Entropy generation minimization in parallel-plates counterflow heat exchangers

This paper shows that the main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. It is assumed that the channels are formed by parallel plates, the two fluids are ideal gases, and the flow is fully developed, la...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 24; no. 10; pp. 843 - 864
Main Authors Ordóñez, Juan Carlos, Bejan, Adrian
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.08.2000
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper shows that the main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. It is assumed that the channels are formed by parallel plates, the two fluids are ideal gases, and the flow is fully developed, laminar or turbulent. In the first part of the paper, it is shown that the irreversibility of the heat exchanger core is minimized with respect to (1) the ratio of the two‐channel spacings, and (2) the total heat transfer area between the two streams. In the second part, the entropy generation rate also accounts for the irreversibility due to discharging the spent hot stream into the ambient. It is shown that the design can be optimized with respect to (1), (2) and (3) the ratio of the capacity rates of the two streams. The optimized features of the geometry are robust with respect to whether the external discharge irreversibility is included in the entropy generation rate calculation. Copyright © 2000 John Wiley & Sons, Ltd.
AbstractList The main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. If the channels are formed by parallel plates, the two fluids are ideal gases, and the flow is fully developed, laminar or turbulent. It is shown that the irreversibility of the heat exchanger core is minimized with respect to the ratio of the two-channel spacings, and the total heat transfer area between the two streams. The entropy generation rate also accounts for the irreversibility due to discharging the spent hot stream into the ambient. It is shown that the design can be optimized with respect to the ratio of the two channel spacing, the total heat transfer area and the ratio of the capacity rates of the two streams. These optimized features are robust with respect to whether the external discharge irreversibility is included in the entropy generation rate calculation. (Original abstract - amended)
This paper shows that the main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. It is assumed that the channels are formed by parallel plates, the two fluids are ideal gases, and the flow is fully developed, laminar or turbulent. In the first part of the paper, it is shown that the irreversibility of the heat exchanger core is minimized with respect to (1) the ratio of the two-channel spacings, and (2) the total heat transfer area between the two streams. In the second part, the entropy generation rate also accounts for the irreversibility due to discharging the spent hot stream into the ambient. It is shown that the design can be optimized with respect to (1), (2) and (3) the ratio of the capacity rates of the two streams. The optimized features of the geometry are robust with respect to whether the external discharge irreversibility is included in the entropy generation rate calculation.
This paper shows that the main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. It is assumed that the channels are formed by parallel plates, the two fluids are ideal gases, and the flow is fully developed, laminar or turbulent. In the first part of the paper, it is shown that the irreversibility of the heat exchanger core is minimized with respect to (1) the ratio of the two‐channel spacings, and (2) the total heat transfer area between the two streams. In the second part, the entropy generation rate also accounts for the irreversibility due to discharging the spent hot stream into the ambient. It is shown that the design can be optimized with respect to (1), (2) and (3) the ratio of the capacity rates of the two streams. The optimized features of the geometry are robust with respect to whether the external discharge irreversibility is included in the entropy generation rate calculation. Copyright © 2000 John Wiley & Sons, Ltd.
Author Ordóñez, Juan Carlos
Bejan, Adrian
Author_xml – sequence: 1
  givenname: Juan Carlos
  surname: Ordóñez
  fullname: Ordóñez, Juan Carlos
  organization: Department of Mechanical Engineering and Materials Science, Duke University, Box 90300, Durham, NC 27708-0300, U.S.A
– sequence: 2
  givenname: Adrian
  surname: Bejan
  fullname: Bejan, Adrian
  organization: Department of Mechanical Engineering and Materials Science, Duke University, Box 90300, Durham, NC 27708-0300, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1428906$$DView record in Pascal Francis
BookMark eNqVkU1v0zAYgC00JLrBf8gBITik-COxk4KQplK2aR9F0xC7vXKd15vBdYKdaiu_npRM48IBfLFsP34O77NP9kIbkJCK0SmjlL9ltK5zxorr15wOq3rDixmj76tCzGaHJx_zxaXk9IOY0ul8-Y7n50_I5PHLHplQIUVeU3X9jOyn9G0w1DVTE3KxCH1su212gwGj7l0bsrULbu1-jgcXsk5H7T36vPO6x5SZdhN6jNa3d9kt6j7De3Orww3G9Jw8tdonfPGwH5AvnxZX8-P8bHl0Mj88y00hK5qrWqFGaUtjVWO4WjFGm1W1KoVBaktZIxN6ZcoCdam1bFBbWykrtS2bhiorDsir0dvF9scGUw9rlwx6rwO2mwRcScGU5P8Ccq6YGMCXD6BORnsbdTAuQRfdWsctsIJXNZUD9nnETGxTimj_EBR2oWA3ddhNHcZQwIvd2xAKYAgFv0OBAArzJXA4H5SXo_LOedz-j-9vuvFikOaj1KUe7x-lOn4HqYQq4evFEVypShyzUwGn4hcVprYz
CODEN IJERDN
Cites_doi 10.1016/S0017-9310(97)00256-1
10.1115/1.2906818
ContentType Journal Article
Copyright Copyright © 2000 John Wiley & Sons, Ltd.
2000 INIST-CNRS
Copyright_xml – notice: Copyright © 2000 John Wiley & Sons, Ltd.
– notice: 2000 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SP
8FD
L7M
F28
FR3
DOI 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M
DatabaseName Istex
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitleList Technology Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1099-114X
EndPage 864
ExternalDocumentID 1428906
10_1002_1099_114X_200008_24_10_843__AID_ER620_3_0_CO_2_M
ER620
ark_67375_WNG_T783H1K3_K
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AANHP
ACCMX
ACRPL
ACYXJ
ADNMO
AEUYN
AAYXX
ADMLS
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
PQGLB
7SP
8FD
L7M
F28
FR3
ID FETCH-LOGICAL-c4680-797eae6f5cf7dc27b110db8b53ce0f569e13abc54ea5aa6deaff87f6af5dd07f3
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Fri Jul 11 09:12:44 EDT 2025
Thu Jul 10 22:50:39 EDT 2025
Mon Jul 21 09:15:19 EDT 2025
Tue Jul 01 01:40:55 EDT 2025
Wed Jan 22 16:45:28 EST 2025
Wed Oct 30 09:58:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Thermodynamics
Exergy analysis
Heat exchanger
Entropy
Yield
Performance
Optimization
Counterflow system
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4680-797eae6f5cf7dc27b110db8b53ce0f569e13abc54ea5aa6deaff87f6af5dd07f3
Notes istex:C6618C48D13E9D7D343E9CF07EDE381E1774E919
ArticleID:ER620
ark:/67375/WNG-T783H1K3-K
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27622713
PQPubID 23500
PageCount 22
ParticipantIDs proquest_miscellaneous_27631762
proquest_miscellaneous_27622713
pascalfrancis_primary_1428906
crossref_primary_10_1002_1099_114X_200008_24_10_843__AID_ER620_3_0_CO_2_M
wiley_primary_10_1002_1099_114X_200008_24_10_843_AID_ER620_3_0_CO_2_M_ER620
istex_primary_ark_67375_WNG_T783H1K3_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2000
PublicationDateYYYYMMDD 2000-08-01
PublicationDate_xml – month: 08
  year: 2000
  text: August 2000
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal of energy research
PublicationTitleAlternate Int. J. Energy Res
PublicationYear 2000
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Bejan A. 1982. Entropy Generation through Heat and Fluid Flow. Wiley: New York.
Moran MJ, Sciubba E. 1994. Exergetic analysis: principles and practice. Journal of Engineering Gas Turbines and Power 116:285-290.
Bejan A, Moran M, Tsatsaronis G. 1996. Thermal Design and Optimization. Wiley: New York.
Bejan A, Errera MR. 1998. Maximum power from a hot stream. International Journal of Heat and Mass Transfer 41:2025-2036.
Kays WM, London AL 1984. Compact Heat Exchangers (3rd edn). McGraw-Hill: New York.
Stecco SS, Moran MJ. 1992. Energy for the Transition Age. Nova Science: New York.
Bejan A. 1993. Heat Transfer. Wiley: New York.
Bejan A. 1996. Entropy Generation Minimization. CRC Press: Boca Raton, FL.
Moran MJ. 1982. Availability Analysis: A Guide to Efficient Energy Use. Prentice-Hall: Englewood Cliffs, NJ.
Ahern JE. 1980. The Exergy Method of Energy Systems Analysis. Wiley: New York.
Bejan A. 1997. Advanced Engineering Thermodynamics (2nd edn). Wiley: New York.
Krane RJ (ed). 1995. Thermodynamics and the Design, Analysis, and Improvement of Energy Systems 1995, AES-vol. 35, ASME: New York.
Bejan A. 1995. Convection Heat Transfer (2nd edn). Wiley: New York.
1994; 116
1995; 35
1997; 37
1987
1997
1996
1995
1984
1982
1993
1992
1980
1998; 41
Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB2) 1982
Lazzaretto (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB12) 1997; 37
Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB3) 1993
Ahern (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB1) 1980
Moran (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB13) 1982
Moran (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB14) 1994; 116
Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB5) 1996
Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB6) 1997
Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB4) 1995
Krane (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB11) 1995; 35
Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB8) 1996
Feidt (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB9) 1987
Kays (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB10) 1984
Stecco (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB15) 1992
Bejan (10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB7) 1998; 41
References_xml – reference: Kays WM, London AL 1984. Compact Heat Exchangers (3rd edn). McGraw-Hill: New York.
– reference: Stecco SS, Moran MJ. 1992. Energy for the Transition Age. Nova Science: New York.
– reference: Bejan A, Moran M, Tsatsaronis G. 1996. Thermal Design and Optimization. Wiley: New York.
– reference: Moran MJ. 1982. Availability Analysis: A Guide to Efficient Energy Use. Prentice-Hall: Englewood Cliffs, NJ.
– reference: Ahern JE. 1980. The Exergy Method of Energy Systems Analysis. Wiley: New York.
– reference: Bejan A. 1993. Heat Transfer. Wiley: New York.
– reference: Bejan A, Errera MR. 1998. Maximum power from a hot stream. International Journal of Heat and Mass Transfer 41:2025-2036.
– reference: Krane RJ (ed). 1995. Thermodynamics and the Design, Analysis, and Improvement of Energy Systems 1995, AES-vol. 35, ASME: New York.
– reference: Moran MJ, Sciubba E. 1994. Exergetic analysis: principles and practice. Journal of Engineering Gas Turbines and Power 116:285-290.
– reference: Bejan A. 1996. Entropy Generation Minimization. CRC Press: Boca Raton, FL.
– reference: Bejan A. 1982. Entropy Generation through Heat and Fluid Flow. Wiley: New York.
– reference: Bejan A. 1995. Convection Heat Transfer (2nd edn). Wiley: New York.
– reference: Bejan A. 1997. Advanced Engineering Thermodynamics (2nd edn). Wiley: New York.
– volume: 41
  start-page: 2025
  year: 1998
  end-page: 2036
  article-title: Maximum power from a hot stream
  publication-title: International Journal of Heat and Mass Transfer
– year: 1984
– year: 1982
– year: 1980
– volume: 116
  start-page: 285
  year: 1994
  end-page: 290
  article-title: Exergetic analysis: principles and practice
  publication-title: Journal of Engineering Gas Turbines and Power
– year: 1987
– year: 1997
– year: 1996
– year: 1995
– year: 1993
– year: 1992
– volume: 37
  start-page: 197
  year: 1997
  end-page: 210
– volume: 35
  year: 1995
– volume-title: Thermal Design and Optimization
  year: 1996
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB8
– volume-title: Convection Heat Transfer
  year: 1995
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB4
– volume-title: Compact Heat Exchangers
  year: 1984
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB10
– year: 1987
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB9
– volume-title: Heat Transfer
  year: 1993
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB3
– volume: 35
  volume-title: Thermodynamics and the Design, Analysis, and Improvement of Energy Systems 1995
  year: 1995
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB11
– volume: 37
  start-page: 197
  volume-title: Proceedings of the ASME Advanced Energy Systems Division
  year: 1997
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB12
– volume: 41
  start-page: 2025
  year: 1998
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB7
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(97)00256-1
– volume-title: Availability Analysis: A Guide to Efficient Energy Use
  year: 1982
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB13
– volume-title: The Exergy Method of Energy Systems Analysis
  year: 1980
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB1
– volume-title: Entropy Generation Minimization
  year: 1996
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB5
– volume-title: Advanced Engineering Thermodynamics
  year: 1997
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB6
– volume-title: Energy for the Transition Age
  year: 1992
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB15
– volume: 116
  start-page: 285
  year: 1994
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB14
  publication-title: Journal of Engineering Gas Turbines and Power
  doi: 10.1115/1.2906818
– volume-title: Entropy Generation through Heat and Fluid Flow
  year: 1982
  ident: 10.1002/1099-114X(200008)24:10<843::AID-ER620>3.0.CO;2-M-BIB2
SSID ssj0009917
Score 1.8669329
Snippet This paper shows that the main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume...
The main architectural features of a counterflow heat exchanger can be determined based on thermodynamic optimization subject to volume constraint. If the...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 843
SubjectTerms Applied sciences
Devices using thermal energy
EGM
Energy
Energy. Thermal use of fuels
entropy generation minimization
Exact sciences and technology
exergy analysis
Heat exchangers (included heat transformers, condensers, cooling towers)
thermodynamic design
thermodynamic optimization
Title Entropy generation minimization in parallel-plates counterflow heat exchangers
URI https://api.istex.fr/ark:/67375/WNG-T783H1K3-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1099-114X%28200008%2924%3A10%3C843%3A%3AAID-ER620%3E3.0.CO%3B2-M
https://www.proquest.com/docview/27622713
https://www.proquest.com/docview/27631762
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1fi9QwEA_HCaIP_hernvbBE33oXpukTXcV4Vz33HPZOznusG8haRORW7vL_sHTJz-C4Df0kzjTtLu3IoIgQh9KWzJkMsn80pn5hZBHgKBhUyFsEDJGA2Q3CbQpwiC3bcUjBQ5ZYHHy8CDpn_A3WZxtkGlTC-P4IZY_3HBmVOs1TnClZzsr0lAM6QSA5jNAYrSCPrB3pryiINhm3ZQzuIVrd_9V0DtKKDzssVbY6h5us5c0GMKyjSleiKOOVoxTAJdEE96EfWN2kaS1yJ2lwCdO3FPKO1H4HAR1OkshL5yIZyBgzdNdwEE7w8xLNQPlW3dqxhqsPQ-OK--2d5V8b_TiklpOW4u5buVffqGM_L-Ku0au1GDZ33XWfZ1smPIGuXyOQvEmedvDVPvJZ_99xZ-NZuYjXcrHur7U_1D6SG8-GpnRj6_fJiPE1n51QoaZ2tH4k4_eyDdndQX07BY52esdd_tBfUpEkPMkDQPRFkaZxMa5FUVOhQZAU-hUxyw3oY2TtomY0nnMjYqVSgqjrE2FTZSNiyIUlt0mm-W4NHeIb3IAj1yLwuqCI3N9SnWaRwY2wdYWQnlkvxlROXFkINLRPlOM5LexxDuTTqeScnwH2pQSNCkrTUomQ9k9lFQOPfK4MollQ2p6ikl2IpbvDl7LY5GyfjRgcuCRrTWbWUnmGCROPPKwsSEJSwPGe1RpxouZpODoqIjYH78A_JhQjwwqi_mbXv2uU-7B3X_a2j1yydEfYNLlfbI5ny7MFgDBuX5QTd2fGWhBxQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9NAEF6VVuJx4I0wUOoDRXBwau-uvU5ASCWkJKRJUZUK31ZrexehhiTKQxRO_AQO_EJ-CTO7eTQIISEhJB8s2_LIs7M733hmviXkESBoCCqECULGaIDsJkGuyzAoTFXxSIFDFtic3OkmzRP-JouzDTJZ9MI4fojlDzecGXa9xgmOP6T3VqyhmNMJAM5nAMWoxT4QPFNuOQh2WT3lDE7h2G-9ChrHCYWLDVYJK_WjXfaSBp0LZAs3Ardx2PGKcwoAk1gkOCFyzC6SdC5zbynxiZP3lPJaFD4HSbXaUsoLJ-MZSFjzdVs4bGdYe6kmoH7j9s1YA7bn4bH1bwfXyPeFZlxZy2llNs0rxZdfSCP_s-quk6tzvOzvOwO_QTb04Ca5co5F8RZ528Bq-9Fn_72l0EZL85Ex5eO8xdT_MPCR4bzf1_0fX7-N-givfbtJhh6b_vCTjw7J12fzJujJbXJy0OjVm8F8o4ig4EkaBqIqtNKJiQsjyoKKHDBNmad5zAodmjip6oipvIi5VrFSSamVMakwiTJxWYbCsDtkczAc6LvE1wXgR56L0uQlR_L6lOZpEWmIg40phfJIazGkcuT4QKRjfqaYzK9il3cmnU4l5XgPtCklaFJaTUomQ1k_klR2PPLY2sTyRWp8inV2Ipbvuq9lT6SsGbWZbHtke81oVpI55okTj-wsjEjC6oApHzXQw9lEUvB1VETsj08AhEyoR9rWZP7mq373Ue7CvX_6th1yqdnrHMrDVrd9n1x2bAhYg_mAbE7HM70NuHCaP7Tz-CdD50Xg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9QwELZKK1Vw4I0IUJoDRXDINrGdOLsgpLIPdll2W1WtmpvlJDZCDburfYjCiZ-AxD_klzAT76OLEBISQsohSiKPPB57PmdmPhPyBBA0bCqE8XzGqIfsJl6qc9_LTFXxQIFDFlic3OtH7VP-NgmTDTJe1MJYfojlDzecGeV6jRN8lJv9FWkohnQ8QPMJIDFaQh_YO1NeUhDssXrMGdzCddBpeM3jiMLDJqv4lfrhHntNvd4VssUjP8aZ0DheUU4BXhKL-CZsHJNtEs9l7i8lPrPynlNeC_yXIKlWW0p5ZWW8AAlrrm4LR-0CUy_VBLRv7LEZa7j2Mjou3VvrBvm-UIzNajmvzKZpJfvyC2fk_9XcTXJ9jpbdA2vet8iGHtwm1y5xKN4hR03MtR99dt-XBNpoZy7ypXycF5i6HwYu8psXhS5-fP02KhBcu-URGXpsiuEnF92Rqy_mJdCTu-S01Typt735MRFexqPY90RVaKUjE2ZG5BkVKSCaPI3TkGXaN2FU1QFTaRZyrUKlolwrY2JhImXCPPeFYffI5mA40PeJqzNAjzwVuUlzjtT1MU3jLNCwCzYmF8ohncWIypFlA5GW95liKL-KNd6JtDqVlOM70KaUoElZalIy6cv6oaSy55CnpUksG1Ljc8yyE6E867-RJyJm7aDLZNchO2s2s5LMMUocOWR3YUMS1gYM-KiBHs4mkoKnoyJgf_wCAGREHdItLeZvevW7TtkHD_5pa7tk-6jRku86_e5DctVSIWAC5iOyOR3P9A6Awmn6uJzFPwE2cUSY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy+generation+minimization+in+parallel-plates+counterflow+heat+exchangers&rft.jtitle=International+journal+of+energy+research&rft.au=Ordonez%2C+J+C&rft.au=Bejan%2C+A&rft.date=2000-08-01&rft.issn=0363-907X&rft.volume=24&rft.issue=10&rft.spage=843&rft.epage=864&rft_id=info:doi/10.1002%2F1099-114X%28200008%2924%3A10%3C843%3A%3AAID-ER620%3E3.0.CO%3B2-M&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon