Detection and Imaging of the Plant Pathogen Response by Near‐Infrared Fluorescent Polyphenol Sensors

Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 61; no. 2; pp. e202108373 - n/a
Main Authors Nißler, Robert, Müller, Andrea T., Dohrman, Frederike, Kurth, Larissa, Li, Han, Cosio, Eric G., Flavel, Benjamin S., Giraldo, Juan Pablo, Mithöfer, Axel, Kruss, Sebastian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.01.2022
John Wiley and Sons Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs). We identified polyethylene glycol–phospholipids that render (6,5)‐SWCNTs sensitive (Kd=90 nM) to plant polyphenols (tannins, flavonoids, …), which red‐shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen‐induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion. Molecular sensors for plant polyphenol imaging based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs) are presented. These sensors probe the polyphenol content in complex biological systems such as the plant rhizosphere. In summary, this approach enables real‐time spatiotemporal visualization of plant defense via polyphenols release.
AbstractList Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs). We identified polyethylene glycol–phospholipids that render (6,5)‐SWCNTs sensitive (K d =90 nM) to plant polyphenols (tannins, flavonoids, …), which red‐shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen‐induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion.
Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near-infrared (NIR) fluorescent single-wall carbon nanotubes (SWCNTs). We identified polyethylene glycol-phospholipids that render (6,5)-SWCNTs sensitive (K =90 nM) to plant polyphenols (tannins, flavonoids, …), which red-shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen-induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion.
Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs). We identified polyethylene glycol–phospholipids that render (6,5)‐SWCNTs sensitive (K d =90 nM) to plant polyphenols (tannins, flavonoids, …), which red‐shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen‐induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion. Molecular sensors for plant polyphenol imaging based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs) are presented. These sensors probe the polyphenol content in complex biological systems such as the plant rhizosphere. In summary, this approach enables real‐time spatiotemporal visualization of plant defense via polyphenols release.
Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs). We identified polyethylene glycol–phospholipids that render (6,5)‐SWCNTs sensitive (Kd=90 nM) to plant polyphenols (tannins, flavonoids, …), which red‐shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen‐induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion.
Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs). We identified polyethylene glycol–phospholipids that render (6,5)‐SWCNTs sensitive (Kd=90 nM) to plant polyphenols (tannins, flavonoids, …), which red‐shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen‐induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion. Molecular sensors for plant polyphenol imaging based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs) are presented. These sensors probe the polyphenol content in complex biological systems such as the plant rhizosphere. In summary, this approach enables real‐time spatiotemporal visualization of plant defense via polyphenols release.
Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near-infrared (NIR) fluorescent single-wall carbon nanotubes (SWCNTs). We identified polyethylene glycol-phospholipids that render (6,5)-SWCNTs sensitive (Kd =90 nM) to plant polyphenols (tannins, flavonoids, …), which red-shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen-induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion.Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near-infrared (NIR) fluorescent single-wall carbon nanotubes (SWCNTs). We identified polyethylene glycol-phospholipids that render (6,5)-SWCNTs sensitive (Kd =90 nM) to plant polyphenols (tannins, flavonoids, …), which red-shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen-induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion.
Author Dohrman, Frederike
Giraldo, Juan Pablo
Li, Han
Flavel, Benjamin S.
Mithöfer, Axel
Nißler, Robert
Kurth, Larissa
Müller, Andrea T.
Kruss, Sebastian
Cosio, Eric G.
AuthorAffiliation 2 Institute of Physical Chemistry Georg-August Universität Göttingen Tammannstrasse 6 37077 Göttingen Germany
7 Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
6 Department of Botany and Plant Sciences University of California Riverside CA 92507 USA
1 Physical Chemistry II Bochum University Universitätsstrasse 150 44801 Bochum Germany
5 Institute for Nature Earth and Energy (INTE-PUCP) Pontifical Catholic University of Peru Av. Universitaria 1801, San Miguel 15088 Lima Peru
3 Research Group Plant Defense Physiology Max Planck Institute for Chemical Ecology Hans-Knöll-Strasse 8 07745 Jena Germany
4 Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
AuthorAffiliation_xml – name: 3 Research Group Plant Defense Physiology Max Planck Institute for Chemical Ecology Hans-Knöll-Strasse 8 07745 Jena Germany
– name: 5 Institute for Nature Earth and Energy (INTE-PUCP) Pontifical Catholic University of Peru Av. Universitaria 1801, San Miguel 15088 Lima Peru
– name: 2 Institute of Physical Chemistry Georg-August Universität Göttingen Tammannstrasse 6 37077 Göttingen Germany
– name: 1 Physical Chemistry II Bochum University Universitätsstrasse 150 44801 Bochum Germany
– name: 6 Department of Botany and Plant Sciences University of California Riverside CA 92507 USA
– name: 4 Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
– name: 7 Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
Author_xml – sequence: 1
  givenname: Robert
  orcidid: 0000-0003-1282-2901
  surname: Nißler
  fullname: Nißler, Robert
  organization: Georg-August Universität Göttingen
– sequence: 2
  givenname: Andrea T.
  surname: Müller
  fullname: Müller, Andrea T.
  organization: Max Planck Institute for Chemical Ecology
– sequence: 3
  givenname: Frederike
  surname: Dohrman
  fullname: Dohrman, Frederike
  organization: Georg-August Universität Göttingen
– sequence: 4
  givenname: Larissa
  surname: Kurth
  fullname: Kurth, Larissa
  organization: Georg-August Universität Göttingen
– sequence: 5
  givenname: Han
  orcidid: 0000-0002-0597-8409
  surname: Li
  fullname: Li, Han
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 6
  givenname: Eric G.
  orcidid: 0000-0001-6993-5654
  surname: Cosio
  fullname: Cosio, Eric G.
  organization: Pontifical Catholic University of Peru
– sequence: 7
  givenname: Benjamin S.
  orcidid: 0000-0002-8213-8673
  surname: Flavel
  fullname: Flavel, Benjamin S.
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 8
  givenname: Juan Pablo
  orcidid: 0000-0002-8400-8944
  surname: Giraldo
  fullname: Giraldo, Juan Pablo
  organization: University of California
– sequence: 9
  givenname: Axel
  orcidid: 0000-0001-5229-6913
  surname: Mithöfer
  fullname: Mithöfer, Axel
  organization: Max Planck Institute for Chemical Ecology
– sequence: 10
  givenname: Sebastian
  orcidid: 0000-0003-0638-9822
  surname: Kruss
  fullname: Kruss, Sebastian
  email: sebastian.kruss@rub.de
  organization: Fraunhofer Institute for Microelectronic Circuits and Systems
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34608727$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URH9gyxJZYsNmwth3ZmxvkKrSQqSqVPysLde-k7ia2MGeAWXHI_CMPAmOUgJUQqxs-X7n3nN9jslBiAEJecrqGatr_tIEjzNec1ZLEPCAHLGWswqEgINybwAqIVt2SI5zvi28lHX3iBxC09VScHFE-tc4oh19DNQER-crs_BhQWNPxyXS68GEkV6bcRkXGOh7zOsYMtKbDb1Ck358-z4PfTIJHb0YppgwW9wK4rBZLzHEgX7AkGPKj8nD3gwZn9ydJ-TTxfnHs7fV5bs387PTy8o2nYTKsZaBlICNZG3HZGcVtLyzUF4b13LXGqk6poTrAa1FZZ3iDlXrRClgAyfk1a7verpZodu6SWbQ6-RXJm10NF7_XQl-qRfxi1ZcSVWz0uDFXYMUP0-YR73yZamhfATGKWveCgVCcoCCPr-H3sYphbKe5h3rOEhQolDP_nS0t_IrggLMdoBNMeeE_R5htd5mrLcZ633GRdDcE1g_mm2EZSM__FumdrKvfsDNf4bo06v5-W_tT_fivN8
CitedBy_id crossref_primary_10_1039_D3SD00257H
crossref_primary_10_1038_s41565_022_01307_w
crossref_primary_10_3389_fpls_2024_1490801
crossref_primary_10_1002_adma_202411067
crossref_primary_10_1051_jeos_2024024
crossref_primary_10_1002_ange_202316965
crossref_primary_10_1021_acs_analchem_2c02471
crossref_primary_10_1021_acsphotonics_2c00606
crossref_primary_10_1021_acs_analchem_2c01321
crossref_primary_10_1039_D4TC00107A
crossref_primary_10_1002_anie_202309610
crossref_primary_10_1021_acs_analchem_4c06509
crossref_primary_10_3389_fpls_2022_884454
crossref_primary_10_1002_anie_202112372
crossref_primary_10_1039_D4NR02358G
crossref_primary_10_1557_s43577_023_00505_8
crossref_primary_10_3389_fgeed_2022_1029944
crossref_primary_10_1021_acs_nanolett_3c05082
crossref_primary_10_1002_adfm_202309064
crossref_primary_10_1002_anie_202316965
crossref_primary_10_1021_acsnano_4c06843
crossref_primary_10_1021_acsnano_3c04314
crossref_primary_10_1039_D4NR01892C
crossref_primary_10_1021_acsnano_2c06481
crossref_primary_10_1021_acs_chemrev_3c00581
crossref_primary_10_1038_s44287_024_00131_9
crossref_primary_10_1039_D3RA04083F
crossref_primary_10_1002_ange_202112372
crossref_primary_10_1002_smll_202304237
crossref_primary_10_1002_ange_202309610
crossref_primary_10_1039_D2SC02981B
Cites_doi 10.1002/adma.201201751
10.1002/chem.201800993
10.1126/science.1072631
10.1007/128_2012_403
10.1021/acs.nanolett.9b02865
10.1021/acssensors.1c01022
10.1111/j.1365-3059.2010.02411.x
10.1002/adma.202005683
10.1111/j.1365-2435.2010.01826.x
10.1104/pp.77.3.591
10.1021/acs.nanolett.9b05159
10.1002/smll.201403276
10.1126/science.1078727
10.1021/ja410433b
10.1016/j.phytochem.2011.01.040
10.1002/cplu.202000248
10.1038/nmat877
10.1038/nature10947
10.1021/acsnano.7b06701
10.4161/psb.5.8.12337
10.1016/j.tplants.2013.04.008
10.1021/jacs.7b09258
10.1002/adfm.202006254
10.1016/j.tplants.2013.11.006
10.5511/plantbiotechnology.14.0917a
10.3390/s19245403
10.1038/nnano.2009.294
10.1126/scitranslmed.aar2680
10.1002/ange.201904167
10.1002/ange.202003825
10.1016/j.molp.2019.06.003
10.1002/9781118329634.ch5
10.1104/pp.57.5.751
10.1146/annurev-physchem-040214-121535
10.1038/nchem.332
10.1021/acs.jpcc.8b11058
10.1515/BC.2003.049
10.1177/0967033520982354
10.1038/ncomms10241
10.1038/nnano.2013.236
10.1021/acsomega.9b00767
10.1016/j.bios.2020.112763
10.1111/j.1462-2920.2006.01141.x
10.1038/s41477-020-0632-4
10.1021/acsami.8b04373
10.1038/nnano.2008.369
10.1002/anie.201904167
10.1038/286710a0
10.1038/s41477-018-0189-7
10.1073/pnas.1613541114
10.1007/BF00196568
10.1038/s41551-017-0041
10.1038/ncomms14281
10.3390/bios10090112
10.1021/acs.accounts.0c00150
10.1007/s00374-011-0653-2
10.1038/s41565-019-0470-6
10.3390/s18020462
10.1002/anie.202003825
10.1038/nmat3890
10.1016/S0021-9258(18)90867-7
10.1021/acs.chemrev.5b00008
10.1021/acssensors.1c01159
10.1021/acs.jpcc.1c05432
10.1038/nnano.2016.284
10.1021/acsami.7b00810
10.3390/molecules18022328
10.1038/nprot.2007.102
10.1016/0968-0004(88)90014-X
10.1021/acs.analchem.1c00168
10.1016/j.addr.2013.07.015
10.1038/s41467-020-19718-5
10.1016/j.jare.2019.03.005
10.1093/jxb/err430
ContentType Journal Article
Copyright 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
5PM
DOI 10.1002/anie.202108373
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID PMC9298901
34608727
10_1002_anie_202108373
ANIE202108373
Genre article
Journal Article
GrantInformation_xml – fundername: deutsche forschungsgemeinschaft
– fundername: deutscher akademischer austauschdienst
– fundername: studienstiftung des deutschen volkes
– fundername: volkswagen foundation
– fundername: ;
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7TM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4683-d1513883e48156186c93526c31384d52d5a896197df3ecce9cd92de95d7a89e43
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Aug 21 14:06:04 EDT 2025
Fri Jul 11 06:13:22 EDT 2025
Fri Jul 25 10:16:03 EDT 2025
Wed Feb 19 02:09:15 EST 2025
Thu Apr 24 23:08:34 EDT 2025
Tue Jul 01 01:18:10 EDT 2025
Wed Jan 22 16:27:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords near-infrared fluorescence
plant polyphenols
biosensors
carbon nanotubes
imaging
Language English
License Attribution
2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4683-d1513883e48156186c93526c31384d52d5a896197df3ecce9cd92de95d7a89e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0638-9822
0000-0003-1282-2901
0000-0002-8213-8673
0000-0002-8400-8944
0000-0001-5229-6913
0000-0002-0597-8409
0000-0001-6993-5654
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202108373
PMID 34608727
PQID 2616238397
PQPubID 946352
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9298901
proquest_miscellaneous_2579378233
proquest_journals_2616238397
pubmed_primary_34608727
crossref_primary_10_1002_anie_202108373
crossref_citationtrail_10_1002_anie_202108373
wiley_primary_10_1002_anie_202108373_ANIE202108373
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 10, 2022
PublicationDateYYYYMMDD 2022-01-10
PublicationDate_xml – month: 01
  year: 2022
  text: January 10, 2022
  day: 10
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2017; 8
2012; 484
2017; 1
2021; 22
2020; 20
2013; 65
2021; 125
2011; 60
2021; 29
2019; 12
2019; 14
2020 2020; 59 132
2019; 19
2020; 11
2020; 10
2013; 8
2017; 114
2014; 136
2017; 9
2019; 123
2013; 18
2020; 6
2018; 4
2021; 33
2020; 53
2011; 72
2003; 2
2014; 13
2013; 350
2014; 19
2007; 2
2011; 25
2012; 24
2010; 5
2012; 63
2021; 6
2019; 4
2002; 297
2020; 85
2002; 298
2015; 11
2006; 8
1988; 13
2021; 93
2019 2019; 58 131
2017; 139
2018; 24
2018; 18
2016; 7
1976; 57
2015; 115
2017; 11
2015; 66
1984; 259
2017; 12
2021; 172
1996; 199
2014
2009; 4
2012; 48
1985; 77
2018; 10
2009; 1
1980; 286
2003; 384
2014; 31
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
Constabel C. P. (e_1_2_6_57_1) 2014
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_47_2
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
Singh S. (e_1_2_6_48_1) 2021; 22
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
(e_1_2_6_45_2) 2019; 131
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 115
  start-page: 10816
  year: 2015
  end-page: 10906
  publication-title: Chem. Rev.
– volume: 7
  start-page: 10241
  year: 2016
  publication-title: Nat. Commun.
– volume: 19
  start-page: 67
  year: 2019
  end-page: 73
  publication-title: J. Adv. Res.
– volume: 31
  start-page: 431
  year: 2014
  end-page: 443
  publication-title: Plant Biotechnol.
– volume: 66
  start-page: 331
  year: 2015
  end-page: 356
  publication-title: Annu. Rev. Phys. Chem.
– volume: 9
  start-page: 11321
  year: 2017
  end-page: 11331
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 5995
  year: 2020
  publication-title: Nat. Commun.
– volume: 172
  year: 2021
  publication-title: Biosens. Bioelectron.
– volume: 22
  start-page: 14421
  year: 2021
  publication-title: Int. J. Mol. Sci.
– volume: 139
  start-page: 16791
  year: 2017
  end-page: 16802
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 428
  year: 2013
  end-page: 439
  publication-title: Trends Plant Sci.
– volume: 199
  start-page: 270
  year: 1996
  end-page: 275
  publication-title: Planta
– volume: 1
  start-page: 0041
  year: 2017
  publication-title: Nat. Biomed. Eng.
– volume: 60
  start-page: 2
  year: 2011
  end-page: 14
  publication-title: Plant Pathol.
– volume: 8
  start-page: 959
  year: 2013
  end-page: 968
  publication-title: Nat. Nanotechnol.
– volume: 20
  start-page: 2432
  year: 2020
  end-page: 2442
  publication-title: Nano Lett.
– volume: 24
  start-page: 12241
  year: 2018
  end-page: 12245
  publication-title: Chem. Eur. J.
– volume: 77
  start-page: 591
  year: 1985
  end-page: 601
  publication-title: Plant Physiol.
– volume: 8
  start-page: 1867
  year: 2006
  end-page: 1880
  publication-title: Environ. Microbiol.
– volume: 14
  start-page: 541
  year: 2019
  end-page: 553
  publication-title: Nat. Nanotechnol.
– volume: 48
  start-page: 123
  year: 2012
  end-page: 149
  publication-title: Biol. Fertil. Soils
– volume: 4
  start-page: 773
  year: 2009
  end-page: 780
  publication-title: Nat. Nanotechnol.
– volume: 59 132
  start-page: 17732 17885
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 112
  year: 2020
  publication-title: Biosensors
– volume: 2
  start-page: 338
  year: 2003
  end-page: 342
  publication-title: Nat. Mater.
– volume: 53
  start-page: 1269
  year: 2020
  end-page: 1278
  publication-title: Acc. Chem. Res.
– volume: 24
  start-page: 4977
  year: 2012
  end-page: 4994
  publication-title: Adv. Mater.
– volume: 19
  start-page: 540
  year: 2019
  publication-title: Sensors
– volume: 125
  start-page: 18341
  year: 2021
  end-page: 18351
  publication-title: J. Phys. Chem. C
– volume: 72
  start-page: 1551
  year: 2011
  end-page: 1565
  publication-title: Phytochemistry
– volume: 4
  start-page: 114
  year: 2009
  end-page: 120
  publication-title: Nat. Nanotechnol.
– volume: 58 131
  start-page: 11469 11591
  year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 85
  start-page: 1465
  year: 2020
  end-page: 1480
  publication-title: ChemPlusChem
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 10
  start-page: 17693
  year: 2018
  end-page: 17703
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 73
  year: 2021
  end-page: 83
  publication-title: J. Near Infrared Spectrosc.
– volume: 6
  start-page: 2802
  year: 2021
  end-page: 2814
  publication-title: ACS Sens.
– volume: 18
  start-page: 2328
  year: 2013
  end-page: 2375
  publication-title: Molecules
– volume: 286
  start-page: 710
  year: 1980
  end-page: 711
  publication-title: Nature
– volume: 114
  start-page: 1789
  year: 2017
  end-page: 1794
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 350
  start-page: 65
  year: 2013
  end-page: 109
  publication-title: Top. Curr. Chem.
– volume: 5
  start-page: 1037
  year: 2010
  end-page: 1038
  publication-title: Plant Signaling Behav.
– volume: 12
  start-page: 1203
  year: 2019
  end-page: 1210
  publication-title: Mol. Plant
– volume: 6
  start-page: 3032
  year: 2021
  end-page: 3046
  publication-title: ACS Sens.
– volume: 384
  start-page: 437
  year: 2003
  end-page: 446
  publication-title: Biol. Chem.
– volume: 484
  start-page: 186
  year: 2012
  end-page: 194
  publication-title: Nature
– volume: 259
  start-page: 11341
  year: 1984
  end-page: 11345
  publication-title: J. Biol. Chem.
– volume: 13
  start-page: 23
  year: 1988
  end-page: 27
  publication-title: Trends Biochem. Sci.
– volume: 18
  start-page: 462
  year: 2018
  publication-title: Sensors
– volume: 63
  start-page: 3429
  year: 2012
  end-page: 3444
  publication-title: J. Exp. Bot.
– volume: 93
  start-page: 6446
  year: 2021
  end-page: 6455
  publication-title: Anal. Chem.
– volume: 57
  start-page: 751
  year: 1976
  end-page: 759
  publication-title: Plant Physiol.
– volume: 297
  start-page: 593
  year: 2002
  end-page: 597
  publication-title: Science
– start-page: 115
  year: 2014
  end-page: 142
– volume: 65
  start-page: 1933
  year: 2013
  end-page: 1950
  publication-title: Adv. Drug Delivery Rev.
– volume: 1
  start-page: 473
  year: 2009
  end-page: 481
  publication-title: Nat. Chem.
– volume: 13
  start-page: 400
  year: 2014
  end-page: 408
  publication-title: Nat. Mater.
– volume: 123
  start-page: 4837
  year: 2019
  end-page: 4847
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 432
  year: 2018
  end-page: 439
  publication-title: Nat. Plants
– volume: 136
  start-page: 713
  year: 2014
  end-page: 724
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 325
  year: 2011
  end-page: 338
  publication-title: Funct. Ecol.
– volume: 10
  year: 2018
  publication-title: Sci. Transl. Med.
– volume: 11
  start-page: 3973
  year: 2015
  end-page: 3984
  publication-title: Small
– volume: 19
  start-page: 90
  year: 2014
  end-page: 98
  publication-title: Trends Plant Sci.
– volume: 8
  start-page: 14281
  year: 2017
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 298
  start-page: 2361
  year: 2002
  end-page: 2366
  publication-title: Science
– volume: 6
  start-page: 404
  year: 2020
  end-page: 415
  publication-title: Nat. Plants
– volume: 19
  start-page: 6604
  year: 2019
  end-page: 6611
  publication-title: Nano Lett.
– volume: 11
  start-page: 10637
  year: 2017
  end-page: 10643
  publication-title: ACS Nano
– volume: 4
  start-page: 7750
  year: 2019
  end-page: 7758
  publication-title: ACS Omega
– volume: 2
  start-page: 875
  year: 2007
  end-page: 877
  publication-title: Nat. Protoc.
– volume: 12
  start-page: 368
  year: 2017
  end-page: 377
  publication-title: Nat. Nanotechnol.
– ident: e_1_2_6_11_1
  doi: 10.1002/adma.201201751
– ident: e_1_2_6_42_1
  doi: 10.1002/chem.201800993
– ident: e_1_2_6_12_1
  doi: 10.1126/science.1072631
– ident: e_1_2_6_10_1
  doi: 10.1007/128_2012_403
– ident: e_1_2_6_17_1
  doi: 10.1021/acs.nanolett.9b02865
– ident: e_1_2_6_32_1
  doi: 10.1021/acssensors.1c01022
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1365-3059.2010.02411.x
– ident: e_1_2_6_33_1
  doi: 10.1002/adma.202005683
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1365-2435.2010.01826.x
– ident: e_1_2_6_69_1
  doi: 10.1104/pp.77.3.591
– ident: e_1_2_6_27_1
  doi: 10.1021/acs.nanolett.9b05159
– ident: e_1_2_6_30_1
  doi: 10.1002/smll.201403276
– ident: e_1_2_6_13_1
  doi: 10.1126/science.1078727
– ident: e_1_2_6_25_1
  doi: 10.1021/ja410433b
– ident: e_1_2_6_49_1
  doi: 10.1016/j.phytochem.2011.01.040
– ident: e_1_2_6_18_1
  doi: 10.1002/cplu.202000248
– ident: e_1_2_6_35_1
  doi: 10.1038/nmat877
– ident: e_1_2_6_2_1
  doi: 10.1038/nature10947
– ident: e_1_2_6_16_1
  doi: 10.1021/acsnano.7b06701
– ident: e_1_2_6_52_1
  doi: 10.4161/psb.5.8.12337
– ident: e_1_2_6_5_1
  doi: 10.1016/j.tplants.2013.04.008
– ident: e_1_2_6_59_1
  doi: 10.1021/jacs.7b09258
– ident: e_1_2_6_28_1
  doi: 10.1002/adfm.202006254
– volume: 22
  start-page: 14421
  year: 2021
  ident: e_1_2_6_48_1
  publication-title: Int. J. Mol. Sci.
– ident: e_1_2_6_51_1
  doi: 10.1016/j.tplants.2013.11.006
– ident: e_1_2_6_74_1
  doi: 10.5511/plantbiotechnology.14.0917a
– ident: e_1_2_6_22_1
  doi: 10.3390/s19245403
– ident: e_1_2_6_40_1
  doi: 10.1038/nnano.2009.294
– ident: e_1_2_6_23_1
  doi: 10.1126/scitranslmed.aar2680
– volume: 131
  start-page: 11591
  year: 2019
  ident: e_1_2_6_45_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201904167
– ident: e_1_2_6_47_2
  doi: 10.1002/ange.202003825
– ident: e_1_2_6_6_1
  doi: 10.1016/j.molp.2019.06.003
– start-page: 115
  volume-title: Recent Advances in Polyphenol Research
  year: 2014
  ident: e_1_2_6_57_1
  doi: 10.1002/9781118329634.ch5
– ident: e_1_2_6_66_1
  doi: 10.1104/pp.57.5.751
– ident: e_1_2_6_1_1
– ident: e_1_2_6_9_1
  doi: 10.1146/annurev-physchem-040214-121535
– ident: e_1_2_6_29_1
  doi: 10.1038/nchem.332
– ident: e_1_2_6_37_1
  doi: 10.1021/acs.jpcc.8b11058
– ident: e_1_2_6_65_1
  doi: 10.1515/BC.2003.049
– ident: e_1_2_6_61_1
  doi: 10.1177/0967033520982354
– ident: e_1_2_6_21_1
  doi: 10.1038/ncomms10241
– ident: e_1_2_6_36_1
  doi: 10.1038/nnano.2013.236
– ident: e_1_2_6_60_1
  doi: 10.1021/acsomega.9b00767
– ident: e_1_2_6_41_1
  doi: 10.1016/j.bios.2020.112763
– ident: e_1_2_6_71_1
  doi: 10.1111/j.1462-2920.2006.01141.x
– ident: e_1_2_6_31_1
  doi: 10.1038/s41477-020-0632-4
– ident: e_1_2_6_44_1
  doi: 10.1021/acsami.8b04373
– ident: e_1_2_6_26_1
  doi: 10.1038/nnano.2008.369
– ident: e_1_2_6_45_1
  doi: 10.1002/anie.201904167
– ident: e_1_2_6_70_1
  doi: 10.1038/286710a0
– ident: e_1_2_6_4_1
  doi: 10.1038/s41477-018-0189-7
– ident: e_1_2_6_19_1
  doi: 10.1073/pnas.1613541114
– ident: e_1_2_6_64_1
  doi: 10.1007/BF00196568
– ident: e_1_2_6_20_1
  doi: 10.1038/s41551-017-0041
– ident: e_1_2_6_46_1
  doi: 10.1038/ncomms14281
– ident: e_1_2_6_55_1
  doi: 10.3390/bios10090112
– ident: e_1_2_6_56_1
  doi: 10.1021/acs.accounts.0c00150
– ident: e_1_2_6_58_1
  doi: 10.1007/s00374-011-0653-2
– ident: e_1_2_6_7_1
  doi: 10.1038/s41565-019-0470-6
– ident: e_1_2_6_54_1
  doi: 10.3390/s18020462
– ident: e_1_2_6_47_1
  doi: 10.1002/anie.202003825
– ident: e_1_2_6_8_1
  doi: 10.1038/nmat3890
– ident: e_1_2_6_67_1
  doi: 10.1016/S0021-9258(18)90867-7
– ident: e_1_2_6_15_1
  doi: 10.1021/acs.chemrev.5b00008
– ident: e_1_2_6_34_1
  doi: 10.1021/acssensors.1c01159
– ident: e_1_2_6_38_1
  doi: 10.1021/acs.jpcc.1c05432
– ident: e_1_2_6_39_1
  doi: 10.1038/nnano.2016.284
– ident: e_1_2_6_43_1
  doi: 10.1021/acsami.7b00810
– ident: e_1_2_6_53_1
  doi: 10.3390/molecules18022328
– ident: e_1_2_6_63_1
  doi: 10.1038/nprot.2007.102
– ident: e_1_2_6_68_1
  doi: 10.1016/0968-0004(88)90014-X
– ident: e_1_2_6_62_1
  doi: 10.1021/acs.analchem.1c00168
– ident: e_1_2_6_14_1
  doi: 10.1016/j.addr.2013.07.015
– ident: e_1_2_6_24_1
  doi: 10.1038/s41467-020-19718-5
– ident: e_1_2_6_72_1
  doi: 10.1016/j.jare.2019.03.005
– ident: e_1_2_6_73_1
  doi: 10.1093/jxb/err430
SSID ssj0028806
Score 2.5480824
Snippet Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202108373
SubjectTerms biosensors
carbon nanotubes
Chemical defense
Chemical industry
Chemical plants
Flavonoids
Fluorescence
Fluorescent Dyes - chemistry
Glycine max
Glycine max - chemistry
Glycine max - metabolism
Herbivores
Imaging
Infrared detectors
Metabolites
Nanotechnology
Nanotubes
Nanotubes, Carbon - chemistry
near-infrared fluorescence
Pathogens
Phenotyping
Phospholipids
Plant Leaves - chemistry
Plant Leaves - metabolism
plant polyphenols
Plant tissues
Polyethylene glycol
Polyphenols
Polyphenols - analysis
Polyphenols - chemistry
Secondary metabolites
Seedlings
Sensors
Single wall carbon nanotubes
Soybeans
Spectroscopy, Near-Infrared - methods
Title Detection and Imaging of the Plant Pathogen Response by Near‐Infrared Fluorescent Polyphenol Sensors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202108373
https://www.ncbi.nlm.nih.gov/pubmed/34608727
https://www.proquest.com/docview/2616238397
https://www.proquest.com/docview/2579378233
https://pubmed.ncbi.nlm.nih.gov/PMC9298901
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BL3CB8g4tlZGQOLnN2s7rWJWuukisVoVKvUVObIuKJUG72UM58RP6G_tLmLE3oUuFkOCY2HnYmYm_Sb75BuCNSxBWxEpzjWCcKyM1RxRS8cpoXC5TM0ot5Tt_mKYnZ-r9eXJ-I4s_6EMMH9zIM_z7mhxcV8uDX6KhlIGN8R2GLBhjkdwnEbYIFZ0O-lECjTOkF0nJqQp9r9oYi4PNwzdXpVtQ8zZj8iaS9UvR-CHofhCBgfJlf9VV-_X33_Qd_2eU2_BgjVPZYTCsR3DHNo_h3lFfHu4JuHe28zSuhunGsMlXX-6ItY4hpGRUC6ljM4SXLVooOw1MXMuqSzZF37r-cTVp3ILI72w8X7WLICrFZu38kkhn7Zx9xPi6XSyfwtn4-NPRCV8XbeC1SnPJDUIImefSeh2aUZ7WBUnw1xL3KpMIk-i8wKgtM06i-diiNoUwtkhMhg1WyWew1bSNfQFMOIKrwlkfx2VSu7qwrpamck5VmYiA9w-trNeK5lRYY14GLWZR0uyVw-xF8Hbo_y1oefyx525vA-Xap5clxpqIFRFQZhG8Hppx1ukXi25su8I-CekN5kLiKZ4HkxkuJVUa5wgXI8g2jGnoQErfmy3NxWev-F2QTn48ikB4W_nL3ZeH08nxsPXyXw7agfuC8jxi4jvuwla3WNlXiL66ag_uCjXb8372ExN6KWo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoBLH1BKWlpcqRInQ9bO84goq10eK8RD4hYlsa1WXZJqN3ugp_6E_sb-ks7Ym9AtqirBMfE4iZ2Z-Btn5huAjyZEWOEHOc8RjPNAyZwjCil4oXJcLiPVizTlO5-OosFVcHQdttGElAvj-CG6DTeyDPu9JgOnDem9O9ZQSsFGBw99FnSy5BI8pbLe1qs67xikBKqnSzCSklMd-pa30Rd7i_0X16V7YPN-zOSfWNYuRv3nULTDcDEoX3dnTbFbfv-L4fFR43wBz-ZQle073XoJT3S1BisHbYW4dTCfdGMjuSqWV4oNb2zFI1YbhqiSUTmkhp0hwqxRSdm5C8bVrLhlIzSvXz9-Diszofh31h_P6onjlWJn9fiW4s7qMbtAF7ueTF_BVf_w8mDA53UbeBlEieQKUYRMEqktFU0vicqUWPhLiWcDFQoV5kmKjlusjEQN0mmpUqF0GqoYG3QgN2C5qiu9CUwYQqzCaOvKxTI3ZapNKVVhTFDEwgPevrWsnJOaU22NcebomEVGs5d1s-fBTif_zdF5_FNyq1WCbG7W0wzdTYSLiCljDz50zTjr9Jclr3Q9Q5mQKAcTIfESr53OdLeSQeQniBg9iBe0qRMgsu_FlurLZ0v6nRJVvt_zQFhl-c_TZ_uj4WF39OYhnbZhZXB5epKdDEfHb2FVUNqHT-GPW7DcTGb6HYKxpnhvze03joIsrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEXWh4toQWMhMTJbdbO81h1u-ryWK0KlXqLnNgWqEtSbbOHcuIn8Bv5JczYm9ClQkhwTOw87HwTf5PMfAPwysZIK8JIcYVknEdaKo4spOSlVrhcJnqQGMp3fj9Jjk-jN2fx2bUsfq8P0X9wI8tw72sy8Att93-JhlIGNvp36LKgjyVvw3qUhBnhenjSC0gJRKfPL5KSUxn6TrYxFPurx68uSze45s2QyetU1q1Fow1Q3Sh8CMr53qIt96qvvwk8_s8wN-H-kqiyA4-sB3DL1A_h7mFXH-4R2KFpXRxXzVSt2fiLq3fEGsuQUzIqhtSyKfLLBiHKTnwormHlFZugcf349n1c2zlFv7PRbNHMvaoUmzazK4o6a2bsAzrYzfzyMZyOjj4eHvNl1QZeRUkmuUYOIbNMGidEM8iSKicN_kri3kjHQscqy9FtS7WViB-TVzoX2uSxTrHBRHIL1uqmNk-ACUt8VVjjHLlUKlvlxlZSl9ZGZSoC4N1DK6qlpDlV1pgVXoxZFDR7RT97Abzu-194MY8_9tztMFAsjfqyQGcTySIyyjSAl30zzjr9Y1G1aRbYJybBwUxIPMW2h0x_KUkIRb4YQLoCpr4DSX2vttSfPznJ75yE8sNBAMJh5S93XxxMxkf91tN_OegF3JkOR8W78eTtDtwTlPMRUuzjLqy184V5hkysLZ87Y_sJBIkrZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+Imaging+of+the+Plant+Pathogen+Response+by+Near%E2%80%90Infrared+Fluorescent+Polyphenol+Sensors&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ni%C3%9Fler%2C+Robert&rft.au=M%C3%BCller%2C+Andrea+T&rft.au=Dohrman%2C+Frederike&rft.au=Kurth%2C+Larissa&rft.date=2022-01-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=2&rft_id=info:doi/10.1002%2Fanie.202108373&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon