Intracellular Crowding by Bio‐Orthogonal Hydrogel Formation Induces Reversible Molecular Stasis
To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 34; no. 31; pp. e2202882 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine‐mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio‐orthogonal strain‐promoted azide–alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5‐fold. Real‐time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h−1 vs 15 µm h−1). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho‐Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function.
Intracellular crosslinking in living cells using poly(ethylene glycol) macromers is introduced. Increased macromolecular crowding in the cytosol of the cell causes crosslink‐induced quiescence and results in reduced protein translation, cellular motility, and actin dynamics while cell viability remains high. The effects can be reversed through polymer degradation with UV light. |
---|---|
AbstractList | Abstract
To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine‐mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio‐orthogonal strain‐promoted azide–alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5‐fold. Real‐time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h
−1
vs 15 µm h
−1
). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho‐Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function. To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine‐mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio‐orthogonal strain‐promoted azide–alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5‐fold. Real‐time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h−1 vs 15 µm h−1). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho‐Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function. Intracellular crosslinking in living cells using poly(ethylene glycol) macromers is introduced. Increased macromolecular crowding in the cytosol of the cell causes crosslink‐induced quiescence and results in reduced protein translation, cellular motility, and actin dynamics while cell viability remains high. The effects can be reversed through polymer degradation with UV light. To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine‐mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio‐orthogonal strain‐promoted azide–alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5‐fold. Real‐time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h−1 vs 15 µm h−1). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho‐Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function. To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine-mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio-orthogonal strain-promoted azide-alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5-fold. Real-time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h-1 vs 15 µm h-1 ). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho-Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function.To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine-mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio-orthogonal strain-promoted azide-alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5-fold. Real-time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h-1 vs 15 µm h-1 ). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho-Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function. To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine-mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio-orthogonal strain-promoted azide-alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5-fold. Real-time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h vs 15 µm h ). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho-Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function. To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine-mediated transfection of complementary poly(ethylene glycol) (PEG) macromers into mammalian cells, intracellular crosslinking occurs through bio-orthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication, protein synthesis, and increases the quiescent population by 2.5-fold. Real-time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 vs. 19 h) and decreases in motility (30 vs. 15 μm/h). The cytosol viscosity increases 3-fold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho-Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function. Intracellular crosslinking in living cells using poly(ethylene glycol) (PEG) macromers is introduced. Increased macromolecular crowding in the cytosol of the cell causes crosslinked-induced quiescence and results in reduced protein translation, cellular motility, and actin dynamics while cell viability remains high. The effects can be reversed through polymer degradation with UV light. |
Author | Kirkpatrick, Bruce E. Bowman, Christopher N. Spencer, Sabrina L. Fairbanks, Benjamin D. Anseth, Kristi S. Macdougall, Laura J. Hoffman, Timothy E. |
Author_xml | – sequence: 1 givenname: Laura J. surname: Macdougall fullname: Macdougall, Laura J. organization: University of Colorado Boulder – sequence: 2 givenname: Timothy E. surname: Hoffman fullname: Hoffman, Timothy E. organization: University of Colorado Boulder – sequence: 3 givenname: Bruce E. orcidid: 0000-0003-2862-3843 surname: Kirkpatrick fullname: Kirkpatrick, Bruce E. organization: University of Colorado – sequence: 4 givenname: Benjamin D. orcidid: 0000-0001-6463-5599 surname: Fairbanks fullname: Fairbanks, Benjamin D. organization: University of Colorado Boulder – sequence: 5 givenname: Christopher N. orcidid: 0000-0001-8458-7723 surname: Bowman fullname: Bowman, Christopher N. organization: University of Colorado Boulder – sequence: 6 givenname: Sabrina L. orcidid: 0000-0002-5798-3007 surname: Spencer fullname: Spencer, Sabrina L. organization: University of Colorado Boulder – sequence: 7 givenname: Kristi S. orcidid: 0000-0002-5725-5691 surname: Anseth fullname: Anseth, Kristi S. email: kristi.anseth@colorado.edu organization: University of Colorado Boulder |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35671709$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URKeFLUsUiQ2bDL7Esb1Bmg6UjtSqEpe15Thnpq6cuNhJq9nxCH3GPgkOU4bLBsmSF_7OJ__nP0IHfegBoZcEzwnG9K1pOzOnmOYjJX2CZoRTUlZY8QM0w4rxUtWVPERHKV1jjFWN62fokPFaEIHVDJlVP0RjwfvRm1gsY7hrXb8pmm1x4sLD9_vLOFyFTeiNL862bQwb8MVpiJ0ZXOiLVd-OFlLxCW4hJtd4KC6CB_tT9nkwyaXn6Ona-AQvHu9j9PX0w5flWXl--XG1XJyXtqolLQVp1xivG9NSKhrMgNaEMEYqawnPETgTFbe0AswlKNmSFgsM3CoGRhLC2TF6t_PejE0HrYUpmNc30XUmbnUwTv_90rsrvQm3WjEhmJRZ8OZREMO3EdKgO5emzZgewpg0rUXFKiEVzejrf9DrMMa8o4lSoq4yQzI131E2hpQirPefIVhP7empPb1vLw-8-jPCHv9VVwbUDrhzHrb_0enF-4vFb_kPzyep2A |
CitedBy_id | crossref_primary_10_1002_adma_202307678 crossref_primary_10_1016_j_tibtech_2023_08_006 crossref_primary_10_1002_adma_202211637 crossref_primary_10_1002_advs_202204175 crossref_primary_10_1002_adhm_202302528 crossref_primary_10_3390_dna2040021 crossref_primary_10_1016_j_actbio_2023_11_026 |
Cites_doi | 10.1016/j.ymeth.2003.11.023 10.1038/nmat5006 10.1039/c0sm00111b 10.1126/science.1169494 10.1039/c003740k 10.1371/journal.pone.0082382 10.1093/bioinformatics/btu328 10.1038/nchem.1174 10.1002/pro.3604 10.1038/srep25879 10.1016/j.cell.2017.02.027 10.1016/j.celrep.2017.04.055 10.1038/srep22033 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 10.1021/ja044996f 10.1016/j.cell.2007.12.033 10.1083/jcb.102.6.2015 10.1021/jacs.9b11564 10.1021/nl2008218 10.1016/j.ymeth.2016.09.016 10.1038/s41428-020-0335-8 10.1371/journal.pone.0009502 10.1371/journal.pbio.2003268 10.1038/ncomms2040 10.1039/c3sm00013c 10.1002/adma.200701971 10.3389/fphy.2014.00054 10.1021/cr400113m 10.1002/advs.201800638 10.1016/S0142-9612(98)00025-8 10.1021/acs.jpclett.0c01748 10.1146/annurev.bb.22.060193.000331 10.1038/s41557-019-0240-y 10.1038/nprot.2010.139 10.1021/ja510156v 10.1039/C9CC03056E 10.1021/acs.jpclett.0c03052 10.1002/macp.1994.021950103 10.1002/adma.202106885 10.1016/S0968-0004(01)01938-7 10.1039/D1CC05565H 10.1038/s43586-021-00028-z 10.1126/science.aay8241 10.1016/j.biomaterials.2009.08.055 10.1016/j.cell.2013.08.062 10.1002/adma.202101190 10.1038/nprot.2014.024 10.1016/j.devcel.2022.02.001 10.1038/nmeth.1657 10.1186/s13227-019-0143-4 10.1038/srep07753 10.1021/jacs.0c07594 10.1021/acscentsci.8b00251 10.1074/jbc.R100005200 10.1021/jacs.7b07147 10.1016/j.molcel.2017.02.018 10.1016/j.cell.2016.11.054 10.1016/j.cell.2016.05.077 10.1186/s12964-020-00670-2 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1002/adma.202202882 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_202202882 35671709 ADMA202202882 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: DARPA funderid: W911NF‐19‐2‐0024 – fundername: NIH funderid: R01DE016523 – fundername: NIH HHS grantid: R01DE016523 – fundername: NIH HHS grantid: S10 OD021601 – fundername: NIDCR NIH HHS grantid: R01 DE016523 – fundername: NIDDK NIH HHS grantid: R01 DK120921 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AASGY AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN CGR CUY CVF ECM EIF EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c4682-71df00fbad227b03e26113314cc1564853745c24e058e98d1d070e5c93ea81153 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Tue Sep 17 21:30:53 EDT 2024 Sat Oct 26 03:55:24 EDT 2024 Thu Oct 10 19:19:45 EDT 2024 Thu Sep 26 16:09:01 EDT 2024 Sat Nov 02 12:27:54 EDT 2024 Sat Aug 24 00:55:07 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | intracellular crosslinking click chemistry biostasis hydrogels poly(ethylene glycol) |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4682-71df00fbad227b03e26113314cc1564853745c24e058e98d1d070e5c93ea81153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6463-5599 0000-0002-5725-5691 0000-0001-8458-7723 0000-0002-5798-3007 0000-0003-2862-3843 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377388 |
PMID | 35671709 |
PQID | 2697649231 |
PQPubID | 2045203 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9377388 proquest_miscellaneous_2674347892 proquest_journals_2697649231 crossref_primary_10_1002_adma_202202882 pubmed_primary_35671709 wiley_primary_10_1002_adma_202202882_ADMA202202882 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 126 2019; 55 2019; 11 2019; 10 1993; 22 2020; 368 2011; 11 2020; 11 2013; 8 2001; 40 2017; 115 2013; 9 2020; 18 2004; 33 1986; 102 1998; 19 2018; 5 2021; 33 2014; 2 2018; 4 2015; 137 2020; 52 2019; 28 2022; 34 2013; 155 2014; 9 2010; 5 2017; 168 2010; 6 2009; 324 2007; 19 2015; 5 2020; 142 2010; 39 2017; 65 1994; 195 2016; 166 2001; 26 2008; 168 2021; 1 2011; 3 2014; 114 2011; 8 2017; 139 2001; 276 2021; 57 2016; 6 2018; 17 2009; 30 2012; 3 2021; 12 2017; 15 2022; 57 2017; 19 2014; 30 2008; 132 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 Meyuhas O. (e_1_2_8_37_1) 2008; 168 e_1_2_8_50_1 |
References_xml | – volume: 5 start-page: 7753 year: 2015 publication-title: Sci. Rep. – volume: 40 start-page: 2004 year: 2001 publication-title: Angew. Chem., Int. Ed. – volume: 22 start-page: 27 year: 1993 publication-title: Annu. Rev. Biophys. Biomol. Struct. – volume: 114 start-page: 2733 year: 2014 publication-title: Chem. Rev. – volume: 8 year: 2013 publication-title: PLoS One – volume: 195 start-page: 7 year: 1994 publication-title: Macromol. Chem. Phys. – volume: 142 start-page: 4671 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 466 year: 2022 publication-title: Dev. Cell – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 126 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 start-page: 638 year: 2011 publication-title: Nat. Methods – volume: 19 start-page: 1287 year: 1998 publication-title: Biomaterials – volume: 115 start-page: 80 year: 2017 publication-title: Methods – volume: 33 start-page: 95 year: 2004 publication-title: Methods – volume: 168 start-page: 159 year: 2017 publication-title: Cell – volume: 3 start-page: 925 year: 2011 publication-title: Nat. Chem. – volume: 30 start-page: 6702 year: 2009 publication-title: Biomaterials – volume: 6 start-page: 3609 year: 2010 publication-title: Soft Matter – volume: 168 start-page: 1028 year: 2017 publication-title: Cell – volume: 12 start-page: 294 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 39 start-page: 1231 year: 2010 publication-title: Chem. Soc. Rev. – volume: 368 start-page: 1261 year: 2020 publication-title: Science – volume: 57 year: 2021 publication-title: Chem. Commun. – volume: 166 start-page: 167 year: 2016 publication-title: Cell – volume: 5 year: 2010 publication-title: PLoS One – volume: 155 start-page: 369 year: 2013 publication-title: Cell – volume: 30 start-page: 2532 year: 2014 publication-title: Bioinformatics – volume: 9 start-page: 4386 year: 2013 publication-title: Soft Matter – volume: 26 start-page: 597 year: 2001 publication-title: Trends Biochem. Sci. – volume: 17 start-page: 79 year: 2018 publication-title: Nat. Mater. – volume: 1 start-page: 30 year: 2021 publication-title: Nat. Rev. Methods Primers – volume: 10 start-page: 30 year: 2019 publication-title: EvoDevo – volume: 4 start-page: 952 year: 2018 publication-title: ACS Cent. Sci. – volume: 11 start-page: 6914 year: 2020 publication-title: J. Phys. Chem. Lett. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 132 start-page: 487 year: 2008 publication-title: Cell – volume: 65 start-page: 975 year: 2017 publication-title: Mol. Cell – volume: 2 start-page: 54 year: 2014 publication-title: Front. Phys. – volume: 52 start-page: 883 year: 2020 publication-title: Polym. J. – volume: 19 start-page: 3152 year: 2007 publication-title: Adv. Mater. – volume: 55 start-page: 7175 year: 2019 publication-title: Chem. Commun. – volume: 9 start-page: 457 year: 2014 publication-title: Nat. Protoc. – volume: 3 start-page: 1033 year: 2012 publication-title: Nat. Commun. – volume: 168 start-page: 1 year: 2008 publication-title: Int. Rev. Cell Mol. Biol. – volume: 18 start-page: 178 year: 2020 publication-title: Cell Commun. Signaling – volume: 11 start-page: 2157 year: 2011 publication-title: Nano Lett. – volume: 19 start-page: 1351 year: 2017 publication-title: Cell Rep. – volume: 324 start-page: 59 year: 2009 publication-title: Science – volume: 5 start-page: 1867 year: 2010 publication-title: Nat. Protoc. – volume: 15 year: 2017 publication-title: PLoS Biol. – volume: 102 start-page: 2015 year: 1986 publication-title: J. Cell Biol. – volume: 137 start-page: 770 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 276 year: 2001 publication-title: J. Biol. Chem. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 941 year: 2019 publication-title: Protein Sci. – volume: 11 start-page: 578 year: 2019 publication-title: Nat. Chem. – ident: e_1_2_8_33_1 doi: 10.1016/j.ymeth.2003.11.023 – ident: e_1_2_8_20_1 doi: 10.1038/nmat5006 – ident: e_1_2_8_45_1 doi: 10.1039/c0sm00111b – ident: e_1_2_8_51_1 doi: 10.1126/science.1169494 – ident: e_1_2_8_30_1 doi: 10.1039/c003740k – ident: e_1_2_8_48_1 doi: 10.1371/journal.pone.0082382 – ident: e_1_2_8_60_1 doi: 10.1093/bioinformatics/btu328 – ident: e_1_2_8_50_1 doi: 10.1038/nchem.1174 – ident: e_1_2_8_4_1 doi: 10.1002/pro.3604 – volume: 168 start-page: 1 year: 2008 ident: e_1_2_8_37_1 publication-title: Int. Rev. Cell Mol. Biol. contributor: fullname: Meyuhas O. – ident: e_1_2_8_34_1 doi: 10.1038/srep25879 – ident: e_1_2_8_19_1 doi: 10.1016/j.cell.2017.02.027 – ident: e_1_2_8_58_1 doi: 10.1016/j.celrep.2017.04.055 – ident: e_1_2_8_12_1 doi: 10.1038/srep22033 – ident: e_1_2_8_29_1 doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 – ident: e_1_2_8_31_1 doi: 10.1021/ja044996f – ident: e_1_2_8_36_1 doi: 10.1016/j.cell.2007.12.033 – ident: e_1_2_8_43_1 doi: 10.1083/jcb.102.6.2015 – ident: e_1_2_8_56_1 doi: 10.1021/jacs.9b11564 – ident: e_1_2_8_46_1 doi: 10.1021/nl2008218 – ident: e_1_2_8_59_1 doi: 10.1016/j.ymeth.2016.09.016 – ident: e_1_2_8_22_1 doi: 10.1038/s41428-020-0335-8 – ident: e_1_2_8_2_1 doi: 10.1371/journal.pone.0009502 – ident: e_1_2_8_39_1 doi: 10.1371/journal.pbio.2003268 – ident: e_1_2_8_16_1 doi: 10.1038/ncomms2040 – ident: e_1_2_8_47_1 doi: 10.1039/c3sm00013c – ident: e_1_2_8_15_1 doi: 10.1002/adma.200701971 – ident: e_1_2_8_14_1 doi: 10.3389/fphy.2014.00054 – ident: e_1_2_8_11_1 doi: 10.1021/cr400113m – ident: e_1_2_8_53_1 doi: 10.1002/advs.201800638 – ident: e_1_2_8_54_1 doi: 10.1016/S0142-9612(98)00025-8 – ident: e_1_2_8_41_1 doi: 10.1021/acs.jpclett.0c01748 – ident: e_1_2_8_7_1 doi: 10.1146/annurev.bb.22.060193.000331 – ident: e_1_2_8_25_1 doi: 10.1038/s41557-019-0240-y – ident: e_1_2_8_52_1 doi: 10.1038/nprot.2010.139 – ident: e_1_2_8_17_1 doi: 10.1021/ja510156v – ident: e_1_2_8_23_1 doi: 10.1039/C9CC03056E – ident: e_1_2_8_42_1 doi: 10.1021/acs.jpclett.0c03052 – ident: e_1_2_8_44_1 doi: 10.1002/macp.1994.021950103 – ident: e_1_2_8_27_1 doi: 10.1002/adma.202106885 – ident: e_1_2_8_6_1 doi: 10.1016/S0968-0004(01)01938-7 – ident: e_1_2_8_9_1 doi: 10.1039/D1CC05565H – ident: e_1_2_8_35_1 doi: 10.1038/s43586-021-00028-z – ident: e_1_2_8_40_1 doi: 10.1126/science.aay8241 – ident: e_1_2_8_55_1 doi: 10.1016/j.biomaterials.2009.08.055 – ident: e_1_2_8_38_1 doi: 10.1016/j.cell.2013.08.062 – ident: e_1_2_8_10_1 doi: 10.1002/adma.202101190 – ident: e_1_2_8_49_1 doi: 10.1038/nprot.2014.024 – ident: e_1_2_8_13_1 doi: 10.1016/j.devcel.2022.02.001 – ident: e_1_2_8_32_1 doi: 10.1038/nmeth.1657 – ident: e_1_2_8_1_1 doi: 10.1186/s13227-019-0143-4 – ident: e_1_2_8_18_1 doi: 10.1038/srep07753 – ident: e_1_2_8_26_1 doi: 10.1021/jacs.0c07594 – ident: e_1_2_8_28_1 doi: 10.1021/acscentsci.8b00251 – ident: e_1_2_8_8_1 doi: 10.1074/jbc.R100005200 – ident: e_1_2_8_24_1 doi: 10.1021/jacs.7b07147 – ident: e_1_2_8_3_1 doi: 10.1016/j.molcel.2017.02.018 – ident: e_1_2_8_21_1 doi: 10.1016/j.cell.2016.11.054 – ident: e_1_2_8_57_1 doi: 10.1016/j.cell.2016.05.077 – ident: e_1_2_8_5_1 doi: 10.1186/s12964-020-00670-2 |
SSID | ssj0009606 |
Score | 2.4890556 |
Snippet | To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as... Abstract To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e2202882 |
SubjectTerms | Alkynes Alkynes - chemistry Animals Azides - chemistry biostasis Cell death Cellular structure click chemistry Crosslinking Cycloaddition Hydrogels Hydrogels - chemistry intracellular crosslinking Mammals Materials science poly(ethylene glycol) Polyethylene glycol Polyethylene Glycols - chemistry Polymers Polymers - chemistry Polysaccharides Protein synthesis Proteins Vitrification |
Title | Intracellular Crowding by Bio‐Orthogonal Hydrogel Formation Induces Reversible Molecular Stasis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202202882 https://www.ncbi.nlm.nih.gov/pubmed/35671709 https://www.proquest.com/docview/2697649231 https://www.proquest.com/docview/2674347892 https://pubmed.ncbi.nlm.nih.gov/PMC9377388 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VnOihBfoKhcqVKvUUcGLn4eOy29WCtK2EisQtshMHVqwStI8DPfUn9DfyS5hxNmEXDpVaKYdEjhPb8_A31vgzwBeeakfj5itlSl9aXvpGlolvBFc8VqW1EW1OHn-PRxfy7DK6XNvF3_BDdAtuZBnOX5OBazM_fiQN1YXjDQrxQpSITjgQCeV0Dc4f-aMInjuyPRH5KpZpy9rIw-PN6puz0jOo-Txjch3Juqlo-Bp024kmA-XmaLkwR_mvJ_yO_9PLHXi1wqms1yjWLryw1R68XGMvfAP6lFpJK_-Uysr6GNDTRMjMHTuZ1Pe___yYLa7rK4L6bHRXzOorO2XDdrMko0ND0Emxc-syQ8zUsnF7Vi9DDDyfzN_CxfDbz_7IX53Y4OcyJqgeFCXnpdFFGCaGC4vxGQbBgcxzIqVBaJDIKA9RJaLUqrQICvQ4qA1KWJ0iNhXvYKuqK_sBGPqJUsWm5EVSSNQYrfM80hariSBHzOPB11Zi2W1DzJE1FMxhRoOWdYPmwUEr0GxloPMsjBGHOXI6Dz53xWhaNGq6svWS3kF4JZNU4SfeN_LvfiWiGANhrjxINjSje4FouzdLqsm1o-9GQJiINPUgdIL_S-uz3mDc6572_6XSR9im-yZt8QC2FrOlPUQotTCfnLk8AJ_KGFU |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoAe-gLatBRcCYlTwBs7Dx-30NVCWZAQSNwiO3FgVZRU-zjQU39Cf2N_SWecTWDhgARSLonjxI-Z8TfW-BuALZ5oR-PmK2UKX1pe-EYWsW8EVzxShbUhHU4eHEf9c3l4ETbRhHQWpuaHaDfcSDOcvSYFpw3p3VvWUJ074qAAL4SJC_ASdV5Q9ob901sGKQLojm5PhL6KZNLwNvJgd77-_Lr0AGw-jJm8i2XdYtR7A6bpRh2D8nNnOjE72e97DI_P6udbeD2Dqqxby9Y7eGHL9_DqDoHhCugDaiZt_lM0K9tDn57WQmZu2Ldh9e_P35PR5Kq6JLTP-jf5qLq016zXnJdklDcE7RQ7tS44xFxbNmjS9TKEwePheBXOe9_P9vr-LGmDn8mI0HonLzgvjM6DIDZcWHTR0A_uyCwjXhpEB7EMswClIkysSvJOjkYHBUIJqxOEp2INFsuqtB-BoakoVGQKnse5RKHROstCbbGa6GQIezzYbqYs_VVzc6Q1C3OQ0qCl7aB5sN7MaDrT0XEaRAjFHD-dB1_bYtQuGjVd2mpK7yDCknGi8BMfagFofyXCCH1hrjyI50SjfYGYu-dLyuGVY_BGTBiLJPEgcDP_SOvT7v6g2959ekqlTVjqnw2O0qOD4x-fYZme11GM67A4GU3tF0RWE7PhdOc_BpMcbQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHUCQEh5Z3QwsYCYlTWm_iPHxcWlZbYAuqqNRbZMd2u6JKqn0cyomPwGfsJ-mMs0l36QEJpFzycOLHjP1zNP4b4B3PlZdxC6XULhSWu1ALl4U65pKn0lmb0OLk0WE6PBafTpKTpVX8jT5E98ONPMP31-TgF8bt3oiGKuN1gyI8kBLvwj2RIv4SFh3dCEgRn3u1vTgJZSryVraRR7ur6VeHpVuseTtkchll_Vg02ADVlqIJQfmxM5_pnfLnHwKP_1PMR7C-AFXWbyzrMdyx1RN4uCRf-BTUAeWSfv1TLCvbwxk9jYRMX7IP4_rq1--vk9lZfUqsz4aXZlKf2nM2aFdLMto1BHspdmR9aIg-t2zUbtbLEIKn4-kzOB58_L43DBdbNoSlSInVe8Zx7rQyUZRpHlucoOEsuCfKklRpkA0ykZQR2kSSW5mbnsEuB81BxlblCKfxc1ir6spuAsOOwslUO24yI9BklCrLRFlMFvdKhJ4A3rctVlw0yhxFo8EcFVRpRVdpAWy3DVosPHRaRCmCmFenC-Btdxt9i2pNVbae0zPIVyLLJb7iRdP-3afiJMWZMJcBZCuW0T1Aut2rd6rxmdfvRiLM4jwPIPIN_5fcF_39Ub87e_kvid7A_W_7g-LLweHnLXhAl5sQxm1Ym03m9hVi1Uy_9p5zDZ5EGxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracellular+Crowding+by+Bio-Orthogonal+Hydrogel+Formation+Induces+Reversible+Molecular+Stasis&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Macdougall%2C+Laura+J&rft.au=Hoffman%2C+Timothy+E&rft.au=Kirkpatrick%2C+Bruce+E&rft.au=Fairbanks%2C+Benjamin+D&rft.date=2022-08-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=31&rft.spage=e2202882&rft_id=info:doi/10.1002%2Fadma.202202882&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |