Plasmon-enhanced fluorescence spectroscopy
Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fl...
Saved in:
Published in | Chemical Society reviews Vol. 46; no. 13; pp. 3962 - 3979 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
03.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fluorescence by incorporating weak quantum emitters, avoiding photobleaching and providing the opportunity of imaging with resolutions significantly better than the diffraction limit. It also opens the window to a new class of photostable probes by combining metal nanostructures and quantum emitters. In particular, the shell-isolated nanostructure-enhanced fluorescence, an innovative new mode for plasmon-enhanced surface analysis, is included. These new developments are based on the coupling of the fluorophores in their excited states with localized surface plasmons in nanoparticles, where local field enhancement leads to improved brightness of molecular emission and higher detection sensitivity. Here, we review the recent progress in PEF with an emphasis on the mechanism of plasmon enhancement, substrate preparation, and some advanced applications, including an outlook on PEF with high time- and spatially resolved properties.
Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. |
---|---|
AbstractList | Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fluorescence by incorporating weak quantum emitters, avoiding photobleaching and providing the opportunity of imaging with resolutions significantly better than the diffraction limit. It also opens the window to a new class of photostable probes by combining metal nanostructures and quantum emitters. In particular, the shell-isolated nanostructure-enhanced fluorescence, an innovative new mode for plasmon-enhanced surface analysis, is included. These new developments are based on the coupling of the fluorophores in their excited states with localized surface plasmons in nanoparticles, where local field enhancement leads to improved brightness of molecular emission and higher detection sensitivity. Here, we review the recent progress in PEF with an emphasis on the mechanism of plasmon enhancement, substrate preparation, and some advanced applications, including an outlook on PEF with high time- and spatially resolved properties. Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fluorescence by incorporating weak quantum emitters, avoiding photobleaching and providing the opportunity of imaging with resolutions significantly better than the diffraction limit. It also opens the window to a new class of photostable probes by combining metal nanostructures and quantum emitters. In particular, the shell-isolated nanostructure-enhanced fluorescence, an innovative new mode for plasmon-enhanced surface analysis, is included. These new developments are based on the coupling of the fluorophores in their excited states with localized surface plasmons in nanoparticles, where local field enhancement leads to improved brightness of molecular emission and higher detection sensitivity. Here, we review the recent progress in PEF with an emphasis on the mechanism of plasmon enhancement, substrate preparation, and some advanced applications, including an outlook on PEF with high time- and spatially resolved properties. Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fluorescence by incorporating weak quantum emitters, avoiding photobleaching and providing the opportunity of imaging with resolutions significantly better than the diffraction limit. It also opens the window to a new class of photostable probes by combining metal nanostructures and quantum emitters. In particular, the shell-isolated nanostructure-enhanced fluorescence, an innovative new mode for plasmon-enhanced surface analysis, is included. These new developments are based on the coupling of the fluorophores in their excited states with localized surface plasmons in nanoparticles, where local field enhancement leads to improved brightness of molecular emission and higher detection sensitivity. Here, we review the recent progress in PEF with an emphasis on the mechanism of plasmon enhancement, substrate preparation, and some advanced applications, including an outlook on PEF with high time- and spatially resolved properties.Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level. Plasmon-enhanced fluorescence (PEF) not only offers enhanced emissions and decreased lifetimes, but also allows an expansion of the field of fluorescence by incorporating weak quantum emitters, avoiding photobleaching and providing the opportunity of imaging with resolutions significantly better than the diffraction limit. It also opens the window to a new class of photostable probes by combining metal nanostructures and quantum emitters. In particular, the shell-isolated nanostructure-enhanced fluorescence, an innovative new mode for plasmon-enhanced surface analysis, is included. These new developments are based on the coupling of the fluorophores in their excited states with localized surface plasmons in nanoparticles, where local field enhancement leads to improved brightness of molecular emission and higher detection sensitivity. Here, we review the recent progress in PEF with an emphasis on the mechanism of plasmon enhancement, substrate preparation, and some advanced applications, including an outlook on PEF with high time- and spatially resolved properties. |
Author | Li, Jian-Feng Li, Chao-Yu Aroca, Ricardo F |
AuthorAffiliation | Department of Chemistry University of Chile State Key Laboratory of Physical Chemistry of Solid Surfaces iChEM MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Research Institute for Biomimetics and Soft Matter Department of Chemistry and Biochemistry Xiamen University College of Chemistry and Chemical Engineering University of Windsor Faculty of Science Department of Physics |
AuthorAffiliation_xml | – name: Research Institute for Biomimetics and Soft Matter – name: MOE Key Laboratory of Spectrochemical Analysis and Instrumentation – name: University of Windsor – name: Department of Chemistry – name: iChEM – name: College of Chemistry and Chemical Engineering – name: Department of Physics – name: State Key Laboratory of Physical Chemistry of Solid Surfaces – name: University of Chile – name: Xiamen University – name: Faculty of Science – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Jian-Feng surname: Li fullname: Li, Jian-Feng – sequence: 2 givenname: Chao-Yu surname: Li fullname: Li, Chao-Yu – sequence: 3 givenname: Ricardo F surname: Aroca fullname: Aroca, Ricardo F |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28639669$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0UlLxDAUB_AgI86iF-_KeJOBarZmOUpxZUBBPZc0SbFDp6lJe5hvb3TGEUTUUxLye4_H-4_BoHGNBeAQwTMEiTzXXAcIEZOLHTBClMGEckoHYAQJZEn8wUMwDmERb4gzvAeGWDAiGZMjMHuoVVi6JrHNi2q0NdOy7p23Qdv4mobW6s67oF272ge7paqDPdicE_B8dfmU3STz--vb7GKeaMp4l5RYQwQxNQUpjGaaF0YghajA1hBjUpgyjK3CjJUkNZJzxQWCUBRCipISRSbgdN239e61t6HLl1Ucp65VY10fchynl1hQSv-kSOJUcJZi8g-KMEOMIR7p8Yb2xdKavPXVUvlV_rm1CGZroONqgrflliCYv0eSZzx7_IjkLmL4DeuqU13lms6rqv655GRd4oPetv5KOW9NGc3Rb4a8AZU9oGs |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2024_110632 crossref_primary_10_1016_j_ijleo_2018_12_146 crossref_primary_10_1039_D1RA04360A crossref_primary_10_1088_1361_6528_abcef4 crossref_primary_10_1021_acs_analchem_4c07105 crossref_primary_10_1016_j_trac_2024_118060 crossref_primary_10_2174_1381612826666191219130033 crossref_primary_10_3390_ma17102213 crossref_primary_10_1016_j_ccr_2025_216511 crossref_primary_10_1021_acsnano_0c01973 crossref_primary_10_1007_s10812_023_01567_x crossref_primary_10_1016_S1872_2067_21_63874_3 crossref_primary_10_1016_j_ijleo_2022_169338 crossref_primary_10_1364_OSAC_396029 crossref_primary_10_1088_1361_648X_ab0b9d crossref_primary_10_1021_acsanm_1c00841 crossref_primary_10_2478_lpts_2024_0003 crossref_primary_10_1007_s10717_024_00650_9 crossref_primary_10_1021_acs_jpcc_2c01392 crossref_primary_10_1021_acs_jpcc_7b10381 crossref_primary_10_3390_bios15030165 crossref_primary_10_1002_adma_202108104 crossref_primary_10_3390_nano10040690 crossref_primary_10_1002_adfm_202008031 crossref_primary_10_1016_j_matlet_2021_130008 crossref_primary_10_1088_2053_1591_aa9aaa crossref_primary_10_1039_C9RA02543J crossref_primary_10_3389_fchem_2018_00345 crossref_primary_10_3390_nano12040633 crossref_primary_10_1002_sstr_202100101 crossref_primary_10_1016_j_bios_2022_114288 crossref_primary_10_1039_D4NH00451E crossref_primary_10_1002_adom_202002212 crossref_primary_10_1039_C9NR09420B crossref_primary_10_1021_acsphotonics_0c00359 crossref_primary_10_1021_acsnano_9b06858 crossref_primary_10_1002_adom_201901010 crossref_primary_10_1021_acsomega_4c05492 crossref_primary_10_1021_acsomega_9b03560 crossref_primary_10_1021_acsphotonics_8b00121 crossref_primary_10_1007_s00216_024_05715_w crossref_primary_10_1007_s00214_023_03025_5 crossref_primary_10_1039_C8RA01032C crossref_primary_10_1002_adma_202007988 crossref_primary_10_1007_s10812_021_01159_7 crossref_primary_10_1016_j_jmst_2020_03_025 crossref_primary_10_1016_j_materresbull_2021_111558 crossref_primary_10_1021_acsnano_0c07289 crossref_primary_10_1039_D3QM00200D crossref_primary_10_1002_cnma_201700257 crossref_primary_10_1021_acs_chemrev_8b00260 crossref_primary_10_1021_acsami_2c04800 crossref_primary_10_1016_j_cocis_2022_101622 crossref_primary_10_1021_acsanm_4c07090 crossref_primary_10_1021_acsomega_9b02581 crossref_primary_10_1002_cplu_202000545 crossref_primary_10_1016_j_jphotochem_2022_114067 crossref_primary_10_1021_acs_nanolett_9b02239 crossref_primary_10_1016_j_bios_2022_114041 crossref_primary_10_3390_nano14010111 crossref_primary_10_1021_acs_jpclett_3c00468 crossref_primary_10_1016_j_matpr_2022_09_615 crossref_primary_10_1016_j_jlumin_2020_117870 crossref_primary_10_1021_acs_nanolett_1c02162 crossref_primary_10_1007_s11468_019_01057_x crossref_primary_10_1063_1_5056211 crossref_primary_10_1021_acsami_4c10027 crossref_primary_10_1021_acs_jpcc_3c07144 crossref_primary_10_1021_acsami_2c11218 crossref_primary_10_2139_ssrn_4019237 crossref_primary_10_1021_acs_jpcc_9b06280 crossref_primary_10_3390_nano11123334 crossref_primary_10_1016_j_esci_2024_100312 crossref_primary_10_1515_nanoph_2020_0213 crossref_primary_10_1021_acsnano_0c07581 crossref_primary_10_1039_C8NR00639C crossref_primary_10_3390_app14093574 crossref_primary_10_1002_adom_202300221 crossref_primary_10_1021_acs_jpcc_3c08101 crossref_primary_10_1142_S0217984924502464 crossref_primary_10_3390_nano10102078 crossref_primary_10_1002_anbr_202000015 crossref_primary_10_1016_j_rinp_2024_107783 crossref_primary_10_1016_j_talanta_2022_123611 crossref_primary_10_1021_acssensors_4c01985 crossref_primary_10_1016_j_rinp_2024_107540 crossref_primary_10_1021_acs_jpcc_2c06616 crossref_primary_10_1002_adma_201906475 crossref_primary_10_1021_jacs_2c03081 crossref_primary_10_1039_C8AN01667D crossref_primary_10_1039_D0NR07344J crossref_primary_10_7498_aps_68_20190782 crossref_primary_10_1039_C8CP03114B crossref_primary_10_1021_acs_analchem_8b02109 crossref_primary_10_1039_C9NR03725J crossref_primary_10_1039_D0AN00538J crossref_primary_10_1002_smll_202000460 crossref_primary_10_1021_acs_accounts_9b00463 crossref_primary_10_1007_s12274_022_4102_3 crossref_primary_10_1021_acsnano_4c05258 crossref_primary_10_1039_D2NA00753C crossref_primary_10_1021_acsanm_2c00203 crossref_primary_10_1021_jacs_3c12470 crossref_primary_10_1016_j_microc_2023_109888 crossref_primary_10_3390_molecules26020281 crossref_primary_10_1002_adom_201901583 crossref_primary_10_1016_j_cocis_2022_101660 crossref_primary_10_3390_nano10030444 crossref_primary_10_1007_s42452_025_06513_4 crossref_primary_10_1021_acs_jpcc_1c06466 crossref_primary_10_1016_j_bios_2019_111733 crossref_primary_10_1021_acsnano_2c10470 crossref_primary_10_1021_acsaom_2c00026 crossref_primary_10_1021_acsnano_0c03997 crossref_primary_10_1016_j_ijleo_2022_169856 crossref_primary_10_1016_j_micron_2020_102916 crossref_primary_10_1021_acs_jpclett_0c00304 crossref_primary_10_1021_jacs_8b12206 crossref_primary_10_1088_2050_6120_ad9fd2 crossref_primary_10_1007_s11051_021_05201_9 crossref_primary_10_1039_D0AN01092H crossref_primary_10_3390_polym13223920 crossref_primary_10_1073_pnas_1914713117 crossref_primary_10_1364_OE_542681 crossref_primary_10_1016_j_apmt_2018_07_007 crossref_primary_10_1021_acs_jpcc_1c05141 crossref_primary_10_1039_C8CP02942C crossref_primary_10_1016_j_cap_2024_03_004 crossref_primary_10_3390_mi14030668 crossref_primary_10_1016_j_jcis_2023_06_090 crossref_primary_10_1039_D1NH00497B crossref_primary_10_1039_C8NR06119J crossref_primary_10_1177_1040638720968784 crossref_primary_10_1088_1361_648X_aac28d crossref_primary_10_1021_acs_analchem_1c03206 crossref_primary_10_1016_j_bios_2022_114440 crossref_primary_10_3390_nano12234339 crossref_primary_10_3390_ma16041386 crossref_primary_10_1002_smtd_202300076 crossref_primary_10_3390_molecules26082338 crossref_primary_10_1002_adom_202001520 crossref_primary_10_1039_C8RA09454C crossref_primary_10_1515_nanoph_2024_0417 crossref_primary_10_1038_s44310_024_00045_2 crossref_primary_10_1039_D4NR02161D crossref_primary_10_1021_jacs_9b04697 crossref_primary_10_1016_j_mtener_2022_101003 crossref_primary_10_1016_j_bios_2022_114791 crossref_primary_10_1007_s11468_022_01721_9 crossref_primary_10_1038_s41467_024_51916_3 crossref_primary_10_1039_D1JA00149C crossref_primary_10_1002_chem_202301691 crossref_primary_10_1021_acsami_1c19746 crossref_primary_10_1039_D4CC02750G crossref_primary_10_1021_acs_jpcb_4c04008 crossref_primary_10_1364_AO_384653 crossref_primary_10_1016_j_microc_2024_111541 crossref_primary_10_1088_1361_6528_ac46b6 crossref_primary_10_1038_s41598_018_37153_x crossref_primary_10_1039_D2TC02600G crossref_primary_10_1016_j_jhazmat_2023_131941 crossref_primary_10_1021_acs_jchemed_9b00559 crossref_primary_10_1063_1_5007752 crossref_primary_10_1039_C7NR07340B crossref_primary_10_1039_D2CC05324A crossref_primary_10_1038_s41598_025_87198_y crossref_primary_10_1016_j_jcis_2018_11_051 crossref_primary_10_1039_D1RA02266K crossref_primary_10_1002_adma_201706527 crossref_primary_10_1016_j_matchemphys_2023_127876 crossref_primary_10_3390_cancers11060748 crossref_primary_10_1021_acsaelm_0c00482 crossref_primary_10_1039_C8AN00144H crossref_primary_10_1021_acsabm_1c00113 crossref_primary_10_1016_j_sna_2024_115594 crossref_primary_10_1021_acs_analchem_1c01210 crossref_primary_10_1088_1361_6528_ad5a7a crossref_primary_10_1016_j_microc_2021_106524 crossref_primary_10_1016_j_physe_2021_114868 crossref_primary_10_1021_acs_analchem_7b04251 crossref_primary_10_3390_nano10040773 crossref_primary_10_1021_acsnano_1c07176 crossref_primary_10_1021_acsaenm_2c00065 crossref_primary_10_1002_smll_202001861 crossref_primary_10_1063_5_0131649 crossref_primary_10_1039_D4CS00883A crossref_primary_10_1039_D1TC01209F crossref_primary_10_1039_C8RA03185A crossref_primary_10_1016_j_matchemphys_2022_126129 crossref_primary_10_1002_advs_202205148 crossref_primary_10_1002_adfm_202100889 crossref_primary_10_1039_D3CS00793F crossref_primary_10_1002_bio_4364 crossref_primary_10_1016_j_nano_2022_102569 crossref_primary_10_5757_ASCT_2023_32_2_38 crossref_primary_10_1016_j_trac_2023_117030 crossref_primary_10_1021_acs_analchem_0c04518 crossref_primary_10_1021_acsami_1c05892 crossref_primary_10_1088_2040_8986_ab806f crossref_primary_10_1002_smll_202102596 crossref_primary_10_1038_s41467_020_19755_0 crossref_primary_10_3390_ma13010034 crossref_primary_10_1039_D2NR05527A crossref_primary_10_1002_biot_202300519 crossref_primary_10_1039_D1CP04546F crossref_primary_10_1021_acsabm_1c00320 crossref_primary_10_1016_j_physb_2024_416212 crossref_primary_10_1088_1742_6596_2058_1_012005 crossref_primary_10_1364_JOSAB_402316 crossref_primary_10_1146_annurev_physchem_090519_034645 crossref_primary_10_3390_ma16031289 crossref_primary_10_1021_acs_langmuir_2c01894 crossref_primary_10_1007_s00216_023_04792_7 crossref_primary_10_1021_acs_chemrev_1c00482 crossref_primary_10_1002_adfm_201906407 crossref_primary_10_1021_acsanm_3c03731 crossref_primary_10_3390_jcs6080218 crossref_primary_10_1002_asia_202000847 crossref_primary_10_1002_ppsc_202300083 crossref_primary_10_1002_smll_202407787 crossref_primary_10_1021_acs_nanolett_2c04988 crossref_primary_10_1039_D3CS00941F crossref_primary_10_1021_acs_jpcc_1c05404 crossref_primary_10_3390_chemosensors11020109 crossref_primary_10_1002_adma_202005900 crossref_primary_10_1088_1361_6528_acfe15 crossref_primary_10_1364_PRJ_416256 crossref_primary_10_1016_j_nanoso_2023_101025 crossref_primary_10_1039_D0RA08759A crossref_primary_10_1002_smll_201801385 crossref_primary_10_1039_D0NA00961J crossref_primary_10_1016_j_optmat_2018_06_022 crossref_primary_10_1039_D2NR01543A crossref_primary_10_1039_D2CP02870K crossref_primary_10_1021_acs_jpcc_3c00020 crossref_primary_10_1109_JSEN_2025_3535576 crossref_primary_10_3390_nano10050939 crossref_primary_10_1002_adma_202403896 crossref_primary_10_3390_photonics12020125 crossref_primary_10_1016_j_addr_2024_115341 crossref_primary_10_1021_acs_chemrev_9b00234 crossref_primary_10_1063_5_0015246 crossref_primary_10_1364_AO_58_006038 crossref_primary_10_3390_app11125388 crossref_primary_10_1038_s41467_021_21238_9 crossref_primary_10_1364_JOSAB_533051 crossref_primary_10_1039_D1AN02173G crossref_primary_10_3390_nano13131987 crossref_primary_10_1063_5_0040587 crossref_primary_10_1021_acs_jpclett_0c03564 crossref_primary_10_1021_acs_analchem_0c04280 crossref_primary_10_1016_j_physe_2021_114764 crossref_primary_10_1557_s43579_023_00342_5 crossref_primary_10_1002_adfm_202005400 crossref_primary_10_1002_adma_201901428 crossref_primary_10_1021_acsaom_4c00032 crossref_primary_10_1039_C9CC00356H crossref_primary_10_1364_OE_481440 crossref_primary_10_1364_OL_44_000339 crossref_primary_10_1039_D1CP03684J crossref_primary_10_1021_acs_chemrev_4c00165 crossref_primary_10_1088_1674_1056_ad6555 crossref_primary_10_3390_nano12224019 crossref_primary_10_1039_D0NA00862A crossref_primary_10_1038_s41570_018_0031_9 crossref_primary_10_1016_j_aca_2024_342517 crossref_primary_10_1016_j_snb_2021_130585 crossref_primary_10_1021_acsomega_1c06010 crossref_primary_10_1021_acsanm_4c06612 crossref_primary_10_1016_j_microc_2022_107722 crossref_primary_10_1557_s43577_024_00850_2 crossref_primary_10_1039_D1TB00712B crossref_primary_10_1021_acs_nanolett_7b04847 crossref_primary_10_1002_adom_202001932 crossref_primary_10_1021_acs_nanolett_4c05829 crossref_primary_10_1134_S1061933X19060140 crossref_primary_10_1007_s11468_019_01094_6 crossref_primary_10_3390_mi14030574 crossref_primary_10_1039_D2CP01681H crossref_primary_10_1021_acs_chemrev_3c00475 crossref_primary_10_1021_acsphotonics_1c01100 crossref_primary_10_1016_j_snb_2024_136727 crossref_primary_10_1021_acs_jpcc_3c01267 crossref_primary_10_1126_sciadv_add4816 crossref_primary_10_1007_s00217_023_04432_5 crossref_primary_10_1021_acs_langmuir_3c00801 crossref_primary_10_1039_D3SC05722D crossref_primary_10_1109_JLT_2021_3083094 crossref_primary_10_3389_fchem_2024_1407561 crossref_primary_10_1039_D2NR01402E crossref_primary_10_1021_acsanm_0c01890 crossref_primary_10_1039_D0TB02309D crossref_primary_10_1021_acsanm_0c01898 crossref_primary_10_1021_jacs_3c11959 crossref_primary_10_1038_s41524_019_0184_1 crossref_primary_10_1016_j_saa_2023_123065 crossref_primary_10_1364_OME_497366 crossref_primary_10_1021_acsami_4c15017 crossref_primary_10_1021_acsomega_2c01146 crossref_primary_10_1021_acssuschemeng_1c05437 crossref_primary_10_1021_acsanm_1c00225 crossref_primary_10_3390_ijms26062557 crossref_primary_10_1021_acsomega_0c03588 crossref_primary_10_1021_acs_jpcc_1c04599 crossref_primary_10_1142_S021798492150336X crossref_primary_10_1007_s11051_024_06039_7 crossref_primary_10_1021_acs_jpcc_4c08591 crossref_primary_10_1016_j_jcis_2024_05_217 crossref_primary_10_33581_2520_257X_2022_1_3_17 crossref_primary_10_1039_D2CC03431J crossref_primary_10_1063_1_5120601 crossref_primary_10_1002_nano_202100131 crossref_primary_10_1016_j_snb_2024_135537 crossref_primary_10_1021_acs_jpclett_2c03602 crossref_primary_10_1007_s11468_020_01270_z crossref_primary_10_1088_1674_1056_ac7215 crossref_primary_10_1007_s13404_022_00320_0 crossref_primary_10_1038_s41467_022_35699_z crossref_primary_10_3390_chemosensors11010035 crossref_primary_10_1038_s41598_020_60244_7 crossref_primary_10_3390_diagnostics11061119 crossref_primary_10_1039_D2CP02100E crossref_primary_10_1021_acsanm_0c00470 crossref_primary_10_1021_acs_jpcc_0c03415 crossref_primary_10_1021_acsanm_4c05718 crossref_primary_10_1016_j_colsurfb_2020_111189 crossref_primary_10_1002_cjoc_202100679 crossref_primary_10_3390_coatings10030227 crossref_primary_10_1021_acs_nanolett_0c01569 crossref_primary_10_3390_polym15193935 crossref_primary_10_1016_j_aca_2024_342579 crossref_primary_10_1016_j_biosx_2022_100191 crossref_primary_10_1016_j_aca_2022_339721 crossref_primary_10_1002_asia_202401436 crossref_primary_10_1088_1361_6528_ac2767 crossref_primary_10_1016_j_bios_2018_02_028 crossref_primary_10_1016_j_ica_2021_120652 crossref_primary_10_1002_adom_201701069 crossref_primary_10_1016_j_ceramint_2022_06_310 crossref_primary_10_1039_D4NR04476B crossref_primary_10_3390_ma16103746 crossref_primary_10_1038_s42003_020_01615_8 crossref_primary_10_1016_j_snb_2023_134649 crossref_primary_10_1021_acs_jpcc_9b10724 crossref_primary_10_3390_nano10091644 crossref_primary_10_1021_acs_jpcb_1c10207 crossref_primary_10_1016_j_bios_2024_116427 crossref_primary_10_1016_j_jlumin_2023_119835 crossref_primary_10_1021_acsnano_1c05489 crossref_primary_10_1002_adom_202001081 crossref_primary_10_1021_acsnano_0c10945 crossref_primary_10_1021_acs_analchem_3c04122 crossref_primary_10_1039_D4NR01233J crossref_primary_10_7498_aps_68_20190337 crossref_primary_10_1021_acsnano_0c06123 crossref_primary_10_1021_acsami_9b00204 crossref_primary_10_3390_mi9090460 crossref_primary_10_1103_PhysRevResearch_2_033172 crossref_primary_10_1016_j_trac_2024_117913 crossref_primary_10_1088_1555_6611_ac9373 crossref_primary_10_1016_j_optcom_2018_06_086 crossref_primary_10_1039_D1NR07918B crossref_primary_10_1166_jbn_2022_3356 crossref_primary_10_1007_s13762_023_05171_6 crossref_primary_10_1016_j_snb_2019_127597 crossref_primary_10_3390_bios13110956 crossref_primary_10_1016_j_physleta_2023_129217 crossref_primary_10_1038_s41377_022_00893_7 crossref_primary_10_1016_j_aca_2023_341086 crossref_primary_10_1088_1361_6463_ac2b66 crossref_primary_10_1021_acs_jpclett_0c03399 crossref_primary_10_35848_1882_0786_abbd26 crossref_primary_10_1016_j_physb_2019_02_013 crossref_primary_10_1016_j_jnoncrysol_2024_122927 crossref_primary_10_1039_D0NR00675K crossref_primary_10_1515_nanoph_2021_0124 crossref_primary_10_1016_j_omx_2023_100287 crossref_primary_10_1002_smll_202304237 crossref_primary_10_1039_D2RA03605C crossref_primary_10_1016_j_chemphys_2019_110423 crossref_primary_10_1021_acs_jpcc_2c01586 crossref_primary_10_3390_bios12110933 crossref_primary_10_1002_appl_202300090 crossref_primary_10_1021_acs_jpcc_2c03644 crossref_primary_10_1039_D2CC06178C crossref_primary_10_1039_D4TC02308K crossref_primary_10_1021_acs_nanolett_0c04883 crossref_primary_10_1016_j_ijleo_2020_164883 crossref_primary_10_1039_D1TC01494C crossref_primary_10_1002_admi_202101133 crossref_primary_10_1002_adom_201701094 crossref_primary_10_1002_adfm_202302136 crossref_primary_10_1590_0001_3765201820170571 crossref_primary_10_1016_j_optlastec_2024_111232 crossref_primary_10_1088_2050_6120_acc714 crossref_primary_10_1016_j_cej_2022_136117 crossref_primary_10_1016_j_dyepig_2021_109896 crossref_primary_10_1002_smtd_202200163 crossref_primary_10_1016_j_cej_2023_147240 crossref_primary_10_1021_acs_analchem_8b01510 crossref_primary_10_1038_s41377_021_00522_9 crossref_primary_10_1016_j_optmat_2025_116674 crossref_primary_10_1080_15421406_2021_1946969 crossref_primary_10_1021_acs_nanolett_3c00568 crossref_primary_10_3390_cryst12030336 crossref_primary_10_1021_acs_jpcc_2c00150 crossref_primary_10_1002_smtd_202301713 crossref_primary_10_1021_acsanm_0c01014 crossref_primary_10_1021_acsami_4c18393 crossref_primary_10_1021_acs_jpca_1c08463 crossref_primary_10_1002_adma_202405046 crossref_primary_10_1016_j_ccr_2024_215768 crossref_primary_10_1016_j_nantod_2018_12_006 crossref_primary_10_1021_acs_jpcc_4c00340 crossref_primary_10_1515_nanoph_2018_0143 crossref_primary_10_1016_j_saa_2022_121753 crossref_primary_10_1080_28378083_2024_2386522 crossref_primary_10_1016_j_jcis_2021_04_026 crossref_primary_10_1021_acs_chemmater_0c02715 crossref_primary_10_1016_j_apmt_2023_101731 crossref_primary_10_1016_j_jallcom_2024_177220 crossref_primary_10_1021_acs_analchem_0c00711 crossref_primary_10_1039_C8CC05793A crossref_primary_10_1039_D4NA00080C crossref_primary_10_1016_j_ccr_2023_215571 crossref_primary_10_1016_j_trechm_2020_03_008 crossref_primary_10_1021_acssuschemeng_2c04064 crossref_primary_10_1016_j_snb_2021_130821 crossref_primary_10_3390_nano10091749 crossref_primary_10_1021_acsnano_4c06858 crossref_primary_10_1039_C9CC00162J crossref_primary_10_1002_adom_202100695 crossref_primary_10_3390_app13169291 |
Cites_doi | 10.1021/nl501027j 10.1007/s11468-016-0186-5 10.1038/nprot.2012.141 10.1021/ja9096237 10.1021/acsphotonics.5b00463 10.1063/1.442161 10.1021/ja00457a071 10.1364/OE.16.012872 10.1016/j.matlet.2013.09.021 10.1021/jp409586z 10.1038/nmat2162 10.1063/1.3086283 10.1038/natrevmats.2016.21 10.1109/JPROC.2016.2624340 10.1126/science.1228638 10.1002/jrs.3007 10.1023/A:1016875709579 10.1016/j.ab.2004.11.026 10.1103/PhysRevLett.93.200801 10.1016/S0022-0728(77)80224-6 10.1038/41048 10.1016/j.cplett.2004.07.112 10.1080/09500349808230614 10.1002/anie.200801605 10.1039/b802918k 10.1021/jp9926802 10.1021/ar800028j 10.1088/0957-4484/23/22/225301 10.1002/9780470035641 10.1021/nn900112e 10.1016/j.rser.2016.07.031 10.1007/0-387-37825-1 10.1021/nn405167q 10.1021/acs.jpcc.5b08049 10.1021/acsphotonics.6b00793 10.1002/chem.201600218 10.1063/1.4936348 10.1021/acsnano.5b05605 10.1364/OL.5.000368 10.1103/PhysRevB.24.4843 10.1021/ja510183c 10.1021/acs.analchem.6b02797 10.1038/nnano.2015.240 10.1039/C1NR11243K 10.1039/c2ra01032a 10.1002/jrs.2066 10.1021/jacs.5b09682 10.1021/nl073057t 10.1016/0022-2313(81)90226-X 10.1038/35035032 10.1021/acs.nanolett.5b00407 10.1021/cr100313v 10.1039/c3cp50633a 10.1063/1.4795455 10.1038/nmeth817 10.1063/1.3492849 10.1038/nature17974 10.1088/0022-3727/41/1/013001 10.1006/abio.2001.5503 10.1002/smll.201601598 10.1016/j.matchemphys.2014.12.003 10.1021/la00081a004 10.1021/nl071084d 10.1038/nphoton.2013.181 10.1038/nphys2615 10.1038/ncomms5236 10.1007/s11468-012-9366-0 10.1021/nn506689b 10.1039/c3tb20069h 10.1021/nl062901x 10.1002/anie.200904858 10.1021/jp806536w 10.1016/S0009-2614(98)00277-2 10.1117/1.OE.54.10.107104 10.1021/la0513353 10.1126/science.1077229 10.1038/nphoton.2009.187 10.1021/jp076003g 10.1016/S0927-7757(00)00449-0 10.1038/nature09698 10.1063/1.452396 10.1023/B:JOFL.0000047217.74943.5c 10.1021/j100023a025 10.1002/anie.201203849 10.1038/nature08907 10.1364/AO.55.009131 10.1021/jp203317d 10.1002/anie.200802248 10.1016/S0956-5663(01)00239-1 10.1021/j100214a025 10.1021/ph500060s 10.1021/acs.jpcc.5b09215 10.1038/nphoton.2015.103 10.1088/2040-8978/18/3/033001 10.1016/0039-6028(80)90631-7 10.1007/s11468-013-9594-y 10.1103/PhysRevLett.96.113002 10.1088/0022-3727/48/44/443001 10.1016/0009-2614(74)85388-1 10.1002/jrs.4317 10.1021/cr900343z 10.1021/nl049951r 10.1063/1.445550 10.1021/jp205997u 10.1002/anie.201004806 10.1021/acs.jpca.6b03309 10.1002/anie.201208125 10.1021/la980047m 10.1016/j.trac.2014.11.015 10.1021/ac502424g 10.1103/RevModPhys.57.783 10.1021/ac3003215 10.1021/jp0107964 10.1021/acsnano.5b07294 10.1126/science.262.5138.1422 10.1038/nphoton.2014.271 10.1021/acs.nanolett.5b01225 10.1021/cm020732l 10.1016/0021-9797(68)90272-5 10.1038/nnano.2013.98 10.1039/c3nr05112a 10.1038/nature12151 10.1063/1.4736575 10.1038/nnano.2012.18 10.1038/nphoton.2014.228 10.1002/bbpc.19680720261 10.1002/smll.201200750 10.1039/c1cp21008d 10.1039/C5FD00074B 10.1126/science.270.5235.467 10.1021/ja047846d 10.1021/nl062795z 10.1103/PhysRevLett.62.2535 10.1038/nphoton.2012.112 10.1021/ac060586t 10.1038/nature17428 10.1016/j.electacta.2016.03.065 10.1021/jacs.5b04670 10.1063/1.2938861 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1039/c7cs00169j |
DatabaseName | CrossRef PubMed MEDLINE - Academic Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef PubMed AGRICOLA MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 3979 |
ExternalDocumentID | 28639669 10_1039_C7CS00169J c7cs00169j |
Genre | Journal Article Review |
GroupedDBID | -JG 0-7 705 70J 70~ 7~J AAEMU ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- GNO H~N IDZ J3I R7B R7D RCNCU RPMJG RRA RRC RSCEA SKA SKH SLH VH6 --- -DZ -~X 0R~ 0UZ 186 1TJ 29B 2WC 3EH 4.4 53G 5GY 6J9 6TJ 71~ 85S 8WZ 9M8 A6W AAHBH AAIWI AAJAE AAMEH AANOJ AAUTI AAWGC AAXHV AAXPP AAYXX ABASK ABDPE ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACKIV ACNCT ACPVT ACRPL ADMRA ADNMO ADXHL AENEX AENGV AESAV AETEA AETIL AFFDN AFFNX AFLYV AFOGI AFRDS AFRZK AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AI. AIDUJ AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP AQHUZ ASKNT ASPBG AVWKF AZFZN BBWZM BLAPV CAG CITATION COF CS3 DU5 EBS ECGLT EEHRC EJD F5P FA8 FEDTE GGIMP H13 HF~ HVGLF HZ~ H~9 IDY J3G J3H L-8 M4U MVM N9A NDZJH O9- P2P R56 RAOCF RCLXC RIG RNS ROL RRXOS SC5 TN5 TWZ UPT UQL VH1 WH7 WHG XJT XOL ZCG ZKB ~02 NPM OK1 YIN Z5M 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-f2c01024db3bdc6c7bd81a1482ed3dd505622ea266f35d977a781008b898f43a3 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 05:50:12 EDT 2025 Fri Jul 11 03:57:08 EDT 2025 Fri Jul 11 03:50:45 EDT 2025 Wed Feb 19 02:40:13 EST 2025 Tue Jul 01 04:18:39 EDT 2025 Thu Apr 24 23:00:20 EDT 2025 Mon Jan 28 17:20:02 EST 2019 Sat Jun 01 02:29:32 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c467t-f2c01024db3bdc6c7bd81a1482ed3dd505622ea266f35d977a781008b898f43a3 |
Notes | Jian-Feng Li is a Professor of Chemistry at Xiamen University. He received a BSc in chemistry from Zhejiang University, and a PhD in chemistry from Xiamen University. Professor Li is the principal inventor of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). His research interests include surface-enhanced Raman spectroscopy, surface-enhanced fluorescence, core-shell nanostructures, surface plasmon resonance, electrochemistry and surface catalysis. Chao-Yu Li is now pursuing his PhD degree under the supervision of Prof. Zhong-Qun Tian and Prof. Jian-Feng Li at Xiamen University. His research is focused on spectroelectrochemistry, synthesis of plasmonic nanostructures, and plasmon-enhanced single-molecule spectroscopy. Dr Ricardo Aroca is Professor Emeritus in the Department of Chemistry and Biochemistry at the University of Windsor, and Adjunct Professor in the Department of Chemistry, Faculty of Science, University of Chile. In 2003 he was honoured with the Gerhard Herzberg Award in recognition of outstanding achievement in the science of spectroscopy. In 2005 he was elected Fellow of the Chemical Institute of Canada. Since 2009, he has also been a Member Correspondent of the Chilean Academy of Sciences. His research is on plasmon enhanced spectroscopy. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7809-5933 0000-0003-1598-6856 |
PMID | 28639669 |
PQID | 1912616617 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1912616617 proquest_miscellaneous_2286928444 proquest_miscellaneous_1925876523 crossref_primary_10_1039_C7CS00169J pubmed_primary_28639669 rsc_primary_c7cs00169j crossref_citationtrail_10_1039_C7CS00169J |
ProviderPackageCode | RRA J3I ACLDK RRC 7~J AEFDR 70~ VH6 GNO RCNCU SLH 70J EE0 RSCEA AFVBQ C6K H~N 0-7 IDZ RPMJG SKA -JG AGSTE AUDPV EF- BSQNT SKH ADSRN ABGFH 705 R7B R7D AAEMU CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170703 |
PublicationDateYYYYMMDD | 2017-07-03 |
PublicationDate_xml | – month: 7 year: 2017 text: 20170703 day: 3 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2017 |
References | Chen (C7CS00169J-(cit75)/*[position()=1]) 2016; 10 Webb (C7CS00169J-(cit37)/*[position()=1]) 2014; 6 Li (C7CS00169J-(cit31)/*[position()=1]) 2012; 2 Jeanmaire (C7CS00169J-(cit9)/*[position()=1]) 1977; 84 Aslan (C7CS00169J-(cit53)/*[position()=1]) 2004; 14 Ding (C7CS00169J-(cit21)/*[position()=1]) 2016; 1 Lakowicz (C7CS00169J-(cit111)/*[position()=1]) 2008; 133 Nikoobakht (C7CS00169J-(cit87)/*[position()=1]) 2003; 15 Mishra (C7CS00169J-(cit23)/*[position()=1]) 2013; 15 Aroca (C7CS00169J-(cit54)/*[position()=1]) 1988; 4 Spackova (C7CS00169J-(cit40)/*[position()=1]) 2016; 104 Gartia (C7CS00169J-(cit73)/*[position()=1]) 2012; 101 Osorio-Román (C7CS00169J-(cit129)/*[position()=1]) 2014; 86 Betzig (C7CS00169J-(cit136)/*[position()=1]) 1993; 262 Butun (C7CS00169J-(cit132)/*[position()=1]) 2015; 15 Yuan (C7CS00169J-(cit27)/*[position()=1]) 2013; 52 Wokaun (C7CS00169J-(cit5)/*[position()=1]) 1983; 79 Sau (C7CS00169J-(cit89)/*[position()=1]) 2004; 126 Gersten (C7CS00169J-(cit4)/*[position()=1]) 1981; 75 Rao (C7CS00169J-(cit14)/*[position()=1]) 2015; 9 Thrall (C7CS00169J-(cit33)/*[position()=1]) 2013; 117 Fang (C7CS00169J-(cit104)/*[position()=1]) 2008; 39 Höppener (C7CS00169J-(cit137)/*[position()=1]) 2008; 8 Li (C7CS00169J-(cit38)/*[position()=1]) 2015; 137 Le Ru (C7CS00169J-(cit11)/*[position()=1]) 2009 Frey (C7CS00169J-(cit135)/*[position()=1]) 2004; 93 Fleischmann (C7CS00169J-(cit7)/*[position()=1]) 1974; 26 Punj (C7CS00169J-(cit93)/*[position()=1]) 2013; 8 Li (C7CS00169J-(cit124)/*[position()=1]) 2013; 112 Li (C7CS00169J-(cit94)/*[position()=1]) 2010; 464 Chance (C7CS00169J-(cit51)/*[position()=1]) 1978; 37 Alivisatos (C7CS00169J-(cit52)/*[position()=1]) 1987; 86 Li (C7CS00169J-(cit105)/*[position()=1]) 2013; 8 Lichtman (C7CS00169J-(cit57)/*[position()=1]) 2005; 2 Eltzov (C7CS00169J-(cit24)/*[position()=1]) 2009; 94 Becker (C7CS00169J-(cit146)/*[position()=1]) 2005 Strauss (C7CS00169J-(cit130)/*[position()=1]) 2014; 136 Furtaw (C7CS00169J-(cit80)/*[position()=1]) 2014; 9 Li (C7CS00169J-(cit108)/*[position()=1]) 2017; 13 Barnes (C7CS00169J-(cit83)/*[position()=1]) 1998; 45 Li (C7CS00169J-(cit106)/*[position()=1]) 2015; 137 Chen (C7CS00169J-(cit68)/*[position()=1]) 2007; 7 Schena (C7CS00169J-(cit59)/*[position()=1]) 1995; 270 Liebermann (C7CS00169J-(cit117)/*[position()=1]) 2000; 169 Fang (C7CS00169J-(cit121)/*[position()=1]) 2015; 66 Sun (C7CS00169J-(cit101)/*[position()=1]) 2002; 298 Zhao (C7CS00169J-(cit45)/*[position()=1]) 2008; 41 Moskovits (C7CS00169J-(cit74)/*[position()=1]) 2004; 397 Tam (C7CS00169J-(cit66)/*[position()=1]) 2007; 7 Zhang (C7CS00169J-(cit138)/*[position()=1]) 2016; 531 Hartschuh (C7CS00169J-(cit20)/*[position()=1]) 2008; 47 Guerrero (C7CS00169J-(cit63)/*[position()=1]) 2012; 8 Saini (C7CS00169J-(cit55)/*[position()=1]) 2009; 113 Albrecht (C7CS00169J-(cit8)/*[position()=1]) 1977; 99 Fu (C7CS00169J-(cit69)/*[position()=1]) 2010; 132 Kambhampati (C7CS00169J-(cit118)/*[position()=1]) 2001; 16 Li (C7CS00169J-(cit107)/*[position()=1]) 2016; 199 Russell (C7CS00169J-(cit143)/*[position()=1]) 2012; 6 Frens (C7CS00169J-(cit100)/*[position()=1]) 1973; 241 Jana (C7CS00169J-(cit88)/*[position()=1]) 2001; 105 Mayer (C7CS00169J-(cit65)/*[position()=1]) 2011; 111 Guerrero (C7CS00169J-(cit22)/*[position()=1]) 2011; 50 Forestiere (C7CS00169J-(cit44)/*[position()=1]) 2016; 3 Moerner (C7CS00169J-(cit109)/*[position()=1]) 1989; 62 Maier (C7CS00169J-(cit10)/*[position()=1]) 2007 Mei (C7CS00169J-(cit120)/*[position()=1]) 2017; 89 Le Ru (C7CS00169J-(cit70)/*[position()=1]) 2007; 111 Zhou (C7CS00169J-(cit78)/*[position()=1]) 2012; 84 Oldenburg (C7CS00169J-(cit103)/*[position()=1]) 1998; 288 Lakowicz (C7CS00169J-(cit98)/*[position()=1]) 2002; 301 Camacho (C7CS00169J-(cit123)/*[position()=1]) 2016; 120 Zhang (C7CS00169J-(cit140)/*[position()=1]) 2013; 498 Schmid (C7CS00169J-(cit19)/*[position()=1]) 2013; 52 Choi (C7CS00169J-(cit32)/*[position()=1]) 2013; 7 Lee (C7CS00169J-(cit99)/*[position()=1]) 1982; 86 Tame (C7CS00169J-(cit47)/*[position()=1]) 2013; 9 Pelton (C7CS00169J-(cit141)/*[position()=1]) 2015; 9 Zhou (C7CS00169J-(cit114)/*[position()=1]) 2015; 6 Zhou (C7CS00169J-(cit112)/*[position()=1]) 2012; 7 Chikkaraddy (C7CS00169J-(cit144)/*[position()=1]) 2016; 535 Ritchie (C7CS00169J-(cit96)/*[position()=1]) 1981; 24 Stöber (C7CS00169J-(cit102)/*[position()=1]) 1968; 26 Jensen (C7CS00169J-(cit64)/*[position()=1]) 1999; 103 Flynn (C7CS00169J-(cit26)/*[position()=1]) 2016; 120 Aroca (C7CS00169J-(cit71)/*[position()=1]) 2011; 115 Xia (C7CS00169J-(cit86)/*[position()=1]) 2009; 48 Weitz (C7CS00169J-(cit2)/*[position()=1]) 1981; 24–25 Drexhage (C7CS00169J-(cit50)/*[position()=1]) 1968; 72 Berezin (C7CS00169J-(cit145)/*[position()=1]) 2010; 110 Nascimento (C7CS00169J-(cit46)/*[position()=1]) 2015; 143 Acuna (C7CS00169J-(cit116)/*[position()=1]) 2012; 338 Albella (C7CS00169J-(cit17)/*[position()=1]) 2014; 1 Tian (C7CS00169J-(cit122)/*[position()=1]) 2013; 44 Meixner (C7CS00169J-(cit30)/*[position()=1]) 2015; 184 Cang (C7CS00169J-(cit76)/*[position()=1]) 2011; 469 Lounis (C7CS00169J-(cit147)/*[position()=1]) 2000; 407 Liz-Marzán (C7CS00169J-(cit84)/*[position()=1]) 2006; 22 Anker (C7CS00169J-(cit39)/*[position()=1]) 2008; 7 Khatua (C7CS00169J-(cit43)/*[position()=1]) 2013; 7 Ung (C7CS00169J-(cit85)/*[position()=1]) 1998; 14 Moskovits (C7CS00169J-(cit6)/*[position()=1]) 1985; 57 Impellizzeri (C7CS00169J-(cit34)/*[position()=1]) 2016; 22 Lee (C7CS00169J-(cit126)/*[position()=1]) 2012; 4 Zhang (C7CS00169J-(cit127)/*[position()=1]) 2013; 1 Zhang (C7CS00169J-(cit128)/*[position()=1]) 2016; 55 Kulzer (C7CS00169J-(cit110)/*[position()=1]) 2010; 49 Funke (C7CS00169J-(cit115)/*[position()=1]) 2015; 11 Albella (C7CS00169J-(cit62)/*[position()=1]) 2008; 16 Peng (C7CS00169J-(cit119)/*[position()=1]) 2009; 3 Su (C7CS00169J-(cit81)/*[position()=1]) 2016; 10 Hamidi (C7CS00169J-(cit41)/*[position()=1]) 2015; 54 Anger (C7CS00169J-(cit49)/*[position()=1]) 2006; 96 Zhang (C7CS00169J-(cit67)/*[position()=1]) 2007; 7 Lin (C7CS00169J-(cit125)/*[position()=1]) 2012; 43 Asselin (C7CS00169J-(cit48)/*[position()=1]) 2016; 11 Emmanuel (C7CS00169J-(cit61)/*[position()=1]) 2008; 41 Xia (C7CS00169J-(cit131)/*[position()=1]) 2014; 8 Mandal (C7CS00169J-(cit35)/*[position()=1]) 2016; 65 Chiang (C7CS00169J-(cit139)/*[position()=1]) 2015; 15 Ramírez-Maureira (C7CS00169J-(cit29)/*[position()=1]) 2015; 151 Glass (C7CS00169J-(cit1)/*[position()=1]) 1980; 5 Weisenberg (C7CS00169J-(cit25)/*[position()=1]) 2010; 97 Ahn (C7CS00169J-(cit36)/*[position()=1]) 2016; 18 Geddes (C7CS00169J-(cit15)/*[position()=1]) 2002; 12 Aroca (C7CS00169J-(cit12)/*[position()=1]) 2006 Dragan (C7CS00169J-(cit56)/*[position()=1]) 2012; 7 Kinkhabwala (C7CS00169J-(cit77)/*[position()=1]) 2009; 3 Dickson (C7CS00169J-(cit58)/*[position()=1]) 1997; 388 Hell (C7CS00169J-(cit60)/*[position()=1]) 2015; 48 Farhang (C7CS00169J-(cit42)/*[position()=1]) 2013; 84 Chumanov (C7CS00169J-(cit90)/*[position()=1]) 1995; 99 Gill (C7CS00169J-(cit72)/*[position()=1]) 2011; 13 Fu (C7CS00169J-(cit113)/*[position()=1]) 2006; 78 (C7CS00169J-(cit13)/*[position()=1]) 2006 Zhang (C7CS00169J-(cit134)/*[position()=1]) 2008; 92 Ritchie (C7CS00169J-(cit82)/*[position()=1]) 1980; 25 Fromm (C7CS00169J-(cit91)/*[position()=1]) 2004; 4 Lu (C7CS00169J-(cit16)/*[position()=1]) 2011; 115 Lakowicz (C7CS00169J-(cit97)/*[position()=1]) 2005; 337 Aoki (C7CS00169J-(cit18)/*[position()=1]) 2015 Wientjes (C7CS00169J-(cit92)/*[position()=1]) 2014; 5 Le Liepvre (C7CS00169J-(cit133)/*[position()=1]) 2016; 3 Akselrod (C7CS00169J-(cit142)/*[position()=1]) 2014; 8 Ayala-Orozco (C7CS00169J-(cit95)/*[position()=1]) 2014; 14 Martin (C7CS00169J-(cit28)/*[position()=1]) 2016; 120 Chen (C7CS00169J-(cit3)/*[position()=1]) 1980; 101 Zhang (C7CS00169J-(cit79)/*[position()=1]) 2012; 23 |
References_xml | – issn: 2007 publication-title: Plasmonics: fundamentals and applications doi: Maier – issn: 2015 end-page: p 269-301 publication-title: Recent Progress in Colloid and Surface Chemistry with Biological Applications doi: Aoki Constantino Oliveira Jr Aroca – issn: 2006 publication-title: Principles of fluorescence spectroscopy – issn: 2005 end-page: p 77-108 publication-title: Reviews in Fluorescence 2005 doi: Becker Bergmann – issn: 2009 publication-title: Principles of Surface Enhanced Raman Spectroscopy (and related plasmonic effects) doi: Le Ru Etchegoin – issn: 2006 publication-title: Surface-enhanced Vibrational Spectroscopy doi: Aroca – volume: 14 start-page: 2926 year: 2014 ident: C7CS00169J-(cit95)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl501027j – volume: 11 start-page: 1369 year: 2016 ident: C7CS00169J-(cit48)/*[position()=1] publication-title: Plasmonics doi: 10.1007/s11468-016-0186-5 – volume: 8 start-page: 52 year: 2013 ident: C7CS00169J-(cit105)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.141 – volume: 132 start-page: 5540 year: 2010 ident: C7CS00169J-(cit69)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9096237 – volume: 3 start-page: 68 year: 2016 ident: C7CS00169J-(cit44)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.5b00463 – volume: 75 start-page: 1139 year: 1981 ident: C7CS00169J-(cit4)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.442161 – volume: 99 start-page: 5215 year: 1977 ident: C7CS00169J-(cit8)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00457a071 – volume-title: Principles of fluorescence spectroscopy year: 2006 ident: C7CS00169J-(cit13)/*[position()=1] – volume: 6 year: 2015 ident: C7CS00169J-(cit114)/*[position()=1] publication-title: Nat. Commun. – volume: 16 start-page: 12872 year: 2008 ident: C7CS00169J-(cit62)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.16.012872 – volume: 112 start-page: 169 year: 2013 ident: C7CS00169J-(cit124)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.09.021 – volume: 117 start-page: 26238 year: 2013 ident: C7CS00169J-(cit33)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp409586z – volume: 7 start-page: 442 year: 2008 ident: C7CS00169J-(cit39)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2162 – volume: 94 start-page: 083901 year: 2009 ident: C7CS00169J-(cit24)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3086283 – volume: 1 year: 2016 ident: C7CS00169J-(cit21)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.21 – volume: 104 start-page: 2380 year: 2016 ident: C7CS00169J-(cit40)/*[position()=1] publication-title: Proc. IEEE doi: 10.1109/JPROC.2016.2624340 – volume: 338 start-page: 506 year: 2012 ident: C7CS00169J-(cit116)/*[position()=1] publication-title: Science doi: 10.1126/science.1228638 – volume: 43 start-page: 40 year: 2012 ident: C7CS00169J-(cit125)/*[position()=1] publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.3007 – volume: 12 start-page: 121 year: 2002 ident: C7CS00169J-(cit15)/*[position()=1] publication-title: J. Fluoresc. doi: 10.1023/A:1016875709579 – volume: 337 start-page: 171 year: 2005 ident: C7CS00169J-(cit97)/*[position()=1] publication-title: Anal. Biochem. doi: 10.1016/j.ab.2004.11.026 – volume: 93 start-page: 200801 year: 2004 ident: C7CS00169J-(cit135)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.200801 – volume: 84 start-page: 1 year: 1977 ident: C7CS00169J-(cit9)/*[position()=1] publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(77)80224-6 – volume-title: Principles of Surface Enhanced Raman Spectroscopy (and related plasmonic effects) year: 2009 ident: C7CS00169J-(cit11)/*[position()=1] – volume: 388 start-page: 355 year: 1997 ident: C7CS00169J-(cit58)/*[position()=1] publication-title: Nature doi: 10.1038/41048 – volume: 397 start-page: 91 year: 2004 ident: C7CS00169J-(cit74)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.07.112 – volume: 45 start-page: 661 year: 1998 ident: C7CS00169J-(cit83)/*[position()=1] publication-title: J. Mod. Opt. doi: 10.1080/09500349808230614 – volume: 47 start-page: 8178 year: 2008 ident: C7CS00169J-(cit20)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200801605 – volume: 133 start-page: 1308 year: 2008 ident: C7CS00169J-(cit111)/*[position()=1] publication-title: Analyst doi: 10.1039/b802918k – volume: 103 start-page: 9846 year: 1999 ident: C7CS00169J-(cit64)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp9926802 – volume: 41 start-page: 1710 year: 2008 ident: C7CS00169J-(cit45)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar800028j – volume: 23 start-page: 225301 year: 2012 ident: C7CS00169J-(cit79)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/23/22/225301 – volume-title: Surface-enhanced Vibrational Spectroscopy year: 2006 ident: C7CS00169J-(cit12)/*[position()=1] doi: 10.1002/9780470035641 – volume: 3 start-page: 2265 year: 2009 ident: C7CS00169J-(cit119)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn900112e – volume: 65 start-page: 537 year: 2016 ident: C7CS00169J-(cit35)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2016.07.031 – volume-title: Plasmonics: fundamentals and applications year: 2007 ident: C7CS00169J-(cit10)/*[position()=1] doi: 10.1007/0-387-37825-1 – volume: 7 start-page: 8340 year: 2013 ident: C7CS00169J-(cit43)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn405167q – volume: 120 start-page: 20512 year: 2016 ident: C7CS00169J-(cit26)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b08049 – volume: 3 start-page: 2291 year: 2016 ident: C7CS00169J-(cit133)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00793 – volume: 22 start-page: 7281 year: 2016 ident: C7CS00169J-(cit34)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201600218 – volume: 143 start-page: 214104 year: 2015 ident: C7CS00169J-(cit46)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4936348 – volume: 10 start-page: 581 year: 2016 ident: C7CS00169J-(cit75)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b05605 – volume: 5 start-page: 368 year: 1980 ident: C7CS00169J-(cit1)/*[position()=1] publication-title: Opt. Lett. doi: 10.1364/OL.5.000368 – volume: 24 start-page: 4843 year: 1981 ident: C7CS00169J-(cit96)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.24.4843 – volume: 136 start-page: 17308 year: 2014 ident: C7CS00169J-(cit130)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510183c – volume: 89 start-page: 633 year: 2017 ident: C7CS00169J-(cit120)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b02797 – volume: 11 start-page: 47 year: 2015 ident: C7CS00169J-(cit115)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.240 – volume: 4 start-page: 124 year: 2012 ident: C7CS00169J-(cit126)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C1NR11243K – volume: 2 start-page: 1765 year: 2012 ident: C7CS00169J-(cit31)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c2ra01032a – volume: 39 start-page: 1679 year: 2008 ident: C7CS00169J-(cit104)/*[position()=1] publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2066 – volume: 137 start-page: 13784 year: 2015 ident: C7CS00169J-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09682 – volume: 8 start-page: 642 year: 2008 ident: C7CS00169J-(cit137)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl073057t – volume: 24–25 start-page: 83 year: 1981 ident: C7CS00169J-(cit2)/*[position()=1] publication-title: J. Lumin. doi: 10.1016/0022-2313(81)90226-X – volume: 407 start-page: 491 year: 2000 ident: C7CS00169J-(cit147)/*[position()=1] publication-title: Nature doi: 10.1038/35035032 – volume: 15 start-page: 2700 year: 2015 ident: C7CS00169J-(cit132)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00407 – volume: 111 start-page: 3828 year: 2011 ident: C7CS00169J-(cit65)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr100313v – volume: 15 start-page: 19538 year: 2013 ident: C7CS00169J-(cit23)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp50633a – volume: 84 start-page: 033107 year: 2013 ident: C7CS00169J-(cit42)/*[position()=1] publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4795455 – volume: 2 start-page: 910 year: 2005 ident: C7CS00169J-(cit57)/*[position()=1] publication-title: Nat. Methods doi: 10.1038/nmeth817 – volume: 97 start-page: 133103 year: 2010 ident: C7CS00169J-(cit25)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3492849 – volume: 37 start-page: 1 year: 1978 ident: C7CS00169J-(cit51)/*[position()=1] publication-title: Adv. Chem. Phys. – volume: 25 start-page: 259 year: 1980 ident: C7CS00169J-(cit82)/*[position()=1] publication-title: Bull. Am. Phys. Soc. – volume: 535 start-page: 127 year: 2016 ident: C7CS00169J-(cit144)/*[position()=1] publication-title: Nature doi: 10.1038/nature17974 – volume-title: Recent Progress in Colloid and Surface Chemistry with Biological Applications year: 2015 ident: C7CS00169J-(cit18)/*[position()=1] – volume: 41 start-page: 013001 year: 2008 ident: C7CS00169J-(cit61)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/41/1/013001 – volume: 301 start-page: 261 year: 2002 ident: C7CS00169J-(cit98)/*[position()=1] publication-title: Anal. Biochem. doi: 10.1006/abio.2001.5503 – volume: 13 start-page: 1601598 year: 2017 ident: C7CS00169J-(cit108)/*[position()=1] publication-title: Small doi: 10.1002/smll.201601598 – volume: 151 start-page: 351 year: 2015 ident: C7CS00169J-(cit29)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.12.003 – volume: 4 start-page: 518 year: 1988 ident: C7CS00169J-(cit54)/*[position()=1] publication-title: Langmuir doi: 10.1021/la00081a004 – volume: 7 start-page: 2101 year: 2007 ident: C7CS00169J-(cit67)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl071084d – volume: 7 start-page: 732 year: 2013 ident: C7CS00169J-(cit32)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.181 – volume: 9 start-page: 329 year: 2013 ident: C7CS00169J-(cit47)/*[position()=1] publication-title: Nat. Phys. doi: 10.1038/nphys2615 – volume: 5 year: 2014 ident: C7CS00169J-(cit92)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5236 – volume-title: Reviews in Fluorescence 2005 year: 2005 ident: C7CS00169J-(cit146)/*[position()=1] – volume: 7 start-page: 739 year: 2012 ident: C7CS00169J-(cit56)/*[position()=1] publication-title: Plasmonics doi: 10.1007/s11468-012-9366-0 – volume: 9 start-page: 2783 year: 2015 ident: C7CS00169J-(cit14)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn506689b – volume: 1 start-page: 2198 year: 2013 ident: C7CS00169J-(cit127)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/c3tb20069h – volume: 7 start-page: 496 year: 2007 ident: C7CS00169J-(cit66)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl062901x – volume: 49 start-page: 854 year: 2010 ident: C7CS00169J-(cit110)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200904858 – volume: 113 start-page: 1817 year: 2009 ident: C7CS00169J-(cit55)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp806536w – volume: 288 start-page: 243 year: 1998 ident: C7CS00169J-(cit103)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(98)00277-2 – volume: 54 start-page: 107104 year: 2015 ident: C7CS00169J-(cit41)/*[position()=1] publication-title: Opt. Eng. doi: 10.1117/1.OE.54.10.107104 – volume: 22 start-page: 32 year: 2006 ident: C7CS00169J-(cit84)/*[position()=1] publication-title: Langmuir doi: 10.1021/la0513353 – volume: 298 start-page: 2176 year: 2002 ident: C7CS00169J-(cit101)/*[position()=1] publication-title: Science doi: 10.1126/science.1077229 – volume: 3 start-page: 654 year: 2009 ident: C7CS00169J-(cit77)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.187 – volume: 111 start-page: 16076 year: 2007 ident: C7CS00169J-(cit70)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp076003g – volume: 169 start-page: 337 year: 2000 ident: C7CS00169J-(cit117)/*[position()=1] publication-title: Colloids Surf., A doi: 10.1016/S0927-7757(00)00449-0 – volume: 469 start-page: 385 year: 2011 ident: C7CS00169J-(cit76)/*[position()=1] publication-title: Nature doi: 10.1038/nature09698 – volume: 86 start-page: 6540 year: 1987 ident: C7CS00169J-(cit52)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.452396 – volume: 14 start-page: 677 year: 2004 ident: C7CS00169J-(cit53)/*[position()=1] publication-title: J. Fluoresc. doi: 10.1023/B:JOFL.0000047217.74943.5c – volume: 99 start-page: 9466 year: 1995 ident: C7CS00169J-(cit90)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100023a025 – volume: 52 start-page: 5940 year: 2013 ident: C7CS00169J-(cit19)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201203849 – volume: 464 start-page: 392 year: 2010 ident: C7CS00169J-(cit94)/*[position()=1] publication-title: Nature doi: 10.1038/nature08907 – volume: 55 start-page: 9131 year: 2016 ident: C7CS00169J-(cit128)/*[position()=1] publication-title: Appl. Opt. doi: 10.1364/AO.55.009131 – volume: 115 start-page: 15822 year: 2011 ident: C7CS00169J-(cit16)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp203317d – volume: 48 start-page: 60 year: 2009 ident: C7CS00169J-(cit86)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200802248 – volume: 16 start-page: 1109 year: 2001 ident: C7CS00169J-(cit118)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/S0956-5663(01)00239-1 – volume: 86 start-page: 3391 year: 1982 ident: C7CS00169J-(cit99)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100214a025 – volume: 1 start-page: 524 year: 2014 ident: C7CS00169J-(cit17)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/ph500060s – volume: 120 start-page: 20530 year: 2016 ident: C7CS00169J-(cit123)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b09215 – volume: 9 start-page: 427 year: 2015 ident: C7CS00169J-(cit141)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.103 – volume: 18 start-page: 033001 year: 2016 ident: C7CS00169J-(cit36)/*[position()=1] publication-title: J. Opt. doi: 10.1088/2040-8978/18/3/033001 – volume: 101 start-page: 363 year: 1980 ident: C7CS00169J-(cit3)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/0039-6028(80)90631-7 – volume: 9 start-page: 27 year: 2014 ident: C7CS00169J-(cit80)/*[position()=1] publication-title: Plasmonics doi: 10.1007/s11468-013-9594-y – volume: 96 start-page: 113002 year: 2006 ident: C7CS00169J-(cit49)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.113002 – volume: 48 start-page: 443001 year: 2015 ident: C7CS00169J-(cit60)/*[position()=1] publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/48/44/443001 – volume: 26 start-page: 163 year: 1974 ident: C7CS00169J-(cit7)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85388-1 – volume: 44 start-page: 994 year: 2013 ident: C7CS00169J-(cit122)/*[position()=1] publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4317 – volume: 110 start-page: 2641 year: 2010 ident: C7CS00169J-(cit145)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900343z – volume: 4 start-page: 957 year: 2004 ident: C7CS00169J-(cit91)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl049951r – volume: 79 start-page: 509 year: 1983 ident: C7CS00169J-(cit5)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.445550 – volume: 115 start-page: 20419 year: 2011 ident: C7CS00169J-(cit71)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp205997u – volume: 50 start-page: 665 year: 2011 ident: C7CS00169J-(cit22)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201004806 – volume: 120 start-page: 6719 year: 2016 ident: C7CS00169J-(cit28)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.6b03309 – volume: 52 start-page: 1217 year: 2013 ident: C7CS00169J-(cit27)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201208125 – volume: 14 start-page: 3740 year: 1998 ident: C7CS00169J-(cit85)/*[position()=1] publication-title: Langmuir doi: 10.1021/la980047m – volume: 66 start-page: 103 year: 2015 ident: C7CS00169J-(cit121)/*[position()=1] publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2014.11.015 – volume: 86 start-page: 10246 year: 2014 ident: C7CS00169J-(cit129)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac502424g – volume: 57 start-page: 783 year: 1985 ident: C7CS00169J-(cit6)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.57.783 – volume: 84 start-page: 4489 year: 2012 ident: C7CS00169J-(cit78)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac3003215 – volume: 105 start-page: 4065 year: 2001 ident: C7CS00169J-(cit88)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0107964 – volume: 10 start-page: 2455 year: 2016 ident: C7CS00169J-(cit81)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b07294 – volume: 262 start-page: 1422 year: 1993 ident: C7CS00169J-(cit136)/*[position()=1] publication-title: Science doi: 10.1126/science.262.5138.1422 – volume: 8 start-page: 899 year: 2014 ident: C7CS00169J-(cit131)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.271 – volume: 15 start-page: 4114 year: 2015 ident: C7CS00169J-(cit139)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01225 – volume: 15 start-page: 1957 year: 2003 ident: C7CS00169J-(cit87)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm020732l – volume: 26 start-page: 62 year: 1968 ident: C7CS00169J-(cit102)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(68)90272-5 – volume: 8 start-page: 512 year: 2013 ident: C7CS00169J-(cit93)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.98 – volume: 6 start-page: 2502 year: 2014 ident: C7CS00169J-(cit37)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr05112a – volume: 498 start-page: 82 year: 2013 ident: C7CS00169J-(cit140)/*[position()=1] publication-title: Nature doi: 10.1038/nature12151 – volume: 101 start-page: 023118 year: 2012 ident: C7CS00169J-(cit73)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4736575 – volume: 7 start-page: 237 year: 2012 ident: C7CS00169J-(cit112)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.18 – volume: 8 start-page: 835 year: 2014 ident: C7CS00169J-(cit142)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.228 – volume: 72 start-page: 329 year: 1968 ident: C7CS00169J-(cit50)/*[position()=1] publication-title: Ber. Bunsen-Ges. doi: 10.1002/bbpc.19680720261 – volume: 8 start-page: 2964 year: 2012 ident: C7CS00169J-(cit63)/*[position()=1] publication-title: Small doi: 10.1002/smll.201200750 – volume: 13 start-page: 16366 year: 2011 ident: C7CS00169J-(cit72)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21008d – volume: 184 start-page: 321 year: 2015 ident: C7CS00169J-(cit30)/*[position()=1] publication-title: Faraday Discuss. doi: 10.1039/C5FD00074B – volume: 270 start-page: 467 year: 1995 ident: C7CS00169J-(cit59)/*[position()=1] publication-title: Science doi: 10.1126/science.270.5235.467 – volume: 126 start-page: 8648 year: 2004 ident: C7CS00169J-(cit89)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047846d – volume: 241 start-page: 20 year: 1973 ident: C7CS00169J-(cit100)/*[position()=1] publication-title: Nature – volume: 7 start-page: 690 year: 2007 ident: C7CS00169J-(cit68)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl062795z – volume: 62 start-page: 2535 year: 1989 ident: C7CS00169J-(cit109)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.2535 – volume: 6 start-page: 459 year: 2012 ident: C7CS00169J-(cit143)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.112 – volume: 78 start-page: 6238 year: 2006 ident: C7CS00169J-(cit113)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac060586t – volume: 531 start-page: 623 year: 2016 ident: C7CS00169J-(cit138)/*[position()=1] publication-title: Nature doi: 10.1038/nature17428 – volume: 199 start-page: 388 year: 2016 ident: C7CS00169J-(cit107)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.03.065 – volume: 137 start-page: 7648 year: 2015 ident: C7CS00169J-(cit106)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04670 – volume: 92 start-page: 223118 year: 2008 ident: C7CS00169J-(cit134)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2938861 |
SSID | ssj0011762 |
Score | 2.6654365 |
SecondaryResourceType | review_article |
Snippet | Fluorescence spectroscopy with strong emitters is a remarkable tool with ultra-high sensitivity for detection and imaging down to the single-molecule level.... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3962 |
SubjectTerms | Coupling (molecular) detection limit emissions Emitters Fluorescence fluorescence emission spectroscopy fluorescent dyes image analysis Imaging nanoparticles Nanostructure photobleaching Plasmons Sensitivity Spectroscopy |
Title | Plasmon-enhanced fluorescence spectroscopy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28639669 https://www.proquest.com/docview/1912616617 https://www.proquest.com/docview/1925876523 https://www.proquest.com/docview/2286928444 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagPcAF8SqkPLQILoBcEjtx4mMVtSorhJDYSuUU-dkKVclqu3vpr-_YcR7bXVDhEu3azm7sbzLz2WPPIPTBulMHTFqc60xg0H4KC201lpRRCXXwRvkNst_ZyWk6PcvOhkSX_nTJUh6o663nSv4HVSgDXN0p2X9Atv9RKIDPgC9cAWG43gnjH0B94c-wqS9aR769XDULH6DJRY6d-ww37tzJmu-2jxHQ7dgMEUn7vTnewT8FucHQ2_P14vJCNPjXapATsIXhgD7IWvP5-GC8jpD4BcqYjtQNdWsLcdjUbFp1mLIYAGwjNHb6MiwZBrmgI-1HedCsJnxt88RsaOmYuiCnZV7-dIyTTwdb1Pnfb5mofuOgd5lTXg333ke7BGYIoOJ2D49mX7_1LqQkZ8GF1Hari01L-Zfh7nU2sjHFAMKx6BLBeMIxe4wehZnC5LCF_Qm6Z-qn6EHZJeh7hj7dhn8yhn8yhv85Oj0-mpUnOKS-wAos1xJbolywv1RLKrViKpe6SISL2Wo01drTVmIEsCtLMw0cXuSFC9MkC17YlAq6h3bqpjYv0aQgGiwJvKvUxqlgRJBcWC2Ax4qYq1RG6GM3BJUKceFdepLLanOwI_S-bztvo6FsbfWuG8kKhsR5oERtmtVVlfAEZuxACfO_tSEZmOiM0D-3IaRgHIhVmkboRQtV_zxQBXLIeIT2ALu-WOXqyj_e7wjtb6-o5tru36mHr9DD4RV6jXaWi5V5A-R0Kd8GMbwBa0CK1g |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmon-enhanced+fluorescence+spectroscopy&rft.jtitle=Chemical+Society+reviews&rft.au=Li%2C+Jian-Feng&rft.au=Li%2C+Chao-Yu&rft.au=Aroca%2C+Ricardo+F.&rft.date=2017-07-03&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=46&rft.issue=13&rft.spage=3962&rft.epage=3979&rft_id=info:doi/10.1039%2FC7CS00169J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C7CS00169J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |