Intracellular Crowding by Bio‐Orthogonal Hydrogel Formation Induces Reversible Molecular Stasis

To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 34; no. 31; pp. e2202882 - n/a
Main Authors Macdougall, Laura J., Hoffman, Timothy E., Kirkpatrick, Bruce E., Fairbanks, Benjamin D., Bowman, Christopher N., Spencer, Sabrina L., Anseth, Kristi S.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine‐mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio‐orthogonal strain‐promoted azide–alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5‐fold. Real‐time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h−1 vs 15 µm h−1). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho‐Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function. Intracellular crosslinking in living cells using poly(ethylene glycol) macromers is introduced. Increased macromolecular crowding in the cytosol of the cell causes crosslink‐induced quiescence and results in reduced protein translation, cellular motility, and actin dynamics while cell viability remains high. The effects can be reversed through polymer degradation with UV light.
AbstractList Abstract To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine‐mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio‐orthogonal strain‐promoted azide–alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5‐fold. Real‐time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h −1  vs 15 µm h −1 ). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho‐Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function.
To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine‐mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio‐orthogonal strain‐promoted azide–alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5‐fold. Real‐time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h−1 vs 15 µm h−1). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho‐Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function. Intracellular crosslinking in living cells using poly(ethylene glycol) macromers is introduced. Increased macromolecular crowding in the cytosol of the cell causes crosslink‐induced quiescence and results in reduced protein translation, cellular motility, and actin dynamics while cell viability remains high. The effects can be reversed through polymer degradation with UV light.
To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine‐mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio‐orthogonal strain‐promoted azide–alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5‐fold. Real‐time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h−1 vs 15 µm h−1). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho‐Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function.
To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine-mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio-orthogonal strain-promoted azide-alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5-fold. Real-time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h-1 vs 15 µm h-1 ). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho-Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function.To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine-mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio-orthogonal strain-promoted azide-alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5-fold. Real-time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h-1 vs 15 µm h-1 ). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho-Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function.
To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine-mediated transfection of complementary poly(ethylene glycol) macromers into mammalian cells, intracellular crosslinking occurs through bio-orthogonal strain-promoted azide-alkyne cycloaddition click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication and protein synthesis, and increases the quiescent population by 2.5-fold. Real-time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 h vs 19 h) and decreases in motility (30 µm h  vs 15 µm h ). The cytosol viscosity increases threefold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho-Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function.
To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as proteins and polysaccharides. In this work, synthetic gelation of the cytosol in living cells is used to induce reversible molecular stasis. Through the sequential lipofectamine-mediated transfection of complementary poly(ethylene glycol) (PEG) macromers into mammalian cells, intracellular crosslinking occurs through bio-orthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) click reactions. This achieves efficient polymer uptake with minimal cell death (99% viable). Intracellular crosslinking decreases DNA replication, protein synthesis, and increases the quiescent population by 2.5-fold. Real-time tracking of single cells containing intracellular crosslinked polymers identifies increases in intermitotic time (15 vs. 19 h) and decreases in motility (30 vs. 15 μm/h). The cytosol viscosity increases 3-fold after intracellular crosslinking and results in disordered cytoskeletal structure in addition to the disruption of cellular coordination in a scratch assay. By incorporating photodegradable nitrobenzyl moieties into the polymer backbone, the effects of intracellular crosslinking are reversed upon exposure to light, thereby restoring proliferation (80% phospho-Rb+ cells), protein translation, and migration. Reversible intracellular crosslinking provides a novel method for dynamic manipulation of intracellular mechanics, altering essential processes that determine cellular function. Intracellular crosslinking in living cells using poly(ethylene glycol) (PEG) macromers is introduced. Increased macromolecular crowding in the cytosol of the cell causes crosslinked-induced quiescence and results in reduced protein translation, cellular motility, and actin dynamics while cell viability remains high. The effects can be reversed through polymer degradation with UV light.
Author Kirkpatrick, Bruce E.
Bowman, Christopher N.
Spencer, Sabrina L.
Fairbanks, Benjamin D.
Anseth, Kristi S.
Macdougall, Laura J.
Hoffman, Timothy E.
Author_xml – sequence: 1
  givenname: Laura J.
  surname: Macdougall
  fullname: Macdougall, Laura J.
  organization: University of Colorado Boulder
– sequence: 2
  givenname: Timothy E.
  surname: Hoffman
  fullname: Hoffman, Timothy E.
  organization: University of Colorado Boulder
– sequence: 3
  givenname: Bruce E.
  orcidid: 0000-0003-2862-3843
  surname: Kirkpatrick
  fullname: Kirkpatrick, Bruce E.
  organization: University of Colorado
– sequence: 4
  givenname: Benjamin D.
  orcidid: 0000-0001-6463-5599
  surname: Fairbanks
  fullname: Fairbanks, Benjamin D.
  organization: University of Colorado Boulder
– sequence: 5
  givenname: Christopher N.
  orcidid: 0000-0001-8458-7723
  surname: Bowman
  fullname: Bowman, Christopher N.
  organization: University of Colorado Boulder
– sequence: 6
  givenname: Sabrina L.
  orcidid: 0000-0002-5798-3007
  surname: Spencer
  fullname: Spencer, Sabrina L.
  organization: University of Colorado Boulder
– sequence: 7
  givenname: Kristi S.
  orcidid: 0000-0002-5725-5691
  surname: Anseth
  fullname: Anseth, Kristi S.
  email: kristi.anseth@colorado.edu
  organization: University of Colorado Boulder
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35671709$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URKeFLUsUiQ2bDL7Esb1Bmg6UjtSqEpe15Thnpq6cuNhJq9nxCH3GPgkOU4bLBsmSF_7OJ__nP0IHfegBoZcEzwnG9K1pOzOnmOYjJX2CZoRTUlZY8QM0w4rxUtWVPERHKV1jjFWN62fokPFaEIHVDJlVP0RjwfvRm1gsY7hrXb8pmm1x4sLD9_vLOFyFTeiNL862bQwb8MVpiJ0ZXOiLVd-OFlLxCW4hJtd4KC6CB_tT9nkwyaXn6Ona-AQvHu9j9PX0w5flWXl--XG1XJyXtqolLQVp1xivG9NSKhrMgNaEMEYqawnPETgTFbe0AswlKNmSFgsM3CoGRhLC2TF6t_PejE0HrYUpmNc30XUmbnUwTv_90rsrvQm3WjEhmJRZ8OZREMO3EdKgO5emzZgewpg0rUXFKiEVzejrf9DrMMa8o4lSoq4yQzI131E2hpQirPefIVhP7empPb1vLw-8-jPCHv9VVwbUDrhzHrb_0enF-4vFb_kPzyep2A
CitedBy_id crossref_primary_10_1002_adma_202307678
crossref_primary_10_1016_j_tibtech_2023_08_006
crossref_primary_10_1002_adma_202211637
crossref_primary_10_1002_advs_202204175
crossref_primary_10_1002_adhm_202302528
crossref_primary_10_3390_dna2040021
crossref_primary_10_1016_j_actbio_2023_11_026
Cites_doi 10.1016/j.ymeth.2003.11.023
10.1038/nmat5006
10.1039/c0sm00111b
10.1126/science.1169494
10.1039/c003740k
10.1371/journal.pone.0082382
10.1093/bioinformatics/btu328
10.1038/nchem.1174
10.1002/pro.3604
10.1038/srep25879
10.1016/j.cell.2017.02.027
10.1016/j.celrep.2017.04.055
10.1038/srep22033
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
10.1021/ja044996f
10.1016/j.cell.2007.12.033
10.1083/jcb.102.6.2015
10.1021/jacs.9b11564
10.1021/nl2008218
10.1016/j.ymeth.2016.09.016
10.1038/s41428-020-0335-8
10.1371/journal.pone.0009502
10.1371/journal.pbio.2003268
10.1038/ncomms2040
10.1039/c3sm00013c
10.1002/adma.200701971
10.3389/fphy.2014.00054
10.1021/cr400113m
10.1002/advs.201800638
10.1016/S0142-9612(98)00025-8
10.1021/acs.jpclett.0c01748
10.1146/annurev.bb.22.060193.000331
10.1038/s41557-019-0240-y
10.1038/nprot.2010.139
10.1021/ja510156v
10.1039/C9CC03056E
10.1021/acs.jpclett.0c03052
10.1002/macp.1994.021950103
10.1002/adma.202106885
10.1016/S0968-0004(01)01938-7
10.1039/D1CC05565H
10.1038/s43586-021-00028-z
10.1126/science.aay8241
10.1016/j.biomaterials.2009.08.055
10.1016/j.cell.2013.08.062
10.1002/adma.202101190
10.1038/nprot.2014.024
10.1016/j.devcel.2022.02.001
10.1038/nmeth.1657
10.1186/s13227-019-0143-4
10.1038/srep07753
10.1021/jacs.0c07594
10.1021/acscentsci.8b00251
10.1074/jbc.R100005200
10.1021/jacs.7b07147
10.1016/j.molcel.2017.02.018
10.1016/j.cell.2016.11.054
10.1016/j.cell.2016.05.077
10.1186/s12964-020-00670-2
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1002/adma.202202882
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202202882
35671709
ADMA202202882
Genre article
Journal Article
GrantInformation_xml – fundername: DARPA
  funderid: W911NF‐19‐2‐0024
– fundername: NIH
  funderid: R01DE016523
– fundername: NIH HHS
  grantid: R01DE016523
– fundername: NIH HHS
  grantid: S10 OD021601
– fundername: NIDCR NIH HHS
  grantid: R01 DE016523
– fundername: NIDDK NIH HHS
  grantid: R01 DK120921
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AASGY
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
CGR
CUY
CVF
ECM
EIF
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c4682-71df00fbad227b03e26113314cc1564853745c24e058e98d1d070e5c93ea81153
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Tue Sep 17 21:30:53 EDT 2024
Sat Oct 26 03:55:24 EDT 2024
Thu Oct 10 19:19:45 EDT 2024
Thu Sep 26 16:09:01 EDT 2024
Sat Nov 02 12:27:54 EDT 2024
Sat Aug 24 00:55:07 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords intracellular crosslinking
click chemistry
biostasis
hydrogels
poly(ethylene glycol)
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4682-71df00fbad227b03e26113314cc1564853745c24e058e98d1d070e5c93ea81153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6463-5599
0000-0002-5725-5691
0000-0001-8458-7723
0000-0002-5798-3007
0000-0003-2862-3843
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377388
PMID 35671709
PQID 2697649231
PQPubID 2045203
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9377388
proquest_miscellaneous_2674347892
proquest_journals_2697649231
crossref_primary_10_1002_adma_202202882
pubmed_primary_35671709
wiley_primary_10_1002_adma_202202882_ADMA202202882
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 126
2019; 55
2019; 11
2019; 10
1993; 22
2020; 368
2011; 11
2020; 11
2013; 8
2001; 40
2017; 115
2013; 9
2020; 18
2004; 33
1986; 102
1998; 19
2018; 5
2021; 33
2014; 2
2018; 4
2015; 137
2020; 52
2019; 28
2022; 34
2013; 155
2014; 9
2010; 5
2017; 168
2010; 6
2009; 324
2007; 19
2015; 5
2020; 142
2010; 39
2017; 65
1994; 195
2016; 166
2001; 26
2008; 168
2021; 1
2011; 3
2014; 114
2011; 8
2017; 139
2001; 276
2021; 57
2016; 6
2018; 17
2009; 30
2012; 3
2021; 12
2017; 15
2022; 57
2017; 19
2014; 30
2008; 132
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
Meyuhas O. (e_1_2_8_37_1) 2008; 168
e_1_2_8_50_1
References_xml – volume: 5
  start-page: 7753
  year: 2015
  publication-title: Sci. Rep.
– volume: 40
  start-page: 2004
  year: 2001
  publication-title: Angew. Chem., Int. Ed.
– volume: 22
  start-page: 27
  year: 1993
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 114
  start-page: 2733
  year: 2014
  publication-title: Chem. Rev.
– volume: 8
  year: 2013
  publication-title: PLoS One
– volume: 195
  start-page: 7
  year: 1994
  publication-title: Macromol. Chem. Phys.
– volume: 142
  start-page: 4671
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 466
  year: 2022
  publication-title: Dev. Cell
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 126
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  start-page: 638
  year: 2011
  publication-title: Nat. Methods
– volume: 19
  start-page: 1287
  year: 1998
  publication-title: Biomaterials
– volume: 115
  start-page: 80
  year: 2017
  publication-title: Methods
– volume: 33
  start-page: 95
  year: 2004
  publication-title: Methods
– volume: 168
  start-page: 159
  year: 2017
  publication-title: Cell
– volume: 3
  start-page: 925
  year: 2011
  publication-title: Nat. Chem.
– volume: 30
  start-page: 6702
  year: 2009
  publication-title: Biomaterials
– volume: 6
  start-page: 3609
  year: 2010
  publication-title: Soft Matter
– volume: 168
  start-page: 1028
  year: 2017
  publication-title: Cell
– volume: 12
  start-page: 294
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 39
  start-page: 1231
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 368
  start-page: 1261
  year: 2020
  publication-title: Science
– volume: 57
  year: 2021
  publication-title: Chem. Commun.
– volume: 166
  start-page: 167
  year: 2016
  publication-title: Cell
– volume: 5
  year: 2010
  publication-title: PLoS One
– volume: 155
  start-page: 369
  year: 2013
  publication-title: Cell
– volume: 30
  start-page: 2532
  year: 2014
  publication-title: Bioinformatics
– volume: 9
  start-page: 4386
  year: 2013
  publication-title: Soft Matter
– volume: 26
  start-page: 597
  year: 2001
  publication-title: Trends Biochem. Sci.
– volume: 17
  start-page: 79
  year: 2018
  publication-title: Nat. Mater.
– volume: 1
  start-page: 30
  year: 2021
  publication-title: Nat. Rev. Methods Primers
– volume: 10
  start-page: 30
  year: 2019
  publication-title: EvoDevo
– volume: 4
  start-page: 952
  year: 2018
  publication-title: ACS Cent. Sci.
– volume: 11
  start-page: 6914
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 132
  start-page: 487
  year: 2008
  publication-title: Cell
– volume: 65
  start-page: 975
  year: 2017
  publication-title: Mol. Cell
– volume: 2
  start-page: 54
  year: 2014
  publication-title: Front. Phys.
– volume: 52
  start-page: 883
  year: 2020
  publication-title: Polym. J.
– volume: 19
  start-page: 3152
  year: 2007
  publication-title: Adv. Mater.
– volume: 55
  start-page: 7175
  year: 2019
  publication-title: Chem. Commun.
– volume: 9
  start-page: 457
  year: 2014
  publication-title: Nat. Protoc.
– volume: 3
  start-page: 1033
  year: 2012
  publication-title: Nat. Commun.
– volume: 168
  start-page: 1
  year: 2008
  publication-title: Int. Rev. Cell Mol. Biol.
– volume: 18
  start-page: 178
  year: 2020
  publication-title: Cell Commun. Signaling
– volume: 11
  start-page: 2157
  year: 2011
  publication-title: Nano Lett.
– volume: 19
  start-page: 1351
  year: 2017
  publication-title: Cell Rep.
– volume: 324
  start-page: 59
  year: 2009
  publication-title: Science
– volume: 5
  start-page: 1867
  year: 2010
  publication-title: Nat. Protoc.
– volume: 15
  year: 2017
  publication-title: PLoS Biol.
– volume: 102
  start-page: 2015
  year: 1986
  publication-title: J. Cell Biol.
– volume: 137
  start-page: 770
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 276
  year: 2001
  publication-title: J. Biol. Chem.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 941
  year: 2019
  publication-title: Protein Sci.
– volume: 11
  start-page: 578
  year: 2019
  publication-title: Nat. Chem.
– ident: e_1_2_8_33_1
  doi: 10.1016/j.ymeth.2003.11.023
– ident: e_1_2_8_20_1
  doi: 10.1038/nmat5006
– ident: e_1_2_8_45_1
  doi: 10.1039/c0sm00111b
– ident: e_1_2_8_51_1
  doi: 10.1126/science.1169494
– ident: e_1_2_8_30_1
  doi: 10.1039/c003740k
– ident: e_1_2_8_48_1
  doi: 10.1371/journal.pone.0082382
– ident: e_1_2_8_60_1
  doi: 10.1093/bioinformatics/btu328
– ident: e_1_2_8_50_1
  doi: 10.1038/nchem.1174
– ident: e_1_2_8_4_1
  doi: 10.1002/pro.3604
– volume: 168
  start-page: 1
  year: 2008
  ident: e_1_2_8_37_1
  publication-title: Int. Rev. Cell Mol. Biol.
  contributor:
    fullname: Meyuhas O.
– ident: e_1_2_8_34_1
  doi: 10.1038/srep25879
– ident: e_1_2_8_19_1
  doi: 10.1016/j.cell.2017.02.027
– ident: e_1_2_8_58_1
  doi: 10.1016/j.celrep.2017.04.055
– ident: e_1_2_8_12_1
  doi: 10.1038/srep22033
– ident: e_1_2_8_29_1
  doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
– ident: e_1_2_8_31_1
  doi: 10.1021/ja044996f
– ident: e_1_2_8_36_1
  doi: 10.1016/j.cell.2007.12.033
– ident: e_1_2_8_43_1
  doi: 10.1083/jcb.102.6.2015
– ident: e_1_2_8_56_1
  doi: 10.1021/jacs.9b11564
– ident: e_1_2_8_46_1
  doi: 10.1021/nl2008218
– ident: e_1_2_8_59_1
  doi: 10.1016/j.ymeth.2016.09.016
– ident: e_1_2_8_22_1
  doi: 10.1038/s41428-020-0335-8
– ident: e_1_2_8_2_1
  doi: 10.1371/journal.pone.0009502
– ident: e_1_2_8_39_1
  doi: 10.1371/journal.pbio.2003268
– ident: e_1_2_8_16_1
  doi: 10.1038/ncomms2040
– ident: e_1_2_8_47_1
  doi: 10.1039/c3sm00013c
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.200701971
– ident: e_1_2_8_14_1
  doi: 10.3389/fphy.2014.00054
– ident: e_1_2_8_11_1
  doi: 10.1021/cr400113m
– ident: e_1_2_8_53_1
  doi: 10.1002/advs.201800638
– ident: e_1_2_8_54_1
  doi: 10.1016/S0142-9612(98)00025-8
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.jpclett.0c01748
– ident: e_1_2_8_7_1
  doi: 10.1146/annurev.bb.22.060193.000331
– ident: e_1_2_8_25_1
  doi: 10.1038/s41557-019-0240-y
– ident: e_1_2_8_52_1
  doi: 10.1038/nprot.2010.139
– ident: e_1_2_8_17_1
  doi: 10.1021/ja510156v
– ident: e_1_2_8_23_1
  doi: 10.1039/C9CC03056E
– ident: e_1_2_8_42_1
  doi: 10.1021/acs.jpclett.0c03052
– ident: e_1_2_8_44_1
  doi: 10.1002/macp.1994.021950103
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.202106885
– ident: e_1_2_8_6_1
  doi: 10.1016/S0968-0004(01)01938-7
– ident: e_1_2_8_9_1
  doi: 10.1039/D1CC05565H
– ident: e_1_2_8_35_1
  doi: 10.1038/s43586-021-00028-z
– ident: e_1_2_8_40_1
  doi: 10.1126/science.aay8241
– ident: e_1_2_8_55_1
  doi: 10.1016/j.biomaterials.2009.08.055
– ident: e_1_2_8_38_1
  doi: 10.1016/j.cell.2013.08.062
– ident: e_1_2_8_10_1
  doi: 10.1002/adma.202101190
– ident: e_1_2_8_49_1
  doi: 10.1038/nprot.2014.024
– ident: e_1_2_8_13_1
  doi: 10.1016/j.devcel.2022.02.001
– ident: e_1_2_8_32_1
  doi: 10.1038/nmeth.1657
– ident: e_1_2_8_1_1
  doi: 10.1186/s13227-019-0143-4
– ident: e_1_2_8_18_1
  doi: 10.1038/srep07753
– ident: e_1_2_8_26_1
  doi: 10.1021/jacs.0c07594
– ident: e_1_2_8_28_1
  doi: 10.1021/acscentsci.8b00251
– ident: e_1_2_8_8_1
  doi: 10.1074/jbc.R100005200
– ident: e_1_2_8_24_1
  doi: 10.1021/jacs.7b07147
– ident: e_1_2_8_3_1
  doi: 10.1016/j.molcel.2017.02.018
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cell.2016.11.054
– ident: e_1_2_8_57_1
  doi: 10.1016/j.cell.2016.05.077
– ident: e_1_2_8_5_1
  doi: 10.1186/s12964-020-00670-2
SSID ssj0009606
Score 2.4890556
Snippet To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such as...
Abstract To survive extreme conditions, certain animals enter a reversible protective stasis through vitrification of the cytosol by polymeric molecules such...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e2202882
SubjectTerms Alkynes
Alkynes - chemistry
Animals
Azides - chemistry
biostasis
Cell death
Cellular structure
click chemistry
Crosslinking
Cycloaddition
Hydrogels
Hydrogels - chemistry
intracellular crosslinking
Mammals
Materials science
poly(ethylene glycol)
Polyethylene glycol
Polyethylene Glycols - chemistry
Polymers
Polymers - chemistry
Polysaccharides
Protein synthesis
Proteins
Vitrification
Title Intracellular Crowding by Bio‐Orthogonal Hydrogel Formation Induces Reversible Molecular Stasis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202202882
https://www.ncbi.nlm.nih.gov/pubmed/35671709
https://www.proquest.com/docview/2697649231
https://www.proquest.com/docview/2674347892
https://pubmed.ncbi.nlm.nih.gov/PMC9377388
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VnOihBfoKhcqVKvUUcGLn4eOy29WCtK2EisQtshMHVqwStI8DPfUn9DfyS5hxNmEXDpVaKYdEjhPb8_A31vgzwBeeakfj5itlSl9aXvpGlolvBFc8VqW1EW1OHn-PRxfy7DK6XNvF3_BDdAtuZBnOX5OBazM_fiQN1YXjDQrxQpSITjgQCeV0Dc4f-aMInjuyPRH5KpZpy9rIw-PN6puz0jOo-Txjch3Juqlo-Bp024kmA-XmaLkwR_mvJ_yO_9PLHXi1wqms1yjWLryw1R68XGMvfAP6lFpJK_-Uysr6GNDTRMjMHTuZ1Pe___yYLa7rK4L6bHRXzOorO2XDdrMko0ND0Emxc-syQ8zUsnF7Vi9DDDyfzN_CxfDbz_7IX53Y4OcyJqgeFCXnpdFFGCaGC4vxGQbBgcxzIqVBaJDIKA9RJaLUqrQICvQ4qA1KWJ0iNhXvYKuqK_sBGPqJUsWm5EVSSNQYrfM80hariSBHzOPB11Zi2W1DzJE1FMxhRoOWdYPmwUEr0GxloPMsjBGHOXI6Dz53xWhaNGq6svWS3kF4JZNU4SfeN_LvfiWiGANhrjxINjSje4FouzdLqsm1o-9GQJiINPUgdIL_S-uz3mDc6572_6XSR9im-yZt8QC2FrOlPUQotTCfnLk8AJ_KGFU
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoAe-gLatBRcCYlTwBs7Dx-30NVCWZAQSNwiO3FgVZRU-zjQU39Cf2N_SWecTWDhgARSLonjxI-Z8TfW-BuALZ5oR-PmK2UKX1pe-EYWsW8EVzxShbUhHU4eHEf9c3l4ETbRhHQWpuaHaDfcSDOcvSYFpw3p3VvWUJ074qAAL4SJC_ASdV5Q9ob901sGKQLojm5PhL6KZNLwNvJgd77-_Lr0AGw-jJm8i2XdYtR7A6bpRh2D8nNnOjE72e97DI_P6udbeD2Dqqxby9Y7eGHL9_DqDoHhCugDaiZt_lM0K9tDn57WQmZu2Ldh9e_P35PR5Kq6JLTP-jf5qLq016zXnJdklDcE7RQ7tS44xFxbNmjS9TKEwePheBXOe9_P9vr-LGmDn8mI0HonLzgvjM6DIDZcWHTR0A_uyCwjXhpEB7EMswClIkysSvJOjkYHBUIJqxOEp2INFsuqtB-BoakoVGQKnse5RKHROstCbbGa6GQIezzYbqYs_VVzc6Q1C3OQ0qCl7aB5sN7MaDrT0XEaRAjFHD-dB1_bYtQuGjVd2mpK7yDCknGi8BMfagFofyXCCH1hrjyI50SjfYGYu-dLyuGVY_BGTBiLJPEgcDP_SOvT7v6g2959ekqlTVjqnw2O0qOD4x-fYZme11GM67A4GU3tF0RWE7PhdOc_BpMcbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHUCQEh5Z3QwsYCYlTWm_iPHxcWlZbYAuqqNRbZMd2u6JKqn0cyomPwGfsJ-mMs0l36QEJpFzycOLHjP1zNP4b4B3PlZdxC6XULhSWu1ALl4U65pKn0lmb0OLk0WE6PBafTpKTpVX8jT5E98ONPMP31-TgF8bt3oiGKuN1gyI8kBLvwj2RIv4SFh3dCEgRn3u1vTgJZSryVraRR7ur6VeHpVuseTtkchll_Vg02ADVlqIJQfmxM5_pnfLnHwKP_1PMR7C-AFXWbyzrMdyx1RN4uCRf-BTUAeWSfv1TLCvbwxk9jYRMX7IP4_rq1--vk9lZfUqsz4aXZlKf2nM2aFdLMto1BHspdmR9aIg-t2zUbtbLEIKn4-kzOB58_L43DBdbNoSlSInVe8Zx7rQyUZRpHlucoOEsuCfKklRpkA0ykZQR2kSSW5mbnsEuB81BxlblCKfxc1ir6spuAsOOwslUO24yI9BklCrLRFlMFvdKhJ4A3rctVlw0yhxFo8EcFVRpRVdpAWy3DVosPHRaRCmCmFenC-Btdxt9i2pNVbae0zPIVyLLJb7iRdP-3afiJMWZMJcBZCuW0T1Aut2rd6rxmdfvRiLM4jwPIPIN_5fcF_39Ub87e_kvid7A_W_7g-LLweHnLXhAl5sQxm1Ym03m9hVi1Uy_9p5zDZ5EGxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracellular+Crowding+by+Bio-Orthogonal+Hydrogel+Formation+Induces+Reversible+Molecular+Stasis&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Macdougall%2C+Laura+J&rft.au=Hoffman%2C+Timothy+E&rft.au=Kirkpatrick%2C+Bruce+E&rft.au=Fairbanks%2C+Benjamin+D&rft.date=2022-08-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=31&rft.spage=e2202882&rft_id=info:doi/10.1002%2Fadma.202202882&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon