Detection and Imaging of the Plant Pathogen Response by Near‐Infrared Fluorescent Polyphenol Sensors
Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 2; pp. e202108373 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
10.01.2022
John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs). We identified polyethylene glycol–phospholipids that render (6,5)‐SWCNTs sensitive (Kd=90 nM) to plant polyphenols (tannins, flavonoids, …), which red‐shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen‐induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion.
Molecular sensors for plant polyphenol imaging based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs) are presented. These sensors probe the polyphenol content in complex biological systems such as the plant rhizosphere. In summary, this approach enables real‐time spatiotemporal visualization of plant defense via polyphenols release. |
---|---|
AbstractList | Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs). We identified polyethylene glycol–phospholipids that render (6,5)‐SWCNTs sensitive (K
d
=90 nM) to plant polyphenols (tannins, flavonoids, …), which red‐shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen‐induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion. Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near-infrared (NIR) fluorescent single-wall carbon nanotubes (SWCNTs). We identified polyethylene glycol-phospholipids that render (6,5)-SWCNTs sensitive (K =90 nM) to plant polyphenols (tannins, flavonoids, …), which red-shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen-induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion. Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs). We identified polyethylene glycol–phospholipids that render (6,5)‐SWCNTs sensitive (K d =90 nM) to plant polyphenols (tannins, flavonoids, …), which red‐shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen‐induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion. Molecular sensors for plant polyphenol imaging based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs) are presented. These sensors probe the polyphenol content in complex biological systems such as the plant rhizosphere. In summary, this approach enables real‐time spatiotemporal visualization of plant defense via polyphenols release. Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs). We identified polyethylene glycol–phospholipids that render (6,5)‐SWCNTs sensitive (Kd=90 nM) to plant polyphenols (tannins, flavonoids, …), which red‐shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen‐induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion. Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs). We identified polyethylene glycol–phospholipids that render (6,5)‐SWCNTs sensitive (Kd=90 nM) to plant polyphenols (tannins, flavonoids, …), which red‐shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen‐induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion. Molecular sensors for plant polyphenol imaging based on near‐infrared (NIR) fluorescent single‐wall carbon nanotubes (SWCNTs) are presented. These sensors probe the polyphenol content in complex biological systems such as the plant rhizosphere. In summary, this approach enables real‐time spatiotemporal visualization of plant defense via polyphenols release. Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near-infrared (NIR) fluorescent single-wall carbon nanotubes (SWCNTs). We identified polyethylene glycol-phospholipids that render (6,5)-SWCNTs sensitive (Kd =90 nM) to plant polyphenols (tannins, flavonoids, …), which red-shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen-induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion.Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen interactions and tolerance to diseases, it remains challenging to detect polyphenols in complex plant tissues. Here, we create molecular sensors for plant polyphenol imaging that are based on near-infrared (NIR) fluorescent single-wall carbon nanotubes (SWCNTs). We identified polyethylene glycol-phospholipids that render (6,5)-SWCNTs sensitive (Kd =90 nM) to plant polyphenols (tannins, flavonoids, …), which red-shift (up to 20 nm) and quench their emission (ca. 1000 nm). These sensors report changes in total polyphenol level after herbivore or pathogen challenge in crop plant systems (Soybean Glycine max) and leaf tissue extracts (Tococa spp.). We furthermore demonstrate remote chemical imaging of pathogen-induced polyphenol release from roots of soybean seedlings over the time course of 24 h. This approach allows in situ visualization and understanding of the chemical plant defense in real time and paves the way for plant phenotyping for optimized polyphenol secretion. |
Author | Dohrman, Frederike Giraldo, Juan Pablo Li, Han Flavel, Benjamin S. Mithöfer, Axel Nißler, Robert Kurth, Larissa Müller, Andrea T. Kruss, Sebastian Cosio, Eric G. |
AuthorAffiliation | 2 Institute of Physical Chemistry Georg-August Universität Göttingen Tammannstrasse 6 37077 Göttingen Germany 7 Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany 6 Department of Botany and Plant Sciences University of California Riverside CA 92507 USA 1 Physical Chemistry II Bochum University Universitätsstrasse 150 44801 Bochum Germany 5 Institute for Nature Earth and Energy (INTE-PUCP) Pontifical Catholic University of Peru Av. Universitaria 1801, San Miguel 15088 Lima Peru 3 Research Group Plant Defense Physiology Max Planck Institute for Chemical Ecology Hans-Knöll-Strasse 8 07745 Jena Germany 4 Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany |
AuthorAffiliation_xml | – name: 3 Research Group Plant Defense Physiology Max Planck Institute for Chemical Ecology Hans-Knöll-Strasse 8 07745 Jena Germany – name: 5 Institute for Nature Earth and Energy (INTE-PUCP) Pontifical Catholic University of Peru Av. Universitaria 1801, San Miguel 15088 Lima Peru – name: 2 Institute of Physical Chemistry Georg-August Universität Göttingen Tammannstrasse 6 37077 Göttingen Germany – name: 1 Physical Chemistry II Bochum University Universitätsstrasse 150 44801 Bochum Germany – name: 6 Department of Botany and Plant Sciences University of California Riverside CA 92507 USA – name: 4 Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany – name: 7 Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany |
Author_xml | – sequence: 1 givenname: Robert orcidid: 0000-0003-1282-2901 surname: Nißler fullname: Nißler, Robert organization: Georg-August Universität Göttingen – sequence: 2 givenname: Andrea T. surname: Müller fullname: Müller, Andrea T. organization: Max Planck Institute for Chemical Ecology – sequence: 3 givenname: Frederike surname: Dohrman fullname: Dohrman, Frederike organization: Georg-August Universität Göttingen – sequence: 4 givenname: Larissa surname: Kurth fullname: Kurth, Larissa organization: Georg-August Universität Göttingen – sequence: 5 givenname: Han orcidid: 0000-0002-0597-8409 surname: Li fullname: Li, Han organization: Karlsruhe Institute of Technology (KIT) – sequence: 6 givenname: Eric G. orcidid: 0000-0001-6993-5654 surname: Cosio fullname: Cosio, Eric G. organization: Pontifical Catholic University of Peru – sequence: 7 givenname: Benjamin S. orcidid: 0000-0002-8213-8673 surname: Flavel fullname: Flavel, Benjamin S. organization: Karlsruhe Institute of Technology (KIT) – sequence: 8 givenname: Juan Pablo orcidid: 0000-0002-8400-8944 surname: Giraldo fullname: Giraldo, Juan Pablo organization: University of California – sequence: 9 givenname: Axel orcidid: 0000-0001-5229-6913 surname: Mithöfer fullname: Mithöfer, Axel organization: Max Planck Institute for Chemical Ecology – sequence: 10 givenname: Sebastian orcidid: 0000-0003-0638-9822 surname: Kruss fullname: Kruss, Sebastian email: sebastian.kruss@rub.de organization: Fraunhofer Institute for Microelectronic Circuits and Systems |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34608727$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URH9gyxJZYsNmwth3ZmxvkKrSQqSqVPysLde-k7ia2MGeAWXHI_CMPAmOUgJUQqxs-X7n3nN9jslBiAEJecrqGatr_tIEjzNec1ZLEPCAHLGWswqEgINybwAqIVt2SI5zvi28lHX3iBxC09VScHFE-tc4oh19DNQER-crs_BhQWNPxyXS68GEkV6bcRkXGOh7zOsYMtKbDb1Ck358-z4PfTIJHb0YppgwW9wK4rBZLzHEgX7AkGPKj8nD3gwZn9ydJ-TTxfnHs7fV5bs387PTy8o2nYTKsZaBlICNZG3HZGcVtLyzUF4b13LXGqk6poTrAa1FZZ3iDlXrRClgAyfk1a7verpZodu6SWbQ6-RXJm10NF7_XQl-qRfxi1ZcSVWz0uDFXYMUP0-YR73yZamhfATGKWveCgVCcoCCPr-H3sYphbKe5h3rOEhQolDP_nS0t_IrggLMdoBNMeeE_R5htd5mrLcZ633GRdDcE1g_mm2EZSM__FumdrKvfsDNf4bo06v5-W_tT_fivN8 |
CitedBy_id | crossref_primary_10_1039_D3SD00257H crossref_primary_10_1038_s41565_022_01307_w crossref_primary_10_3389_fpls_2024_1490801 crossref_primary_10_1002_adma_202411067 crossref_primary_10_1051_jeos_2024024 crossref_primary_10_1002_ange_202316965 crossref_primary_10_1021_acs_analchem_2c02471 crossref_primary_10_1021_acsphotonics_2c00606 crossref_primary_10_1021_acs_analchem_2c01321 crossref_primary_10_1039_D4TC00107A crossref_primary_10_1002_anie_202309610 crossref_primary_10_1021_acs_analchem_4c06509 crossref_primary_10_3389_fpls_2022_884454 crossref_primary_10_1002_anie_202112372 crossref_primary_10_1039_D4NR02358G crossref_primary_10_1557_s43577_023_00505_8 crossref_primary_10_3389_fgeed_2022_1029944 crossref_primary_10_1021_acs_nanolett_3c05082 crossref_primary_10_1002_adfm_202309064 crossref_primary_10_1002_anie_202316965 crossref_primary_10_1021_acsnano_4c06843 crossref_primary_10_1021_acsnano_3c04314 crossref_primary_10_1039_D4NR01892C crossref_primary_10_1021_acsnano_2c06481 crossref_primary_10_1021_acs_chemrev_3c00581 crossref_primary_10_1038_s44287_024_00131_9 crossref_primary_10_1039_D3RA04083F crossref_primary_10_1002_ange_202112372 crossref_primary_10_1002_smll_202304237 crossref_primary_10_1002_ange_202309610 crossref_primary_10_1039_D2SC02981B |
Cites_doi | 10.1002/adma.201201751 10.1002/chem.201800993 10.1126/science.1072631 10.1007/128_2012_403 10.1021/acs.nanolett.9b02865 10.1021/acssensors.1c01022 10.1111/j.1365-3059.2010.02411.x 10.1002/adma.202005683 10.1111/j.1365-2435.2010.01826.x 10.1104/pp.77.3.591 10.1021/acs.nanolett.9b05159 10.1002/smll.201403276 10.1126/science.1078727 10.1021/ja410433b 10.1016/j.phytochem.2011.01.040 10.1002/cplu.202000248 10.1038/nmat877 10.1038/nature10947 10.1021/acsnano.7b06701 10.4161/psb.5.8.12337 10.1016/j.tplants.2013.04.008 10.1021/jacs.7b09258 10.1002/adfm.202006254 10.1016/j.tplants.2013.11.006 10.5511/plantbiotechnology.14.0917a 10.3390/s19245403 10.1038/nnano.2009.294 10.1126/scitranslmed.aar2680 10.1002/ange.201904167 10.1002/ange.202003825 10.1016/j.molp.2019.06.003 10.1002/9781118329634.ch5 10.1104/pp.57.5.751 10.1146/annurev-physchem-040214-121535 10.1038/nchem.332 10.1021/acs.jpcc.8b11058 10.1515/BC.2003.049 10.1177/0967033520982354 10.1038/ncomms10241 10.1038/nnano.2013.236 10.1021/acsomega.9b00767 10.1016/j.bios.2020.112763 10.1111/j.1462-2920.2006.01141.x 10.1038/s41477-020-0632-4 10.1021/acsami.8b04373 10.1038/nnano.2008.369 10.1002/anie.201904167 10.1038/286710a0 10.1038/s41477-018-0189-7 10.1073/pnas.1613541114 10.1007/BF00196568 10.1038/s41551-017-0041 10.1038/ncomms14281 10.3390/bios10090112 10.1021/acs.accounts.0c00150 10.1007/s00374-011-0653-2 10.1038/s41565-019-0470-6 10.3390/s18020462 10.1002/anie.202003825 10.1038/nmat3890 10.1016/S0021-9258(18)90867-7 10.1021/acs.chemrev.5b00008 10.1021/acssensors.1c01159 10.1021/acs.jpcc.1c05432 10.1038/nnano.2016.284 10.1021/acsami.7b00810 10.3390/molecules18022328 10.1038/nprot.2007.102 10.1016/0968-0004(88)90014-X 10.1021/acs.analchem.1c00168 10.1016/j.addr.2013.07.015 10.1038/s41467-020-19718-5 10.1016/j.jare.2019.03.005 10.1093/jxb/err430 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.202108373 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | PMC9298901 34608727 10_1002_anie_202108373 ANIE202108373 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: deutsche forschungsgemeinschaft – fundername: deutscher akademischer austauschdienst – fundername: studienstiftung des deutschen volkes – fundername: volkswagen foundation – fundername: ; |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM YIN 7TM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4683-d1513883e48156186c93526c31384d52d5a896197df3ecce9cd92de95d7a89e43 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 14:06:04 EDT 2025 Fri Jul 11 06:13:22 EDT 2025 Fri Jul 25 10:16:03 EDT 2025 Wed Feb 19 02:09:15 EST 2025 Thu Apr 24 23:08:34 EDT 2025 Tue Jul 01 01:18:10 EDT 2025 Wed Jan 22 16:27:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | near-infrared fluorescence plant polyphenols biosensors carbon nanotubes imaging |
Language | English |
License | Attribution 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4683-d1513883e48156186c93526c31384d52d5a896197df3ecce9cd92de95d7a89e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0638-9822 0000-0003-1282-2901 0000-0002-8213-8673 0000-0002-8400-8944 0000-0001-5229-6913 0000-0002-0597-8409 0000-0001-6993-5654 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202108373 |
PMID | 34608727 |
PQID | 2616238397 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9298901 proquest_miscellaneous_2579378233 proquest_journals_2616238397 pubmed_primary_34608727 crossref_primary_10_1002_anie_202108373 crossref_citationtrail_10_1002_anie_202108373 wiley_primary_10_1002_anie_202108373_ANIE202108373 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 10, 2022 |
PublicationDateYYYYMMDD | 2022-01-10 |
PublicationDate_xml | – month: 01 year: 2022 text: January 10, 2022 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2017; 8 2012; 484 2017; 1 2021; 22 2020; 20 2013; 65 2021; 125 2011; 60 2021; 29 2019; 12 2019; 14 2020 2020; 59 132 2019; 19 2020; 11 2020; 10 2013; 8 2017; 114 2014; 136 2017; 9 2019; 123 2013; 18 2020; 6 2018; 4 2021; 33 2020; 53 2011; 72 2003; 2 2014; 13 2013; 350 2014; 19 2007; 2 2011; 25 2012; 24 2010; 5 2012; 63 2021; 6 2019; 4 2002; 297 2020; 85 2002; 298 2015; 11 2006; 8 1988; 13 2021; 93 2019 2019; 58 131 2017; 139 2018; 24 2018; 18 2016; 7 1976; 57 2015; 115 2017; 11 2015; 66 1984; 259 2017; 12 2021; 172 1996; 199 2014 2009; 4 2012; 48 1985; 77 2018; 10 2009; 1 1980; 286 2003; 384 2014; 31 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 Constabel C. P. (e_1_2_6_57_1) 2014 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_47_2 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 Singh S. (e_1_2_6_48_1) 2021; 22 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 (e_1_2_6_45_2) 2019; 131 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 115 start-page: 10816 year: 2015 end-page: 10906 publication-title: Chem. Rev. – volume: 7 start-page: 10241 year: 2016 publication-title: Nat. Commun. – volume: 19 start-page: 67 year: 2019 end-page: 73 publication-title: J. Adv. Res. – volume: 31 start-page: 431 year: 2014 end-page: 443 publication-title: Plant Biotechnol. – volume: 66 start-page: 331 year: 2015 end-page: 356 publication-title: Annu. Rev. Phys. Chem. – volume: 9 start-page: 11321 year: 2017 end-page: 11331 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 5995 year: 2020 publication-title: Nat. Commun. – volume: 172 year: 2021 publication-title: Biosens. Bioelectron. – volume: 22 start-page: 14421 year: 2021 publication-title: Int. J. Mol. Sci. – volume: 139 start-page: 16791 year: 2017 end-page: 16802 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 428 year: 2013 end-page: 439 publication-title: Trends Plant Sci. – volume: 199 start-page: 270 year: 1996 end-page: 275 publication-title: Planta – volume: 1 start-page: 0041 year: 2017 publication-title: Nat. Biomed. Eng. – volume: 60 start-page: 2 year: 2011 end-page: 14 publication-title: Plant Pathol. – volume: 8 start-page: 959 year: 2013 end-page: 968 publication-title: Nat. Nanotechnol. – volume: 20 start-page: 2432 year: 2020 end-page: 2442 publication-title: Nano Lett. – volume: 24 start-page: 12241 year: 2018 end-page: 12245 publication-title: Chem. Eur. J. – volume: 77 start-page: 591 year: 1985 end-page: 601 publication-title: Plant Physiol. – volume: 8 start-page: 1867 year: 2006 end-page: 1880 publication-title: Environ. Microbiol. – volume: 14 start-page: 541 year: 2019 end-page: 553 publication-title: Nat. Nanotechnol. – volume: 48 start-page: 123 year: 2012 end-page: 149 publication-title: Biol. Fertil. Soils – volume: 4 start-page: 773 year: 2009 end-page: 780 publication-title: Nat. Nanotechnol. – volume: 59 132 start-page: 17732 17885 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 112 year: 2020 publication-title: Biosensors – volume: 2 start-page: 338 year: 2003 end-page: 342 publication-title: Nat. Mater. – volume: 53 start-page: 1269 year: 2020 end-page: 1278 publication-title: Acc. Chem. Res. – volume: 24 start-page: 4977 year: 2012 end-page: 4994 publication-title: Adv. Mater. – volume: 19 start-page: 540 year: 2019 publication-title: Sensors – volume: 125 start-page: 18341 year: 2021 end-page: 18351 publication-title: J. Phys. Chem. C – volume: 72 start-page: 1551 year: 2011 end-page: 1565 publication-title: Phytochemistry – volume: 4 start-page: 114 year: 2009 end-page: 120 publication-title: Nat. Nanotechnol. – volume: 58 131 start-page: 11469 11591 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 85 start-page: 1465 year: 2020 end-page: 1480 publication-title: ChemPlusChem – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 10 start-page: 17693 year: 2018 end-page: 17703 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 73 year: 2021 end-page: 83 publication-title: J. Near Infrared Spectrosc. – volume: 6 start-page: 2802 year: 2021 end-page: 2814 publication-title: ACS Sens. – volume: 18 start-page: 2328 year: 2013 end-page: 2375 publication-title: Molecules – volume: 286 start-page: 710 year: 1980 end-page: 711 publication-title: Nature – volume: 114 start-page: 1789 year: 2017 end-page: 1794 publication-title: Proc. Natl. Acad. Sci. USA – volume: 350 start-page: 65 year: 2013 end-page: 109 publication-title: Top. Curr. Chem. – volume: 5 start-page: 1037 year: 2010 end-page: 1038 publication-title: Plant Signaling Behav. – volume: 12 start-page: 1203 year: 2019 end-page: 1210 publication-title: Mol. Plant – volume: 6 start-page: 3032 year: 2021 end-page: 3046 publication-title: ACS Sens. – volume: 384 start-page: 437 year: 2003 end-page: 446 publication-title: Biol. Chem. – volume: 484 start-page: 186 year: 2012 end-page: 194 publication-title: Nature – volume: 259 start-page: 11341 year: 1984 end-page: 11345 publication-title: J. Biol. Chem. – volume: 13 start-page: 23 year: 1988 end-page: 27 publication-title: Trends Biochem. Sci. – volume: 18 start-page: 462 year: 2018 publication-title: Sensors – volume: 63 start-page: 3429 year: 2012 end-page: 3444 publication-title: J. Exp. Bot. – volume: 93 start-page: 6446 year: 2021 end-page: 6455 publication-title: Anal. Chem. – volume: 57 start-page: 751 year: 1976 end-page: 759 publication-title: Plant Physiol. – volume: 297 start-page: 593 year: 2002 end-page: 597 publication-title: Science – start-page: 115 year: 2014 end-page: 142 – volume: 65 start-page: 1933 year: 2013 end-page: 1950 publication-title: Adv. Drug Delivery Rev. – volume: 1 start-page: 473 year: 2009 end-page: 481 publication-title: Nat. Chem. – volume: 13 start-page: 400 year: 2014 end-page: 408 publication-title: Nat. Mater. – volume: 123 start-page: 4837 year: 2019 end-page: 4847 publication-title: J. Phys. Chem. C – volume: 4 start-page: 432 year: 2018 end-page: 439 publication-title: Nat. Plants – volume: 136 start-page: 713 year: 2014 end-page: 724 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 325 year: 2011 end-page: 338 publication-title: Funct. Ecol. – volume: 10 year: 2018 publication-title: Sci. Transl. Med. – volume: 11 start-page: 3973 year: 2015 end-page: 3984 publication-title: Small – volume: 19 start-page: 90 year: 2014 end-page: 98 publication-title: Trends Plant Sci. – volume: 8 start-page: 14281 year: 2017 publication-title: Nat. Commun. – volume: 33 year: 2021 publication-title: Adv. Funct. Mater. – volume: 298 start-page: 2361 year: 2002 end-page: 2366 publication-title: Science – volume: 6 start-page: 404 year: 2020 end-page: 415 publication-title: Nat. Plants – volume: 19 start-page: 6604 year: 2019 end-page: 6611 publication-title: Nano Lett. – volume: 11 start-page: 10637 year: 2017 end-page: 10643 publication-title: ACS Nano – volume: 4 start-page: 7750 year: 2019 end-page: 7758 publication-title: ACS Omega – volume: 2 start-page: 875 year: 2007 end-page: 877 publication-title: Nat. Protoc. – volume: 12 start-page: 368 year: 2017 end-page: 377 publication-title: Nat. Nanotechnol. – ident: e_1_2_6_11_1 doi: 10.1002/adma.201201751 – ident: e_1_2_6_42_1 doi: 10.1002/chem.201800993 – ident: e_1_2_6_12_1 doi: 10.1126/science.1072631 – ident: e_1_2_6_10_1 doi: 10.1007/128_2012_403 – ident: e_1_2_6_17_1 doi: 10.1021/acs.nanolett.9b02865 – ident: e_1_2_6_32_1 doi: 10.1021/acssensors.1c01022 – ident: e_1_2_6_3_1 doi: 10.1111/j.1365-3059.2010.02411.x – ident: e_1_2_6_33_1 doi: 10.1002/adma.202005683 – ident: e_1_2_6_50_1 doi: 10.1111/j.1365-2435.2010.01826.x – ident: e_1_2_6_69_1 doi: 10.1104/pp.77.3.591 – ident: e_1_2_6_27_1 doi: 10.1021/acs.nanolett.9b05159 – ident: e_1_2_6_30_1 doi: 10.1002/smll.201403276 – ident: e_1_2_6_13_1 doi: 10.1126/science.1078727 – ident: e_1_2_6_25_1 doi: 10.1021/ja410433b – ident: e_1_2_6_49_1 doi: 10.1016/j.phytochem.2011.01.040 – ident: e_1_2_6_18_1 doi: 10.1002/cplu.202000248 – ident: e_1_2_6_35_1 doi: 10.1038/nmat877 – ident: e_1_2_6_2_1 doi: 10.1038/nature10947 – ident: e_1_2_6_16_1 doi: 10.1021/acsnano.7b06701 – ident: e_1_2_6_52_1 doi: 10.4161/psb.5.8.12337 – ident: e_1_2_6_5_1 doi: 10.1016/j.tplants.2013.04.008 – ident: e_1_2_6_59_1 doi: 10.1021/jacs.7b09258 – ident: e_1_2_6_28_1 doi: 10.1002/adfm.202006254 – volume: 22 start-page: 14421 year: 2021 ident: e_1_2_6_48_1 publication-title: Int. J. Mol. Sci. – ident: e_1_2_6_51_1 doi: 10.1016/j.tplants.2013.11.006 – ident: e_1_2_6_74_1 doi: 10.5511/plantbiotechnology.14.0917a – ident: e_1_2_6_22_1 doi: 10.3390/s19245403 – ident: e_1_2_6_40_1 doi: 10.1038/nnano.2009.294 – ident: e_1_2_6_23_1 doi: 10.1126/scitranslmed.aar2680 – volume: 131 start-page: 11591 year: 2019 ident: e_1_2_6_45_2 publication-title: Angew. Chem. doi: 10.1002/ange.201904167 – ident: e_1_2_6_47_2 doi: 10.1002/ange.202003825 – ident: e_1_2_6_6_1 doi: 10.1016/j.molp.2019.06.003 – start-page: 115 volume-title: Recent Advances in Polyphenol Research year: 2014 ident: e_1_2_6_57_1 doi: 10.1002/9781118329634.ch5 – ident: e_1_2_6_66_1 doi: 10.1104/pp.57.5.751 – ident: e_1_2_6_1_1 – ident: e_1_2_6_9_1 doi: 10.1146/annurev-physchem-040214-121535 – ident: e_1_2_6_29_1 doi: 10.1038/nchem.332 – ident: e_1_2_6_37_1 doi: 10.1021/acs.jpcc.8b11058 – ident: e_1_2_6_65_1 doi: 10.1515/BC.2003.049 – ident: e_1_2_6_61_1 doi: 10.1177/0967033520982354 – ident: e_1_2_6_21_1 doi: 10.1038/ncomms10241 – ident: e_1_2_6_36_1 doi: 10.1038/nnano.2013.236 – ident: e_1_2_6_60_1 doi: 10.1021/acsomega.9b00767 – ident: e_1_2_6_41_1 doi: 10.1016/j.bios.2020.112763 – ident: e_1_2_6_71_1 doi: 10.1111/j.1462-2920.2006.01141.x – ident: e_1_2_6_31_1 doi: 10.1038/s41477-020-0632-4 – ident: e_1_2_6_44_1 doi: 10.1021/acsami.8b04373 – ident: e_1_2_6_26_1 doi: 10.1038/nnano.2008.369 – ident: e_1_2_6_45_1 doi: 10.1002/anie.201904167 – ident: e_1_2_6_70_1 doi: 10.1038/286710a0 – ident: e_1_2_6_4_1 doi: 10.1038/s41477-018-0189-7 – ident: e_1_2_6_19_1 doi: 10.1073/pnas.1613541114 – ident: e_1_2_6_64_1 doi: 10.1007/BF00196568 – ident: e_1_2_6_20_1 doi: 10.1038/s41551-017-0041 – ident: e_1_2_6_46_1 doi: 10.1038/ncomms14281 – ident: e_1_2_6_55_1 doi: 10.3390/bios10090112 – ident: e_1_2_6_56_1 doi: 10.1021/acs.accounts.0c00150 – ident: e_1_2_6_58_1 doi: 10.1007/s00374-011-0653-2 – ident: e_1_2_6_7_1 doi: 10.1038/s41565-019-0470-6 – ident: e_1_2_6_54_1 doi: 10.3390/s18020462 – ident: e_1_2_6_47_1 doi: 10.1002/anie.202003825 – ident: e_1_2_6_8_1 doi: 10.1038/nmat3890 – ident: e_1_2_6_67_1 doi: 10.1016/S0021-9258(18)90867-7 – ident: e_1_2_6_15_1 doi: 10.1021/acs.chemrev.5b00008 – ident: e_1_2_6_34_1 doi: 10.1021/acssensors.1c01159 – ident: e_1_2_6_38_1 doi: 10.1021/acs.jpcc.1c05432 – ident: e_1_2_6_39_1 doi: 10.1038/nnano.2016.284 – ident: e_1_2_6_43_1 doi: 10.1021/acsami.7b00810 – ident: e_1_2_6_53_1 doi: 10.3390/molecules18022328 – ident: e_1_2_6_63_1 doi: 10.1038/nprot.2007.102 – ident: e_1_2_6_68_1 doi: 10.1016/0968-0004(88)90014-X – ident: e_1_2_6_62_1 doi: 10.1021/acs.analchem.1c00168 – ident: e_1_2_6_14_1 doi: 10.1016/j.addr.2013.07.015 – ident: e_1_2_6_24_1 doi: 10.1038/s41467-020-19718-5 – ident: e_1_2_6_72_1 doi: 10.1016/j.jare.2019.03.005 – ident: e_1_2_6_73_1 doi: 10.1093/jxb/err430 |
SSID | ssj0028806 |
Score | 2.5480824 |
Snippet | Plants use secondary metabolites such as polyphenols for chemical defense against pathogens and herbivores. Despite their importance in plant pathogen... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202108373 |
SubjectTerms | biosensors carbon nanotubes Chemical defense Chemical industry Chemical plants Flavonoids Fluorescence Fluorescent Dyes - chemistry Glycine max Glycine max - chemistry Glycine max - metabolism Herbivores Imaging Infrared detectors Metabolites Nanotechnology Nanotubes Nanotubes, Carbon - chemistry near-infrared fluorescence Pathogens Phenotyping Phospholipids Plant Leaves - chemistry Plant Leaves - metabolism plant polyphenols Plant tissues Polyethylene glycol Polyphenols Polyphenols - analysis Polyphenols - chemistry Secondary metabolites Seedlings Sensors Single wall carbon nanotubes Soybeans Spectroscopy, Near-Infrared - methods |
Title | Detection and Imaging of the Plant Pathogen Response by Near‐Infrared Fluorescent Polyphenol Sensors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202108373 https://www.ncbi.nlm.nih.gov/pubmed/34608727 https://www.proquest.com/docview/2616238397 https://www.proquest.com/docview/2579378233 https://pubmed.ncbi.nlm.nih.gov/PMC9298901 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BL3CB8g4tlZGQOLnN2s7rWJWuukisVoVKvUVObIuKJUG72UM58RP6G_tLmLE3oUuFkOCY2HnYmYm_Sb75BuCNSxBWxEpzjWCcKyM1RxRS8cpoXC5TM0ot5Tt_mKYnZ-r9eXJ-I4s_6EMMH9zIM_z7mhxcV8uDX6KhlIGN8R2GLBhjkdwnEbYIFZ0O-lECjTOkF0nJqQp9r9oYi4PNwzdXpVtQ8zZj8iaS9UvR-CHofhCBgfJlf9VV-_X33_Qd_2eU2_BgjVPZYTCsR3DHNo_h3lFfHu4JuHe28zSuhunGsMlXX-6ItY4hpGRUC6ljM4SXLVooOw1MXMuqSzZF37r-cTVp3ILI72w8X7WLICrFZu38kkhn7Zx9xPi6XSyfwtn4-NPRCV8XbeC1SnPJDUIImefSeh2aUZ7WBUnw1xL3KpMIk-i8wKgtM06i-diiNoUwtkhMhg1WyWew1bSNfQFMOIKrwlkfx2VSu7qwrpamck5VmYiA9w-trNeK5lRYY14GLWZR0uyVw-xF8Hbo_y1oefyx525vA-Xap5clxpqIFRFQZhG8Hppx1ukXi25su8I-CekN5kLiKZ4HkxkuJVUa5wgXI8g2jGnoQErfmy3NxWev-F2QTn48ikB4W_nL3ZeH08nxsPXyXw7agfuC8jxi4jvuwla3WNlXiL66ag_uCjXb8372ExN6KWo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoBLH1BKWlpcqRInQ9bO84goq10eK8RD4hYlsa1WXZJqN3ugp_6E_sb-ks7Ym9AtqirBMfE4iZ2Z-Btn5huAjyZEWOEHOc8RjPNAyZwjCil4oXJcLiPVizTlO5-OosFVcHQdttGElAvj-CG6DTeyDPu9JgOnDem9O9ZQSsFGBw99FnSy5BI8pbLe1qs67xikBKqnSzCSklMd-pa30Rd7i_0X16V7YPN-zOSfWNYuRv3nULTDcDEoX3dnTbFbfv-L4fFR43wBz-ZQle073XoJT3S1BisHbYW4dTCfdGMjuSqWV4oNb2zFI1YbhqiSUTmkhp0hwqxRSdm5C8bVrLhlIzSvXz9-Diszofh31h_P6onjlWJn9fiW4s7qMbtAF7ueTF_BVf_w8mDA53UbeBlEieQKUYRMEqktFU0vicqUWPhLiWcDFQoV5kmKjlusjEQN0mmpUqF0GqoYG3QgN2C5qiu9CUwYQqzCaOvKxTI3ZapNKVVhTFDEwgPevrWsnJOaU22NcebomEVGs5d1s-fBTif_zdF5_FNyq1WCbG7W0wzdTYSLiCljDz50zTjr9Jclr3Q9Q5mQKAcTIfESr53OdLeSQeQniBg9iBe0qRMgsu_FlurLZ0v6nRJVvt_zQFhl-c_TZ_uj4WF39OYhnbZhZXB5epKdDEfHb2FVUNqHT-GPW7DcTGb6HYKxpnhvze03joIsrg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEXWh4toQWMhMTJbdbO81h1u-ryWK0KlXqLnNgWqEtSbbOHcuIn8Bv5JczYm9ClQkhwTOw87HwTf5PMfAPwysZIK8JIcYVknEdaKo4spOSlVrhcJnqQGMp3fj9Jjk-jN2fx2bUsfq8P0X9wI8tw72sy8Att93-JhlIGNvp36LKgjyVvw3qUhBnhenjSC0gJRKfPL5KSUxn6TrYxFPurx68uSze45s2QyetU1q1Fow1Q3Sh8CMr53qIt96qvvwk8_s8wN-H-kqiyA4-sB3DL1A_h7mFXH-4R2KFpXRxXzVSt2fiLq3fEGsuQUzIqhtSyKfLLBiHKTnwormHlFZugcf349n1c2zlFv7PRbNHMvaoUmzazK4o6a2bsAzrYzfzyMZyOjj4eHvNl1QZeRUkmuUYOIbNMGidEM8iSKicN_kri3kjHQscqy9FtS7WViB-TVzoX2uSxTrHBRHIL1uqmNk-ACUt8VVjjHLlUKlvlxlZSl9ZGZSoC4N1DK6qlpDlV1pgVXoxZFDR7RT97Abzu-194MY8_9tztMFAsjfqyQGcTySIyyjSAl30zzjr9Y1G1aRbYJybBwUxIPMW2h0x_KUkIRb4YQLoCpr4DSX2vttSfPznJ75yE8sNBAMJh5S93XxxMxkf91tN_OegF3JkOR8W78eTtDtwTlPMRUuzjLqy184V5hkysLZ87Y_sJBIkrZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+and+Imaging+of+the+Plant+Pathogen+Response+by+Near%E2%80%90Infrared+Fluorescent+Polyphenol+Sensors&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ni%C3%9Fler%2C+Robert&rft.au=M%C3%BCller%2C+Andrea+T&rft.au=Dohrman%2C+Frederike&rft.au=Kurth%2C+Larissa&rft.date=2022-01-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=61&rft.issue=2&rft_id=info:doi/10.1002%2Fanie.202108373&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |