crossref_primary_10_1016_j_fct_2016_07_021
crossref_primary_10_1186_1743_422X_2_59
crossref_primary_10_1038_ni_2366
crossref_primary_10_1111_j_1365_2567_2007_02693_x
crossref_primary_10_3858_emm_2008_40_1_130
crossref_primary_10_1016_j_fsi_2015_12_007
crossref_primary_10_1016_j_jaad_2007_04_020
crossref_primary_10_32725_jab_2024_024
crossref_primary_10_1007_s11882_014_0489_6
crossref_primary_10_3347_kjp_2013_51_1_85
crossref_primary_10_3390_vaccines8020250
crossref_primary_10_1016_j_ddstr_2006_08_004
crossref_primary_10_1172_JCI30150
crossref_primary_10_1016_j_jaci_2013_06_049
crossref_primary_10_1155_2016_1693918
crossref_primary_10_3389_fimmu_2023_1234535
crossref_primary_10_1053_j_gastro_2006_11_016
crossref_primary_10_1136_ard_2007_080283
crossref_primary_10_1586_egh_11_107
crossref_primary_10_1016_j_cellimm_2006_04_005
crossref_primary_10_1016_j_fsi_2019_06_028
crossref_primary_10_1186_1743_422X_8_301
crossref_primary_10_4049_jimmunol_1002701
crossref_primary_10_4049_jimmunol_1301759
crossref_primary_10_1155_2022_2249834
crossref_primary_10_1155_2013_164246
crossref_primary_10_1021_ab5001063
crossref_primary_10_1016_j_cyto_2017_10_010
crossref_primary_10_1002_eji_200939325
crossref_primary_10_1038_sj_bmt_1705980
crossref_primary_10_1038_cgt_2008_41
crossref_primary_10_1038_ncomms2113
crossref_primary_10_1080_19768354_2011_630411
crossref_primary_10_1080_13693780802139867
crossref_primary_10_1158_0008_5472_CAN_06_3134
crossref_primary_10_1111_j_1471_4159_2007_04875_x
crossref_primary_10_3390_ijms242216095
crossref_primary_10_1080_17474124_2020_1780120
crossref_primary_10_1016_j_abb_2016_03_022
crossref_primary_10_1038_sj_jid_5700167
crossref_primary_10_3168_jds_2009_2392
crossref_primary_10_1128_IAI_05821_11
crossref_primary_10_1155_2008_453120
crossref_primary_10_1038_gene_2008_64
crossref_primary_10_1016_j_cyto_2008_12_019
crossref_primary_10_1158_1535_7163_MCT_15_0706
crossref_primary_10_1097_01_MIB_0000194183_92671_b6
crossref_primary_10_4049_jimmunol_0800471
crossref_primary_10_1016_j_biocel_2008_04_027
crossref_primary_10_1089_jir_2012_0063
crossref_primary_10_1016_j_clim_2020_108641
crossref_primary_10_1111_j_1398_9995_2010_02369_x
crossref_primary_10_1186_s12864_015_1733_8
crossref_primary_10_1016_j_cirep_2024_200166
crossref_primary_10_1016_S1016_8478_23_13236_5
crossref_primary_10_1097_MD_0000000000004944
crossref_primary_10_1016_j_ijpara_2013_08_001
crossref_primary_10_1016_j_jep_2025_119415
crossref_primary_10_2165_11595940_000000000_00000
crossref_primary_10_1002_cti2_1304
crossref_primary_10_1007_s00281_011_0257_9
crossref_primary_10_3390_ijms241311096
crossref_primary_10_1016_j_cgh_2007_05_002
crossref_primary_10_1016_j_mce_2016_02_003
crossref_primary_10_1128_JVI_07091_11
crossref_primary_10_18081_ajbm_2333_5106_013_11_4_6
crossref_primary_10_1152_ajpgi_00311_2015
crossref_primary_10_1002_dvdy_21594
crossref_primary_10_1111_cas_14343
crossref_primary_10_1016_j_cytogfr_2011_07_001
crossref_primary_10_1042_CBI20100303
crossref_primary_10_1152_ajpgi_00472_2010
crossref_primary_10_1007_s00011_017_1115_6
crossref_primary_10_1074_jbc_M114_595181
crossref_primary_10_4049_jimmunol_175_6_3920
crossref_primary_10_1016_j_gtc_2017_05_015
crossref_primary_10_1186_s12876_022_02271_4
crossref_primary_10_1038_icb_2013_87
crossref_primary_10_3389_fimmu_2021_637829
crossref_primary_10_1128_IAI_01053_06
crossref_primary_10_1002_ueg2_12305
crossref_primary_10_1002_oby_20642
crossref_primary_10_1038_s41551_022_00888_0
crossref_primary_10_1080_21645515_2015_1026498
crossref_primary_10_1016_j_cyto_2007_11_013
crossref_primary_10_1016_j_jaut_2015_04_006
crossref_primary_10_1371_journal_ppat_1005561
crossref_primary_10_4049_jimmunol_181_12_8576
crossref_primary_10_2165_11538950_000000000_00000
crossref_primary_10_3748_wjg_v21_i43_12283
crossref_primary_10_1007_s10620_016_4047_z
crossref_primary_10_1016_j_genrep_2021_101422
crossref_primary_10_1016_j_semcdb_2022_01_006
crossref_primary_10_1111_imr_12180
crossref_primary_10_1128_IAI_00161_13
crossref_primary_10_1371_journal_pone_0034349
crossref_primary_10_1016_j_coi_2006_11_008
crossref_primary_10_1152_ajplung_00312_2006
crossref_primary_10_1158_0008_5472_CAN_05_3448
crossref_primary_10_1097_MOG_0000000000000444
crossref_primary_10_1007_s12016_015_8468_9
crossref_primary_10_1080_14740338_2020_1767585
crossref_primary_10_1111_j_1365_2249_2009_03965_x
crossref_primary_10_2147_DDDT_S340459
crossref_primary_10_1002_hep_23132
crossref_primary_10_1002_ijc_29182
crossref_primary_10_3748_wjg_v21_i19_6065
crossref_primary_10_3390_jpm11020066
crossref_primary_10_1093_intimm_dxp025
crossref_primary_10_1002_art_23073
crossref_primary_10_1016_j_bbrc_2011_07_013
crossref_primary_10_1038_ni0407_345
crossref_primary_10_1111_j_1365_2567_2006_02513_x
crossref_primary_10_4049_jimmunol_0901706
crossref_primary_10_1038_cmi_2016_49
crossref_primary_10_1002_jso_24505
crossref_primary_10_1016_j_ejmech_2013_03_070
crossref_primary_10_1007_s00432_008_0469_0
crossref_primary_10_1124_mol_106_022327
crossref_primary_10_1016_j_cyto_2013_05_013
crossref_primary_10_1038_nm1710
crossref_primary_10_4049_jimmunol_176_1_265
crossref_primary_10_1111_dth_14835
crossref_primary_10_1038_sj_jid_5700807
crossref_primary_10_1089_aid_2010_0012
crossref_primary_10_1155_2020_2369279
crossref_primary_10_1007_s00011_017_1074_y
crossref_primary_10_7717_peerj_9952
crossref_primary_10_2147_BTT_S389021
crossref_primary_10_4049_jimmunol_1302091
crossref_primary_10_1586_17469872_2_1_69
crossref_primary_10_5483_BMBRep_2011_44_2_129
crossref_primary_10_1016_j_vetpar_2017_06_010
crossref_primary_10_1111_j_1365_2567_2011_03454_x
crossref_primary_10_1111_j_1365_2567_2006_02394_x
crossref_primary_10_1016_j_jneuroim_2007_08_011
crossref_primary_10_3945_jn_113_185165
crossref_primary_10_1016_j_immuni_2006_05_017
crossref_primary_10_1016_j_vetimm_2012_08_004
crossref_primary_10_1111_j_1462_5822_2006_00699_x
crossref_primary_10_1038_ni1254
crossref_primary_10_1007_s12016_014_8465_4
crossref_primary_10_1097_01_MIB_0000218764_06959_91
crossref_primary_10_1016_j_ejpain_2008_02_003
crossref_primary_10_1038_ijo_2008_216
crossref_primary_10_1016_j_molbiopara_2021_111433
crossref_primary_10_1152_ajpcell_00515_2020
crossref_primary_10_1111_jgh_14962
crossref_primary_10_1177_12034754211049711
crossref_primary_10_4049_jimmunol_178_6_3566
crossref_primary_10_1016_j_addr_2020_10_002
crossref_primary_10_1016_j_molimm_2009_12_008
crossref_primary_10_1016_j_phymed_2024_155917
crossref_primary_10_2217_imt_10_95
crossref_primary_10_3390_cimb46040183
crossref_primary_10_1097_nen_0b013e3181492a7
crossref_primary_10_3390_ijms24032698
crossref_primary_10_1016_j_jtauto_2021_100098
crossref_primary_10_1016_j_cyto_2014_06_020
crossref_primary_10_1126_scitranslmed_aat9143
crossref_primary_10_1016_j_vetimm_2012_01_005
crossref_primary_10_1007_s00383_007_2037_0
crossref_primary_10_1093_intimm_dxp117
crossref_primary_10_1097_MIB_0000000000000353
crossref_primary_10_1007_s11302_006_9034_y
crossref_primary_10_4049_jimmunol_179_12_8274
crossref_primary_10_1038_gene_2009_94
crossref_primary_10_1371_journal_ppat_1001289
crossref_primary_10_1074_jbc_M611522200
crossref_primary_10_18632_oncotarget_20319
crossref_primary_10_1007_s10059_013_0268_6
crossref_primary_10_1038_jid_2015_138
crossref_primary_10_1038_nri1648
crossref_primary_10_1128_IAI_00826_18
crossref_primary_10_1038_sj_ki_5002425
crossref_primary_10_1111_j_1365_2249_2011_04447_x
crossref_primary_10_4049_jimmunol_1100535
crossref_primary_10_1016_j_cytogfr_2020_06_001
crossref_primary_10_1111_1751_2980_12218
crossref_primary_10_1158_1535_7163_MCT_23_0336
crossref_primary_10_1038_nature04808
crossref_primary_10_1038_ni1223
crossref_primary_10_1007_s00296_009_0893_8
crossref_primary_10_1016_j_jcyt_2012_12_002
crossref_primary_10_1016_j_ddmec_2006_05_006
crossref_primary_10_4161_pri_3_1_8072
crossref_primary_10_1586_1744666X_4_3_301
crossref_primary_10_1111_j_1365_2567_2008_02879_x
crossref_primary_10_1007_s00535_011_0521_8
crossref_primary_10_4049_jimmunol_175_7_4706
crossref_primary_10_4049_jimmunol_181_2_1536
crossref_primary_10_1155_2017_4810258
crossref_primary_10_3390_cells10010111
crossref_primary_10_1016_j_jctube_2019_100123
crossref_primary_10_1016_j_jaut_2017_12_007
crossref_primary_10_2353_ajpath_2006_051330
crossref_primary_10_1111_j_1365_2567_2008_02988_x
crossref_primary_10_1074_jbc_M709029200
crossref_primary_10_3109_02713683_2013_877489
crossref_primary_10_3389_fphar_2022_921084
crossref_primary_10_4049_jimmunol_177_5_3218
crossref_primary_10_1155_2011_248317
crossref_primary_10_1016_j_intimp_2011_06_010
crossref_primary_10_1586_14787210_4_1_101
crossref_primary_10_1038_s41598_017_14020_9
crossref_primary_10_1016_j_neuroscience_2015_01_012
crossref_primary_10_1017_S0954422424000234
crossref_primary_10_1038_gt_2008_180
crossref_primary_10_1007_s11010_011_1109_6
crossref_primary_10_1093_humrep_del217
crossref_primary_10_1016_j_it_2012_02_008
crossref_primary_10_1007_s00296_008_0770_x
crossref_primary_10_4049_jimmunol_178_12_7571
crossref_primary_10_1186_s12890_023_02546_w
crossref_primary_10_33084_bjop_v6i2_4217
crossref_primary_10_1080_08916934_2016_1272598
crossref_primary_10_4049_jimmunol_0802046
crossref_primary_10_1089_jir_2007_0037
crossref_primary_10_1189_jlb_1107794
crossref_primary_10_3390_jcm9041028
crossref_primary_10_1039_C6MB00222F
crossref_primary_10_1186_ar2893
crossref_primary_10_3390_molecules26103005
crossref_primary_10_1165_rcmb_2011_0134OC
crossref_primary_10_1016_j_vaccine_2009_09_058
crossref_primary_10_1038_s41551_020_0549_2
crossref_primary_10_1164_rccm_200512_1886OC
crossref_primary_10_1182_blood_2010_01_263509
crossref_primary_10_1007_s12262_013_0957_6
crossref_primary_10_1016_j_jneuroim_2009_11_001
crossref_primary_10_1111_j_1749_6632_2010_05747_x
crossref_primary_10_1128_CVI_00078_15
crossref_primary_10_3390_ijms24044002
crossref_primary_10_1371_journal_pone_0029046
crossref_primary_10_1345_aph_1M151
crossref_primary_10_1089_ther_2016_0041
crossref_primary_10_1093_rap_rkae141
crossref_primary_10_1016_j_febslet_2005_10_062
crossref_primary_10_1016_j_jnutbio_2014_03_004
crossref_primary_10_1111_asj_13439
crossref_primary_10_1902_jop_2007_060458
crossref_primary_10_3109_08820139_2014_930477
crossref_primary_10_1371_journal_pntd_0001401
crossref_primary_10_1016_j_ejphar_2016_03_036
crossref_primary_10_1111_j_1399_0039_2007_00881_x
crossref_primary_10_1016_j_intimp_2006_09_024
crossref_primary_10_1016_j_jneuroim_2018_10_007
crossref_primary_10_1016_j_jneuroim_2012_02_003
crossref_primary_10_1007_s12011_017_1073_4
crossref_primary_10_1016_j_arcmed_2010_02_011
crossref_primary_10_1038_s41584_023_00984_8
crossref_primary_10_1007_s40265_019_01141_w
crossref_primary_10_1084_jem_20061099
crossref_primary_10_1158_1055_9965_EPI_08_0705
crossref_primary_10_1016_j_intimp_2020_107336
crossref_primary_10_1002_ibd_20180
crossref_primary_10_1016_j_clinre_2016_10_005
crossref_primary_10_1371_journal_ppat_1003410
crossref_primary_10_1007_s00441_021_03538_0
crossref_primary_10_1016_j_cyto_2007_09_014
crossref_primary_10_1093_rheumatology_keab461
crossref_primary_10_1590_S0074_02762006000900052
crossref_primary_10_1038_bmt_2010_211
crossref_primary_10_1111_j_1745_7254_2006_00341_x
crossref_primary_10_5653_cerm_2011_38_4_193
crossref_primary_10_4049_jimmunol_176_1_309
crossref_primary_10_1016_j_cca_2018_08_022
crossref_primary_10_1016_j_bbmt_2015_03_016
crossref_primary_10_1016_j_arcmed_2010_02_009
crossref_primary_10_1111_j_1365_2567_2007_02754_x
crossref_primary_10_1111_j_1440_1843_2010_01819_x
crossref_primary_10_1371_journal_pone_0224276
crossref_primary_10_3347_kjp_2017_55_6_613
crossref_primary_10_1152_ajpregu_00540_2013
crossref_primary_10_1074_jbc_M109_025528
crossref_primary_10_1186_1471_2172_10_9
crossref_primary_10_1089_vim_2009_0054
crossref_primary_10_1111_j_1574_695X_2006_00210_x
crossref_primary_10_1128_IAI_01329_06
crossref_primary_10_4049_jimmunol_181_11_7473
crossref_primary_10_1016_j_humimm_2012_03_015
crossref_primary_10_1586_ers_12_12
crossref_primary_10_1111_j_1365_3083_2011_02660_x
crossref_primary_10_1016_j_actbio_2024_12_056
crossref_primary_10_1097_SHK_0b013e3181e14c2e
crossref_primary_10_58803_fahn_v1i2_10
crossref_primary_10_1093_rheumatology_key070
crossref_primary_10_1016_j_kint_2019_05_012
crossref_primary_10_1016_j_vetimm_2008_10_003
crossref_primary_10_3390_ijms23042314
crossref_primary_10_1016_j_smim_2014_10_004
crossref_primary_10_7759_cureus_55459
crossref_primary_10_3389_fcell_2015_00085
crossref_primary_10_1136_gutjnl_2015_309389
crossref_primary_10_1073_pnas_1905762116
crossref_primary_10_1182_blood_2006_04_019711
crossref_primary_10_1016_j_molimm_2005_06_028
crossref_primary_10_1016_j_cellimm_2006_07_001
crossref_primary_10_1111_bjh_13292
crossref_primary_10_2147_OARRR_S295033
crossref_primary_10_4103_err_err_11_17
crossref_primary_10_1016_j_adcanc_2022_100053
crossref_primary_10_1155_2013_374925
crossref_primary_10_3389_fchem_2022_955995
crossref_primary_10_1002_eji_202048936
crossref_primary_10_1186_1471_2334_14_316
crossref_primary_10_1189_jlb_0307166
crossref_primary_10_1016_j_jaci_2010_11_050
crossref_primary_10_4049_jimmunol_178_9_5859
crossref_primary_10_1016_j_placenta_2013_05_007
crossref_primary_10_1053_j_gastro_2007_03_104
crossref_primary_10_1002_ibd_21247
crossref_primary_10_1016_j_jneuroim_2010_09_030
crossref_primary_10_1002_ijc_27640
crossref_primary_10_1016_j_molimm_2011_04_006
crossref_primary_10_1186_1471_2474_14_190
crossref_primary_10_4049_jimmunol_175_1_404
crossref_primary_10_1016_j_jid_2021_06_036
crossref_primary_10_1111_j_1574_695X_2010_00757_x
crossref_primary_10_1165_rcmb_2006_0020OC
crossref_primary_10_1517_17460441_3_3_357
crossref_primary_10_1016_j_vetimm_2007_01_018
crossref_primary_10_1093_hmg_ddy284
crossref_primary_10_1128_IAI_05641_11
crossref_primary_10_4049_jimmunol_176_2_1098
crossref_primary_10_1146_annurev_immunol_22_012703_104758
crossref_primary_10_4049_jimmunol_0902796
crossref_primary_10_1038_s41401_021_00825_y
crossref_primary_10_1016_j_bbrep_2020_100857
crossref_primary_10_1016_j_ajpath_2015_08_015
crossref_primary_10_1136_annrheumdis_2018_213488
crossref_primary_10_1016_j_neulet_2021_135948
crossref_primary_10_1002_jbm_a_32971
crossref_primary_10_1089_vim_2024_0006
crossref_primary_10_1007_s00251_005_0067_0
crossref_primary_10_12688_f1000research_6116_1
crossref_primary_10_1080_01902148_2017_1412541
crossref_primary_10_1038_ni_1736
crossref_primary_10_1155_2019_1426954
crossref_primary_10_1080_13693780801982762
crossref_primary_10_1155_2018_4765358
crossref_primary_10_1517_13543776_17_4_453
crossref_primary_10_1016_j_imbio_2012_05_014
crossref_primary_10_1101_cshperspect_a028530
crossref_primary_10_1007_s12017_010_8112_z
crossref_primary_10_1016_j_intimp_2008_03_022
crossref_primary_10_1016_j_smim_2007_10_012
crossref_primary_10_1007_s00439_020_02180_0
crossref_primary_10_1073_pnas_1816698116
crossref_primary_10_3390_ijms21062069
crossref_primary_10_4049_jimmunol_0901566
crossref_primary_10_4049_jimmunol_1600506
crossref_primary_10_3748_wjg_15_5784
crossref_primary_10_1038_ni_1882
crossref_primary_10_12938_bmfh_2023_027
crossref_primary_10_18632_aging_103101
crossref_primary_10_1080_14653240600845237
crossref_primary_10_1157_13090382
crossref_primary_10_1016_j_pharep_2014_09_007
crossref_primary_10_1038_nrd3794
crossref_primary_10_1089_vim_2019_0178
crossref_primary_10_2147_PTT_S312109
crossref_primary_10_1016_j_cellimm_2019_02_003
crossref_primary_10_1097_01_MIB_0000437616_37000_41
crossref_primary_10_1016_j_chembiol_2013_05_010
crossref_primary_10_1016_j_cyto_2017_08_014
crossref_primary_10_1128_microbiolspec_TBTB2_0018_2016
crossref_primary_10_1155_2012_606459
crossref_primary_10_1007_s00262_006_0171_5
crossref_primary_10_1016_j_taap_2012_11_008
crossref_primary_10_1016_j_cyto_2023_156452
crossref_primary_10_1093_infdis_jiaa766
crossref_primary_10_1128_CVI_00135_12
crossref_primary_10_1111_j_1600_0625_2007_00677_x
crossref_primary_10_1126_sciimmunol_aau6571
crossref_primary_10_4049_jimmunol_176_12_7768
crossref_primary_10_1007_s11481_011_9315_2
crossref_primary_10_1016_j_semarthrit_2018_04_004
crossref_primary_10_1084_jem_20070509
crossref_primary_10_3390_ijms23169344
crossref_primary_10_1074_jbc_M117_782284
Cites_doi 10.1002/eji.1830250133
10.4049/jimmunol.154.10.5071
10.4049/jimmunol.169.10.5673
10.4049/jimmunol.166.12.7563
10.1073/pnas.93.24.14002
10.1046/j.1523-1747.1998.00347.x
10.4049/jimmunol.171.11.6173
10.4049/jimmunol.166.7.4446
10.1046/j.1365-3083.1996.d01-4.x
10.4049/jimmunol.166.9.5448
10.1074/jbc.M207577200
10.4049/jimmunol.146.9.3074
10.1073/pnas.90.13.6115
10.1084/jem.184.2.747
10.1074/jbc.M105927200
10.4049/jimmunol.173.3.1887
10.1016/S0962-8924(00)01856-0
10.1189/jlb.71.1.1
10.1084/jem.187.12.2103
10.1002/eji.200323518
10.4049/jimmunol.154.10.5320
10.1084/jem.183.1.147
10.1002/eji.1830250442
10.1186/1471-2172-3-14
10.1172/JCI0215751
10.4049/jimmunol.168.11.5448
10.4049/jimmunol.170.1.597
10.1038/41131
10.4049/jimmunol.170.4.2153
10.4049/jimmunol.172.5.2827
10.1016/S1074-7613(00)80614-7
10.4049/jimmunol.170.4.2106
10.1016/S0020-7519(03)00032-8
10.4049/jimmunol.167.9.5304
10.1191/135245899678847275
10.4049/jimmunol.157.4.1589
10.4049/jimmunol.149.11.3495
10.4049/jimmunol.167.1.221
10.1002/1529-0131(200110)44:10<2413::AID-ART406>3.0.CO;2-E
10.4049/jimmunol.168.11.5699
10.1016/S1074-7613(00)00070-4
10.1182/blood-2002-12-3854
10.1006/mcne.1998.0725
10.4049/jimmunol.153.1.128
10.4049/jimmunol.163.5.2517
10.1128/IAI.66.10.4994-5000.1998
10.1084/jem.192.1.123
10.4049/jimmunol.154.4.1606
10.1073/pnas.1035999100
10.1002/eji.200324815
10.1007/BF03401888
10.1002/eji.200324343
10.1016/S0140-6736(87)92863-7
10.4049/jimmunol.156.1.5
10.1096/fj.03-1367fje
10.1073/pnas.1332767100
10.1084/jem.189.12.1981
10.1084/jem.20030896
10.1016/0955-2235(92)90016-B
10.1038/nature01355
10.4049/jimmunol.161.5.2223
10.1084/jem.20021769
10.1126/science.8097338
10.1182/blood-2004-02-0584
10.1002/1521-4141(200203)32:3<686::AID-IMMU686>3.0.CO;2-I
10.4049/jimmunol.164.1.64
10.1002/eji.1830260134
10.4049/jimmunol.165.2.628
10.1002/eji.1830260705
10.4049/jimmunol.157.8.3223
10.4049/jimmunol.164.5.2832
10.4049/jimmunol.169.12.7104
10.1038/nri1001
10.1073/pnas.0400983101
10.1038/ni832
10.1128/IAI.70.4.1936-1948.2002
10.1146/annurev.immunol.16.1.495
10.4049/jimmunol.158.8.3593
10.4049/jimmunol.167.2.957
10.1038/378088a0
10.4049/jimmunol.170.9.4432
10.4049/jimmunol.158.11.5507
10.1172/JCI17321
10.4049/jimmunol.165.11.6107
10.1084/jem.170.3.827
10.4049/jimmunol.168.3.1322
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1111/j.0105-2896.2004.00214.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1600-065X
EndPage 105
ExternalDocumentID 15546388
10_1111_j_0105_2896_2004_00214_x
IMR214
ark_67375_WNG_04WQ4V4Z_W
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8F7
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOETA
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IH2
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7N
XG1
XV2
YFH
YOC
YUY
YYP
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4684-2b3bcecf1de1010cd5889289e56cc610e98f3b9e95c6bcfd747b3c75fada4cd83
IEDL.DBID DR2
ISSN 0105-2896
IngestDate Fri Jul 11 08:36:26 EDT 2025
Wed Feb 19 01:37:43 EST 2025
Tue Jul 01 03:22:53 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Wed Jan 22 16:44:18 EST 2025
Wed Oct 30 09:48:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4684-2b3bcecf1de1010cd5889289e56cc610e98f3b9e95c6bcfd747b3c75fada4cd83
Notes istex:584274C0449686A50B7D781C79D345268096DD08
ark:/67375/WNG-04WQ4V4Z-W
ArticleID:IMR214
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 15546388
PQID 67079636
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_67079636
pubmed_primary_15546388
crossref_citationtrail_10_1111_j_0105_2896_2004_00214_x
crossref_primary_10_1111_j_0105_2896_2004_00214_x
wiley_primary_10_1111_j_0105_2896_2004_00214_x_IMR214
istex_primary_ark_67375_WNG_04WQ4V4Z_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2004
PublicationDateYYYYMMDD 2004-12-01
PublicationDate_xml – month: 12
  year: 2004
  text: December 2004
PublicationDecade 2000
PublicationPlace Oxford, UK; Malden, USA
PublicationPlace_xml – name: Oxford, UK; Malden, USA
– name: England
PublicationTitle Immunological reviews
PublicationTitleAlternate Immunol Rev
PublicationYear 2004
Publisher Munksgaard International Publishers
Publisher_xml – name: Munksgaard International Publishers
References Lehmann J, Bellmann S, Werner C, Schroder R, Schutze N, Alber G. IL-12p40-dependent agonistic effects on the development of protective innate and adaptive immunity against Salmonella enteritidis. J Immunol 2001;167: 5304-5315.
Yap G, Pesin M, Sher A. Cutting edge: IL-12 is required for the maintenance of IFN-gamma production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii. J Immunol 2000;165: 628-631.
Stober D, Schirmbeck R, Reimann J. IL-12/IL-18-dependent IFN-gamma release by murine dendritic cells. J Immunol 2001;167: 957-965.
Zhang G, et al. Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol 2003;170: 2153-2160.
Wiekowski MT, et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol 2001;166: 7563-7570.
Medzhitov R, Preston-Hurlburt P, Janeway CAJ. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388: 394-397.DOI: 10.1038/41131
Fieschi C, et al. Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor beta1 deficiency: medical and immunological implications. J Exp Med 2003;197: 527-535.DOI: 10.1084/jem.20021769
Aggarwal S, Ghilardi N, Xie MH, De Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003;278: 1910-1914.DOI: 10.1074/jbc.M207577200
Belladonna ML, et al. IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immunol 2002;168: 5448-5454.
Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci USA 2003;100: 5986-5990.DOI: 10.1073/pnas.1035999100
Panitch HS, Hirsch RL, Haley AS, Johnson KP. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1987;1: 893-895.DOI: 10.1016/S0140-6736(87)92863-7
Dubois B, et al. Critical role of IL-12 in dendritic cell-induced differentiation of naive B lymphocytes. J Immunol 1998;161: 2223-2231.
Murphy CA, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 2003;198: 1951-1957.DOI: 10.1084/jem.20030896
Cleary AM, Tu W, Giffon T, Dewaal-Malefyt R, Gutierrez K, Lewis DB. Impaired accumulation and function of memory CD4 T cells in human IL-12 receptor beta 1 deficiency. J Immunol 2003;170: 597-603.
Ma X, et al. The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med 1996;183: 147-157.DOI: 10.1084/jem.183.1.147
Wesa A, Galy A. Increased production of pro-inflammatory cytokines and enhanced T cell responses after activation of human dendritic cells with IL-1 and CD40 ligand. BMC Immunol 2002;3: 14.DOI: 10.1186/1471-2172-3-14
Gazzinelli RT, Hieny S, Wynn TA, Wolf S, Sher A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc Natl Acad Sci USA 1993;90: 6115-6119.
Shu U, et al. Activated T cells induce interleukin-12 production by monocytes via CD40-CD40 ligand interaction. Eur J Immunol 1995;25: 1125-1128.
Gately MK, et al. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 1998;16: 495-521.DOI: 10.1146/annurev.immunol.16.1.495
Renno T, et al. Interferon-gamma in progression to chronic demyelination and neurological deficit following acute EAE. Mol Cell Neurosci 1998;12: 376-389.DOI: 10.1006/mcne.1998.0725
Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3: 133-146.DOI: 10.1038/nri1001
Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O'Keeffe M. Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol 2001;166: 5448-5455.
Vartanian T, Li Y, Zhao M, Stefansson K. Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol Med 1995;1: 732-743.
Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 1996;157: 3223-3227.
Presky DH, et al. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci USA 1996;93: 14002-14007.DOI: 10.1073/pnas.93.24.14002
Macatonia SE, et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 1995;154: 5071-5079.
Decken K, et al. Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect Immun 1998;66: 4994-5000.
Ziolkowska M, et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol 2000;164: 2832-2838.
Smits HH, et al. Commensal Gram-negative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced Th1 development. Eur J Immunol 2004;34: 1371-1380.DOI: 10.1002/eji.200324815
Perussia B, et al. Natural killer (NK) cell stimulatory factor or IL-12 has differential effects on the proliferation of TCR-alpha beta+, TCR-gamma delta+ T lymphocytes, and NK cells. J Immunol 1992;149: 3495-3502.
Ohteki T, et al. Interleukin 12-dependent interferon gamma production by CD8alpha+ lymphoid dendritic cells. J Exp Med 1999;189: 1981-1986.DOI: 10.1084/jem.189.12.1981
Wolf SF, et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol 1991;146: 3074-3081.
Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993;260: 547-549.
Rodriguez-Sosa M, Satoskar AR, David JR, Terrazas LI. Altered T helper responses in CD40 and interleukin-12 deficient mice reveal a critical role for Th1 responses in eliminating the helminth parasite Taenia crassiceps. Int J Parasitol 2003;33: 703-711.DOI: 10.1016/S0020-7519(03)00032-8
Nurieva RI, Treuting P, Duong J, Flavell RA, Dong C. Inducible costimulator is essential for collagen-induced arthritis. J Clin Invest 2003;111: 701-706.
Fieschi C, et al. A novel form of complete IL-12/IL-23 receptor beta1-deficiency with cell surface-expressed non-functional receptors. Blood 2004.
Okamura H, et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 1995;378: 88-91.DOI: 10.1038/378088a0
Elkins KL, Cooper A, Colombini SM, Cowley SC, Kieffer TL. In vivo clearance of an intracellular bacterium, Francisella tularensis LVS, is dependent on the p40 subunit of interleukin-12 (IL-12) but not on IL-12 p70. Infect Immun 2002;70: 1936-1948.DOI: 10.1128/IAI.70.4.1936-1948.2002
Lieberman LA, et al. IL-23 provides a limited mechanism of resistance to acute toxoplasmosis in the absence of IL-12. J Immunol 2004;173: 1887-1893.
Ghilardi N, Kljavin N, Chen Q, Lucas S, Gurney AL, De Sauvage FJ. Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice. J Immunol 2004;172: 2827-2833.
Aggarwal S, Gurney A. IL-17: prototype member of an emerging cytokine family. J Leukoc Biol 2002;71: 1-8.
Wu CY, et al. Distinct lineages of T(H) 1 cells have differential capacities for memory cell generation in vivo. Nat Immunol 2002;3: 852-858.DOI: 10.1038/ni832
Jones BM. Effect of 12 neutralizing anti-cytokine antibodies on in vitro activation of B-cells. Interleukin-12 is required by B1a but not B2 cells. Scand J Immunol 1996;43: 64-72.DOI: 10.1046/j.1365-3083.1996.d01-4.x
Ferber I, et al. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 1996;156: 5-7.
Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003;171: 6173-6177.
Armant M, Armitage R, Boiani N, Delespesse G, Sarfati M. Functional CD40 ligand expression on T lymphocytes in the absence of T cell receptor engagement: involvement in interleukin-2-induced interleukin-12 and interferon-gamma production. Eur J Immunol 1996;26: 1430-1434.
Happel KI, et al. Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol 2003;170: 4432-4436.
Fukao T, Matsuda S, Koyasu S. Synergistic effects of IL-4 and IL-18 on IL-12-dependent IFN-gamma production by dendritic cells. J Immunol 2000;164: 64-71.
Fukao T, Frucht DM, Yap G, Gadina M, O'Shea JJ, Koyasu S. Inducible expression of Stat4 in dendritic cells and macrophages and its critical role in innate and adaptive immune responses. J Immunol 2001;166: 4446-4455.
Chu CQ, Wittmer S, Dalton DK. Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J Exp Med 2000;192: 123-128.
Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996;184: 747-752.
Matusevicius D, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 1999;5: 101-104.DOI: 10.1191/135245899678847275
Jelinek D, Braaten J. Role of IL-12 in human B lymphocyte proliferation and differentiation. J
1997; 158
1987; 1
2002; 110
1996; 184
1996; 183
1999; 163
1995; 378
2001; 44
1998; 111
2003; 278
2003; 111
2003; 198
2003; 197
1998; 16
1997; 388
1991; 146
1995; 25
2000; 13
2000; 10
2004; 173
2004; 34
2004; 172
2003; 3
2000; 164
2000; 165
1996; 26
1998; 12
1998; 161
1992; 4
2001; 166
2004; 101
2001; 167
1995; 15
1994; 153
2002; 32
1993; 260
1992; 149
1996; 93
2002; 3
2003; 171
2003; 170
1993; 90
2004
1999; 189
1995; 154
1995; 1
1999; 5
1998; 66
2003; 33
2000; 192
2001; 276
2004; 18
2002; 168
2002; 169
1989; 170
2002; 70
2002; 71
1998; 187
2003; 421
2003; 102
1996; 157
1996; 156
2003; 100
1996; 43
1998; 9
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
Grohmann U (e_1_2_7_36_2) 1997; 158
e_1_2_7_17_2
e_1_2_7_83_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_81_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_87_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_85_2
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
Willenborg DO (e_1_2_7_73_2) 1996; 157
Perussia B (e_1_2_7_33_2) 1992; 149
e_1_2_7_71_2
e_1_2_7_50_2
e_1_2_7_75_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_37_2
e_1_2_7_39_2
Jelinek D (e_1_2_7_53_2) 1995; 154
e_1_2_7_4_2
e_1_2_7_2_2
Chua AO (e_1_2_7_11_2) 1994; 153
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_82_2
Dubois B (e_1_2_7_52_2) 1998; 161
e_1_2_7_61_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_86_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_84_2
Bianchi R (e_1_2_7_25_2) 1999; 163
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_88_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
Macatonia SE (e_1_2_7_16_2) 1995; 154
e_1_2_7_72_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_74_2
Macatonia SE (e_1_2_7_5_2) 1995; 15
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_57_2
e_1_2_7_78_2
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – reference: Happel KI, et al. Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol 2003;170: 4432-4436.
– reference: Pirhonen J, Matikainen S, Julkunen I. Regulation of virus-induced IL-12 and IL-23 expression in human macrophages. J Immunol 2002;169: 5673-5678.
– reference: Aggarwal S, Ghilardi N, Xie MH, De Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 2003;278: 1910-1914.DOI: 10.1074/jbc.M207577200
– reference: Gran B, et al. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 2002;169: 7104-7110.
– reference: Trinchieri G, et al. Natural killer cell stimulatory factor (NKSF) or interleukin-12 is a key regulator of immune response and inflammation. Prog Growth Factor Res 1992;4: 355-368.
– reference: Wolf SF, et al. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J Immunol 1991;146: 3074-3081.
– reference: Decken K, et al. Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect Immun 1998;66: 4994-5000.
– reference: Sheibanie AF, Tadmori I, Jing H, Vassiliou E, Ganea D. Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J 2004;18: 1318-1320.
– reference: Cua DJ, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003;421: 744-748.
– reference: Kobayashi M, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 1989;170: 827-845.DOI: 10.1084/jem.170.3.827
– reference: Panitch HS, Hirsch RL, Haley AS, Johnson KP. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1987;1: 893-895.DOI: 10.1016/S0140-6736(87)92863-7
– reference: Grohmann U, et al. Positive regulatory role of IL-12 in macrophages and modulation by IFN-gamma. J Immunol 2001;167: 221-227.
– reference: Parham C, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 2002;168: 5699-5708.
– reference: Ghilardi N, Kljavin N, Chen Q, Lucas S, Gurney AL, De Sauvage FJ. Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice. J Immunol 2004;172: 2827-2833.
– reference: Lehmann J, Bellmann S, Werner C, Schroder R, Schutze N, Alber G. IL-12p40-dependent agonistic effects on the development of protective innate and adaptive immunity against Salmonella enteritidis. J Immunol 2001;167: 5304-5315.
– reference: Munder M, Mallo M, Eichmann K, Modolell M. Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med 1998;187: 2103-2108.DOI: 10.1084/jem.187.12.2103
– reference: Fieschi C, et al. Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor beta1 deficiency: medical and immunological implications. J Exp Med 2003;197: 527-535.DOI: 10.1084/jem.20021769
– reference: Fieschi C, et al. A novel form of complete IL-12/IL-23 receptor beta1-deficiency with cell surface-expressed non-functional receptors. Blood 2004.
– reference: Zhang G, et al. Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol 2003;170: 2153-2160.
– reference: Guedez YB, et al.Genetic ablation of interferon-gamma up-regulates interleukin-1beta expression and enables the elicitation of collagen-induced arthritis in a nonsusceptible mouse strain. Arthritis Rheum 2001;44: 2413-2424.DOI: 10.1002/1529-0131(200110)44:10<2413::AID-ART406>3.0.CO;2-E
– reference: Bianchi R, Grohmann U, Vacca C, Belladonna ML, Fioretti MC, Puccetti P. Autocrine IL-12 is involved in dendritic cell modulation via CD40 ligation. J Immunol 1999;163: 2517-2521.
– reference: Grohmann U, et al. A tumor-associated and self antigen peptide presented by dendritic cells may induce T cell anergy in vivo, but IL-12 can prevent or revert the anergic state. J Immunol 1997;158: 3593-3602.
– reference: Jones BM. Effect of 12 neutralizing anti-cytokine antibodies on in vitro activation of B-cells. Interleukin-12 is required by B1a but not B2 cells. Scand J Immunol 1996;43: 64-72.DOI: 10.1046/j.1365-3083.1996.d01-4.x
– reference: O'Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 2000;10: 542-550.DOI: 10.1016/S0962-8924(00)01856-0
– reference: Gately MK, et al. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 1998;16: 495-521.DOI: 10.1146/annurev.immunol.16.1.495
– reference: Cleary AM, Tu W, Giffon T, Dewaal-Malefyt R, Gutierrez K, Lewis DB. Impaired accumulation and function of memory CD4 T cells in human IL-12 receptor beta 1 deficiency. J Immunol 2003;170: 597-603.
– reference: Ferber I, et al. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 1996;156: 5-7.
– reference: Yap G, Pesin M, Sher A. Cutting edge: IL-12 is required for the maintenance of IFN-gamma production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii. J Immunol 2000;165: 628-631.
– reference: Vartanian T, Li Y, Zhao M, Stefansson K. Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol Med 1995;1: 732-743.
– reference: Bianchi R, et al. IL-12 is both required and sufficient for initiating T cell reactivity to a class I-restricted tumor peptide (P815AB) following transfer of P815AB-pulsed dendritic cells. J Immunol 1996;157: 1589-1597.
– reference: Becher B, Durell BG, Noelle RJ. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J Clin Invest 2002;110: 493-497.
– reference: Hoeve M, De Boer T, Langenberg DM, Sanal O, Verreck FA, Ottenhoff TH. IL-12 receptor deficiency revisited: IL-23-mediated signaling is also impaired in human genetic IL-12 receptor beta1 deficiency. Eur J Immunol 2003;33: 3393-3397.DOI: 10.1002/eji.200324343
– reference: Oppmann B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 2000;13: 715-725.DOI: 10.1016/S1074-7613(00)00070-4
– reference: Vogel LA, Lester TL, Van Cleave VH, Metzger DW. Inhibition of murine B1 lymphocytes by interleukin-12. Eur J Immunol 1996;26: 219-223.
– reference: Lieberman LA, et al. IL-23 provides a limited mechanism of resistance to acute toxoplasmosis in the absence of IL-12. J Immunol 2004;173: 1887-1893.
– reference: Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003;171: 6173-6177.
– reference: Lugo-Villarino G, Maldonado-Lopez R, Possemato R, Penaranda C, Glimcher LH. T-bet is required for optimal production of IFN-gamma and antigen-specific T cell activation by dendritic cells. Proc Natl Acad Sci USA 2003;100: 7749-7754.DOI: 10.1073/pnas.1332767100
– reference: Re F, Strominger JL. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J Biol Chem 2001;276: 37692-37699.DOI: 10.1074/jbc.M105927200
– reference: Okamura H, et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 1995;378: 88-91.DOI: 10.1038/378088a0
– reference: Gazzinelli RT, Hieny S, Wynn TA, Wolf S, Sher A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc Natl Acad Sci USA 1993;90: 6115-6119.
– reference: Macatonia SE, et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 1995;154: 5071-5079.
– reference: Dubois B, et al. Critical role of IL-12 in dendritic cell-induced differentiation of naive B lymphocytes. J Immunol 1998;161: 2223-2231.
– reference: Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 1996;157: 3223-3227.
– reference: Rodriguez-Sosa M, Satoskar AR, David JR, Terrazas LI. Altered T helper responses in CD40 and interleukin-12 deficient mice reveal a critical role for Th1 responses in eliminating the helminth parasite Taenia crassiceps. Int J Parasitol 2003;33: 703-711.DOI: 10.1016/S0020-7519(03)00032-8
– reference: Wu CY, et al. Distinct lineages of T(H) 1 cells have differential capacities for memory cell generation in vivo. Nat Immunol 2002;3: 852-858.DOI: 10.1038/ni832
– reference: Jelinek D, Braaten J. Role of IL-12 in human B lymphocyte proliferation and differentiation. J Immunol 1995;154: 1606-1613.
– reference: Nikolic T, Dingjan GM, Leenen PJ, Hendriks RW. A subfraction of B220(+) cells in murine bone marrow and spleen does not belong to the B cell lineage but has dendritic cell characteristics. Eur J Immunol 2002;32: 686-692.DOI: 10.1002/1521-4141(200203)32:3<686::AID-IMMU686>3.0.CO;2-I
– reference: Renno T, et al. Interferon-gamma in progression to chronic demyelination and neurological deficit following acute EAE. Mol Cell Neurosci 1998;12: 376-389.DOI: 10.1006/mcne.1998.0725
– reference: Chua AO, et al. Expression cloning of a human IL-12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130. J Immunol 1994;153: 128-136.
– reference: Smits HH, et al. Commensal Gram-negative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced Th1 development. Eur J Immunol 2004;34: 1371-1380.DOI: 10.1002/eji.200324815
– reference: Fukao T, Matsuda S, Koyasu S. Synergistic effects of IL-4 and IL-18 on IL-12-dependent IFN-gamma production by dendritic cells. J Immunol 2000;164: 64-71.
– reference: Gillessen S, et al. Mouse interleukin-12 (IL-12) p40 homodimer: a potent IL-12 antagonist. Eur J Immunol 1995;25: 200-206.
– reference: Armant M, Armitage R, Boiani N, Delespesse G, Sarfati M. Functional CD40 ligand expression on T lymphocytes in the absence of T cell receptor engagement: involvement in interleukin-2-induced interleukin-12 and interferon-gamma production. Eur J Immunol 1996;26: 1430-1434.
– reference: Perussia B, et al. Natural killer (NK) cell stimulatory factor or IL-12 has differential effects on the proliferation of TCR-alpha beta+, TCR-gamma delta+ T lymphocytes, and NK cells. J Immunol 1992;149: 3495-3502.
– reference: Scharton-Kersten T, Afonso LC, Wysocka M, Trinchieri G, Scott P. IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J Immunol 1995;154: 5320-5330.
– reference: Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 2003;3: 133-146.DOI: 10.1038/nri1001
– reference: Infante-Duarte C, Horton HF, Byrne MC, Kamradt T. Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol 2000;165: 6107-6115.
– reference: Medzhitov R, Preston-Hurlburt P, Janeway CAJ. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388: 394-397.DOI: 10.1038/41131
– reference: Grohmann U, et al. IL-12 acts directly on DC to promote nuclear localization of NF-kappaB and primes DC for IL-12 production. Immunity 1998;9: 315-323.DOI: 10.1016/S1074-7613(00)80614-7
– reference: Vermeire K, Heremans H, Vandeputte M, Huang S, Billiau A, Matthys P. Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice. J Immunol 1997;158: 5507-5513.
– reference: Teunissen MB, Koomen CW, De Waal Malefyt R, Wierenga EA, Bos JD. Interleukin-17 and interferon-gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J Invest Dermatol 1998;111: 645-649.DOI: 10.1046/j.1523-1747.1998.00347.x
– reference: Murphy CA, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 2003;198: 1951-1957.DOI: 10.1084/jem.20030896
– reference: Wesa A, Galy A. Increased production of pro-inflammatory cytokines and enhanced T cell responses after activation of human dendritic cells with IL-1 and CD40 ligand. BMC Immunol 2002;3: 14.DOI: 10.1186/1471-2172-3-14
– reference: Macatonia SE, et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 1995;15: 5071-5079.
– reference: Elkins KL, Cooper A, Colombini SM, Cowley SC, Kieffer TL. In vivo clearance of an intracellular bacterium, Francisella tularensis LVS, is dependent on the p40 subunit of interleukin-12 (IL-12) but not on IL-12 p70. Infect Immun 2002;70: 1936-1948.DOI: 10.1128/IAI.70.4.1936-1948.2002
– reference: Ziolkowska M, et al. High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol 2000;164: 2832-2838.
– reference: Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O'Keeffe M. Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol 2001;166: 5448-5455.
– reference: Wiekowski MT, et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol 2001;166: 7563-7570.
– reference: Belladonna ML, et al. IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immunol 2002;168: 5448-5454.
– reference: Krajina T, Leithauser F, Moller P, Trobonjaca Z, Reimann J. Colonic lamina propria dendritic cells in mice with CD4+ T cell-induced colitis. Eur J Immunol 2003;33: 1073-1083.DOI: 10.1002/eji.200323518
– reference: Stober D, Schirmbeck R, Reimann J. IL-12/IL-18-dependent IFN-gamma release by murine dendritic cells. J Immunol 2001;167: 957-965.
– reference: Nurieva RI, Treuting P, Duong J, Flavell RA, Dong C. Inducible costimulator is essential for collagen-induced arthritis. J Clin Invest 2003;111: 701-706.
– reference: Shu U, et al. Activated T cells induce interleukin-12 production by monocytes via CD40-CD40 ligand interaction. Eur J Immunol 1995;25: 1125-1128.
– reference: Verreck FA, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco) bacteria. Proc Natl Acad Sci USA 2004;101: 4560-4565.DOI: 10.1073/pnas.0400983101
– reference: Chu CQ, Wittmer S, Dalton DK. Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J Exp Med 2000;192: 123-128.
– reference: Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993;260: 547-549.
– reference: Jefford M, et al. Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli. Blood 2003;102: 1753-1763.
– reference: Ohteki T, et al. Interleukin 12-dependent interferon gamma production by CD8alpha+ lymphoid dendritic cells. J Exp Med 1999;189: 1981-1986.DOI: 10.1084/jem.189.12.1981
– reference: Aggarwal S, Gurney A. IL-17: prototype member of an emerging cytokine family. J Leukoc Biol 2002;71: 1-8.
– reference: Matusevicius D, et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler 1999;5: 101-104.DOI: 10.1191/135245899678847275
– reference: Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996;184: 747-752.
– reference: Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci USA 2003;100: 5986-5990.DOI: 10.1073/pnas.1035999100
– reference: Ma X, et al. The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med 1996;183: 147-157.DOI: 10.1084/jem.183.1.147
– reference: Ferretti S, Bonneau O, Dubois GR, Jones CE, Trifilieff A. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J Immunol 2003;170: 2106-2112.
– reference: Fukao T, Frucht DM, Yap G, Gadina M, O'Shea JJ, Koyasu S. Inducible expression of Stat4 in dendritic cells and macrophages and its critical role in innate and adaptive immune responses. J Immunol 2001;166: 4446-4455.
– reference: Cooper AM, Kipnis A, Turner J, Magram J, Ferrante J, Orme IM. Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present. J Immunol 2002;168: 1322-1327.
– reference: Presky DH, et al. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci USA 1996;93: 14002-14007.DOI: 10.1073/pnas.93.24.14002
– volume: 26
  start-page: 1430
  year: 1996
  end-page: 1434
  article-title: Functional CD40 ligand expression on T lymphocytes in the absence of T cell receptor engagement: involvement in interleukin‐2‐induced interleukin‐12 and interferon‐gamma production
  publication-title: Eur J Immunol
– volume: 93
  start-page: 14002
  year: 1996
  end-page: 14007
  article-title: A functional interleukin 12 receptor complex is composed of two beta‐type cytokine receptor subunits
  publication-title: Proc Natl Acad Sci USA
– volume: 154
  start-page: 5071
  year: 1995
  end-page: 5079
  article-title: Dendritic cells produce IL‐12 and direct the development of Th1 cells from naive CD4 T cells
  publication-title: J Immunol
– volume: 192
  start-page: 123
  year: 2000
  end-page: 128
  article-title: Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma‐deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis
  publication-title: J Exp Med
– volume: 166
  start-page: 4446
  year: 2001
  end-page: 4455
  article-title: Inducible expression of Stat4 in dendritic cells and macrophages and its critical role in innate and adaptive immune responses
  publication-title: J Immunol
– volume: 172
  start-page: 2827
  year: 2004
  end-page: 2833
  article-title: Compromised humoral and delayed‐type hypersensitivity responses in IL‐23‐deficient mice
  publication-title: J Immunol
– volume: 100
  start-page: 7749
  year: 2003
  end-page: 7754
  article-title: T‐bet is required for optimal production of IFN‐gamma and antigen‐specific T cell activation by dendritic cells
  publication-title: Proc Natl Acad Sci USA
– volume: 170
  start-page: 4432
  year: 2003
  end-page: 4436
  article-title: Cutting edge: roles of Toll‐like receptor 4 and IL‐23 in IL‐17 expression in response to Klebsiella pneumoniae infection
  publication-title: J Immunol
– volume: 90
  start-page: 6115
  year: 1993
  end-page: 6119
  article-title: Interleukin 12 is required for the T‐lymphocyte‐independent induction of interferon gamma by an intracellular parasite and induces resistance in T‐cell‐deficient hosts
  publication-title: Proc Natl Acad Sci USA
– volume: 164
  start-page: 2832
  year: 2000
  end-page: 2838
  article-title: High levels of IL‐17 in rheumatoid arthritis patients: IL‐15 triggers in vitro IL‐17 production via cyclosporin A‐sensitive mechanism
  publication-title: J Immunol
– volume: 16
  start-page: 495
  year: 1998
  end-page: 521
  article-title: The interleukin‐12/interleukin‐12‐receptor system: role in normal and pathologic immune responses
  publication-title: Annu Rev Immunol
– volume: 170
  start-page: 597
  year: 2003
  end-page: 603
  article-title: Impaired accumulation and function of memory CD4 T cells in human IL‐12 receptor beta 1 deficiency
  publication-title: J Immunol
– volume: 153
  start-page: 128
  year: 1994
  end-page: 136
  article-title: Expression cloning of a human IL‐12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130
  publication-title: J Immunol
– volume: 168
  start-page: 1322
  year: 2002
  end-page: 1327
  article-title: Mice lacking bioactive IL‐12 can generate protective, antigen‐specific cellular responses to mycobacterial infection only if the IL‐12 p40 subunit is present
  publication-title: J Immunol
– volume: 32
  start-page: 686
  year: 2002
  end-page: 692
  article-title: A subfraction of B220(+) cells in murine bone marrow and spleen does not belong to the B cell lineage but has dendritic cell characteristics
  publication-title: Eur J Immunol
– volume: 15
  start-page: 5071
  year: 1995
  end-page: 5079
  article-title: Dendritic cells produce IL‐12 and direct the development of Th1 cells from naive CD4 T cells
  publication-title: J Immunol
– volume: 66
  start-page: 4994
  year: 1998
  end-page: 5000
  article-title: Interleukin‐12 is essential for a protective Th1 response in mice infected with
  publication-title: Infect Immun
– volume: 187
  start-page: 2103
  year: 1998
  end-page: 2108
  article-title: Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)‐12 and IL‐18: a novel pathway of autocrine macrophage activation
  publication-title: J Exp Med
– year: 2004
  article-title: A novel form of complete IL‐12/IL‐23 receptor beta1‐deficiency with cell surface‐expressed non‐functional receptors
  publication-title: Blood
– volume: 44
  start-page: 2413
  year: 2001
  end-page: 2424
  article-title: Genetic ablation of interferon‐gamma up‐regulates interleukin‐1beta expression and enables the elicitation of collagen‐induced arthritis in a nonsusceptible mouse strain
  publication-title: Arthritis Rheum
– volume: 146
  start-page: 3074
  year: 1991
  end-page: 3081
  article-title: Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells
  publication-title: J Immunol
– volume: 167
  start-page: 957
  year: 2001
  end-page: 965
  article-title: IL‐12/IL‐18‐dependent IFN‐gamma release by murine dendritic cells
  publication-title: J Immunol
– volume: 276
  start-page: 37692
  year: 2001
  end-page: 37699
  article-title: Toll‐like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells
  publication-title: J Biol Chem
– volume: 13
  start-page: 715
  year: 2000
  end-page: 725
  article-title: Novel p19 protein engages IL‐12p40 to form a cytokine, IL‐23, with biological activities similar as well as distinct from IL‐12
  publication-title: Immunity
– volume: 33
  start-page: 703
  year: 2003
  end-page: 711
  article-title: Altered T helper responses in CD40 and interleukin‐12 deficient mice reveal a critical role for Th1 responses in eliminating the helminth parasite
  publication-title: Int J Parasitol
– volume: 157
  start-page: 1589
  year: 1996
  end-page: 1597
  article-title: IL‐12 is both required and sufficient for initiating T cell reactivity to a class I‐restricted tumor peptide (P815AB) following transfer of P815AB‐pulsed dendritic cells
  publication-title: J Immunol
– volume: 102
  start-page: 1753
  year: 2003
  end-page: 1763
  article-title: Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli
  publication-title: Blood
– volume: 198
  start-page: 1951
  year: 2003
  end-page: 1957
  article-title: Divergent pro‐ and antiinflammatory roles for IL‐23 and IL‐12 in joint autoimmune inflammation
  publication-title: J Exp Med
– volume: 166
  start-page: 5448
  year: 2001
  end-page: 5455
  article-title: Differential production of IL‐12, IFN‐alpha, and IFN‐gamma by mouse dendritic cell subsets
  publication-title: J Immunol
– volume: 170
  start-page: 2106
  year: 2003
  end-page: 2112
  article-title: IL‐17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide‐induced airway neutrophilia: IL‐15 as a possible trigger
  publication-title: J Immunol
– volume: 3
  start-page: 133
  year: 2003
  end-page: 146
  article-title: Interleukin‐12 and the regulation of innate resistance and adaptive immunity
  publication-title: Nat Rev Immunol
– volume: 70
  start-page: 1936
  year: 2002
  end-page: 1948
  article-title: In vivo clearance of an intracellular bacterium, LVS, is dependent on the p40 subunit of interleukin‐12 (IL‐12) but not on IL‐12 p70
  publication-title: Infect Immun
– volume: 183
  start-page: 147
  year: 1996
  end-page: 157
  article-title: The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells
  publication-title: J Exp Med
– volume: 169
  start-page: 5673
  year: 2002
  end-page: 5678
  article-title: Regulation of virus‐induced IL‐12 and IL‐23 expression in human macrophages
  publication-title: J Immunol
– volume: 171
  start-page: 6173
  year: 2003
  end-page: 6177
  article-title: Suppression of immune induction of collagen‐induced arthritis in IL‐17‐deficient mice
  publication-title: J Immunol
– volume: 388
  start-page: 394
  year: 1997
  end-page: 397
  article-title: A human homologue of the Toll protein signals activation of adaptive immunity
  publication-title: Nature
– volume: 100
  start-page: 5986
  year: 2003
  end-page: 5990
  article-title: IL‐17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL‐1 receptor antagonist
  publication-title: Proc Natl Acad Sci USA
– volume: 71
  start-page: 1
  year: 2002
  end-page: 8
  article-title: IL‐17: prototype member of an emerging cytokine family
  publication-title: J Leukoc Biol
– volume: 157
  start-page: 3223
  year: 1996
  end-page: 3227
  article-title: IFN‐gamma plays a critical down‐regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein‐induced autoimmune encephalomyelitis
  publication-title: J Immunol
– volume: 170
  start-page: 2153
  year: 2003
  end-page: 2160
  article-title: Induction of experimental autoimmune encephalomyelitis in IL‐12 receptor‐beta 2‐deficient mice: IL‐12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system
  publication-title: J Immunol
– volume: 184
  start-page: 747
  year: 1996
  end-page: 752
  article-title: Ligation of CD40 on dendritic cells triggers production of high levels of interleukin‐12 and enhances T cell stimulatory capacity: T–T help via APC activation
  publication-title: J Exp Med
– volume: 25
  start-page: 200
  year: 1995
  end-page: 206
  article-title: Mouse interleukin‐12 (IL‐12) p40 homodimer: a potent IL‐12 antagonist
  publication-title: Eur J Immunol
– volume: 43
  start-page: 64
  year: 1996
  end-page: 72
  article-title: Effect of 12 neutralizing anti‐cytokine antibodies on in vitro activation of B‐cells. Interleukin‐12 is required by B1a but not B2 cells
  publication-title: Scand J Immunol
– volume: 3
  start-page: 14
  year: 2002
  article-title: Increased production of pro‐inflammatory cytokines and enhanced T cell responses after activation of human dendritic cells with IL‐1 and CD40 ligand
  publication-title: BMC Immunol
– volume: 165
  start-page: 628
  year: 2000
  end-page: 631
  article-title: Cutting edge: IL‐12 is required for the maintenance of IFN‐gamma production in T cells mediating chronic resistance to the intracellular pathogen,
  publication-title: J Immunol
– volume: 26
  start-page: 219
  year: 1996
  end-page: 223
  article-title: Inhibition of murine B1 lymphocytes by interleukin‐12
  publication-title: Eur J Immunol
– volume: 110
  start-page: 493
  year: 2002
  end-page: 497
  article-title: Experimental autoimmune encephalitis and inflammation in the absence of interleukin‐12
  publication-title: J Clin Invest
– volume: 421
  start-page: 744
  year: 2003
  end-page: 748
  article-title: Interleukin‐23 rather than interleukin‐12 is the critical cytokine for autoimmune inflammation of the brain
  publication-title: Nature
– volume: 164
  start-page: 64
  year: 2000
  end-page: 71
  article-title: Synergistic effects of IL‐4 and IL‐18 on IL‐12‐dependent IFN‐gamma production by dendritic cells
  publication-title: J Immunol
– volume: 10
  start-page: 542
  year: 2000
  end-page: 550
  article-title: The molecular basis of T helper 1 and T helper 2 cell differentiation
  publication-title: Trends Cell Biol
– volume: 5
  start-page: 101
  year: 1999
  end-page: 104
  article-title: Interleukin‐17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis
  publication-title: Mult Scler
– volume: 111
  start-page: 701
  year: 2003
  end-page: 706
  article-title: Inducible costimulator is essential for collagen‐induced arthritis
  publication-title: J Clin Invest
– volume: 111
  start-page: 645
  year: 1998
  end-page: 649
  article-title: Interleukin‐17 and interferon‐gamma synergize in the enhancement of proinflammatory cytokine production by human keratinocytes
  publication-title: J Invest Dermatol
– volume: 167
  start-page: 221
  year: 2001
  end-page: 227
  article-title: Positive regulatory role of IL‐12 in macrophages and modulation by IFN‐gamma
  publication-title: J Immunol
– volume: 34
  start-page: 1371
  year: 2004
  end-page: 1380
  article-title: Commensal Gram‐negative bacteria prime human dendritic cells for enhanced IL‐23 and IL‐27 expression and enhanced Th1 development
  publication-title: Eur J Immunol
– volume: 154
  start-page: 5320
  year: 1995
  end-page: 5330
  article-title: IL‐12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis
  publication-title: J Immunol
– volume: 3
  start-page: 852
  year: 2002
  end-page: 858
  article-title: Distinct lineages of T(H) 1 cells have differential capacities for memory cell generation in vivo
  publication-title: Nat Immunol
– volume: 149
  start-page: 3495
  year: 1992
  end-page: 3502
  article-title: Natural killer (NK) cell stimulatory factor or IL‐12 has differential effects on the proliferation of TCR‐alpha beta , TCR‐gamma delta T lymphocytes, and NK cells
  publication-title: J Immunol
– volume: 173
  start-page: 1887
  year: 2004
  end-page: 1893
  article-title: IL‐23 provides a limited mechanism of resistance to acute toxoplasmosis in the absence of IL‐12
  publication-title: J Immunol
– volume: 163
  start-page: 2517
  year: 1999
  end-page: 2521
  article-title: Autocrine IL‐12 is involved in dendritic cell modulation via CD40 ligation
  publication-title: J Immunol
– volume: 12
  start-page: 376
  year: 1998
  end-page: 389
  article-title: Interferon‐gamma in progression to chronic demyelination and neurological deficit following acute EAE
  publication-title: Mol Cell Neurosci
– volume: 168
  start-page: 5699
  year: 2002
  end-page: 5708
  article-title: A receptor for the heterodimeric cytokine IL‐23 is composed of IL‐12Rbeta1 and a novel cytokine receptor subunit, IL‐23R
  publication-title: J Immunol
– volume: 158
  start-page: 5507
  year: 1997
  end-page: 5513
  article-title: Accelerated collagen‐induced arthritis in IFN‐gamma receptor‐deficient mice
  publication-title: J Immunol
– volume: 1
  start-page: 732
  year: 1995
  end-page: 743
  article-title: Interferon‐gamma‐induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis
  publication-title: Mol Med
– volume: 165
  start-page: 6107
  year: 2000
  end-page: 6115
  article-title: Microbial lipopeptides induce the production of IL‐17 in Th cells
  publication-title: J Immunol
– volume: 170
  start-page: 827
  year: 1989
  end-page: 845
  article-title: Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes
  publication-title: J Exp Med
– volume: 101
  start-page: 4560
  year: 2004
  end-page: 4565
  article-title: Human IL‐23‐producing type 1 macrophages promote but IL‐10‐producing type 2 macrophages subvert immunity to (myco) bacteria
  publication-title: Proc Natl Acad Sci USA
– volume: 278
  start-page: 1910
  year: 2003
  end-page: 1914
  article-title: Interleukin‐23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin‐17
  publication-title: J Biol Chem
– volume: 18
  start-page: 1318
  year: 2004
  end-page: 1320
  article-title: Prostaglandin E2 induces IL‐23 production in bone marrow‐derived dendritic cells
  publication-title: FASEB J
– volume: 33
  start-page: 3393
  year: 2003
  end-page: 3397
  article-title: IL‐12 receptor deficiency revisited: IL‐23‐mediated signaling is also impaired in human genetic IL‐12 receptor beta1 deficiency
  publication-title: Eur J Immunol
– volume: 158
  start-page: 3593
  year: 1997
  end-page: 3602
  article-title: A tumor‐associated and self antigen peptide presented by dendritic cells may induce T cell anergy in vivo, but IL‐12 can prevent or revert the anergic state
  publication-title: J Immunol
– volume: 33
  start-page: 1073
  year: 2003
  end-page: 1083
  article-title: Colonic lamina propria dendritic cells in mice with CD4 T cell‐induced colitis
  publication-title: Eur J Immunol
– volume: 9
  start-page: 315
  year: 1998
  end-page: 323
  article-title: IL‐12 acts directly on DC to promote nuclear localization of NF‐kappaB and primes DC for IL‐12 production
  publication-title: Immunity
– volume: 168
  start-page: 5448
  year: 2002
  end-page: 5454
  article-title: IL‐23 and IL‐12 have overlapping, but distinct, effects on murine dendritic cells
  publication-title: J Immunol
– volume: 161
  start-page: 2223
  year: 1998
  end-page: 2231
  article-title: Critical role of IL‐12 in dendritic cell‐induced differentiation of naive B lymphocytes
  publication-title: J Immunol
– volume: 154
  start-page: 1606
  year: 1995
  end-page: 1613
  article-title: Role of IL‐12 in human B lymphocyte proliferation and differentiation
  publication-title: J Immunol
– volume: 189
  start-page: 1981
  year: 1999
  end-page: 1986
  article-title: Interleukin 12‐dependent interferon gamma production by CD8alpha lymphoid dendritic cells
  publication-title: J Exp Med
– volume: 25
  start-page: 1125
  year: 1995
  end-page: 1128
  article-title: Activated T cells induce interleukin‐12 production by monocytes via CD40–CD40 ligand interaction
  publication-title: Eur J Immunol
– volume: 260
  start-page: 547
  year: 1993
  end-page: 549
  article-title: Development of TH1 CD4 T cells through IL‐12 produced by ‐induced macrophages
  publication-title: Science
– volume: 197
  start-page: 527
  year: 2003
  end-page: 535
  article-title: Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor beta1 deficiency: medical and immunological implications
  publication-title: J Exp Med
– volume: 156
  start-page: 5
  year: 1996
  end-page: 7
  article-title: Mice with a disrupted IFN‐gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE)
  publication-title: J Immunol
– volume: 167
  start-page: 5304
  year: 2001
  end-page: 5315
  article-title: IL‐12p40‐dependent agonistic effects on the development of protective innate and adaptive immunity against
  publication-title: J Immunol
– volume: 166
  start-page: 7563
  year: 2001
  end-page: 7570
  article-title: Ubiquitous transgenic expression of the IL‐23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death
  publication-title: J Immunol
– volume: 169
  start-page: 7104
  year: 2002
  end-page: 7110
  article-title: IL‐12p35‐deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL‐12 system in the induction of central nervous system autoimmune demyelination
  publication-title: J Immunol
– volume: 4
  start-page: 355
  year: 1992
  end-page: 368
  article-title: Natural killer cell stimulatory factor (NKSF) or interleukin‐12 is a key regulator of immune response and inflammation
  publication-title: Prog Growth Factor Res
– volume: 1
  start-page: 893
  year: 1987
  end-page: 895
  article-title: Exacerbations of multiple sclerosis in patients treated with gamma interferon
  publication-title: Lancet
– volume: 378
  start-page: 88
  year: 1995
  end-page: 91
  article-title: Cloning of a new cytokine that induces IFN‐gamma production by T cells
  publication-title: Nature
– ident: e_1_2_7_8_2
  doi: 10.1002/eji.1830250133
– volume: 154
  start-page: 5071
  year: 1995
  ident: e_1_2_7_16_2
  article-title: Dendritic cells produce IL‐12 and direct the development of Th1 cells from naive CD4+ T cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.154.10.5071
– ident: e_1_2_7_21_2
  doi: 10.4049/jimmunol.169.10.5673
– ident: e_1_2_7_43_2
  doi: 10.4049/jimmunol.166.12.7563
– ident: e_1_2_7_12_2
  doi: 10.1073/pnas.93.24.14002
– ident: e_1_2_7_82_2
  doi: 10.1046/j.1523-1747.1998.00347.x
– ident: e_1_2_7_85_2
  doi: 10.4049/jimmunol.171.11.6173
– ident: e_1_2_7_41_2
  doi: 10.4049/jimmunol.166.7.4446
– ident: e_1_2_7_54_2
  doi: 10.1046/j.1365-3083.1996.d01-4.x
– ident: e_1_2_7_17_2
  doi: 10.4049/jimmunol.166.9.5448
– ident: e_1_2_7_46_2
  doi: 10.1074/jbc.M207577200
– ident: e_1_2_7_7_2
  doi: 10.4049/jimmunol.146.9.3074
– ident: e_1_2_7_57_2
  doi: 10.1073/pnas.90.13.6115
– ident: e_1_2_7_24_2
  doi: 10.1084/jem.184.2.747
– ident: e_1_2_7_31_2
  doi: 10.1074/jbc.M105927200
– ident: e_1_2_7_64_2
  doi: 10.4049/jimmunol.173.3.1887
– ident: e_1_2_7_45_2
  doi: 10.1016/S0962-8924(00)01856-0
– ident: e_1_2_7_84_2
  doi: 10.1189/jlb.71.1.1
– ident: e_1_2_7_40_2
  doi: 10.1084/jem.187.12.2103
– ident: e_1_2_7_30_2
  doi: 10.1002/eji.200323518
– ident: e_1_2_7_58_2
  doi: 10.4049/jimmunol.154.10.5320
– ident: e_1_2_7_27_2
  doi: 10.1084/jem.183.1.147
– ident: e_1_2_7_22_2
  doi: 10.1002/eji.1830250442
– ident: e_1_2_7_26_2
  doi: 10.1186/1471-2172-3-14
– ident: e_1_2_7_75_2
  doi: 10.1172/JCI0215751
– ident: e_1_2_7_44_2
  doi: 10.4049/jimmunol.168.11.5448
– ident: e_1_2_7_68_2
  doi: 10.4049/jimmunol.170.1.597
– ident: e_1_2_7_15_2
  doi: 10.1038/41131
– ident: e_1_2_7_74_2
  doi: 10.4049/jimmunol.170.4.2153
– ident: e_1_2_7_56_2
  doi: 10.4049/jimmunol.172.5.2827
– ident: e_1_2_7_34_2
  doi: 10.1016/S1074-7613(00)80614-7
– ident: e_1_2_7_88_2
  doi: 10.4049/jimmunol.170.4.2106
– ident: e_1_2_7_55_2
  doi: 10.1016/S0020-7519(03)00032-8
– ident: e_1_2_7_61_2
  doi: 10.4049/jimmunol.167.9.5304
– ident: e_1_2_7_80_2
  doi: 10.1191/135245899678847275
– ident: e_1_2_7_35_2
  doi: 10.4049/jimmunol.157.4.1589
– volume: 149
  start-page: 3495
  year: 1992
  ident: e_1_2_7_33_2
  article-title: Natural killer (NK) cell stimulatory factor or IL‐12 has differential effects on the proliferation of TCR‐alpha beta+, TCR‐gamma delta+ T lymphocytes, and NK cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.149.11.3495
– ident: e_1_2_7_20_2
  doi: 10.4049/jimmunol.167.1.221
– ident: e_1_2_7_79_2
  doi: 10.1002/1529-0131(200110)44:10<2413::AID-ART406>3.0.CO;2-E
– ident: e_1_2_7_13_2
  doi: 10.4049/jimmunol.168.11.5699
– ident: e_1_2_7_10_2
  doi: 10.1016/S1074-7613(00)00070-4
– ident: e_1_2_7_28_2
  doi: 10.1182/blood-2002-12-3854
– ident: e_1_2_7_70_2
  doi: 10.1006/mcne.1998.0725
– volume: 153
  start-page: 128
  year: 1994
  ident: e_1_2_7_11_2
  article-title: Expression cloning of a human IL‐12 receptor component. A new member of the cytokine receptor superfamily with strong homology to gp130
  publication-title: J Immunol
  doi: 10.4049/jimmunol.153.1.128
– volume: 163
  start-page: 2517
  year: 1999
  ident: e_1_2_7_25_2
  article-title: Autocrine IL‐12 is involved in dendritic cell modulation via CD40 ligation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.163.5.2517
– ident: e_1_2_7_59_2
  doi: 10.1128/IAI.66.10.4994-5000.1998
– ident: e_1_2_7_77_2
  doi: 10.1084/jem.192.1.123
– volume: 154
  start-page: 1606
  year: 1995
  ident: e_1_2_7_53_2
  article-title: Role of IL‐12 in human B lymphocyte proliferation and differentiation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.154.4.1606
– ident: e_1_2_7_86_2
  doi: 10.1073/pnas.1035999100
– ident: e_1_2_7_29_2
  doi: 10.1002/eji.200324815
– ident: e_1_2_7_71_2
  doi: 10.1007/BF03401888
– ident: e_1_2_7_67_2
  doi: 10.1002/eji.200324343
– ident: e_1_2_7_69_2
  doi: 10.1016/S0140-6736(87)92863-7
– ident: e_1_2_7_72_2
  doi: 10.4049/jimmunol.156.1.5
– ident: e_1_2_7_32_2
  doi: 10.1096/fj.03-1367fje
– ident: e_1_2_7_42_2
  doi: 10.1073/pnas.1332767100
– ident: e_1_2_7_37_2
  doi: 10.1084/jem.189.12.1981
– ident: e_1_2_7_47_2
  doi: 10.1084/jem.20030896
– volume: 15
  start-page: 5071
  year: 1995
  ident: e_1_2_7_5_2
  article-title: Dendritic cells produce IL‐12 and direct the development of Th1 cells from naive CD4+ T cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.154.10.5071
– ident: e_1_2_7_3_2
  doi: 10.1016/0955-2235(92)90016-B
– ident: e_1_2_7_14_2
  doi: 10.1038/nature01355
– volume: 161
  start-page: 2223
  year: 1998
  ident: e_1_2_7_52_2
  article-title: Critical role of IL‐12 in dendritic cell‐induced differentiation of naive B lymphocytes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.161.5.2223
– ident: e_1_2_7_66_2
  doi: 10.1084/jem.20021769
– ident: e_1_2_7_4_2
  doi: 10.1126/science.8097338
– ident: e_1_2_7_65_2
  doi: 10.1182/blood-2004-02-0584
– ident: e_1_2_7_87_2
  doi: 10.1002/1521-4141(200203)32:3<686::AID-IMMU686>3.0.CO;2-I
– ident: e_1_2_7_39_2
  doi: 10.4049/jimmunol.164.1.64
– ident: e_1_2_7_51_2
  doi: 10.1002/eji.1830260134
– ident: e_1_2_7_60_2
  doi: 10.4049/jimmunol.165.2.628
– ident: e_1_2_7_23_2
  doi: 10.1002/eji.1830260705
– volume: 157
  start-page: 3223
  year: 1996
  ident: e_1_2_7_73_2
  article-title: IFN‐gamma plays a critical down‐regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein‐induced autoimmune encephalomyelitis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.157.8.3223
– ident: e_1_2_7_81_2
  doi: 10.4049/jimmunol.164.5.2832
– ident: e_1_2_7_76_2
  doi: 10.4049/jimmunol.169.12.7104
– ident: e_1_2_7_9_2
  doi: 10.1038/nri1001
– ident: e_1_2_7_18_2
  doi: 10.1073/pnas.0400983101
– ident: e_1_2_7_49_2
  doi: 10.1038/ni832
– ident: e_1_2_7_63_2
  doi: 10.1128/IAI.70.4.1936-1948.2002
– ident: e_1_2_7_6_2
  doi: 10.1146/annurev.immunol.16.1.495
– volume: 158
  start-page: 3593
  year: 1997
  ident: e_1_2_7_36_2
  article-title: A tumor‐associated and self antigen peptide presented by dendritic cells may induce T cell anergy in vivo, but IL‐12 can prevent or revert the anergic state
  publication-title: J Immunol
  doi: 10.4049/jimmunol.158.8.3593
– ident: e_1_2_7_19_2
  doi: 10.4049/jimmunol.167.2.957
– ident: e_1_2_7_38_2
  doi: 10.1038/378088a0
– ident: e_1_2_7_48_2
  doi: 10.4049/jimmunol.170.9.4432
– ident: e_1_2_7_78_2
  doi: 10.4049/jimmunol.158.11.5507
– ident: e_1_2_7_50_2
  doi: 10.1172/JCI17321
– ident: e_1_2_7_83_2
  doi: 10.4049/jimmunol.165.11.6107
– ident: e_1_2_7_2_2
  doi: 10.1084/jem.170.3.827
– ident: e_1_2_7_62_2
  doi: 10.4049/jimmunol.168.3.1322
SSID ssj0017324
Score 2.391067
SecondaryResourceType review_article
Snippet Initiation of an effective immune response requires close interactions between innate and adaptive immunity. Recent advances in the field of cytokine biology...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 96
SubjectTerms Animals
Autoimmunity - immunology
Autoimmunity - physiology
B-Lymphocytes - immunology
B-Lymphocytes - physiology
Communicable Diseases - immunology
Communicable Diseases - metabolism
Humans
Immunity, Innate - immunology
Immunity, Innate - physiology
Interleukin-12 - immunology
Interleukin-12 - physiology
Interleukin-23
Interleukin-23 Subunit p19
Interleukins - immunology
Interleukins - physiology
Receptors, Interleukin - immunology
Receptors, Interleukin - physiology
Title IL-12 and IL-23: master regulators of innate and adaptive immunity
URI https://api.istex.fr/ark:/67375/WNG-04WQ4V4Z-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0105-2896.2004.00214.x
https://www.ncbi.nlm.nih.gov/pubmed/15546388
https://www.proquest.com/docview/67079636
Volume 202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTx0hFCZGY9JNH_bhtFpZNN3NzTxgBrprjLdqqklN7TXdEDhAYm4719xHol35E_ob_SVymLnX3MaFadyx4AADHPhgPr5DyAfgILS0WZrb4G5hx2ep1Mak3kvjJQjrLV7oHx1X-6fs8IyfdfwnfAvT6kMsLtzQM-J6jQ6uzWTJyTG4YxoODJFpgCLYRc56iCeRuoX46GShJJXXZdHKfHcmS6Se-wta2qnWsNMv74Ohy6g2bkv9Z2Q4_6CWjTLszaamB3_-0Xp8nC9-Tp526JV-bqfbC7Limg2y3sazvHpJ-gdfb67_5gXVjaUxXZSf6G-NYgx03Ea9H40ndOTpedMElBszaqsvcNGl5_GtyvTqFTnt733f3U-7QA0psEqwtDClAQc-ty54eAaWCyFDMx2vAAI-c1L40kgnOVQGvA1HGFNCzX2ogIEV5Wuy2owat0koDyUVWeVMJixzVkuNPJ2s5AAFd94lpJ4PioJOxRyDafxSd6cZ7CWFvYQxNpmKvaQuE5IvLC9aJY8H2HyM474w0OMhMuFqrgbHX1TGBt_YD_ZTDRKyM58YKvgn_nTRjRvNJiF3VodFrkrIm3a-3FWOBMFSiITwOOoPbpU6ODoJibf_afeOPJmrVWb5FlmdjmduOyCrqXkffeYWRSsTbA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hVgguvCnLqz4gbhvtw961uSEgJJBEompJxcXyU6paNlWaSC0nfgK_kV-Cx7tJFdRDhbj54PFj7LHH9vj7AF4ZZrgSNktzG8wt7Pg0FUrr1HuhvTDceosX-uNJNTignw7ZYUcHhH9hWnyI9YUbWkZcr9HA8UJ6w8qR3TENJ4YYaoAo2EVOe8Gh3EaCbwTSf7-3xpLK67Jogb47mY2wnqtL2tirtlHt51c5opt-bdyY-nfhZNWlNh7luLdc6J758Rfa43_q8z240zmw5G074-7DDdc8gJstpeXFQ-gPR79__soLohpLYroo35DvCvEYyLwlvp_Nz8jMk6OmCY5uzKisOsV1lxzF7yqLi0dw0P-w_26QdlwNqaEVp2mhS22c8bl1wcgzYxnnIjTTscqY4KI5wX2phRPMVNp4G04xujQ186ECaiwvH8NWM2vcEyAslFRkldMZt9RZJRSG6mQlM6ZgzrsE6tWoSNMBmSOfxom8PNCgliRqCWk2qYxakucJ5GvJ0xbM4xoyr-PArwXU_BiD4Womp5OPMqPTL_Qr_SanCeyuZoYMJorvLqpxs-VZyJ3VYZ2rEthpJ8xl5RgjWHKeAIvDfu1WyeF4LySe_qPcLtwa7I9HcjScfH4Gt1fglVn-HLYW86V7ERythX4ZDegPi8UXiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6hViAuvCnLq3tA3Dby7tq7NjfUEhpoI6goqbhYfkpVYBOlidRy4ifwG_tL8Hg3qYJ6qBA3Hzx-jD322P78DcArwwxXwpIst8Hcwo5PM6G0zrwX2gvDrbd4oX8wrPaO6Idjdtzhn_AvTMsPsbpwQ8uI6zUa-NT6NSPH4I5ZODBEpAGSYBc57QV_cpNWRGAYh93DFZVUXpdFy_Pdyayheq4uaW2r2kStn13lh667tXFf6t-F8bJHLRxl3FvMdc_8_Ivs8f90-R7c6dzX9G073-7DDdc8gJttQMvzh9Af7F_8-p0XqWpsGtNF-Sb9oZCNIZ21Ye8ns9N04tOTpglubsyorJriqpuexM8q8_NHcNR_92VnL-siNWSGVpxmhS61ccbn1gUTJ8YyzkVopmOVMcFBc4L7UgsnmKm08TacYXRpauZDBdRYXj6GjWbSuCeQslBSQSqnCbfUWSUUAnVIyYwpmPMugXo5KNJ0NOYYTeO7vDzOoJYkagmDbFIZtSTPEshXktOWyuMaMq_juK8E1GyMULiaydHwvSR09Jl-pd_kKIHt5cSQwUDx1UU1brI4DblJHVa5KoGtdr5cVo4IwZLzBFgc9Wu3Sg4ODkPi6T_KbcOtT7t9uT8YfnwGt5fMlSR_Dhvz2cK9CF7WXL-M5vMHHn0WNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IL%E2%80%9012+and+IL%E2%80%9023%3A+master+regulators+of+innate+and+adaptive+immunity&rft.jtitle=Immunological+reviews&rft.au=Langrish%2C+Claire+L.&rft.au=McKenzie%2C+Brent+S.&rft.au=Wilson%2C+Nicholas+J.&rft.au=De+Waal+Malefyt%2C+Rene&rft.date=2004-12-01&rft.issn=0105-2896&rft.eissn=1600-065X&rft.volume=202&rft.issue=1&rft.spage=96&rft.epage=105&rft_id=info:doi/10.1111%2Fj.0105-2896.2004.00214.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_0105_2896_2004_00214_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon