Plasmon-enhanced fluorescence spectroscopy

Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fl...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 46; no. 13; pp. 3962 - 3979
Main Authors Li, Jian-Feng, Li, Chao-Yu, Aroca, Ricardo F
Format Journal Article
LanguageEnglish
Published England 03.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fluorescence by incorporating weak quantum emitters, avoiding photobleaching and providing the opportunity of imaging with resolutions significantly better than the diffraction limit. It also opens the window to a new class of photostable probes by combining metal nanostructures and quantum emitters. In particular, the shell-isolated nanostructure-enhanced fluorescence, an innovative new mode for plasmon-enhanced surface analysis, is included. These new developments are based on the coupling of the fluorophores in their excited states with localized surface plasmons in nanoparticles, where local field enhancement leads to improved brightness of molecular emission and higher detection sensitivity. Here, we review the recent progress in PEF with an emphasis on the mechanism of plasmon enhancement, substrate preparation, and some advanced applications, including an outlook on PEF with high time- and spatially resolved properties. Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level.
AbstractList Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fluorescence by incorporating weak quantum emitters, avoiding photobleaching and providing the opportunity of imaging with resolutions significantly better than the diffraction limit. It also opens the window to a new class of photostable probes by combining metal nanostructures and quantum emitters. In particular, the shell-isolated nanostructure-enhanced fluorescence, an innovative new mode for plasmon-enhanced surface analysis, is included. These new developments are based on the coupling of the fluorophores in their excited states with localized surface plasmons in nanoparticles, where local field enhancement leads to improved brightness of molecular emission and higher detection sensitivity. Here, we review the recent progress in PEF with an emphasis on the mechanism of plasmon enhancement, substrate preparation, and some advanced applications, including an outlook on PEF with high time- and spatially resolved properties.
Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fluorescence by incorporating weak quantum emitters, avoiding photobleaching and providing the opportunity of imaging with resolutions significantly better than the diffraction limit. It also opens the window to a new class of photostable probes by combining metal nanostructures and quantum emitters. In particular, the shell-isolated nanostructure-enhanced fluorescence, an innovative new mode for plasmon-enhanced surface analysis, is included. These new developments are based on the coupling of the fluorophores in their excited states with localized surface plasmons in nanoparticles, where local field enhancement leads to improved brightness of molecular emission and higher detection sensitivity. Here, we review the recent progress in PEF with an emphasis on the mechanism of plasmon enhancement, substrate preparation, and some advanced applications, including an outlook on PEF with high time- and spatially resolved properties. Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level.
Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fluorescence by incorporating weak quantum emitters, avoiding photobleaching and providing the opportunity of imaging with resolutions significantly better than the diffraction limit. It also opens the window to a new class of photostable probes by combining metal nanostructures and quantum emitters. In particular, the shell-isolated nanostructure-enhanced fluorescence, an innovative new mode for plasmon-enhanced surface analysis, is included. These new developments are based on the coupling of the fluorophores in their excited states with localized surface plasmons in nanoparticles, where local field enhancement leads to improved brightness of molecular emission and higher detection sensitivity. Here, we review the recent progress in PEF with an emphasis on the mechanism of plasmon enhancement, substrate preparation, and some advanced applications, including an outlook on PEF with high time- and spatially resolved properties.Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fluorescence by incorporating weak quantum emitters, avoiding photobleaching and providing the opportunity of imaging with resolutions significantly better than the diffraction limit. It also opens the window to a new class of photostable probes by combining metal nanostructures and quantum emitters. In particular, the shell-isolated nanostructure-enhanced fluorescence, an innovative new mode for plasmon-enhanced surface analysis, is included. These new developments are based on the coupling of the fluorophores in their excited states with localized surface plasmons in nanoparticles, where local field enhancement leads to improved brightness of molecular emission and higher detection sensitivity. Here, we review the recent progress in PEF with an emphasis on the mechanism of plasmon enhancement, substrate preparation, and some advanced applications, including an outlook on PEF with high time- and spatially resolved properties.
Author Li, Jian-Feng
Li, Chao-Yu
Aroca, Ricardo F
AuthorAffiliation Department of Chemistry
University of Chile
State Key Laboratory of Physical Chemistry of Solid Surfaces
iChEM
MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
Research Institute for Biomimetics and Soft Matter
Department of Chemistry and Biochemistry
Xiamen University
College of Chemistry and Chemical Engineering
University of Windsor
Faculty of Science
Department of Physics
AuthorAffiliation_xml – name: Research Institute for Biomimetics and Soft Matter
– name: MOE Key Laboratory of Spectrochemical Analysis and Instrumentation
– name: University of Windsor
– name: Department of Chemistry
– name: iChEM
– name: College of Chemistry and Chemical Engineering
– name: Department of Physics
– name: State Key Laboratory of Physical Chemistry of Solid Surfaces
– name: University of Chile
– name: Xiamen University
– name: Faculty of Science
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Jian-Feng
  surname: Li
  fullname: Li, Jian-Feng
– sequence: 2
  givenname: Chao-Yu
  surname: Li
  fullname: Li, Chao-Yu
– sequence: 3
  givenname: Ricardo F
  surname: Aroca
  fullname: Aroca, Ricardo F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28639669$$D View this record in MEDLINE/PubMed
BookMark eNqN0UlLxDAUB_AgI86iF-_KeJOBarZmOUpxZUBBPZc0SbFDp6lJe5hvb3TGEUTUUxLye4_H-4_BoHGNBeAQwTMEiTzXXAcIEZOLHTBClMGEckoHYAQJZEn8wUMwDmERb4gzvAeGWDAiGZMjMHuoVVi6JrHNi2q0NdOy7p23Qdv4mobW6s67oF272ge7paqDPdicE_B8dfmU3STz--vb7GKeaMp4l5RYQwQxNQUpjGaaF0YghajA1hBjUpgyjK3CjJUkNZJzxQWCUBRCipISRSbgdN239e61t6HLl1Ucp65VY10fchynl1hQSv-kSOJUcJZi8g-KMEOMIR7p8Yb2xdKavPXVUvlV_rm1CGZroONqgrflliCYv0eSZzx7_IjkLmL4DeuqU13lms6rqv655GRd4oPetv5KOW9NGc3Rb4a8AZU9oGs
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_110632
crossref_primary_10_1016_j_ijleo_2018_12_146
crossref_primary_10_1039_D1RA04360A
crossref_primary_10_1088_1361_6528_abcef4
crossref_primary_10_1021_acs_analchem_4c07105
crossref_primary_10_1016_j_trac_2024_118060
crossref_primary_10_2174_1381612826666191219130033
crossref_primary_10_3390_ma17102213
crossref_primary_10_1016_j_ccr_2025_216511
crossref_primary_10_1021_acsnano_0c01973
crossref_primary_10_1007_s10812_023_01567_x
crossref_primary_10_1016_S1872_2067_21_63874_3
crossref_primary_10_1016_j_ijleo_2022_169338
crossref_primary_10_1364_OSAC_396029
crossref_primary_10_1088_1361_648X_ab0b9d
crossref_primary_10_1021_acsanm_1c00841
crossref_primary_10_2478_lpts_2024_0003
crossref_primary_10_1007_s10717_024_00650_9
crossref_primary_10_1021_acs_jpcc_2c01392
crossref_primary_10_1021_acs_jpcc_7b10381
crossref_primary_10_3390_bios15030165
crossref_primary_10_1002_adma_202108104
crossref_primary_10_3390_nano10040690
crossref_primary_10_1002_adfm_202008031
crossref_primary_10_1016_j_matlet_2021_130008
crossref_primary_10_1088_2053_1591_aa9aaa
crossref_primary_10_1039_C9RA02543J
crossref_primary_10_3389_fchem_2018_00345
crossref_primary_10_3390_nano12040633
crossref_primary_10_1002_sstr_202100101
crossref_primary_10_1016_j_bios_2022_114288
crossref_primary_10_1039_D4NH00451E
crossref_primary_10_1002_adom_202002212
crossref_primary_10_1039_C9NR09420B
crossref_primary_10_1021_acsphotonics_0c00359
crossref_primary_10_1021_acsnano_9b06858
crossref_primary_10_1002_adom_201901010
crossref_primary_10_1021_acsomega_4c05492
crossref_primary_10_1021_acsomega_9b03560
crossref_primary_10_1021_acsphotonics_8b00121
crossref_primary_10_1007_s00216_024_05715_w
crossref_primary_10_1007_s00214_023_03025_5
crossref_primary_10_1039_C8RA01032C
crossref_primary_10_1002_adma_202007988
crossref_primary_10_1007_s10812_021_01159_7
crossref_primary_10_1016_j_jmst_2020_03_025
crossref_primary_10_1016_j_materresbull_2021_111558
crossref_primary_10_1021_acsnano_0c07289
crossref_primary_10_1039_D3QM00200D
crossref_primary_10_1002_cnma_201700257
crossref_primary_10_1021_acs_chemrev_8b00260
crossref_primary_10_1021_acsami_2c04800
crossref_primary_10_1016_j_cocis_2022_101622
crossref_primary_10_1021_acsanm_4c07090
crossref_primary_10_1021_acsomega_9b02581
crossref_primary_10_1002_cplu_202000545
crossref_primary_10_1016_j_jphotochem_2022_114067
crossref_primary_10_1021_acs_nanolett_9b02239
crossref_primary_10_1016_j_bios_2022_114041
crossref_primary_10_3390_nano14010111
crossref_primary_10_1021_acs_jpclett_3c00468
crossref_primary_10_1016_j_matpr_2022_09_615
crossref_primary_10_1016_j_jlumin_2020_117870
crossref_primary_10_1021_acs_nanolett_1c02162
crossref_primary_10_1007_s11468_019_01057_x
crossref_primary_10_1063_1_5056211
crossref_primary_10_1021_acsami_4c10027
crossref_primary_10_1021_acs_jpcc_3c07144
crossref_primary_10_1021_acsami_2c11218
crossref_primary_10_2139_ssrn_4019237
crossref_primary_10_1021_acs_jpcc_9b06280
crossref_primary_10_3390_nano11123334
crossref_primary_10_1016_j_esci_2024_100312
crossref_primary_10_1515_nanoph_2020_0213
crossref_primary_10_1021_acsnano_0c07581
crossref_primary_10_1039_C8NR00639C
crossref_primary_10_3390_app14093574
crossref_primary_10_1002_adom_202300221
crossref_primary_10_1021_acs_jpcc_3c08101
crossref_primary_10_1142_S0217984924502464
crossref_primary_10_3390_nano10102078
crossref_primary_10_1002_anbr_202000015
crossref_primary_10_1016_j_rinp_2024_107783
crossref_primary_10_1016_j_talanta_2022_123611
crossref_primary_10_1021_acssensors_4c01985
crossref_primary_10_1016_j_rinp_2024_107540
crossref_primary_10_1021_acs_jpcc_2c06616
crossref_primary_10_1002_adma_201906475
crossref_primary_10_1021_jacs_2c03081
crossref_primary_10_1039_C8AN01667D
crossref_primary_10_1039_D0NR07344J
crossref_primary_10_7498_aps_68_20190782
crossref_primary_10_1039_C8CP03114B
crossref_primary_10_1021_acs_analchem_8b02109
crossref_primary_10_1039_C9NR03725J
crossref_primary_10_1039_D0AN00538J
crossref_primary_10_1002_smll_202000460
crossref_primary_10_1021_acs_accounts_9b00463
crossref_primary_10_1007_s12274_022_4102_3
crossref_primary_10_1021_acsnano_4c05258
crossref_primary_10_1039_D2NA00753C
crossref_primary_10_1021_acsanm_2c00203
crossref_primary_10_1021_jacs_3c12470
crossref_primary_10_1016_j_microc_2023_109888
crossref_primary_10_3390_molecules26020281
crossref_primary_10_1002_adom_201901583
crossref_primary_10_1016_j_cocis_2022_101660
crossref_primary_10_3390_nano10030444
crossref_primary_10_1007_s42452_025_06513_4
crossref_primary_10_1021_acs_jpcc_1c06466
crossref_primary_10_1016_j_bios_2019_111733
crossref_primary_10_1021_acsnano_2c10470
crossref_primary_10_1021_acsaom_2c00026
crossref_primary_10_1021_acsnano_0c03997
crossref_primary_10_1016_j_ijleo_2022_169856
crossref_primary_10_1016_j_micron_2020_102916
crossref_primary_10_1021_acs_jpclett_0c00304
crossref_primary_10_1021_jacs_8b12206
crossref_primary_10_1088_2050_6120_ad9fd2
crossref_primary_10_1007_s11051_021_05201_9
crossref_primary_10_1039_D0AN01092H
crossref_primary_10_3390_polym13223920
crossref_primary_10_1073_pnas_1914713117
crossref_primary_10_1364_OE_542681
crossref_primary_10_1016_j_apmt_2018_07_007
crossref_primary_10_1021_acs_jpcc_1c05141
crossref_primary_10_1039_C8CP02942C
crossref_primary_10_1016_j_cap_2024_03_004
crossref_primary_10_3390_mi14030668
crossref_primary_10_1016_j_jcis_2023_06_090
crossref_primary_10_1039_D1NH00497B
crossref_primary_10_1039_C8NR06119J
crossref_primary_10_1177_1040638720968784
crossref_primary_10_1088_1361_648X_aac28d
crossref_primary_10_1021_acs_analchem_1c03206
crossref_primary_10_1016_j_bios_2022_114440
crossref_primary_10_3390_nano12234339
crossref_primary_10_3390_ma16041386
crossref_primary_10_1002_smtd_202300076
crossref_primary_10_3390_molecules26082338
crossref_primary_10_1002_adom_202001520
crossref_primary_10_1039_C8RA09454C
crossref_primary_10_1515_nanoph_2024_0417
crossref_primary_10_1038_s44310_024_00045_2
crossref_primary_10_1039_D4NR02161D
crossref_primary_10_1021_jacs_9b04697
crossref_primary_10_1016_j_mtener_2022_101003
crossref_primary_10_1016_j_bios_2022_114791
crossref_primary_10_1007_s11468_022_01721_9
crossref_primary_10_1038_s41467_024_51916_3
crossref_primary_10_1039_D1JA00149C
crossref_primary_10_1002_chem_202301691
crossref_primary_10_1021_acsami_1c19746
crossref_primary_10_1039_D4CC02750G
crossref_primary_10_1021_acs_jpcb_4c04008
crossref_primary_10_1364_AO_384653
crossref_primary_10_1016_j_microc_2024_111541
crossref_primary_10_1088_1361_6528_ac46b6
crossref_primary_10_1038_s41598_018_37153_x
crossref_primary_10_1039_D2TC02600G
crossref_primary_10_1016_j_jhazmat_2023_131941
crossref_primary_10_1021_acs_jchemed_9b00559
crossref_primary_10_1063_1_5007752
crossref_primary_10_1039_C7NR07340B
crossref_primary_10_1039_D2CC05324A
crossref_primary_10_1038_s41598_025_87198_y
crossref_primary_10_1016_j_jcis_2018_11_051
crossref_primary_10_1039_D1RA02266K
crossref_primary_10_1002_adma_201706527
crossref_primary_10_1016_j_matchemphys_2023_127876
crossref_primary_10_3390_cancers11060748
crossref_primary_10_1021_acsaelm_0c00482
crossref_primary_10_1039_C8AN00144H
crossref_primary_10_1021_acsabm_1c00113
crossref_primary_10_1016_j_sna_2024_115594
crossref_primary_10_1021_acs_analchem_1c01210
crossref_primary_10_1088_1361_6528_ad5a7a
crossref_primary_10_1016_j_microc_2021_106524
crossref_primary_10_1016_j_physe_2021_114868
crossref_primary_10_1021_acs_analchem_7b04251
crossref_primary_10_3390_nano10040773
crossref_primary_10_1021_acsnano_1c07176
crossref_primary_10_1021_acsaenm_2c00065
crossref_primary_10_1002_smll_202001861
crossref_primary_10_1063_5_0131649
crossref_primary_10_1039_D4CS00883A
crossref_primary_10_1039_D1TC01209F
crossref_primary_10_1039_C8RA03185A
crossref_primary_10_1016_j_matchemphys_2022_126129
crossref_primary_10_1002_advs_202205148
crossref_primary_10_1002_adfm_202100889
crossref_primary_10_1039_D3CS00793F
crossref_primary_10_1002_bio_4364
crossref_primary_10_1016_j_nano_2022_102569
crossref_primary_10_5757_ASCT_2023_32_2_38
crossref_primary_10_1016_j_trac_2023_117030
crossref_primary_10_1021_acs_analchem_0c04518
crossref_primary_10_1021_acsami_1c05892
crossref_primary_10_1088_2040_8986_ab806f
crossref_primary_10_1002_smll_202102596
crossref_primary_10_1038_s41467_020_19755_0
crossref_primary_10_3390_ma13010034
crossref_primary_10_1039_D2NR05527A
crossref_primary_10_1002_biot_202300519
crossref_primary_10_1039_D1CP04546F
crossref_primary_10_1021_acsabm_1c00320
crossref_primary_10_1016_j_physb_2024_416212
crossref_primary_10_1088_1742_6596_2058_1_012005
crossref_primary_10_1364_JOSAB_402316
crossref_primary_10_1146_annurev_physchem_090519_034645
crossref_primary_10_3390_ma16031289
crossref_primary_10_1021_acs_langmuir_2c01894
crossref_primary_10_1007_s00216_023_04792_7
crossref_primary_10_1021_acs_chemrev_1c00482
crossref_primary_10_1002_adfm_201906407
crossref_primary_10_1021_acsanm_3c03731
crossref_primary_10_3390_jcs6080218
crossref_primary_10_1002_asia_202000847
crossref_primary_10_1002_ppsc_202300083
crossref_primary_10_1002_smll_202407787
crossref_primary_10_1021_acs_nanolett_2c04988
crossref_primary_10_1039_D3CS00941F
crossref_primary_10_1021_acs_jpcc_1c05404
crossref_primary_10_3390_chemosensors11020109
crossref_primary_10_1002_adma_202005900
crossref_primary_10_1088_1361_6528_acfe15
crossref_primary_10_1364_PRJ_416256
crossref_primary_10_1016_j_nanoso_2023_101025
crossref_primary_10_1039_D0RA08759A
crossref_primary_10_1002_smll_201801385
crossref_primary_10_1039_D0NA00961J
crossref_primary_10_1016_j_optmat_2018_06_022
crossref_primary_10_1039_D2NR01543A
crossref_primary_10_1039_D2CP02870K
crossref_primary_10_1021_acs_jpcc_3c00020
crossref_primary_10_1109_JSEN_2025_3535576
crossref_primary_10_3390_nano10050939
crossref_primary_10_1002_adma_202403896
crossref_primary_10_3390_photonics12020125
crossref_primary_10_1016_j_addr_2024_115341
crossref_primary_10_1021_acs_chemrev_9b00234
crossref_primary_10_1063_5_0015246
crossref_primary_10_1364_AO_58_006038
crossref_primary_10_3390_app11125388
crossref_primary_10_1038_s41467_021_21238_9
crossref_primary_10_1364_JOSAB_533051
crossref_primary_10_1039_D1AN02173G
crossref_primary_10_3390_nano13131987
crossref_primary_10_1063_5_0040587
crossref_primary_10_1021_acs_jpclett_0c03564
crossref_primary_10_1021_acs_analchem_0c04280
crossref_primary_10_1016_j_physe_2021_114764
crossref_primary_10_1557_s43579_023_00342_5
crossref_primary_10_1002_adfm_202005400
crossref_primary_10_1002_adma_201901428
crossref_primary_10_1021_acsaom_4c00032
crossref_primary_10_1039_C9CC00356H
crossref_primary_10_1364_OE_481440
crossref_primary_10_1364_OL_44_000339
crossref_primary_10_1039_D1CP03684J
crossref_primary_10_1021_acs_chemrev_4c00165
crossref_primary_10_1088_1674_1056_ad6555
crossref_primary_10_3390_nano12224019
crossref_primary_10_1039_D0NA00862A
crossref_primary_10_1038_s41570_018_0031_9
crossref_primary_10_1016_j_aca_2024_342517
crossref_primary_10_1016_j_snb_2021_130585
crossref_primary_10_1021_acsomega_1c06010
crossref_primary_10_1021_acsanm_4c06612
crossref_primary_10_1016_j_microc_2022_107722
crossref_primary_10_1557_s43577_024_00850_2
crossref_primary_10_1039_D1TB00712B
crossref_primary_10_1021_acs_nanolett_7b04847
crossref_primary_10_1002_adom_202001932
crossref_primary_10_1021_acs_nanolett_4c05829
crossref_primary_10_1134_S1061933X19060140
crossref_primary_10_1007_s11468_019_01094_6
crossref_primary_10_3390_mi14030574
crossref_primary_10_1039_D2CP01681H
crossref_primary_10_1021_acs_chemrev_3c00475
crossref_primary_10_1021_acsphotonics_1c01100
crossref_primary_10_1016_j_snb_2024_136727
crossref_primary_10_1021_acs_jpcc_3c01267
crossref_primary_10_1126_sciadv_add4816
crossref_primary_10_1007_s00217_023_04432_5
crossref_primary_10_1021_acs_langmuir_3c00801
crossref_primary_10_1039_D3SC05722D
crossref_primary_10_1109_JLT_2021_3083094
crossref_primary_10_3389_fchem_2024_1407561
crossref_primary_10_1039_D2NR01402E
crossref_primary_10_1021_acsanm_0c01890
crossref_primary_10_1039_D0TB02309D
crossref_primary_10_1021_acsanm_0c01898
crossref_primary_10_1021_jacs_3c11959
crossref_primary_10_1038_s41524_019_0184_1
crossref_primary_10_1016_j_saa_2023_123065
crossref_primary_10_1364_OME_497366
crossref_primary_10_1021_acsami_4c15017
crossref_primary_10_1021_acsomega_2c01146
crossref_primary_10_1021_acssuschemeng_1c05437
crossref_primary_10_1021_acsanm_1c00225
crossref_primary_10_3390_ijms26062557
crossref_primary_10_1021_acsomega_0c03588
crossref_primary_10_1021_acs_jpcc_1c04599
crossref_primary_10_1142_S021798492150336X
crossref_primary_10_1007_s11051_024_06039_7
crossref_primary_10_1021_acs_jpcc_4c08591
crossref_primary_10_1016_j_jcis_2024_05_217
crossref_primary_10_33581_2520_257X_2022_1_3_17
crossref_primary_10_1039_D2CC03431J
crossref_primary_10_1063_1_5120601
crossref_primary_10_1002_nano_202100131
crossref_primary_10_1016_j_snb_2024_135537
crossref_primary_10_1021_acs_jpclett_2c03602
crossref_primary_10_1007_s11468_020_01270_z
crossref_primary_10_1088_1674_1056_ac7215
crossref_primary_10_1007_s13404_022_00320_0
crossref_primary_10_1038_s41467_022_35699_z
crossref_primary_10_3390_chemosensors11010035
crossref_primary_10_1038_s41598_020_60244_7
crossref_primary_10_3390_diagnostics11061119
crossref_primary_10_1039_D2CP02100E
crossref_primary_10_1021_acsanm_0c00470
crossref_primary_10_1021_acs_jpcc_0c03415
crossref_primary_10_1021_acsanm_4c05718
crossref_primary_10_1016_j_colsurfb_2020_111189
crossref_primary_10_1002_cjoc_202100679
crossref_primary_10_3390_coatings10030227
crossref_primary_10_1021_acs_nanolett_0c01569
crossref_primary_10_3390_polym15193935
crossref_primary_10_1016_j_aca_2024_342579
crossref_primary_10_1016_j_biosx_2022_100191
crossref_primary_10_1016_j_aca_2022_339721
crossref_primary_10_1002_asia_202401436
crossref_primary_10_1088_1361_6528_ac2767
crossref_primary_10_1016_j_bios_2018_02_028
crossref_primary_10_1016_j_ica_2021_120652
crossref_primary_10_1002_adom_201701069
crossref_primary_10_1016_j_ceramint_2022_06_310
crossref_primary_10_1039_D4NR04476B
crossref_primary_10_3390_ma16103746
crossref_primary_10_1038_s42003_020_01615_8
crossref_primary_10_1016_j_snb_2023_134649
crossref_primary_10_1021_acs_jpcc_9b10724
crossref_primary_10_3390_nano10091644
crossref_primary_10_1021_acs_jpcb_1c10207
crossref_primary_10_1016_j_bios_2024_116427
crossref_primary_10_1016_j_jlumin_2023_119835
crossref_primary_10_1021_acsnano_1c05489
crossref_primary_10_1002_adom_202001081
crossref_primary_10_1021_acsnano_0c10945
crossref_primary_10_1021_acs_analchem_3c04122
crossref_primary_10_1039_D4NR01233J
crossref_primary_10_7498_aps_68_20190337
crossref_primary_10_1021_acsnano_0c06123
crossref_primary_10_1021_acsami_9b00204
crossref_primary_10_3390_mi9090460
crossref_primary_10_1103_PhysRevResearch_2_033172
crossref_primary_10_1016_j_trac_2024_117913
crossref_primary_10_1088_1555_6611_ac9373
crossref_primary_10_1016_j_optcom_2018_06_086
crossref_primary_10_1039_D1NR07918B
crossref_primary_10_1166_jbn_2022_3356
crossref_primary_10_1007_s13762_023_05171_6
crossref_primary_10_1016_j_snb_2019_127597
crossref_primary_10_3390_bios13110956
crossref_primary_10_1016_j_physleta_2023_129217
crossref_primary_10_1038_s41377_022_00893_7
crossref_primary_10_1016_j_aca_2023_341086
crossref_primary_10_1088_1361_6463_ac2b66
crossref_primary_10_1021_acs_jpclett_0c03399
crossref_primary_10_35848_1882_0786_abbd26
crossref_primary_10_1016_j_physb_2019_02_013
crossref_primary_10_1016_j_jnoncrysol_2024_122927
crossref_primary_10_1039_D0NR00675K
crossref_primary_10_1515_nanoph_2021_0124
crossref_primary_10_1016_j_omx_2023_100287
crossref_primary_10_1002_smll_202304237
crossref_primary_10_1039_D2RA03605C
crossref_primary_10_1016_j_chemphys_2019_110423
crossref_primary_10_1021_acs_jpcc_2c01586
crossref_primary_10_3390_bios12110933
crossref_primary_10_1002_appl_202300090
crossref_primary_10_1021_acs_jpcc_2c03644
crossref_primary_10_1039_D2CC06178C
crossref_primary_10_1039_D4TC02308K
crossref_primary_10_1021_acs_nanolett_0c04883
crossref_primary_10_1016_j_ijleo_2020_164883
crossref_primary_10_1039_D1TC01494C
crossref_primary_10_1002_admi_202101133
crossref_primary_10_1002_adom_201701094
crossref_primary_10_1002_adfm_202302136
crossref_primary_10_1590_0001_3765201820170571
crossref_primary_10_1016_j_optlastec_2024_111232
crossref_primary_10_1088_2050_6120_acc714
crossref_primary_10_1016_j_cej_2022_136117
crossref_primary_10_1016_j_dyepig_2021_109896
crossref_primary_10_1002_smtd_202200163
crossref_primary_10_1016_j_cej_2023_147240
crossref_primary_10_1021_acs_analchem_8b01510
crossref_primary_10_1038_s41377_021_00522_9
crossref_primary_10_1016_j_optmat_2025_116674
crossref_primary_10_1080_15421406_2021_1946969
crossref_primary_10_1021_acs_nanolett_3c00568
crossref_primary_10_3390_cryst12030336
crossref_primary_10_1021_acs_jpcc_2c00150
crossref_primary_10_1002_smtd_202301713
crossref_primary_10_1021_acsanm_0c01014
crossref_primary_10_1021_acsami_4c18393
crossref_primary_10_1021_acs_jpca_1c08463
crossref_primary_10_1002_adma_202405046
crossref_primary_10_1016_j_ccr_2024_215768
crossref_primary_10_1016_j_nantod_2018_12_006
crossref_primary_10_1021_acs_jpcc_4c00340
crossref_primary_10_1515_nanoph_2018_0143
crossref_primary_10_1016_j_saa_2022_121753
crossref_primary_10_1080_28378083_2024_2386522
crossref_primary_10_1016_j_jcis_2021_04_026
crossref_primary_10_1021_acs_chemmater_0c02715
crossref_primary_10_1016_j_apmt_2023_101731
crossref_primary_10_1016_j_jallcom_2024_177220
crossref_primary_10_1021_acs_analchem_0c00711
crossref_primary_10_1039_C8CC05793A
crossref_primary_10_1039_D4NA00080C
crossref_primary_10_1016_j_ccr_2023_215571
crossref_primary_10_1016_j_trechm_2020_03_008
crossref_primary_10_1021_acssuschemeng_2c04064
crossref_primary_10_1016_j_snb_2021_130821
crossref_primary_10_3390_nano10091749
crossref_primary_10_1021_acsnano_4c06858
crossref_primary_10_1039_C9CC00162J
crossref_primary_10_1002_adom_202100695
crossref_primary_10_3390_app13169291
Cites_doi 10.1021/nl501027j
10.1007/s11468-016-0186-5
10.1038/nprot.2012.141
10.1021/ja9096237
10.1021/acsphotonics.5b00463
10.1063/1.442161
10.1021/ja00457a071
10.1364/OE.16.012872
10.1016/j.matlet.2013.09.021
10.1021/jp409586z
10.1038/nmat2162
10.1063/1.3086283
10.1038/natrevmats.2016.21
10.1109/JPROC.2016.2624340
10.1126/science.1228638
10.1002/jrs.3007
10.1023/A:1016875709579
10.1016/j.ab.2004.11.026
10.1103/PhysRevLett.93.200801
10.1016/S0022-0728(77)80224-6
10.1038/41048
10.1016/j.cplett.2004.07.112
10.1080/09500349808230614
10.1002/anie.200801605
10.1039/b802918k
10.1021/jp9926802
10.1021/ar800028j
10.1088/0957-4484/23/22/225301
10.1002/9780470035641
10.1021/nn900112e
10.1016/j.rser.2016.07.031
10.1007/0-387-37825-1
10.1021/nn405167q
10.1021/acs.jpcc.5b08049
10.1021/acsphotonics.6b00793
10.1002/chem.201600218
10.1063/1.4936348
10.1021/acsnano.5b05605
10.1364/OL.5.000368
10.1103/PhysRevB.24.4843
10.1021/ja510183c
10.1021/acs.analchem.6b02797
10.1038/nnano.2015.240
10.1039/C1NR11243K
10.1039/c2ra01032a
10.1002/jrs.2066
10.1021/jacs.5b09682
10.1021/nl073057t
10.1016/0022-2313(81)90226-X
10.1038/35035032
10.1021/acs.nanolett.5b00407
10.1021/cr100313v
10.1039/c3cp50633a
10.1063/1.4795455
10.1038/nmeth817
10.1063/1.3492849
10.1038/nature17974
10.1088/0022-3727/41/1/013001
10.1006/abio.2001.5503
10.1002/smll.201601598
10.1016/j.matchemphys.2014.12.003
10.1021/la00081a004
10.1021/nl071084d
10.1038/nphoton.2013.181
10.1038/nphys2615
10.1038/ncomms5236
10.1007/s11468-012-9366-0
10.1021/nn506689b
10.1039/c3tb20069h
10.1021/nl062901x
10.1002/anie.200904858
10.1021/jp806536w
10.1016/S0009-2614(98)00277-2
10.1117/1.OE.54.10.107104
10.1021/la0513353
10.1126/science.1077229
10.1038/nphoton.2009.187
10.1021/jp076003g
10.1016/S0927-7757(00)00449-0
10.1038/nature09698
10.1063/1.452396
10.1023/B:JOFL.0000047217.74943.5c
10.1021/j100023a025
10.1002/anie.201203849
10.1038/nature08907
10.1364/AO.55.009131
10.1021/jp203317d
10.1002/anie.200802248
10.1016/S0956-5663(01)00239-1
10.1021/j100214a025
10.1021/ph500060s
10.1021/acs.jpcc.5b09215
10.1038/nphoton.2015.103
10.1088/2040-8978/18/3/033001
10.1016/0039-6028(80)90631-7
10.1007/s11468-013-9594-y
10.1103/PhysRevLett.96.113002
10.1088/0022-3727/48/44/443001
10.1016/0009-2614(74)85388-1
10.1002/jrs.4317
10.1021/cr900343z
10.1021/nl049951r
10.1063/1.445550
10.1021/jp205997u
10.1002/anie.201004806
10.1021/acs.jpca.6b03309
10.1002/anie.201208125
10.1021/la980047m
10.1016/j.trac.2014.11.015
10.1021/ac502424g
10.1103/RevModPhys.57.783
10.1021/ac3003215
10.1021/jp0107964
10.1021/acsnano.5b07294
10.1126/science.262.5138.1422
10.1038/nphoton.2014.271
10.1021/acs.nanolett.5b01225
10.1021/cm020732l
10.1016/0021-9797(68)90272-5
10.1038/nnano.2013.98
10.1039/c3nr05112a
10.1038/nature12151
10.1063/1.4736575
10.1038/nnano.2012.18
10.1038/nphoton.2014.228
10.1002/bbpc.19680720261
10.1002/smll.201200750
10.1039/c1cp21008d
10.1039/C5FD00074B
10.1126/science.270.5235.467
10.1021/ja047846d
10.1021/nl062795z
10.1103/PhysRevLett.62.2535
10.1038/nphoton.2012.112
10.1021/ac060586t
10.1038/nature17428
10.1016/j.electacta.2016.03.065
10.1021/jacs.5b04670
10.1063/1.2938861
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1039/c7cs00169j
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
PubMed

AGRICOLA
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 3979
ExternalDocumentID 28639669
10_1039_C7CS00169J
c7cs00169j
Genre Journal Article
Review
GroupedDBID -JG
0-7
705
70J
70~
7~J
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
GNO
H~N
IDZ
J3I
R7B
R7D
RCNCU
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
VH6
---
-DZ
-~X
0R~
0UZ
186
1TJ
29B
2WC
3EH
4.4
53G
5GY
6J9
6TJ
71~
85S
8WZ
9M8
A6W
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAUTI
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDPE
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACKIV
ACNCT
ACPVT
ACRPL
ADMRA
ADNMO
ADXHL
AENEX
AENGV
AESAV
AETEA
AETIL
AFFDN
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AI.
AIDUJ
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
AQHUZ
ASKNT
ASPBG
AVWKF
AZFZN
BBWZM
BLAPV
CAG
CITATION
COF
CS3
DU5
EBS
ECGLT
EEHRC
EJD
F5P
FA8
FEDTE
GGIMP
H13
HF~
HVGLF
HZ~
H~9
IDY
J3G
J3H
L-8
M4U
MVM
N9A
NDZJH
O9-
P2P
R56
RAOCF
RCLXC
RIG
RNS
ROL
RRXOS
SC5
TN5
TWZ
UPT
UQL
VH1
WH7
WHG
XJT
XOL
ZCG
ZKB
~02
NPM
OK1
YIN
Z5M
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c467t-f2c01024db3bdc6c7bd81a1482ed3dd505622ea266f35d977a781008b898f43a3
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 05:50:12 EDT 2025
Fri Jul 11 03:57:08 EDT 2025
Fri Jul 11 03:50:45 EDT 2025
Wed Feb 19 02:40:13 EST 2025
Tue Jul 01 04:18:39 EDT 2025
Thu Apr 24 23:00:20 EDT 2025
Mon Jan 28 17:20:02 EST 2019
Sat Jun 01 02:29:32 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-f2c01024db3bdc6c7bd81a1482ed3dd505622ea266f35d977a781008b898f43a3
Notes Jian-Feng Li is a Professor of Chemistry at Xiamen University. He received a BSc in chemistry from Zhejiang University, and a PhD in chemistry from Xiamen University. Professor Li is the principal inventor of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). His research interests include surface-enhanced Raman spectroscopy, surface-enhanced fluorescence, core-shell nanostructures, surface plasmon resonance, electrochemistry and surface catalysis.
Chao-Yu Li is now pursuing his PhD degree under the supervision of Prof. Zhong-Qun Tian and Prof. Jian-Feng Li at Xiamen University. His research is focused on spectroelectrochemistry, synthesis of plasmonic nanostructures, and plasmon-enhanced single-molecule spectroscopy.
Dr Ricardo Aroca is Professor Emeritus in the Department of Chemistry and Biochemistry at the University of Windsor, and Adjunct Professor in the Department of Chemistry, Faculty of Science, University of Chile. In 2003 he was honoured with the Gerhard Herzberg Award in recognition of outstanding achievement in the science of spectroscopy. In 2005 he was elected Fellow of the Chemical Institute of Canada. Since 2009, he has also been a Member Correspondent of the Chilean Academy of Sciences. His research is on plasmon enhanced spectroscopy.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7809-5933
0000-0003-1598-6856
PMID 28639669
PQID 1912616617
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_1912616617
proquest_miscellaneous_2286928444
proquest_miscellaneous_1925876523
crossref_primary_10_1039_C7CS00169J
pubmed_primary_28639669
rsc_primary_c7cs00169j
crossref_citationtrail_10_1039_C7CS00169J
ProviderPackageCode RRA
J3I
ACLDK
RRC
7~J
AEFDR
70~
VH6
GNO
RCNCU
SLH
70J
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
IDZ
RPMJG
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
SKH
ADSRN
ABGFH
705
R7B
R7D
AAEMU
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170703
PublicationDateYYYYMMDD 2017-07-03
PublicationDate_xml – month: 7
  year: 2017
  text: 20170703
  day: 3
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2017
References Chen (C7CS00169J-(cit75)/*[position()=1]) 2016; 10
Webb (C7CS00169J-(cit37)/*[position()=1]) 2014; 6
Li (C7CS00169J-(cit31)/*[position()=1]) 2012; 2
Jeanmaire (C7CS00169J-(cit9)/*[position()=1]) 1977; 84
Aslan (C7CS00169J-(cit53)/*[position()=1]) 2004; 14
Ding (C7CS00169J-(cit21)/*[position()=1]) 2016; 1
Lakowicz (C7CS00169J-(cit111)/*[position()=1]) 2008; 133
Nikoobakht (C7CS00169J-(cit87)/*[position()=1]) 2003; 15
Mishra (C7CS00169J-(cit23)/*[position()=1]) 2013; 15
Aroca (C7CS00169J-(cit54)/*[position()=1]) 1988; 4
Spackova (C7CS00169J-(cit40)/*[position()=1]) 2016; 104
Gartia (C7CS00169J-(cit73)/*[position()=1]) 2012; 101
Osorio-Román (C7CS00169J-(cit129)/*[position()=1]) 2014; 86
Betzig (C7CS00169J-(cit136)/*[position()=1]) 1993; 262
Butun (C7CS00169J-(cit132)/*[position()=1]) 2015; 15
Yuan (C7CS00169J-(cit27)/*[position()=1]) 2013; 52
Wokaun (C7CS00169J-(cit5)/*[position()=1]) 1983; 79
Sau (C7CS00169J-(cit89)/*[position()=1]) 2004; 126
Gersten (C7CS00169J-(cit4)/*[position()=1]) 1981; 75
Rao (C7CS00169J-(cit14)/*[position()=1]) 2015; 9
Thrall (C7CS00169J-(cit33)/*[position()=1]) 2013; 117
Fang (C7CS00169J-(cit104)/*[position()=1]) 2008; 39
Höppener (C7CS00169J-(cit137)/*[position()=1]) 2008; 8
Li (C7CS00169J-(cit38)/*[position()=1]) 2015; 137
Le Ru (C7CS00169J-(cit11)/*[position()=1]) 2009
Frey (C7CS00169J-(cit135)/*[position()=1]) 2004; 93
Fleischmann (C7CS00169J-(cit7)/*[position()=1]) 1974; 26
Punj (C7CS00169J-(cit93)/*[position()=1]) 2013; 8
Li (C7CS00169J-(cit124)/*[position()=1]) 2013; 112
Li (C7CS00169J-(cit94)/*[position()=1]) 2010; 464
Chance (C7CS00169J-(cit51)/*[position()=1]) 1978; 37
Alivisatos (C7CS00169J-(cit52)/*[position()=1]) 1987; 86
Li (C7CS00169J-(cit105)/*[position()=1]) 2013; 8
Lichtman (C7CS00169J-(cit57)/*[position()=1]) 2005; 2
Eltzov (C7CS00169J-(cit24)/*[position()=1]) 2009; 94
Becker (C7CS00169J-(cit146)/*[position()=1]) 2005
Strauss (C7CS00169J-(cit130)/*[position()=1]) 2014; 136
Furtaw (C7CS00169J-(cit80)/*[position()=1]) 2014; 9
Li (C7CS00169J-(cit108)/*[position()=1]) 2017; 13
Barnes (C7CS00169J-(cit83)/*[position()=1]) 1998; 45
Li (C7CS00169J-(cit106)/*[position()=1]) 2015; 137
Chen (C7CS00169J-(cit68)/*[position()=1]) 2007; 7
Schena (C7CS00169J-(cit59)/*[position()=1]) 1995; 270
Liebermann (C7CS00169J-(cit117)/*[position()=1]) 2000; 169
Fang (C7CS00169J-(cit121)/*[position()=1]) 2015; 66
Sun (C7CS00169J-(cit101)/*[position()=1]) 2002; 298
Zhao (C7CS00169J-(cit45)/*[position()=1]) 2008; 41
Moskovits (C7CS00169J-(cit74)/*[position()=1]) 2004; 397
Tam (C7CS00169J-(cit66)/*[position()=1]) 2007; 7
Zhang (C7CS00169J-(cit138)/*[position()=1]) 2016; 531
Hartschuh (C7CS00169J-(cit20)/*[position()=1]) 2008; 47
Guerrero (C7CS00169J-(cit63)/*[position()=1]) 2012; 8
Saini (C7CS00169J-(cit55)/*[position()=1]) 2009; 113
Albrecht (C7CS00169J-(cit8)/*[position()=1]) 1977; 99
Fu (C7CS00169J-(cit69)/*[position()=1]) 2010; 132
Kambhampati (C7CS00169J-(cit118)/*[position()=1]) 2001; 16
Li (C7CS00169J-(cit107)/*[position()=1]) 2016; 199
Russell (C7CS00169J-(cit143)/*[position()=1]) 2012; 6
Frens (C7CS00169J-(cit100)/*[position()=1]) 1973; 241
Jana (C7CS00169J-(cit88)/*[position()=1]) 2001; 105
Mayer (C7CS00169J-(cit65)/*[position()=1]) 2011; 111
Guerrero (C7CS00169J-(cit22)/*[position()=1]) 2011; 50
Forestiere (C7CS00169J-(cit44)/*[position()=1]) 2016; 3
Moerner (C7CS00169J-(cit109)/*[position()=1]) 1989; 62
Maier (C7CS00169J-(cit10)/*[position()=1]) 2007
Mei (C7CS00169J-(cit120)/*[position()=1]) 2017; 89
Le Ru (C7CS00169J-(cit70)/*[position()=1]) 2007; 111
Zhou (C7CS00169J-(cit78)/*[position()=1]) 2012; 84
Oldenburg (C7CS00169J-(cit103)/*[position()=1]) 1998; 288
Lakowicz (C7CS00169J-(cit98)/*[position()=1]) 2002; 301
Camacho (C7CS00169J-(cit123)/*[position()=1]) 2016; 120
Zhang (C7CS00169J-(cit140)/*[position()=1]) 2013; 498
Schmid (C7CS00169J-(cit19)/*[position()=1]) 2013; 52
Choi (C7CS00169J-(cit32)/*[position()=1]) 2013; 7
Lee (C7CS00169J-(cit99)/*[position()=1]) 1982; 86
Tame (C7CS00169J-(cit47)/*[position()=1]) 2013; 9
Pelton (C7CS00169J-(cit141)/*[position()=1]) 2015; 9
Zhou (C7CS00169J-(cit114)/*[position()=1]) 2015; 6
Zhou (C7CS00169J-(cit112)/*[position()=1]) 2012; 7
Chikkaraddy (C7CS00169J-(cit144)/*[position()=1]) 2016; 535
Ritchie (C7CS00169J-(cit96)/*[position()=1]) 1981; 24
Stöber (C7CS00169J-(cit102)/*[position()=1]) 1968; 26
Jensen (C7CS00169J-(cit64)/*[position()=1]) 1999; 103
Flynn (C7CS00169J-(cit26)/*[position()=1]) 2016; 120
Aroca (C7CS00169J-(cit71)/*[position()=1]) 2011; 115
Xia (C7CS00169J-(cit86)/*[position()=1]) 2009; 48
Weitz (C7CS00169J-(cit2)/*[position()=1]) 1981; 24–25
Drexhage (C7CS00169J-(cit50)/*[position()=1]) 1968; 72
Berezin (C7CS00169J-(cit145)/*[position()=1]) 2010; 110
Nascimento (C7CS00169J-(cit46)/*[position()=1]) 2015; 143
Acuna (C7CS00169J-(cit116)/*[position()=1]) 2012; 338
Albella (C7CS00169J-(cit17)/*[position()=1]) 2014; 1
Tian (C7CS00169J-(cit122)/*[position()=1]) 2013; 44
Meixner (C7CS00169J-(cit30)/*[position()=1]) 2015; 184
Cang (C7CS00169J-(cit76)/*[position()=1]) 2011; 469
Lounis (C7CS00169J-(cit147)/*[position()=1]) 2000; 407
Liz-Marzán (C7CS00169J-(cit84)/*[position()=1]) 2006; 22
Anker (C7CS00169J-(cit39)/*[position()=1]) 2008; 7
Khatua (C7CS00169J-(cit43)/*[position()=1]) 2013; 7
Ung (C7CS00169J-(cit85)/*[position()=1]) 1998; 14
Moskovits (C7CS00169J-(cit6)/*[position()=1]) 1985; 57
Impellizzeri (C7CS00169J-(cit34)/*[position()=1]) 2016; 22
Lee (C7CS00169J-(cit126)/*[position()=1]) 2012; 4
Zhang (C7CS00169J-(cit127)/*[position()=1]) 2013; 1
Zhang (C7CS00169J-(cit128)/*[position()=1]) 2016; 55
Kulzer (C7CS00169J-(cit110)/*[position()=1]) 2010; 49
Funke (C7CS00169J-(cit115)/*[position()=1]) 2015; 11
Albella (C7CS00169J-(cit62)/*[position()=1]) 2008; 16
Peng (C7CS00169J-(cit119)/*[position()=1]) 2009; 3
Su (C7CS00169J-(cit81)/*[position()=1]) 2016; 10
Hamidi (C7CS00169J-(cit41)/*[position()=1]) 2015; 54
Anger (C7CS00169J-(cit49)/*[position()=1]) 2006; 96
Zhang (C7CS00169J-(cit67)/*[position()=1]) 2007; 7
Lin (C7CS00169J-(cit125)/*[position()=1]) 2012; 43
Asselin (C7CS00169J-(cit48)/*[position()=1]) 2016; 11
Emmanuel (C7CS00169J-(cit61)/*[position()=1]) 2008; 41
Xia (C7CS00169J-(cit131)/*[position()=1]) 2014; 8
Mandal (C7CS00169J-(cit35)/*[position()=1]) 2016; 65
Chiang (C7CS00169J-(cit139)/*[position()=1]) 2015; 15
Ramírez-Maureira (C7CS00169J-(cit29)/*[position()=1]) 2015; 151
Glass (C7CS00169J-(cit1)/*[position()=1]) 1980; 5
Weisenberg (C7CS00169J-(cit25)/*[position()=1]) 2010; 97
Ahn (C7CS00169J-(cit36)/*[position()=1]) 2016; 18
Geddes (C7CS00169J-(cit15)/*[position()=1]) 2002; 12
Aroca (C7CS00169J-(cit12)/*[position()=1]) 2006
Dragan (C7CS00169J-(cit56)/*[position()=1]) 2012; 7
Kinkhabwala (C7CS00169J-(cit77)/*[position()=1]) 2009; 3
Dickson (C7CS00169J-(cit58)/*[position()=1]) 1997; 388
Hell (C7CS00169J-(cit60)/*[position()=1]) 2015; 48
Farhang (C7CS00169J-(cit42)/*[position()=1]) 2013; 84
Chumanov (C7CS00169J-(cit90)/*[position()=1]) 1995; 99
Gill (C7CS00169J-(cit72)/*[position()=1]) 2011; 13
Fu (C7CS00169J-(cit113)/*[position()=1]) 2006; 78
(C7CS00169J-(cit13)/*[position()=1]) 2006
Zhang (C7CS00169J-(cit134)/*[position()=1]) 2008; 92
Ritchie (C7CS00169J-(cit82)/*[position()=1]) 1980; 25
Fromm (C7CS00169J-(cit91)/*[position()=1]) 2004; 4
Lu (C7CS00169J-(cit16)/*[position()=1]) 2011; 115
Lakowicz (C7CS00169J-(cit97)/*[position()=1]) 2005; 337
Aoki (C7CS00169J-(cit18)/*[position()=1]) 2015
Wientjes (C7CS00169J-(cit92)/*[position()=1]) 2014; 5
Le Liepvre (C7CS00169J-(cit133)/*[position()=1]) 2016; 3
Akselrod (C7CS00169J-(cit142)/*[position()=1]) 2014; 8
Ayala-Orozco (C7CS00169J-(cit95)/*[position()=1]) 2014; 14
Martin (C7CS00169J-(cit28)/*[position()=1]) 2016; 120
Chen (C7CS00169J-(cit3)/*[position()=1]) 1980; 101
Zhang (C7CS00169J-(cit79)/*[position()=1]) 2012; 23
References_xml – issn: 2007
  publication-title: Plasmonics: fundamentals and applications
  doi: Maier
– issn: 2015
  end-page: p 269-301
  publication-title: Recent Progress in Colloid and Surface Chemistry with Biological Applications
  doi: Aoki Constantino Oliveira Jr Aroca
– issn: 2006
  publication-title: Principles of fluorescence spectroscopy
– issn: 2005
  end-page: p 77-108
  publication-title: Reviews in Fluorescence 2005
  doi: Becker Bergmann
– issn: 2009
  publication-title: Principles of Surface Enhanced Raman Spectroscopy (and related plasmonic effects)
  doi: Le Ru Etchegoin
– issn: 2006
  publication-title: Surface-enhanced Vibrational Spectroscopy
  doi: Aroca
– volume: 14
  start-page: 2926
  year: 2014
  ident: C7CS00169J-(cit95)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl501027j
– volume: 11
  start-page: 1369
  year: 2016
  ident: C7CS00169J-(cit48)/*[position()=1]
  publication-title: Plasmonics
  doi: 10.1007/s11468-016-0186-5
– volume: 8
  start-page: 52
  year: 2013
  ident: C7CS00169J-(cit105)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.141
– volume: 132
  start-page: 5540
  year: 2010
  ident: C7CS00169J-(cit69)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9096237
– volume: 3
  start-page: 68
  year: 2016
  ident: C7CS00169J-(cit44)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.5b00463
– volume: 75
  start-page: 1139
  year: 1981
  ident: C7CS00169J-(cit4)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.442161
– volume: 99
  start-page: 5215
  year: 1977
  ident: C7CS00169J-(cit8)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00457a071
– volume-title: Principles of fluorescence spectroscopy
  year: 2006
  ident: C7CS00169J-(cit13)/*[position()=1]
– volume: 6
  year: 2015
  ident: C7CS00169J-(cit114)/*[position()=1]
  publication-title: Nat. Commun.
– volume: 16
  start-page: 12872
  year: 2008
  ident: C7CS00169J-(cit62)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.16.012872
– volume: 112
  start-page: 169
  year: 2013
  ident: C7CS00169J-(cit124)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.09.021
– volume: 117
  start-page: 26238
  year: 2013
  ident: C7CS00169J-(cit33)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp409586z
– volume: 7
  start-page: 442
  year: 2008
  ident: C7CS00169J-(cit39)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2162
– volume: 94
  start-page: 083901
  year: 2009
  ident: C7CS00169J-(cit24)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3086283
– volume: 1
  year: 2016
  ident: C7CS00169J-(cit21)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.21
– volume: 104
  start-page: 2380
  year: 2016
  ident: C7CS00169J-(cit40)/*[position()=1]
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2016.2624340
– volume: 338
  start-page: 506
  year: 2012
  ident: C7CS00169J-(cit116)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1228638
– volume: 43
  start-page: 40
  year: 2012
  ident: C7CS00169J-(cit125)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.3007
– volume: 12
  start-page: 121
  year: 2002
  ident: C7CS00169J-(cit15)/*[position()=1]
  publication-title: J. Fluoresc.
  doi: 10.1023/A:1016875709579
– volume: 337
  start-page: 171
  year: 2005
  ident: C7CS00169J-(cit97)/*[position()=1]
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2004.11.026
– volume: 93
  start-page: 200801
  year: 2004
  ident: C7CS00169J-(cit135)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.200801
– volume: 84
  start-page: 1
  year: 1977
  ident: C7CS00169J-(cit9)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(77)80224-6
– volume-title: Principles of Surface Enhanced Raman Spectroscopy (and related plasmonic effects)
  year: 2009
  ident: C7CS00169J-(cit11)/*[position()=1]
– volume: 388
  start-page: 355
  year: 1997
  ident: C7CS00169J-(cit58)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/41048
– volume: 397
  start-page: 91
  year: 2004
  ident: C7CS00169J-(cit74)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.07.112
– volume: 45
  start-page: 661
  year: 1998
  ident: C7CS00169J-(cit83)/*[position()=1]
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500349808230614
– volume: 47
  start-page: 8178
  year: 2008
  ident: C7CS00169J-(cit20)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200801605
– volume: 133
  start-page: 1308
  year: 2008
  ident: C7CS00169J-(cit111)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/b802918k
– volume: 103
  start-page: 9846
  year: 1999
  ident: C7CS00169J-(cit64)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9926802
– volume: 41
  start-page: 1710
  year: 2008
  ident: C7CS00169J-(cit45)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800028j
– volume: 23
  start-page: 225301
  year: 2012
  ident: C7CS00169J-(cit79)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/22/225301
– volume-title: Surface-enhanced Vibrational Spectroscopy
  year: 2006
  ident: C7CS00169J-(cit12)/*[position()=1]
  doi: 10.1002/9780470035641
– volume: 3
  start-page: 2265
  year: 2009
  ident: C7CS00169J-(cit119)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn900112e
– volume: 65
  start-page: 537
  year: 2016
  ident: C7CS00169J-(cit35)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2016.07.031
– volume-title: Plasmonics: fundamentals and applications
  year: 2007
  ident: C7CS00169J-(cit10)/*[position()=1]
  doi: 10.1007/0-387-37825-1
– volume: 7
  start-page: 8340
  year: 2013
  ident: C7CS00169J-(cit43)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn405167q
– volume: 120
  start-page: 20512
  year: 2016
  ident: C7CS00169J-(cit26)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b08049
– volume: 3
  start-page: 2291
  year: 2016
  ident: C7CS00169J-(cit133)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00793
– volume: 22
  start-page: 7281
  year: 2016
  ident: C7CS00169J-(cit34)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201600218
– volume: 143
  start-page: 214104
  year: 2015
  ident: C7CS00169J-(cit46)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4936348
– volume: 10
  start-page: 581
  year: 2016
  ident: C7CS00169J-(cit75)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05605
– volume: 5
  start-page: 368
  year: 1980
  ident: C7CS00169J-(cit1)/*[position()=1]
  publication-title: Opt. Lett.
  doi: 10.1364/OL.5.000368
– volume: 24
  start-page: 4843
  year: 1981
  ident: C7CS00169J-(cit96)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.24.4843
– volume: 136
  start-page: 17308
  year: 2014
  ident: C7CS00169J-(cit130)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510183c
– volume: 89
  start-page: 633
  year: 2017
  ident: C7CS00169J-(cit120)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b02797
– volume: 11
  start-page: 47
  year: 2015
  ident: C7CS00169J-(cit115)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.240
– volume: 4
  start-page: 124
  year: 2012
  ident: C7CS00169J-(cit126)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C1NR11243K
– volume: 2
  start-page: 1765
  year: 2012
  ident: C7CS00169J-(cit31)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c2ra01032a
– volume: 39
  start-page: 1679
  year: 2008
  ident: C7CS00169J-(cit104)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2066
– volume: 137
  start-page: 13784
  year: 2015
  ident: C7CS00169J-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09682
– volume: 8
  start-page: 642
  year: 2008
  ident: C7CS00169J-(cit137)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl073057t
– volume: 24–25
  start-page: 83
  year: 1981
  ident: C7CS00169J-(cit2)/*[position()=1]
  publication-title: J. Lumin.
  doi: 10.1016/0022-2313(81)90226-X
– volume: 407
  start-page: 491
  year: 2000
  ident: C7CS00169J-(cit147)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35035032
– volume: 15
  start-page: 2700
  year: 2015
  ident: C7CS00169J-(cit132)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00407
– volume: 111
  start-page: 3828
  year: 2011
  ident: C7CS00169J-(cit65)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr100313v
– volume: 15
  start-page: 19538
  year: 2013
  ident: C7CS00169J-(cit23)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp50633a
– volume: 84
  start-page: 033107
  year: 2013
  ident: C7CS00169J-(cit42)/*[position()=1]
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4795455
– volume: 2
  start-page: 910
  year: 2005
  ident: C7CS00169J-(cit57)/*[position()=1]
  publication-title: Nat. Methods
  doi: 10.1038/nmeth817
– volume: 97
  start-page: 133103
  year: 2010
  ident: C7CS00169J-(cit25)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3492849
– volume: 37
  start-page: 1
  year: 1978
  ident: C7CS00169J-(cit51)/*[position()=1]
  publication-title: Adv. Chem. Phys.
– volume: 25
  start-page: 259
  year: 1980
  ident: C7CS00169J-(cit82)/*[position()=1]
  publication-title: Bull. Am. Phys. Soc.
– volume: 535
  start-page: 127
  year: 2016
  ident: C7CS00169J-(cit144)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature17974
– volume-title: Recent Progress in Colloid and Surface Chemistry with Biological Applications
  year: 2015
  ident: C7CS00169J-(cit18)/*[position()=1]
– volume: 41
  start-page: 013001
  year: 2008
  ident: C7CS00169J-(cit61)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/41/1/013001
– volume: 301
  start-page: 261
  year: 2002
  ident: C7CS00169J-(cit98)/*[position()=1]
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2001.5503
– volume: 13
  start-page: 1601598
  year: 2017
  ident: C7CS00169J-(cit108)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201601598
– volume: 151
  start-page: 351
  year: 2015
  ident: C7CS00169J-(cit29)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.12.003
– volume: 4
  start-page: 518
  year: 1988
  ident: C7CS00169J-(cit54)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la00081a004
– volume: 7
  start-page: 2101
  year: 2007
  ident: C7CS00169J-(cit67)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl071084d
– volume: 7
  start-page: 732
  year: 2013
  ident: C7CS00169J-(cit32)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.181
– volume: 9
  start-page: 329
  year: 2013
  ident: C7CS00169J-(cit47)/*[position()=1]
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2615
– volume: 5
  year: 2014
  ident: C7CS00169J-(cit92)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5236
– volume-title: Reviews in Fluorescence 2005
  year: 2005
  ident: C7CS00169J-(cit146)/*[position()=1]
– volume: 7
  start-page: 739
  year: 2012
  ident: C7CS00169J-(cit56)/*[position()=1]
  publication-title: Plasmonics
  doi: 10.1007/s11468-012-9366-0
– volume: 9
  start-page: 2783
  year: 2015
  ident: C7CS00169J-(cit14)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn506689b
– volume: 1
  start-page: 2198
  year: 2013
  ident: C7CS00169J-(cit127)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c3tb20069h
– volume: 7
  start-page: 496
  year: 2007
  ident: C7CS00169J-(cit66)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl062901x
– volume: 49
  start-page: 854
  year: 2010
  ident: C7CS00169J-(cit110)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200904858
– volume: 113
  start-page: 1817
  year: 2009
  ident: C7CS00169J-(cit55)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp806536w
– volume: 288
  start-page: 243
  year: 1998
  ident: C7CS00169J-(cit103)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(98)00277-2
– volume: 54
  start-page: 107104
  year: 2015
  ident: C7CS00169J-(cit41)/*[position()=1]
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.54.10.107104
– volume: 22
  start-page: 32
  year: 2006
  ident: C7CS00169J-(cit84)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0513353
– volume: 298
  start-page: 2176
  year: 2002
  ident: C7CS00169J-(cit101)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1077229
– volume: 3
  start-page: 654
  year: 2009
  ident: C7CS00169J-(cit77)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.187
– volume: 111
  start-page: 16076
  year: 2007
  ident: C7CS00169J-(cit70)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp076003g
– volume: 169
  start-page: 337
  year: 2000
  ident: C7CS00169J-(cit117)/*[position()=1]
  publication-title: Colloids Surf., A
  doi: 10.1016/S0927-7757(00)00449-0
– volume: 469
  start-page: 385
  year: 2011
  ident: C7CS00169J-(cit76)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature09698
– volume: 86
  start-page: 6540
  year: 1987
  ident: C7CS00169J-(cit52)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.452396
– volume: 14
  start-page: 677
  year: 2004
  ident: C7CS00169J-(cit53)/*[position()=1]
  publication-title: J. Fluoresc.
  doi: 10.1023/B:JOFL.0000047217.74943.5c
– volume: 99
  start-page: 9466
  year: 1995
  ident: C7CS00169J-(cit90)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100023a025
– volume: 52
  start-page: 5940
  year: 2013
  ident: C7CS00169J-(cit19)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201203849
– volume: 464
  start-page: 392
  year: 2010
  ident: C7CS00169J-(cit94)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08907
– volume: 55
  start-page: 9131
  year: 2016
  ident: C7CS00169J-(cit128)/*[position()=1]
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.009131
– volume: 115
  start-page: 15822
  year: 2011
  ident: C7CS00169J-(cit16)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp203317d
– volume: 48
  start-page: 60
  year: 2009
  ident: C7CS00169J-(cit86)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200802248
– volume: 16
  start-page: 1109
  year: 2001
  ident: C7CS00169J-(cit118)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/S0956-5663(01)00239-1
– volume: 86
  start-page: 3391
  year: 1982
  ident: C7CS00169J-(cit99)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100214a025
– volume: 1
  start-page: 524
  year: 2014
  ident: C7CS00169J-(cit17)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/ph500060s
– volume: 120
  start-page: 20530
  year: 2016
  ident: C7CS00169J-(cit123)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b09215
– volume: 9
  start-page: 427
  year: 2015
  ident: C7CS00169J-(cit141)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.103
– volume: 18
  start-page: 033001
  year: 2016
  ident: C7CS00169J-(cit36)/*[position()=1]
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/18/3/033001
– volume: 101
  start-page: 363
  year: 1980
  ident: C7CS00169J-(cit3)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(80)90631-7
– volume: 9
  start-page: 27
  year: 2014
  ident: C7CS00169J-(cit80)/*[position()=1]
  publication-title: Plasmonics
  doi: 10.1007/s11468-013-9594-y
– volume: 96
  start-page: 113002
  year: 2006
  ident: C7CS00169J-(cit49)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.113002
– volume: 48
  start-page: 443001
  year: 2015
  ident: C7CS00169J-(cit60)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/48/44/443001
– volume: 26
  start-page: 163
  year: 1974
  ident: C7CS00169J-(cit7)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85388-1
– volume: 44
  start-page: 994
  year: 2013
  ident: C7CS00169J-(cit122)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4317
– volume: 110
  start-page: 2641
  year: 2010
  ident: C7CS00169J-(cit145)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr900343z
– volume: 4
  start-page: 957
  year: 2004
  ident: C7CS00169J-(cit91)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl049951r
– volume: 79
  start-page: 509
  year: 1983
  ident: C7CS00169J-(cit5)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445550
– volume: 115
  start-page: 20419
  year: 2011
  ident: C7CS00169J-(cit71)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp205997u
– volume: 50
  start-page: 665
  year: 2011
  ident: C7CS00169J-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201004806
– volume: 120
  start-page: 6719
  year: 2016
  ident: C7CS00169J-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.6b03309
– volume: 52
  start-page: 1217
  year: 2013
  ident: C7CS00169J-(cit27)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201208125
– volume: 14
  start-page: 3740
  year: 1998
  ident: C7CS00169J-(cit85)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la980047m
– volume: 66
  start-page: 103
  year: 2015
  ident: C7CS00169J-(cit121)/*[position()=1]
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2014.11.015
– volume: 86
  start-page: 10246
  year: 2014
  ident: C7CS00169J-(cit129)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac502424g
– volume: 57
  start-page: 783
  year: 1985
  ident: C7CS00169J-(cit6)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.57.783
– volume: 84
  start-page: 4489
  year: 2012
  ident: C7CS00169J-(cit78)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac3003215
– volume: 105
  start-page: 4065
  year: 2001
  ident: C7CS00169J-(cit88)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0107964
– volume: 10
  start-page: 2455
  year: 2016
  ident: C7CS00169J-(cit81)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07294
– volume: 262
  start-page: 1422
  year: 1993
  ident: C7CS00169J-(cit136)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.262.5138.1422
– volume: 8
  start-page: 899
  year: 2014
  ident: C7CS00169J-(cit131)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.271
– volume: 15
  start-page: 4114
  year: 2015
  ident: C7CS00169J-(cit139)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01225
– volume: 15
  start-page: 1957
  year: 2003
  ident: C7CS00169J-(cit87)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm020732l
– volume: 26
  start-page: 62
  year: 1968
  ident: C7CS00169J-(cit102)/*[position()=1]
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(68)90272-5
– volume: 8
  start-page: 512
  year: 2013
  ident: C7CS00169J-(cit93)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.98
– volume: 6
  start-page: 2502
  year: 2014
  ident: C7CS00169J-(cit37)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr05112a
– volume: 498
  start-page: 82
  year: 2013
  ident: C7CS00169J-(cit140)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12151
– volume: 101
  start-page: 023118
  year: 2012
  ident: C7CS00169J-(cit73)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4736575
– volume: 7
  start-page: 237
  year: 2012
  ident: C7CS00169J-(cit112)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.18
– volume: 8
  start-page: 835
  year: 2014
  ident: C7CS00169J-(cit142)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.228
– volume: 72
  start-page: 329
  year: 1968
  ident: C7CS00169J-(cit50)/*[position()=1]
  publication-title: Ber. Bunsen-Ges.
  doi: 10.1002/bbpc.19680720261
– volume: 8
  start-page: 2964
  year: 2012
  ident: C7CS00169J-(cit63)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201200750
– volume: 13
  start-page: 16366
  year: 2011
  ident: C7CS00169J-(cit72)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21008d
– volume: 184
  start-page: 321
  year: 2015
  ident: C7CS00169J-(cit30)/*[position()=1]
  publication-title: Faraday Discuss.
  doi: 10.1039/C5FD00074B
– volume: 270
  start-page: 467
  year: 1995
  ident: C7CS00169J-(cit59)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.270.5235.467
– volume: 126
  start-page: 8648
  year: 2004
  ident: C7CS00169J-(cit89)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja047846d
– volume: 241
  start-page: 20
  year: 1973
  ident: C7CS00169J-(cit100)/*[position()=1]
  publication-title: Nature
– volume: 7
  start-page: 690
  year: 2007
  ident: C7CS00169J-(cit68)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl062795z
– volume: 62
  start-page: 2535
  year: 1989
  ident: C7CS00169J-(cit109)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.2535
– volume: 6
  start-page: 459
  year: 2012
  ident: C7CS00169J-(cit143)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.112
– volume: 78
  start-page: 6238
  year: 2006
  ident: C7CS00169J-(cit113)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac060586t
– volume: 531
  start-page: 623
  year: 2016
  ident: C7CS00169J-(cit138)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature17428
– volume: 199
  start-page: 388
  year: 2016
  ident: C7CS00169J-(cit107)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.03.065
– volume: 137
  start-page: 7648
  year: 2015
  ident: C7CS00169J-(cit106)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04670
– volume: 92
  start-page: 223118
  year: 2008
  ident: C7CS00169J-(cit134)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2938861
SSID ssj0011762
Score 2.6654365
SecondaryResourceType review_article
Snippet Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level....
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3962
SubjectTerms Coupling (molecular)
detection limit
emissions
Emitters
Fluorescence
fluorescence emission spectroscopy
fluorescent dyes
image analysis
Imaging
nanoparticles
Nanostructure
photobleaching
Plasmons
Sensitivity
Spectroscopy
Title Plasmon-enhanced fluorescence spectroscopy
URI https://www.ncbi.nlm.nih.gov/pubmed/28639669
https://www.proquest.com/docview/1912616617
https://www.proquest.com/docview/1925876523
https://www.proquest.com/docview/2286928444
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPcAF8SqkPLQILoBcEjtx4mMVtSorhJDYSuUU-dkKVclqu3vpr-_YcR7bXVDhEu3azm7sbzLz2WPPIPTBulMHTFqc60xg0H4KC201lpRRCXXwRvkNst_ZyWk6PcvOhkSX_nTJUh6o663nSv4HVSgDXN0p2X9Atv9RKIDPgC9cAWG43gnjH0B94c-wqS9aR769XDULH6DJRY6d-ww37tzJmu-2jxHQ7dgMEUn7vTnewT8FucHQ2_P14vJCNPjXapATsIXhgD7IWvP5-GC8jpD4BcqYjtQNdWsLcdjUbFp1mLIYAGwjNHb6MiwZBrmgI-1HedCsJnxt88RsaOmYuiCnZV7-dIyTTwdb1Pnfb5mofuOgd5lTXg333ke7BGYIoOJ2D49mX7_1LqQkZ8GF1Hari01L-Zfh7nU2sjHFAMKx6BLBeMIxe4wehZnC5LCF_Qm6Z-qn6EHZJeh7hj7dhn8yhn8yhv85Oj0-mpUnOKS-wAos1xJbolywv1RLKrViKpe6SISL2Wo01drTVmIEsCtLMw0cXuSFC9MkC17YlAq6h3bqpjYv0aQgGiwJvKvUxqlgRJBcWC2Ax4qYq1RG6GM3BJUKceFdepLLanOwI_S-bztvo6FsbfWuG8kKhsR5oERtmtVVlfAEZuxACfO_tSEZmOiM0D-3IaRgHIhVmkboRQtV_zxQBXLIeIT2ALu-WOXqyj_e7wjtb6-o5tru36mHr9DD4RV6jXaWi5V5A-R0Kd8GMbwBa0CK1g
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmon-enhanced+fluorescence+spectroscopy&rft.jtitle=Chemical+Society+reviews&rft.au=Li%2C+Jian-Feng&rft.au=Li%2C+Chao-Yu&rft.au=Aroca%2C+Ricardo+F.&rft.date=2017-07-03&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=46&rft.issue=13&rft.spage=3962&rft.epage=3979&rft_id=info:doi/10.1039%2FC7CS00169J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7CS00169J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon