Microplastics and their Additives in the Indoor Environment
Analyses of air and house dust have shown that pollution of the indoor environment with microplastics could pose a fundamental hygienic problem. Indoor microplastics can result from abrasion, microplastic beads are frequently added to household products and microplastic granules can be found in arti...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 61; no. 32; pp. e202205713 - n/a |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
08.08.2022
John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Analyses of air and house dust have shown that pollution of the indoor environment with microplastics could pose a fundamental hygienic problem. Indoor microplastics can result from abrasion, microplastic beads are frequently added to household products and microplastic granules can be found in artificial turf for sports activities and in synthetic admixtures in equestrian hall litter. In this context, the question arose as to what extent particulate emissions of thermoplastic materials from 3D printing should be at least partially classified as microplastics or nanoplastics. The discussion about textiles as a possible source of indoor microplastics has also been intensified. This Minireview gives an overview of the current exposure of residents to microplastics. Trends can be identified from the results and preventive measures can be derived if necessary. It is recommended that microplastics and their additives be given greater consideration in indoor environmental surveys in the future.
A wide range of synthetic polymers are usually present in domestic and public indoor environments. These represent potential sources of microplastics, their monomers, and additives. Depending on the physical properties, fibers, fragments, and organic compounds originating from plastics are found in the air or accumulate in house dust. The question therefore arises as to how humans are exposed to microplastics and their components in indoor spaces. |
---|---|
AbstractList | Analyses of air and house dust have shown that pollution of the indoor environment with microplastics could pose a fundamental hygienic problem. Indoor microplastics result from abrasion, microplastic beads are frequently added to household products and microplastic granules can be found in artificial turf for sports activities or synthetic admixtures in riding hall litter. Then the question came up to what extent particulate emissions of thermoplastic materials from 3D printing are at least partially to be classified as microplastics or nanoplastics. The discussion about textiles as a possible source of indoor microplastics has also been intensified. The subject of this study is an overview of the current exposure of residents to microplastics. Trends can be identified from the results and preventive measures can be derived if necessary. It is recommended that microplastics and their additives be given greater consideration in indoor environmental surveys in the future. Analyses of air and house dust have shown that pollution of the indoor environment with microplastics could pose a fundamental hygienic problem. Indoor microplastics can result from abrasion, microplastic beads are frequently added to household products and microplastic granules can be found in artificial turf for sports activities and in synthetic admixtures in equestrian hall litter. In this context, the question arose as to what extent particulate emissions of thermoplastic materials from 3D printing should be at least partially classified as microplastics or nanoplastics. The discussion about textiles as a possible source of indoor microplastics has also been intensified. This Minireview gives an overview of the current exposure of residents to microplastics. Trends can be identified from the results and preventive measures can be derived if necessary. It is recommended that microplastics and their additives be given greater consideration in indoor environmental surveys in the future. A wide range of synthetic polymers are usually present in domestic and public indoor environments. These represent potential sources of microplastics, their monomers, and additives. Depending on the physical properties, fibers, fragments, and organic compounds originating from plastics are found in the air or accumulate in house dust. The question therefore arises as to how humans are exposed to microplastics and their components in indoor spaces. Analyses of air and house dust have shown that pollution of the indoor environment with microplastics could pose a fundamental hygienic problem. Indoor microplastics can result from abrasion, microplastic beads are frequently added to household products and microplastic granules can be found in artificial turf for sports activities and in synthetic admixtures in equestrian hall litter. In this context, the question arose as to what extent particulate emissions of thermoplastic materials from 3D printing should be at least partially classified as microplastics or nanoplastics. The discussion about textiles as a possible source of indoor microplastics has also been intensified. This Minireview gives an overview of the current exposure of residents to microplastics. Trends can be identified from the results and preventive measures can be derived if necessary. It is recommended that microplastics and their additives be given greater consideration in indoor environmental surveys in the future. Analyses of air and house dust have shown that pollution of the indoor environment with microplastics could pose a fundamental hygienic problem. Indoor microplastics can result from abrasion, microplastic beads are frequently added to household products and microplastic granules can be found in artificial turf for sports activities and in synthetic admixtures in equestrian hall litter. In this context, the question arose as to what extent particulate emissions of thermoplastic materials from 3D printing should be at least partially classified as microplastics or nanoplastics. The discussion about textiles as a possible source of indoor microplastics has also been intensified. This Minireview gives an overview of the current exposure of residents to microplastics. Trends can be identified from the results and preventive measures can be derived if necessary. It is recommended that microplastics and their additives be given greater consideration in indoor environmental surveys in the future.Analyses of air and house dust have shown that pollution of the indoor environment with microplastics could pose a fundamental hygienic problem. Indoor microplastics can result from abrasion, microplastic beads are frequently added to household products and microplastic granules can be found in artificial turf for sports activities and in synthetic admixtures in equestrian hall litter. In this context, the question arose as to what extent particulate emissions of thermoplastic materials from 3D printing should be at least partially classified as microplastics or nanoplastics. The discussion about textiles as a possible source of indoor microplastics has also been intensified. This Minireview gives an overview of the current exposure of residents to microplastics. Trends can be identified from the results and preventive measures can be derived if necessary. It is recommended that microplastics and their additives be given greater consideration in indoor environmental surveys in the future. |
Author | Salthammer, Tunga |
AuthorAffiliation | 1 Department of Material Analysis and Indoor Chemistry Fraunhofer WKI Bienroder Weg 54 E 38108 Braunschweig Germany |
AuthorAffiliation_xml | – name: 1 Department of Material Analysis and Indoor Chemistry Fraunhofer WKI Bienroder Weg 54 E 38108 Braunschweig Germany |
Author_xml | – sequence: 1 givenname: Tunga orcidid: 0000-0002-2370-8664 surname: Salthammer fullname: Salthammer, Tunga email: tunga.salthammer@wki.fraunhofer.de organization: Fraunhofer WKI |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35670249$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctLKzEUxoMovrcuZeBu3EzNc5IgXCilasHHRtchTTIamSY1mVb8702pb7jcVULy-77znXP2wGaIwQFwhOAAQYhPdfBugCHGkHFENsAuYhjVhHOyWe6UkJoLhnbAXs5PhRcCNttgh7CGQ0zlLji79ibFeadz702udLBV_-h8qobW-t4vXa58WD1Vk2BjTNU4LH2KYeZCfwC2Wt1ld_h-7oP78_Hd6LK-ur2YjIZXtaGNIDUqYZxhrdQCt9TQ1iLWQoQFdsRqI5l0WuIWGmPhlE-FttAKB6nFWvPSGNkHf9e-88V05qwppZPu1Dz5mU6vKmqvfv4E_6ge4lJJCqFsUDE4eTdI8Xnhcq9mPhvXdTq4uMgKN7yQnEBW0D-_0Ke4SKG0VyjZCIwxo4U6_p7oM8rHXAtA10AZbs7Jtcr4Xvc-rgL6TiGoVutTq_Wpz_UV2eCX7MP5nwK5Frz4zr3-h1bDm8n4S_sGGhWtQw |
CitedBy_id | crossref_primary_10_1016_j_impact_2024_100508 crossref_primary_10_1016_j_jhazmat_2024_135054 crossref_primary_10_1021_acs_est_3c01894 crossref_primary_10_1021_acs_est_3c08902 crossref_primary_10_1016_j_envint_2024_108638 crossref_primary_10_1111_all_15630 crossref_primary_10_1016_j_scitotenv_2023_162729 crossref_primary_10_1007_s11356_023_30543_3 crossref_primary_10_1016_j_envint_2024_108635 crossref_primary_10_3390_environments11120263 crossref_primary_10_1080_10643389_2024_2429241 crossref_primary_10_1016_j_jhazmat_2024_134920 crossref_primary_10_1016_j_bbrc_2024_150410 crossref_primary_10_1016_j_trac_2024_117618 crossref_primary_10_1164_rccm_202211_2099OC crossref_primary_10_1021_acsomega_4c07373 crossref_primary_10_1016_j_jhazmat_2023_133412 crossref_primary_10_1021_acs_est_3c06487 crossref_primary_10_1051_e3sconf_202458901001 crossref_primary_10_1016_j_envint_2023_108150 crossref_primary_10_1016_j_psep_2023_10_002 crossref_primary_10_1016_j_jhazmat_2024_135815 crossref_primary_10_1016_j_heliyon_2024_e36449 crossref_primary_10_1021_acsomega_4c00645 crossref_primary_10_1016_j_jhazmat_2024_137061 crossref_primary_10_36790_epistemus_v18i35_311 crossref_primary_10_1016_j_jenvman_2024_120975 crossref_primary_10_1007_s13762_024_06276_2 crossref_primary_10_1016_j_scitotenv_2024_178049 crossref_primary_10_1007_s10653_025_02399_8 crossref_primary_10_1016_j_jhazmat_2024_135563 crossref_primary_10_1002_tox_24366 crossref_primary_10_1016_j_atmosres_2023_106977 crossref_primary_10_1016_j_jenvman_2023_119364 crossref_primary_10_1021_acs_est_3c01601 crossref_primary_10_1093_toxsci_kfae135 crossref_primary_10_3389_fenvs_2024_1437866 crossref_primary_10_1021_acs_analchem_4c01900 crossref_primary_10_1080_00032719_2023_2294134 crossref_primary_10_1177_1420326X241248054 crossref_primary_10_3390_environments11110256 crossref_primary_10_1016_j_ces_2023_118729 crossref_primary_10_3390_toxics12080561 |
Cites_doi | 10.1016/j.envint.2018.12.014 10.1038/s41598-019-45054-w 10.1016/j.marpolbul.2011.09.025 10.1021/acs.est.9b04535 10.1002/anie.201711023 10.1016/j.chemosphere.2021.130543 10.1021/acs.est.5b04983 10.1039/9781782626534 10.1016/j.envint.2020.105972 10.1016/j.scitotenv.2020.141175 10.1021/acs.analchem.9b05445 10.1016/j.jevs.2019.05.024 10.1016/j.coesh.2017.10.002 10.1016/0141-3910(92)90121-K 10.1016/j.scitotenv.2020.141676 10.1016/j.scitotenv.2022.153450 10.1038/sj.jea.7500165 10.1016/j.buildenv.2021.108562 10.1016/j.jevs.2015.10.015 10.1021/acs.est.0c02015 10.1186/s12302-022-00620-4 10.1007/978-981-16-0297-9_5 10.1080/10934529.2017.1303316 10.1007/s11270-022-05650-5 10.1016/j.envint.2019.105411 10.1016/j.scitotenv.2017.03.090 10.1016/j.atmosenv.2021.118512 10.1016/j.envres.2021.112142 10.1111/ina.12718 10.1016/j.envpol.2016.12.013 10.1016/j.envpol.2018.02.069 10.1021/acs.est.9b06892 10.1021/acs.est.0c00087 10.1016/j.scitotenv.2022.155256 10.1021/acs.analchem.0c02801 10.3139/9781569907689 10.1016/j.scitotenv.2021.146020 10.1021/acs.est.9b00272 10.1111/ina.13010 10.1016/j.scitotenv.2016.06.017 10.1016/0141-1136(83)90011-9 10.1021/acs.est.7b00423 10.1016/j.marpolbul.2022.113403 10.1016/j.envint.2022.107151 10.1016/S1352-2310(00)00104-7 10.1007/s10661-022-09928-3 10.1007/s10570-017-1393-8 10.1039/D1EM00301A 10.1039/D1JA00036E 10.1126/science.1094559 10.1111/j.1600-0668.2004.00286.x 10.1016/j.jevs.2012.08.008 10.1016/B978-0-12-820675-1.00009-5 10.1016/j.envres.2018.11.034 10.1002/ange.201711023 10.1016/j.scitotenv.2021.150984 10.1111/evj.12528 10.1016/j.chroma.2016.09.068 10.1039/C6AY02558G 10.1016/j.jece.2022.107359 10.1016/j.chroma.2019.01.033 10.1016/j.envpol.2021.117064 10.1016/j.scitotenv.2021.149555 10.1016/j.scitotenv.2022.154651 10.1016/j.buildenv.2019.106209 10.1177/0003702820920652 10.1016/j.marpolbul.2020.111522 10.1016/j.envint.2019.105314 10.1016/j.jhazmat.2022.128674 10.1021/es4044193 10.1016/B978-1-84569-931-4.00001-5 10.1002/9783527610013 10.1021/acs.est.7b00701 10.1111/ina.12490 10.1016/j.scitotenv.2019.07.257 10.1016/j.scitotenv.2019.05.405 10.1016/j.scitotenv.2021.151472 10.1016/j.trac.2020.115821 10.1016/j.ijheh.2019.113423 10.1016/j.envint.2019.04.024 10.1016/j.jhazmat.2021.126245 10.1021/acs.estlett.7b00454 10.1016/j.jhazmat.2021.126007 10.1016/1352-2310(95)00016-R 10.1007/698_2019_436 10.1007/698_2020_449 10.1016/j.atmosenv.2006.05.082 10.1021/acs.est.9b01517 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2022 Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2022 Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. |
DBID | 24P AAYXX CITATION NPM 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.202205713 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | PMC9400961 35670249 10_1002_anie_202205713 ANIE202205713 |
Genre | reviewArticle Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4683-1773ec5f9a82f4c4fd15f01282e3dac959ea92f0ccd0b7b8ad0d8e04d2aa72203 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 18:28:31 EDT 2025 Fri Jul 11 16:12:26 EDT 2025 Fri Jul 25 09:34:42 EDT 2025 Thu Apr 03 07:08:27 EDT 2025 Tue Jul 01 01:18:23 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Wed Jan 22 16:25:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | house dust fiber fallout monomers 3D printing artificial turf |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2022 Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4683-1773ec5f9a82f4c4fd15f01282e3dac959ea92f0ccd0b7b8ad0d8e04d2aa72203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2370-8664 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202205713 |
PMID | 35670249 |
PQID | 2696822254 |
PQPubID | 946352 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9400961 proquest_miscellaneous_2674007305 proquest_journals_2696822254 pubmed_primary_35670249 crossref_citationtrail_10_1002_anie_202205713 crossref_primary_10_1002_anie_202205713 wiley_primary_10_1002_anie_202205713_ANIE202205713 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 8, 2022 |
PublicationDateYYYYMMDD | 2022-08-08 |
PublicationDate_xml | – month: 08 year: 2022 text: August 8, 2022 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2022; 175 2017; 4 2019; 53 2017; 49 2011; 62 2021; 800 1983; 10 2022; 24 2021; 283 2019; 685 2017; 592 2019; 128 2020; 54 2020; 125 2019; 160 2017; 9 2016; 36 2019; 123 2021; 36 2022; 162 2011; 409 2018; 1 2021; 279 2018 2018; 57 130 2020; 92 2022; 34 2022; 807 2020; 134 2022; 806 2022; 32 2020; 136 1995; 29 2001; 11 2022; 207 2022; 233 2018; 28 2019; 9 2022; 194 2020; 143 2019; 79 2017; 24 2014; 48 2005 2016; 568 2016; 50 2003 2020; 224 1992; 38 2004; 304 2022; 833 2020; 747 2020; 749 2022; 432 2021; 418 2017; 51 2021; 417 2017; 52 2021; 55 2013; 33 2020; 30 2020; 74 2018; 237 2000; 34 2021 2020 2021; 777 2004; 14 2021; 259 2020; 159 2019 2022; 829 2017 2015 2022; 10 2007; 41 2017; 221 2019; 1592 2022; 821 2019; 171 2016; 1471 2019; 692 e_1_2_9_52_2 e_1_2_9_75_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 An L. (e_1_2_9_17_1) 2020 e_1_2_9_14_2 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_2 e_1_2_9_22_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_45_2 e_1_2_9_22_2 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_2 e_1_2_9_30_2 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_53_2 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_38_1 e_1_2_9_15_2 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_2 e_1_2_9_61_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_2 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_46_2 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_54_2 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_92_1 e_1_2_9_101_1 e_1_2_9_39_1 e_1_2_9_16_2 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_2 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 Crawford C. B. (e_1_2_9_6_2) 2017 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 Schossler P. (e_1_2_9_58_2) 2011; 409 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_13_2 e_1_2_9_59_2 e_1_2_9_36_1 e_1_2_9_86_2 Liu M. (e_1_2_9_34_1) 2020 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_44_2 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 Fromme H. (e_1_2_9_98_1) 2021 Baron P. A. (e_1_2_9_24_1) 2005 e_1_2_9_48_2 e_1_2_9_25_1 e_1_2_9_29_1 |
References_xml | – volume: 233 start-page: 169 year: 2022 publication-title: Water Air Soil Pollut. – volume: 1 start-page: 1 year: 2018 end-page: 5 publication-title: Curr. Opin. Environ. Sci. Health – volume: 692 start-page: 984 year: 2019 end-page: 994 publication-title: Sci. Total Environ. – volume: 207 year: 2022 publication-title: Environ. Res. – volume: 36 start-page: 695 year: 2021 end-page: 705 publication-title: J. Anal. At. Spectrom. – volume: 259 year: 2021 publication-title: Atmos. Environ. – year: 2005 – volume: 28 start-page: 950 year: 2018 end-page: 962 publication-title: Indoor Air – volume: 749 year: 2020 publication-title: Sci. Total Environ. – volume: 833 year: 2022 publication-title: Sci. Total Environ. – start-page: 3 year: 2020 end-page: 24 – year: 2021 – volume: 11 start-page: 231 year: 2001 end-page: 252 publication-title: J. Exposure Sci. Environ. Epidemiol. – volume: 9 start-page: 1384 year: 2017 end-page: 1391 publication-title: Anal. Methods – volume: 409 start-page: 4031 year: 2011 end-page: 4038 publication-title: Sci. Total Environ. – volume: 10 year: 2022 publication-title: J. Environ. Chem. Eng. – volume: 24 start-page: 4509 year: 2017 end-page: 4518 publication-title: Cellulose – volume: 92 start-page: 13930 year: 2020 end-page: 13935 publication-title: Anal. Chem. – volume: 128 start-page: 116 year: 2019 end-page: 124 publication-title: Environ. Int. – volume: 9 start-page: 8670 year: 2019 publication-title: Sci. Rep. – volume: 125 year: 2020 publication-title: TrAC Trends Anal. Chem. – volume: 10 start-page: 73 year: 1983 end-page: 92 publication-title: Mar. Environ. Res. – volume: 417 year: 2021 publication-title: J. Hazard. Mater. – volume: 33 start-page: 539 year: 2013 end-page: 546 publication-title: J. Equine Vet. Sci. – volume: 51 start-page: 5279 year: 2017 end-page: 5286 publication-title: Environ. Sci. Technol. – volume: 304 start-page: 838 year: 2004 end-page: 838 publication-title: Science – volume: 54 start-page: 6530 year: 2020 end-page: 6539 publication-title: Environ. Sci. Technol. – volume: 62 start-page: 2588 year: 2011 end-page: 2597 publication-title: Mar. Pollut. Bull. – volume: 79 start-page: 113 year: 2019 end-page: 120 publication-title: J. Equine Vet. Sci. – volume: 41 start-page: 3111 year: 2007 end-page: 3128 publication-title: Atmos. Environ. – start-page: 3 year: 2015 end-page: 27 – volume: 143 year: 2020 publication-title: Environ. Int. – volume: 36 start-page: 97 year: 2016 end-page: 100 publication-title: J. Equine Vet. Sci. – volume: 207 year: 2022 publication-title: Building Environ. – volume: 14 start-page: 175 year: 2004 end-page: 183 publication-title: Indoor Air – volume: 32 year: 2022 publication-title: Indoor Air – volume: 568 start-page: 507 year: 2016 end-page: 511 publication-title: Sci. Total Environ. – volume: 806 year: 2022 publication-title: Sci. Total Environ. – volume: 283 year: 2021 publication-title: Environ. Pollut. – volume: 136 year: 2020 publication-title: Environ. Int. – year: 2019 – volume: 685 start-page: 96 year: 2019 end-page: 103 publication-title: Sci. Total Environ. – year: 2015 – volume: 55 start-page: 10332 year: 2021 end-page: 10342 publication-title: Environ. Sci. Technol. – volume: 92 start-page: 8732 year: 2020 end-page: 8740 publication-title: Anal. Chem. – volume: 54 start-page: 3740 year: 2020 end-page: 3751 publication-title: Environ. Sci. Technol. – volume: 48 start-page: 2114 year: 2014 end-page: 2129 publication-title: Environ. Sci. Technol. – volume: 52 start-page: 770 year: 2017 end-page: 777 publication-title: J. Environ. Sci. Health Part A – volume: 30 start-page: 1109 year: 2020 end-page: 1129 publication-title: Indoor Air – volume: 1471 start-page: 11 year: 2016 end-page: 18 publication-title: J. Chromatogr. A – start-page: 143 year: 2020 end-page: 159 – volume: 194 start-page: 340 year: 2022 publication-title: Environ. Monit. Assess. – volume: 34 start-page: 46 year: 2022 publication-title: Environ. Sci. Eur. – volume: 50 start-page: 1260 year: 2016 end-page: 1268 publication-title: Environ. Sci. Technol. – volume: 162 year: 2022 publication-title: Environ. Int. – volume: 829 year: 2022 publication-title: Sci. Total Environ. – volume: 38 start-page: 255 year: 1992 end-page: 259 publication-title: Polym. Degrad. Stab. – year: 2003 – volume: 4 start-page: 530 year: 2017 end-page: 534 publication-title: Environ. Sci. Technol. Lett. – volume: 134 year: 2020 publication-title: Environ. Int. – volume: 57 130 start-page: 12228 12406 year: 2018 2018 end-page: 12263 12443 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 432 year: 2022 publication-title: J. Hazard. Mater. – volume: 51 start-page: 6634 year: 2017 end-page: 6647 publication-title: Environ. Sci. Technol. – volume: 821 year: 2022 publication-title: Sci. Total Environ. – volume: 777 year: 2021 publication-title: Sci. Total Environ. – volume: 34 start-page: 4767 year: 2000 end-page: 4779 publication-title: Atmos. Environ. – volume: 123 start-page: 476 year: 2019 end-page: 485 publication-title: Environ. Int. – volume: 175 year: 2022 publication-title: Mar. Pollut. Bull. – start-page: 127 year: 2021 end-page: 155 – volume: 74 start-page: 1079 year: 2020 end-page: 1098 publication-title: Appl. Spectrosc. – volume: 747 year: 2020 publication-title: Sci. Total Environ. – volume: 159 year: 2020 publication-title: Mar. Pollut. Bull. – volume: 418 year: 2021 publication-title: J. Hazard. Mater. – volume: 29 start-page: 1487 year: 1995 end-page: 1497 publication-title: Atmos. Environ. – volume: 807 year: 2022 publication-title: Sci. Total Environ. – start-page: 267 year: 2021 end-page: 323 – volume: 53 start-page: 5559 year: 2019 end-page: 5575 publication-title: Environ. Sci. Technol. – volume: 224 year: 2020 publication-title: Int. J. Hyg. Environ. Health – volume: 53 start-page: 7068 year: 2019 end-page: 7074 publication-title: Environ. Sci. Technol. – volume: 1592 start-page: 133 year: 2019 end-page: 142 publication-title: J. Chromatogr. A – volume: 800 year: 2021 publication-title: Sci. Total Environ. – volume: 54 start-page: 3288 year: 2020 end-page: 3296 publication-title: Environ. Sci. Technol. – volume: 171 start-page: 204 year: 2019 end-page: 212 publication-title: Environ. Res. – volume: 279 year: 2021 publication-title: Chemosphere – volume: 592 start-page: 91 year: 2017 end-page: 96 publication-title: Sci. Total Environ. – volume: 160 year: 2019 publication-title: Building Environ. – year: 2017 – volume: 24 start-page: 17 year: 2022 end-page: 31 publication-title: Environ. Sci. Processes Impacts – volume: 237 start-page: 675 year: 2018 end-page: 684 publication-title: Environ. Pollut. – volume: 49 start-page: 73 year: 2017 end-page: 78 publication-title: Equine Vet. J. – volume: 221 start-page: 453 year: 2017 end-page: 458 publication-title: Environ. Pollut. – ident: e_1_2_9_19_1 doi: 10.1016/j.envint.2018.12.014 – ident: e_1_2_9_91_1 doi: 10.1038/s41598-019-45054-w – ident: e_1_2_9_5_2 doi: 10.1016/j.marpolbul.2011.09.025 – ident: e_1_2_9_84_1 doi: 10.1021/acs.est.9b04535 – ident: e_1_2_9_47_1 – ident: e_1_2_9_51_1 – ident: e_1_2_9_22_1 doi: 10.1002/anie.201711023 – ident: e_1_2_9_63_1 doi: 10.1016/j.chemosphere.2021.130543 – ident: e_1_2_9_62_1 doi: 10.1021/acs.est.5b04983 – ident: e_1_2_9_39_1 doi: 10.1039/9781782626534 – ident: e_1_2_9_61_1 doi: 10.1016/j.envint.2020.105972 – ident: e_1_2_9_78_1 doi: 10.1016/j.scitotenv.2020.141175 – ident: e_1_2_9_30_2 doi: 10.1021/acs.analchem.9b05445 – ident: e_1_2_9_55_1 doi: 10.1016/j.jevs.2019.05.024 – ident: e_1_2_9_88_2 doi: 10.1016/j.coesh.2017.10.002 – ident: e_1_2_9_64_1 doi: 10.1016/0141-3910(92)90121-K – ident: e_1_2_9_71_1 doi: 10.1016/j.scitotenv.2020.141676 – ident: e_1_2_9_45_2 doi: 10.1016/j.scitotenv.2022.153450 – ident: e_1_2_9_8_1 doi: 10.1038/sj.jea.7500165 – ident: e_1_2_9_48_2 doi: 10.1016/j.buildenv.2021.108562 – ident: e_1_2_9_53_2 doi: 10.1016/j.jevs.2015.10.015 – ident: e_1_2_9_85_1 – ident: e_1_2_9_82_1 doi: 10.1021/acs.est.0c02015 – ident: e_1_2_9_60_1 doi: 10.1186/s12302-022-00620-4 – ident: e_1_2_9_77_1 doi: 10.1007/978-981-16-0297-9_5 – ident: e_1_2_9_90_1 doi: 10.1080/10934529.2017.1303316 – ident: e_1_2_9_102_1 doi: 10.1007/s11270-022-05650-5 – ident: e_1_2_9_31_2 doi: 10.1016/j.envint.2019.105411 – ident: e_1_2_9_68_1 doi: 10.1016/j.scitotenv.2017.03.090 – ident: e_1_2_9_97_1 – ident: e_1_2_9_13_2 doi: 10.1016/j.atmosenv.2021.118512 – ident: e_1_2_9_33_1 doi: 10.1016/j.envres.2021.112142 – ident: e_1_2_9_18_1 doi: 10.1111/ina.12718 – ident: e_1_2_9_16_2 doi: 10.1016/j.envpol.2016.12.013 – ident: e_1_2_9_93_1 doi: 10.1016/j.envpol.2018.02.069 – ident: e_1_2_9_79_1 doi: 10.1021/acs.est.9b06892 – ident: e_1_2_9_41_1 doi: 10.1021/acs.est.0c00087 – ident: e_1_2_9_92_1 doi: 10.1016/j.scitotenv.2022.155256 – ident: e_1_2_9_37_1 – ident: e_1_2_9_26_1 doi: 10.1021/acs.analchem.0c02801 – ident: e_1_2_9_38_1 doi: 10.3139/9781569907689 – ident: e_1_2_9_21_1 doi: 10.1016/j.scitotenv.2021.146020 – ident: e_1_2_9_66_1 doi: 10.1021/acs.est.9b00272 – ident: e_1_2_9_83_1 doi: 10.1111/ina.13010 – ident: e_1_2_9_36_1 doi: 10.1016/j.scitotenv.2016.06.017 – ident: e_1_2_9_3_1 – ident: e_1_2_9_1_1 doi: 10.1016/0141-1136(83)90011-9 – volume-title: Microplastic Pollutants year: 2017 ident: e_1_2_9_6_2 – ident: e_1_2_9_89_2 doi: 10.1021/acs.est.7b00423 – ident: e_1_2_9_27_1 doi: 10.1016/j.marpolbul.2022.113403 – ident: e_1_2_9_73_1 doi: 10.1016/j.envint.2022.107151 – ident: e_1_2_9_43_1 – ident: e_1_2_9_10_1 doi: 10.1016/S1352-2310(00)00104-7 – ident: e_1_2_9_100_1 doi: 10.1007/s10661-022-09928-3 – ident: e_1_2_9_4_1 – ident: e_1_2_9_70_1 doi: 10.1007/s10570-017-1393-8 – ident: e_1_2_9_44_2 doi: 10.1039/D1EM00301A – ident: e_1_2_9_15_2 doi: 10.1039/D1JA00036E – ident: e_1_2_9_2_1 doi: 10.1126/science.1094559 – ident: e_1_2_9_57_1 – ident: e_1_2_9_74_1 doi: 10.1111/j.1600-0668.2004.00286.x – ident: e_1_2_9_52_2 doi: 10.1016/j.jevs.2012.08.008 – ident: e_1_2_9_25_1 doi: 10.1016/B978-0-12-820675-1.00009-5 – ident: e_1_2_9_59_2 doi: 10.1016/j.envres.2018.11.034 – ident: e_1_2_9_22_2 doi: 10.1002/ange.201711023 – ident: e_1_2_9_49_2 doi: 10.1016/j.scitotenv.2021.150984 – ident: e_1_2_9_54_2 doi: 10.1111/evj.12528 – ident: e_1_2_9_11_1 – ident: e_1_2_9_67_1 doi: 10.1016/j.chroma.2016.09.068 – ident: e_1_2_9_23_1 doi: 10.1039/C6AY02558G – ident: e_1_2_9_46_2 doi: 10.1016/j.jece.2022.107359 – ident: e_1_2_9_35_1 doi: 10.1016/j.chroma.2019.01.033 – ident: e_1_2_9_14_2 doi: 10.1016/j.envpol.2021.117064 – ident: e_1_2_9_86_2 doi: 10.1016/j.scitotenv.2021.149555 – ident: e_1_2_9_99_1 doi: 10.1016/j.scitotenv.2022.154651 – ident: e_1_2_9_80_1 doi: 10.1016/j.buildenv.2019.106209 – volume: 409 start-page: 4031 year: 2011 ident: e_1_2_9_58_2 publication-title: Sci. Total Environ. – ident: e_1_2_9_32_1 doi: 10.1177/0003702820920652 – ident: e_1_2_9_96_1 doi: 10.1016/j.marpolbul.2020.111522 – ident: e_1_2_9_12_2 doi: 10.1016/j.envint.2019.105314 – ident: e_1_2_9_94_1 doi: 10.1016/j.jhazmat.2022.128674 – ident: e_1_2_9_50_1 doi: 10.1021/es4044193 – ident: e_1_2_9_75_1 doi: 10.1016/B978-1-84569-931-4.00001-5 – ident: e_1_2_9_9_1 doi: 10.1002/9783527610013 – ident: e_1_2_9_69_1 doi: 10.1021/acs.est.7b00701 – ident: e_1_2_9_56_1 doi: 10.1111/ina.12490 – ident: e_1_2_9_81_1 doi: 10.1016/j.scitotenv.2019.07.257 – ident: e_1_2_9_72_1 doi: 10.1016/j.scitotenv.2019.05.405 – ident: e_1_2_9_101_1 doi: 10.1016/j.scitotenv.2021.151472 – ident: e_1_2_9_87_2 doi: 10.1016/j.trac.2020.115821 – volume-title: Luftverunreinigungen in Innenräumen year: 2021 ident: e_1_2_9_98_1 – ident: e_1_2_9_20_1 doi: 10.1016/j.ijheh.2019.113423 – ident: e_1_2_9_40_1 doi: 10.1016/j.envint.2019.04.024 – ident: e_1_2_9_7_1 doi: 10.1016/j.jhazmat.2021.126245 – volume-title: Aerosol Measurement. Principles, Techniques, and Applications year: 2005 ident: e_1_2_9_24_1 – ident: e_1_2_9_28_1 doi: 10.1021/acs.estlett.7b00454 – ident: e_1_2_9_42_1 doi: 10.1016/j.jhazmat.2021.126007 – ident: e_1_2_9_76_1 doi: 10.1016/1352-2310(95)00016-R – start-page: 3 volume-title: The Handbook of Environmental Chemistry 95—Microplastics in Terrestrial Environments year: 2020 ident: e_1_2_9_34_1 doi: 10.1007/698_2019_436 – start-page: 143 volume-title: The Handbook of Environmental Chemistry 95—Microplastics in Terrestrial Environments, Vol. 95 year: 2020 ident: e_1_2_9_17_1 doi: 10.1007/698_2020_449 – ident: e_1_2_9_65_1 doi: 10.1016/j.atmosenv.2006.05.082 – ident: e_1_2_9_29_1 – ident: e_1_2_9_95_1 doi: 10.1021/acs.est.9b01517 |
SSID | ssj0028806 |
Score | 2.6264443 |
SecondaryResourceType | review_article |
Snippet | Analyses of air and house dust have shown that pollution of the indoor environment with microplastics could pose a fundamental hygienic problem. Indoor... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202205713 |
SubjectTerms | 3D printing Abrasion Additives Admixtures artificial turf Emissions Environmental surveys fiber fallout House dust Household products Hygiene Indoor environments micro/nanoplastics Microplastics Minireview Minireviews Particulate emissions Plastic debris Textiles Three dimensional printing Turf |
Title | Microplastics and their Additives in the Indoor Environment |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202205713 https://www.ncbi.nlm.nih.gov/pubmed/35670249 https://www.proquest.com/docview/2696822254 https://www.proquest.com/docview/2674007305 https://pubmed.ncbi.nlm.nih.gov/PMC9400961 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ui158P-qLCoKnapukmxZPi6yooIgoeCuTR1GUrri7F3-9mXRbXUUEvbXNpM1jJjNpZr4B2Hciw1PJRYSyFJHTt3GUlakTvNxw1ImVVlHs8OVV5-xOXNyn95-i-Gt8iPaHG0mGX69JwFENjj5AQykC2-3vKFBU-rS15LBFVtFNix_FHHPW4UWcR5SFvkFtjNnRZPVJrfTN1PzuMfnZkvWq6HQBsOlE7YHydDgaqkP99gXf8T-9XIT5sZ0admvGWoIpWy3D7EmTHm4Fji_Jle_FGd8E9BxiZUJ_6BB2jfH-SIPwsaJH4Xll-v3XsPcRUrcKd6e925OzaJyJIdKikxGGqeRWp2WOGSuFFqVJ0pJUG7PcoM7T3GLOylhrEyupMjSxyWwsDEOUru18DWaqfmU3INQJTywlOSkzFLFKUSFPVKwQbeLegQFEzUwUegxTTtkynosaYJkVNCRFOyQBHLT0LzVAx4-U283EFmNBHRSMwIFozysC2GuL3VDSuQlWtj8iGknZ493KGMB6zQftp3jakYS6GICc4JCWgOC7J0uqxwcP400p6fNOEgDzDPBL64vu1Xmvvdv8S6UtmKNr776YbcPM8HVkd5xJNVS7MM3E9a4Xnnd2oxoV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4hGGDh_QgUCBISUyCxnToRU4WKWqAdEEhskV8RFShFtF349ficJlAQQoIxjp34cWef7bvvAzi2KkNjTlkgeM4Cu96GQZLHVvFSTYWKDDcSY4d7_Wbnnl09xJU3IcbClPgQ9YEbaoabr1HB8UD67AM1FEOw7QYPI0U58tYuIK2321Xd1ghSxIpnGWBEaYA89BVuY0jOZsvPrkvfjM3vPpOfbVm3GF2ugKyaUfqgPJ1OxvJUvX1BePxXO1dheWqq-q1SttZgzhTrsHhRMcRtwHkPvflerP2NWM--KLTv7h38ltbOJWnkDwpM8ruFHg5f_fZHVN0m3F-27y46wZSMIVCsmSCMKadGxXkqEpIzxXIdxTmubsRQLVQap0akJA-V0qHkMhE61IkJmSZCcFt3ugXzxbAwO-CriEYGeU7yRLBQxkIKGslQCmEi-w3hQVANRaamSOVImPGclRjLJMMuyeou8eCkzv9SYnT8mLNRjWw21dVRRhAfCLe9zIOj-rXtSrw6EYUZTjAPRwJ5Ozl6sF0KQv0rGjc5Ai96wGdEpM6ACN6zb4rBo0PyRlb6tBl5QJwE_FL7rNXvtuun3b8UOoTFzl3vJrvp9q_3YAnTnTdj0oD58evE7FsLaywPnA69A2JmHVk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hkGgvLfSZQiFIlXoKOLYTJ-K0gl2xFFZVVSRu0filolbZFexe-uvrSTaBLaoqtcfY48SPGc84nvkG4EMQGZEpIRNUXiZB37Kk8FkQvNIKNKlTTlPs8OUkP7uS59fZ9YMo_hYfov_hRpLR7Nck4DPrj-5BQykCO5zvKFBUUdraDZmzgvj69EsPIMUDd7bxRUIklIa-g21k_Gi1_apaemRrPnaZfGjKNrpo9BywG0XrgvL9cDHXh-bnbwCP_zPMLXi2NFTjQctZ27Dm6hfw5KTLD_cSji_Jl28WrG9Ceo6xtnFz6xAPrG0cku7im5qK4nFtp9PbeHgfU_cKrkbDrydnyTIVQ2JkXhCIqRLOZL7EgntppLdp5km3cScsmjIrHZbcM2Ms00oXaJktHJOWI6rQd_Ea1utp7d5CbFKROspy4guUTGeoUaSaaUSXhndgBEm3EpVZ4pRTuowfVYuwzCuakqqfkgg-9vSzFqHjj5S73cJWS0m9qzihA9GhV0Zw0FeHqaSLE6zddEE0itLHh60xgjctH_SfElmuCHYxArXCIT0B4Xev1tQ33xocb8pJX-ZpBLxhgL_0vhpMxsP-6d2_NNqHzc-no-piPPm0A0-puHFlLHZhfX67cO-DeTXXe40E_QIPDBwR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplastics+and+their+Additives+in+the+Indoor+Environment&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Salthammer%2C+Tunga&rft.date=2022-08-08&rft.eissn=1521-3773&rft_id=info:doi/10.1002%2Fanie.202205713&rft_id=info%3Apmid%2F35670249&rft.externalDocID=35670249 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |