Entropy generation minimization in parallel-plates counterflow heat exchangers
This paper shows that the main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. It is assumed that the channels are formed by parallel plates, the two fluids are ideal gases, and the flow is fully developed, la...
Saved in:
Published in | International journal of energy research Vol. 24; no. 10; pp. 843 - 864 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.08.2000
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper shows that the main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. It is assumed that the channels are formed by parallel plates, the two fluids are ideal gases, and the flow is fully developed, laminar or turbulent. In the first part of the paper, it is shown that the irreversibility of the heat exchanger core is minimized with respect to (1) the ratio of the two‐channel spacings, and (2) the total heat transfer area between the two streams. In the second part, the entropy generation rate also accounts for the irreversibility due to discharging the spent hot stream into the ambient. It is shown that the design can be optimized with respect to (1), (2) and (3) the ratio of the capacity rates of the two streams. The optimized features of the geometry are robust with respect to whether the external discharge irreversibility is included in the entropy generation rate calculation. Copyright © 2000 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. If the channels are formed by parallel plates, the two fluids are ideal gases, and the flow is fully developed, laminar or turbulent. It is shown that the irreversibility of the heat exchanger core is minimized with respect to the ratio of the two-channel spacings, and the total heat transfer area between the two streams. The entropy generation rate also accounts for the irreversibility due to discharging the spent hot stream into the ambient. It is shown that the design can be optimized with respect to the ratio of the two channel spacing, the total heat transfer area and the ratio of the capacity rates of the two streams. These optimized features are robust with respect to whether the external discharge irreversibility is included in the entropy generation rate calculation. (Original abstract - amended) This paper shows that the main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. It is assumed that the channels are formed by parallel plates, the two fluids are ideal gases, and the flow is fully developed, laminar or turbulent. In the first part of the paper, it is shown that the irreversibility of the heat exchanger core is minimized with respect to (1) the ratio of the two-channel spacings, and (2) the total heat transfer area between the two streams. In the second part, the entropy generation rate also accounts for the irreversibility due to discharging the spent hot stream into the ambient. It is shown that the design can be optimized with respect to (1), (2) and (3) the ratio of the capacity rates of the two streams. The optimized features of the geometry are robust with respect to whether the external discharge irreversibility is included in the entropy generation rate calculation. This paper shows that the main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. It is assumed that the channels are formed by parallel plates, the two fluids are ideal gases, and the flow is fully developed, laminar or turbulent. In the first part of the paper, it is shown that the irreversibility of the heat exchanger core is minimized with respect to (1) the ratio of the two‐channel spacings, and (2) the total heat transfer area between the two streams. In the second part, the entropy generation rate also accounts for the irreversibility due to discharging the spent hot stream into the ambient. It is shown that the design can be optimized with respect to (1), (2) and (3) the ratio of the capacity rates of the two streams. The optimized features of the geometry are robust with respect to whether the external discharge irreversibility is included in the entropy generation rate calculation. Copyright © 2000 John Wiley & Sons, Ltd. |
Author | Ordóñez, Juan Carlos Bejan, Adrian |
Author_xml | – sequence: 1 givenname: Juan Carlos surname: Ordóñez fullname: Ordóñez, Juan Carlos organization: Department of Mechanical Engineering and Materials Science, Duke University, Box 90300, Durham, NC 27708-0300, U.S.A – sequence: 2 givenname: Adrian surname: Bejan fullname: Bejan, Adrian organization: Department of Mechanical Engineering and Materials Science, Duke University, Box 90300, Durham, NC 27708-0300, U.S.A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1428906$$DView record in Pascal Francis |
BookMark | eNqVkU1v0zAYgC00JLrBf8gBITik-COxk4KQplK2aR9F0xC7vXKd15vBdYKdaiu_npRM48IBfLFsP34O77NP9kIbkJCK0SmjlL9ltK5zxorr15wOq3rDixmj76tCzGaHJx_zxaXk9IOY0ul8-Y7n50_I5PHLHplQIUVeU3X9jOyn9G0w1DVTE3KxCH1su212gwGj7l0bsrULbu1-jgcXsk5H7T36vPO6x5SZdhN6jNa3d9kt6j7De3Orww3G9Jw8tdonfPGwH5AvnxZX8-P8bHl0Mj88y00hK5qrWqFGaUtjVWO4WjFGm1W1KoVBaktZIxN6ZcoCdam1bFBbWykrtS2bhiorDsir0dvF9scGUw9rlwx6rwO2mwRcScGU5P8Ccq6YGMCXD6BORnsbdTAuQRfdWsctsIJXNZUD9nnETGxTimj_EBR2oWA3ddhNHcZQwIvd2xAKYAgFv0OBAArzJXA4H5SXo_LOedz-j-9vuvFikOaj1KUe7x-lOn4HqYQq4evFEVypShyzUwGn4hcVprYz |
CODEN | IJERDN |
Cites_doi | 10.1016/S0017-9310(97)00256-1 10.1115/1.2906818 |
ContentType | Journal Article |
Copyright | Copyright © 2000 John Wiley & Sons, Ltd. 2000 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2000 John Wiley & Sons, Ltd. – notice: 2000 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7SP 8FD L7M F28 FR3 |
DOI | 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M |
DatabaseName | Istex CrossRef Pascal-Francis Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitleList | Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1099-114X |
EndPage | 864 |
ExternalDocumentID | 1428906 10_1002_1099_114X_200008_24_10_843__AID_ER620_3_0_CO_2_M ER620 ark_67375_WNG_T783H1K3_K |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AANHP ACCMX ACRPL ACYXJ ADNMO AEUYN AAYXX ADMLS AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW PQGLB 7SP 8FD L7M F28 FR3 |
ID | FETCH-LOGICAL-c4680-797eae6f5cf7dc27b110db8b53ce0f569e13abc54ea5aa6deaff87f6af5dd07f3 |
IEDL.DBID | DR2 |
ISSN | 0363-907X |
IngestDate | Fri Jul 11 09:12:44 EDT 2025 Thu Jul 10 22:50:39 EDT 2025 Mon Jul 21 09:15:19 EDT 2025 Tue Jul 01 01:40:55 EDT 2025 Wed Jan 22 16:45:28 EST 2025 Wed Oct 30 09:58:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Thermodynamics Exergy analysis Heat exchanger Entropy Yield Performance Optimization Counterflow system |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4680-797eae6f5cf7dc27b110db8b53ce0f569e13abc54ea5aa6deaff87f6af5dd07f3 |
Notes | istex:C6618C48D13E9D7D343E9CF07EDE381E1774E919 ArticleID:ER620 ark:/67375/WNG-T783H1K3-K ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 27622713 |
PQPubID | 23500 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_27631762 proquest_miscellaneous_27622713 pascalfrancis_primary_1428906 crossref_primary_10_1002_1099_114X_200008_24_10_843__AID_ER620_3_0_CO_2_M wiley_primary_10_1002_1099_114X_200008_24_10_843_AID_ER620_3_0_CO_2_M_ER620 istex_primary_ark_67375_WNG_T783H1K3_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2000 |
PublicationDateYYYYMMDD | 2000-08-01 |
PublicationDate_xml | – month: 08 year: 2000 text: August 2000 |
PublicationDecade | 2000 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
PublicationTitle | International journal of energy research |
PublicationTitleAlternate | Int. J. Energy Res |
PublicationYear | 2000 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Bejan A. 1982. Entropy Generation through Heat and Fluid Flow. Wiley: New York. Moran MJ, Sciubba E. 1994. Exergetic analysis: principles and practice. Journal of Engineering Gas Turbines and Power 116:285-290. Bejan A, Moran M, Tsatsaronis G. 1996. Thermal Design and Optimization. Wiley: New York. Bejan A, Errera MR. 1998. Maximum power from a hot stream. International Journal of Heat and Mass Transfer 41:2025-2036. Kays WM, London AL 1984. Compact Heat Exchangers (3rd edn). McGraw-Hill: New York. Stecco SS, Moran MJ. 1992. Energy for the Transition Age. Nova Science: New York. Bejan A. 1993. Heat Transfer. Wiley: New York. Bejan A. 1996. Entropy Generation Minimization. CRC Press: Boca Raton, FL. Moran MJ. 1982. Availability Analysis: A Guide to Efficient Energy Use. Prentice-Hall: Englewood Cliffs, NJ. Ahern JE. 1980. The Exergy Method of Energy Systems Analysis. Wiley: New York. Bejan A. 1997. Advanced Engineering Thermodynamics (2nd edn). Wiley: New York. Krane RJ (ed). 1995. Thermodynamics and the Design, Analysis, and Improvement of Energy Systems 1995, AES-vol. 35, ASME: New York. Bejan A. 1995. Convection Heat Transfer (2nd edn). Wiley: New York. 1994; 116 1995; 35 1997; 37 1987 1997 1996 1995 1984 1982 1993 1992 1980 1998; 41 Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB2) 1982 Lazzaretto (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB12) 1997; 37 Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB3) 1993 Ahern (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB1) 1980 Moran (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB13) 1982 Moran (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB14) 1994; 116 Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB5) 1996 Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB6) 1997 Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB4) 1995 Krane (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB11) 1995; 35 Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB8) 1996 Feidt (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB9) 1987 Kays (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB10) 1984 Stecco (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB15) 1992 Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB7) 1998; 41 |
References_xml | – reference: Kays WM, London AL 1984. Compact Heat Exchangers (3rd edn). McGraw-Hill: New York. – reference: Stecco SS, Moran MJ. 1992. Energy for the Transition Age. Nova Science: New York. – reference: Bejan A, Moran M, Tsatsaronis G. 1996. Thermal Design and Optimization. Wiley: New York. – reference: Moran MJ. 1982. Availability Analysis: A Guide to Efficient Energy Use. Prentice-Hall: Englewood Cliffs, NJ. – reference: Ahern JE. 1980. The Exergy Method of Energy Systems Analysis. Wiley: New York. – reference: Bejan A. 1993. Heat Transfer. Wiley: New York. – reference: Bejan A, Errera MR. 1998. Maximum power from a hot stream. International Journal of Heat and Mass Transfer 41:2025-2036. – reference: Krane RJ (ed). 1995. Thermodynamics and the Design, Analysis, and Improvement of Energy Systems 1995, AES-vol. 35, ASME: New York. – reference: Moran MJ, Sciubba E. 1994. Exergetic analysis: principles and practice. Journal of Engineering Gas Turbines and Power 116:285-290. – reference: Bejan A. 1996. Entropy Generation Minimization. CRC Press: Boca Raton, FL. – reference: Bejan A. 1982. Entropy Generation through Heat and Fluid Flow. Wiley: New York. – reference: Bejan A. 1995. Convection Heat Transfer (2nd edn). Wiley: New York. – reference: Bejan A. 1997. Advanced Engineering Thermodynamics (2nd edn). Wiley: New York. – volume: 41 start-page: 2025 year: 1998 end-page: 2036 article-title: Maximum power from a hot stream publication-title: International Journal of Heat and Mass Transfer – year: 1984 – year: 1982 – year: 1980 – volume: 116 start-page: 285 year: 1994 end-page: 290 article-title: Exergetic analysis: principles and practice publication-title: Journal of Engineering Gas Turbines and Power – year: 1987 – year: 1997 – year: 1996 – year: 1995 – year: 1993 – year: 1992 – volume: 37 start-page: 197 year: 1997 end-page: 210 – volume: 35 year: 1995 – volume-title: Thermal Design and Optimization year: 1996 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB8 – volume-title: Convection Heat Transfer year: 1995 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB4 – volume-title: Compact Heat Exchangers year: 1984 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB10 – year: 1987 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB9 – volume-title: Heat Transfer year: 1993 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB3 – volume: 35 volume-title: Thermodynamics and the Design, Analysis, and Improvement of Energy Systems 1995 year: 1995 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB11 – volume: 37 start-page: 197 volume-title: Proceedings of the ASME Advanced Energy Systems Division year: 1997 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB12 – volume: 41 start-page: 2025 year: 1998 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB7 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/S0017-9310(97)00256-1 – volume-title: Availability Analysis: A Guide to Efficient Energy Use year: 1982 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB13 – volume-title: The Exergy Method of Energy Systems Analysis year: 1980 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB1 – volume-title: Entropy Generation Minimization year: 1996 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB5 – volume-title: Advanced Engineering Thermodynamics year: 1997 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB6 – volume-title: Energy for the Transition Age year: 1992 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB15 – volume: 116 start-page: 285 year: 1994 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB14 publication-title: Journal of Engineering Gas Turbines and Power doi: 10.1115/1.2906818 – volume-title: Entropy Generation through Heat and Fluid Flow year: 1982 ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB2 |
SSID | ssj0009917 |
Score | 1.8669329 |
Snippet | This paper shows that the main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume... The main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. If the... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 843 |
SubjectTerms | Applied sciences Devices using thermal energy EGM Energy Energy. Thermal use of fuels entropy generation minimization Exact sciences and technology exergy analysis Heat exchangers (included heat transformers, condensers, cooling towers) thermodynamic design thermodynamic optimization |
Title | Entropy generation minimization in parallel-plates counterflow heat exchangers |
URI | https://api.istex.fr/ark:/67375/WNG-T783H1K3-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1099-114X%28200008%2924%3A10%3C843%3A%3AAID-ER620%3E3.0.CO%3B2-M https://www.proquest.com/docview/27622713 https://www.proquest.com/docview/27631762 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1fi9QwEA_HCaIP_hernvbBE33oXpukTXcV4Vz33HPZOznusG8haRORW7vL_sHTJz-C4Df0kzjTtLu3IoIgQh9KWzJkMsn80pn5hZBHgKBhUyFsEDJGA2Q3CbQpwiC3bcUjBQ5ZYHHy8CDpn_A3WZxtkGlTC-P4IZY_3HBmVOs1TnClZzsr0lAM6QSA5jNAYrSCPrB3pryiINhm3ZQzuIVrd_9V0DtKKDzssVbY6h5us5c0GMKyjSleiKOOVoxTAJdEE96EfWN2kaS1yJ2lwCdO3FPKO1H4HAR1OkshL5yIZyBgzdNdwEE7w8xLNQPlW3dqxhqsPQ-OK--2d5V8b_TiklpOW4u5buVffqGM_L-Ku0au1GDZ33XWfZ1smPIGuXyOQvEmedvDVPvJZ_99xZ-NZuYjXcrHur7U_1D6SG8-GpnRj6_fJiPE1n51QoaZ2tH4k4_eyDdndQX07BY52esdd_tBfUpEkPMkDQPRFkaZxMa5FUVOhQZAU-hUxyw3oY2TtomY0nnMjYqVSgqjrE2FTZSNiyIUlt0mm-W4NHeIb3IAj1yLwuqCI3N9SnWaRwY2wdYWQnlkvxlROXFkINLRPlOM5LexxDuTTqeScnwH2pQSNCkrTUomQ9k9lFQOPfK4MollQ2p6ikl2IpbvDl7LY5GyfjRgcuCRrTWbWUnmGCROPPKwsSEJSwPGe1RpxouZpODoqIjYH78A_JhQjwwqi_mbXv2uU-7B3X_a2j1yydEfYNLlfbI5ny7MFgDBuX5QTd2fGWhBxQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9NAEF6VVuJx4I0wUOoDRXBwau-uvU5ASCWkJKRJUZUK31ZrexehhiTKQxRO_AQO_EJ-CTO7eTQIISEhJB8s2_LIs7M733hmviXkESBoCCqECULGaIDsJkGuyzAoTFXxSIFDFtic3OkmzRP-JouzDTJZ9MI4fojlDzecGXa9xgmOP6T3VqyhmNMJAM5nAMWoxT4QPFNuOQh2WT3lDE7h2G-9ChrHCYWLDVYJK_WjXfaSBp0LZAs3Ardx2PGKcwoAk1gkOCFyzC6SdC5zbynxiZP3lPJaFD4HSbXaUsoLJ-MZSFjzdVs4bGdYe6kmoH7j9s1YA7bn4bH1bwfXyPeFZlxZy2llNs0rxZdfSCP_s-quk6tzvOzvOwO_QTb04Ca5co5F8RZ528Bq-9Fn_72l0EZL85Ex5eO8xdT_MPCR4bzf1_0fX7-N-givfbtJhh6b_vCTjw7J12fzJujJbXJy0OjVm8F8o4ig4EkaBqIqtNKJiQsjyoKKHDBNmad5zAodmjip6oipvIi5VrFSSamVMakwiTJxWYbCsDtkczAc6LvE1wXgR56L0uQlR_L6lOZpEWmIg40phfJIazGkcuT4QKRjfqaYzK9il3cmnU4l5XgPtCklaFJaTUomQ1k_klR2PPLY2sTyRWp8inV2Ipbvuq9lT6SsGbWZbHtke81oVpI55okTj-wsjEjC6oApHzXQw9lEUvB1VETsj08AhEyoR9rWZP7mq373Ue7CvX_6th1yqdnrHMrDVrd9n1x2bAhYg_mAbE7HM70NuHCaP7Tz-CdD50Xg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9QwELZKK1Vw4I0IUJoDRXDINrGdOLsgpLIPdll2W1WtmpvlJDZCDburfYjCiZ-AxD_klzAT76OLEBISQsohSiKPPB57PmdmPhPyBBA0bCqE8XzGqIfsJl6qc9_LTFXxQIFDFlic3OtH7VP-NgmTDTJe1MJYfojlDzecGeV6jRN8lJv9FWkohnQ8QPMJIDFaQh_YO1NeUhDssXrMGdzCddBpeM3jiMLDJqv4lfrhHntNvd4VssUjP8aZ0DheUU4BXhKL-CZsHJNtEs9l7i8lPrPynlNeC_yXIKlWW0p5ZWW8AAlrrm4LR-0CUy_VBLRv7LEZa7j2Mjou3VvrBvm-UIzNajmvzKZpJfvyC2fk_9XcTXJ9jpbdA2vet8iGHtwm1y5xKN4hR03MtR99dt-XBNpoZy7ypXycF5i6HwYu8psXhS5-fP02KhBcu-URGXpsiuEnF92Rqy_mJdCTu-S01Typt735MRFexqPY90RVaKUjE2ZG5BkVKSCaPI3TkGXaN2FU1QFTaRZyrUKlolwrY2JhImXCPPeFYffI5mA40PeJqzNAjzwVuUlzjtT1MU3jLNCwCzYmF8ohncWIypFlA5GW95liKL-KNd6JtDqVlOM70KaUoElZalIy6cv6oaSy55CnpUksG1Ljc8yyE6E867-RJyJm7aDLZNchO2s2s5LMMUocOWR3YUMS1gYM-KiBHs4mkoKnoyJgf_wCAGREHdItLeZvevW7TtkHD_5pa7tk-6jRku86_e5DctVSIWAC5iOyOR3P9A6Awmn6uJzFPwE2cUSY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy+generation+minimization+in+parallel-plates+counterflow+heat+exchangers&rft.jtitle=International+journal+of+energy+research&rft.au=Ordonez%2C+J+C&rft.au=Bejan%2C+A&rft.date=2000-08-01&rft.issn=0363-907X&rft.volume=24&rft.issue=10&rft.spage=843&rft.epage=864&rft_id=info:doi/10.1002%2F1099-114X%28200008%2924%3A10%3C843%3A%3AAID-ER620%3E3.0.CO%3B2-M&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |