Estimating individualized treatment rules in longitudinal studies with covariate-driven observation times

The sequential treatment decisions made by physicians to treat chronic diseases are formalized in the statistical literature as dynamic treatment regimes. To date, methods for dynamic treatment regimes have been developed under the assumption that observation times, that is, treatment and outcome mo...

Full description

Saved in:
Bibliographic Details
Published inStatistical methods in medical research Vol. 32; no. 5; pp. 868 - 884
Main Authors Coulombe, Janie, Moodie, Erica EM, Shortreed, Susan M, Renoux, Christel
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.05.2023
Subjects
Online AccessGet full text
ISSN0962-2802
1477-0334
DOI10.1177/09622802231158733

Cover

Loading…
Abstract The sequential treatment decisions made by physicians to treat chronic diseases are formalized in the statistical literature as dynamic treatment regimes. To date, methods for dynamic treatment regimes have been developed under the assumption that observation times, that is, treatment and outcome monitoring times, are determined by study investigators. That assumption is often not satisfied in electronic health records data in which the outcome, the observation times, and the treatment mechanism are associated with patients’ characteristics. The treatment and observation processes can lead to spurious associations between the treatment of interest and the outcome to be optimized under the dynamic treatment regime if not adequately considered in the analysis. We address these associations by incorporating two inverse weights that are functions of a patient’s covariates into dynamic weighted ordinary least squares to develop optimal single stage dynamic treatment regimes, known as individualized treatment rules. We show empirically that our methodology yields consistent, multiply robust estimators. In a cohort of new users of antidepressant drugs from the United Kingdom’s Clinical Practice Research Datalink, the proposed method is used to develop an optimal treatment rule that chooses between two antidepressants to optimize a utility function related to the change in body mass index.
AbstractList The sequential treatment decisions made by physicians to treat chronic diseases are formalized in the statistical literature as dynamic treatment regimes. To date, methods for dynamic treatment regimes have been developed under the assumption that observation times, that is, treatment and outcome monitoring times, are determined by study investigators. That assumption is often not satisfied in electronic health records data in which the outcome, the observation times, and the treatment mechanism are associated with patients' characteristics. The treatment and observation processes can lead to spurious associations between the treatment of interest and the outcome to be optimized under the dynamic treatment regime if not adequately considered in the analysis. We address these associations by incorporating two inverse weights that are functions of a patient's covariates into dynamic weighted ordinary least squares to develop optimal single stage dynamic treatment regimes, known as individualized treatment rules. We show empirically that our methodology yields consistent, multiply robust estimators. In a cohort of new users of antidepressant drugs from the United Kingdom's Clinical Practice Research Datalink, the proposed method is used to develop an optimal treatment rule that chooses between two antidepressants to optimize a utility function related to the change in body mass index.
Author Moodie, Erica EM
Shortreed, Susan M
Renoux, Christel
Coulombe, Janie
Author_xml – sequence: 1
  givenname: Janie
  orcidid: 0000-0001-5531-841X
  surname: Coulombe
  fullname: Coulombe, Janie
  email: janie.coulombe@umontreal.ca
– sequence: 2
  givenname: Erica EM
  surname: Moodie
  fullname: Moodie, Erica EM
– sequence: 3
  givenname: Susan M
  surname: Shortreed
  fullname: Shortreed, Susan M
– sequence: 4
  givenname: Christel
  surname: Renoux
  fullname: Renoux, Christel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36927216$$D View this record in MEDLINE/PubMed
BookMark eNplkMtOwzAQRS1URNPCB7BB_oEUP-I4XqKqPKRKbGAdOfG0uEqdynaC4OtxVFixmRnNvbqjMws0c70DhG4pWVEq5T1RJWMVYYxTKirJ-QXKaCFlTjgvZiib9HwyzNEihAMhRJJCXaE5LxWTjJYZspsQ7VFH6_bYOmNHawbd2W8wOHrQ8QguYj90EJKMu97tbRyMdbrDYRrS_tPGD9z2o_ZWR8iNtyM43DcB_JiCe4fTBQjX6HKnuwA3v32J3h83b-vnfPv69LJ-2OZtUcqYAyNKqF1hjOKm2HGlFZelEaIFwZqEDYK0tBFcUKKZYCCAVbKsyqYVqRZ8ie7OuaehOYKpTz7x-a_6jzkZVmdD0HuoD_3gE02oKamnp9b_nsp_AIRNaks
CitedBy_id crossref_primary_10_1186_s12883_024_03577_4
crossref_primary_10_1002_bimj_202300027
ContentType Journal Article
Copyright The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023
DBID AFRWT
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1177/09622802231158733
DatabaseName Sage Journals GOLD Open Access 2024
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Mathematics
EISSN 1477-0334
EndPage 884
ExternalDocumentID 36927216
10.1177_09622802231158733
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Healthy Brains Healthy Lives
  grantid: HBHL 1c-II-11
– fundername: National Institute of Mental Health
  grantid: R01 MH114873
  funderid: https://doi.org/10.13039/100000025
– fundername: Fonds de Recherche du Québec - Santé
  funderid: https://doi.org/10.13039/501100000156
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: https://doi.org/10.13039/501100000038
GroupedDBID ---
-TM
.2G
.2J
.2N
0-V
01A
0R~
123
1~K
29Q
31S
31U
31X
31Y
31Z
36B
4.4
53G
54M
5RE
5VS
6PF
7X7
88E
88I
8C1
8FE
8FG
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACKU
AACMV
AACTG
AADUE
AAEWN
AAGGD
AAGLT
AAJIQ
AAJOX
AAJPV
AANSI
AAPEO
AAQDB
AAQXH
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAWTL
AAYTG
ABAWP
ABCCA
ABCJG
ABDLQ
ABDWY
ABEIX
ABFWQ
ABHKI
ABHQH
ABIDT
ABJCF
ABJIS
ABKRH
ABLUO
ABPGX
ABPNF
ABQKF
ABQXT
ABRHV
ABTDE
ABUJY
ABUWG
ABVFX
ABVVC
ABYTW
ACARO
ACDSZ
ACDXX
ACFEJ
ACFMA
ACGBL
ACGFS
ACGOD
ACGZU
ACIWK
ACJER
ACLHI
ACLZU
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEBD
ADEIA
ADNMO
ADNON
ADRRZ
ADSTG
ADTBJ
ADUKL
ADVBO
ADYCS
AECGH
AECVZ
AEDTQ
AENEX
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFRWT
AFUIA
AFWMB
AGKLV
AGNHF
AGQPQ
AGWFA
AGWNL
AHDMH
AHHFK
AHMBA
AJEFB
AJMMQ
AJUZI
AJXAJ
ALIPV
ALKWR
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AMCVQ
AMVHM
ANDLU
ARALO
ARTOV
ASOEW
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
AZQEC
B8O
B8R
B8Z
B93
B94
BBRGL
BDDNI
BENPR
BGLVJ
BKIIM
BPACV
BPHCQ
BSEHC
BVXVI
BYIEH
C45
CAG
CBRKF
CCPQU
CFDXU
COF
CORYS
CQQTX
CS3
DC-
DD-
DD0
DE-
DF0
DO-
DOPDO
DU5
DV7
DWQXO
D~Y
EBS
EJD
EMOBN
F5P
FEDTE
FHBDP
FYUFA
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HEHIP
HF~
HMCUK
HVGLF
HZ~
J8X
K.F
K.J
L6V
M1P
M2P
M2S
M7S
N9A
O9-
OVD
P.B
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q1R
Q2X
Q7K
Q7L
Q7X
Q82
Q83
RIG
ROL
S01
SASJQ
SAUOL
SCNPE
SDB
SFB
SFC
SFK
SFN
SFT
SGA
SGP
SGR
SGV
SGX
SGZ
SHG
SNB
SPJ
SPV
SQCSI
STM
TEORI
TN5
UKHRP
YHZ
ZONMY
ZPPRI
ZRKOI
AAEJI
AAPII
AJGYC
AJVBE
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
POGQB
PPXIY
PQGLB
PRQQA
ID FETCH-LOGICAL-c467t-e20959f4dd93d4f39a9376d55ce52b117e50c1b53510a252e5e287686bc568643
IEDL.DBID AFRWT
ISSN 0962-2802
IngestDate Mon Jul 21 06:06:17 EDT 2025
Tue Jun 17 22:36:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords One-stage dynamic treatment regime
individualized treatment rule
covariate-driven observation times,confounding
repeated measures
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-e20959f4dd93d4f39a9376d55ce52b117e50c1b53510a252e5e287686bc568643
ORCID 0000-0001-5531-841X
OpenAccessLink https://journals.sagepub.com/doi/full/10.1177/09622802231158733?utm_source=summon&utm_medium=discovery-provider
PMID 36927216
PageCount 17
ParticipantIDs pubmed_primary_36927216
sage_journals_10_1177_09622802231158733
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: England
PublicationTitle Statistical methods in medical research
PublicationTitleAlternate Stat Methods Med Res
PublicationYear 2023
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Henckel, Perković, Maathuis 2021; 84
Linn, Laber, Stefanski 2015; 64
Coulombe, Moodie, Shortreed 2021; 190
Cai, Lu, Zhang 2012; 68
Hernán, Robins 2006; 60
McGrath, Lin, Zhang 2020; 1
Liang, Lu, Ying 2009; 65
Johnson, Glicksberg, Hodos 2018; 2018
Robins, Hernán, Brumback 2000; 11
Wallace, Moodie, Stephens 2017; 80
Andersen, Gill 1982; 10
Pearl 1998; 27
Robins, Orellana, Rotnitzky 2008; 27
Horvitz, Thompson 1952; 47
Coulombe, Moodie, Platt 2021; 16
McCulloch, Neuhaus, Olin 2016; 72
Lin, Ying 2001; 96
Thall, Wooten, Logothetis 2007; 26
Hernán, McAdams, McGrath 2009; 18
Stuart 2010; 25
Wallace, Moodie 2015; 71
Zhu, Lawless, Cotton 2017; 36
Dai, Pan 2018; 45
Deas, Robson, Wong 2003; 21
Shahn, Li, Sun 2019; 2019
Rosenbaum, Rubin 1983; 70
Lin, Scharfstein, Rosenheck 2004; 66
Herrett, Gallagher, Bhaskaran 2015; 44
Rubin 1974; 66
Kosorok, Laber 2019; 6
Neugebauer, Schmittdiel, Adams 2017; 5
Neyman 1990; 5
Greenland 2003; 14
Lahiri 1999; 27
Simoneau, Moodie, Azoulay 2020; 189
Lok 2017; 45
Bůžkovà, Lumley 2009; 28
Robins, Blevins, Ritter 1992; 3
Coulombe, Moodie, Platt 2021; 77
Lawless, Nadeau 1995; 37
Rosenbaum 1987; 82
Lipsitz, Fitzmaurice, Ibrahim 2002; 58
Bang, Robins 2005; 61
Moodie, Chakraborty, Kramer 2012; 40
Goldstein, Phelan, Pagidipati 2019; 26
Sun, McCulloch, Marr 2021; 116
Schuler, Rose 2017; 185
References_xml – volume: 26
  start-page: 1609
  year: 2019
  end-page: 1617
  article-title: How and when informative visit processes can bias inference when using electronic health records data for clinical research
  publication-title: J Am Med Inform Assoc
– volume: 65
  start-page: 377
  year: 2009
  end-page: 384
  article-title: Joint modeling and analysis of longitudinal data with informative observation times
  publication-title: Biometrics
– volume: 40
  start-page: 629
  year: 2012
  end-page: 645
  article-title: Q-learning for estimating optimal dynamic treatment rules from observational data
  publication-title: Can J Stat
– volume: 66
  start-page: 791
  year: 2004
  end-page: 813
  article-title: Analysis of longitudinal data with irregular, outcome-dependent follow-up
  publication-title: J Roy Stat Soc B
– volume: 28
  start-page: 987
  year: 2009
  end-page: 1003
  article-title: Semiparametric modeling of repeated measurements under outcome-dependent follow-up
  publication-title: Stat Med
– volume: 71
  start-page: 636
  year: 2015
  end-page: 644
  article-title: Doubly-robust dynamic treatment regimen estimation via weighted least squares
  publication-title: Biometrics
– volume: 66
  start-page: 688
  year: 1974
  end-page: 701
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: J Educ Psychol
– volume: 72
  start-page: 1315
  year: 2016
  end-page: 1324
  article-title: Biased and unbiased estimation in longitudinal studies with informative visit processes
  publication-title: Biometrics
– volume: 36
  start-page: 1548
  year: 2017
  end-page: 1567
  article-title: Estimation of parametric failure time distributions based on interval-censored data with irregular dependent follow-up
  publication-title: Stat Med
– volume: 2019
  start-page: 789
  year: 2019
  end-page: 798
  article-title: G-computation and hierarchical models for estimating multiple causal effects from observational disease registries with irregular visits
  publication-title: AMIA Jt Summits Transl Sci Proc
– volume: 47
  start-page: 663
  year: 1952
  end-page: 685
  article-title: A generalization of sampling without replacement from a finite universe
  publication-title: J Am Stat Assoc
– volume: 18
  start-page: 27
  year: 2009
  end-page: 52
  article-title: Observation plans in longitudinal studies with time-varying treatments
  publication-title: Stat Methods Med Res
– volume: 6
  start-page: 263
  year: 2019
  end-page: 286
  article-title: Precision medicine
  publication-title: Annu Rev Stat App
– volume: 185
  start-page: 65
  year: 2017
  end-page: 73
  article-title: Targeted maximum likelihood estimation for causal inference in observational studies
  publication-title: Am J Epidemiol
– volume: 45
  start-page: 571
  year: 2018
  end-page: 589
  article-title: Joint modelling of survival and longitudinal data with informative observation times
  publication-title: Scand J Stat
– volume: 26
  start-page: 4687
  year: 2007
  end-page: 4702
  article-title: Bayesian and frequentist two-stage treatment strategies based on sequential failure times subject to interval censoring
  publication-title: Stat Med
– volume: 44
  start-page: 827
  year: 2015
  end-page: 836
  article-title: Data resource profile: clinical practice research datalink (CPRD)
  publication-title: Int J Epidemiol
– volume: 58
  start-page: 621
  year: 2002
  end-page: 630
  article-title: Parameter estimation in longitudinal studies with outcome-dependent follow-up
  publication-title: Biometrics
– volume: 64
  start-page: 1
  year: 2015
  end-page: 32
  article-title: iqLearn: interactive Q-learning in R
  publication-title: J Stat Softw
– volume: 45
  start-page: 461
  year: 2017
  end-page: 499
  article-title: Mimicking counterfactual outcomes to estimate causal effects
  publication-title: Ann Stat
– volume: 10
  start-page: 1100
  year: 1982
  end-page: 1120
  article-title: Cox’s regression model for counting processes: a large sample study
  publication-title: Ann Stat
– volume: 68
  start-page: 1093
  year: 2012
  end-page: 1102
  article-title: Time-varying latent effect model for longitudinal data with informative observation times
  publication-title: Biometrics
– volume: 82
  start-page: 387
  year: 1987
  end-page: 394
  article-title: Model-based direct adjustment
  publication-title: J Am Stat Assoc
– volume: 14
  start-page: 300
  year: 2003
  end-page: 306
  article-title: Quantifying biases in causal models: classical confounding vs. collider-stratification bias
  publication-title: Epidemiology
– volume: 61
  start-page: 962
  year: 2005
  end-page: 973
  article-title: Doubly robust estimation in missing data and causal inference models
  publication-title: Biometrics
– volume: 3
  start-page: 319
  year: 1992
  end-page: 336
  article-title: G-estimation of the effect of prophylaxis therapy for pneumocystis carinii pneumonia on the survival of AIDS patients
  publication-title: Epidemiology
– volume: 96
  start-page: 103
  year: 2001
  end-page: 126
  article-title: Semiparametric and nonparametric regression analysis of longitudinal data
  publication-title: J Am Stat Assoc
– volume: 27
  start-page: 4678
  year: 2008
  end-page: 4721
  article-title: Estimation and extrapolation of optimal treatment and testing strategies
  publication-title: Stat Med
– volume: 2018
  start-page: 180
  year: 2018
  end-page: 191
  article-title: Causal inference on electronic health records to assess blood pressure treatment targets: an application of the parametric g formula
  publication-title: Pacific Symposium on Biocomputing 2018: Proceedings of the Pacific Symposium
– volume: 16
  start-page: 1868
  year: 2021
  end-page: 1890
  article-title: Estimation of the marginal effect of antidepressants on body mass index under confounding and endogenous covariate-driven monitoring times
  publication-title: Ann Appl Stat
– volume: 5
  start-page: 472
  year: 1990
  end-page: 480
  article-title: On the application of probability theory to agricultural experiments. Essay on principles. Section 9 (translation published in 1990)
  publication-title: Stat Sci
– volume: 60
  start-page: 578
  year: 2006
  end-page: 586
  article-title: Estimating causal effects from epidemiological data
  publication-title: J Epidemiol Commun H
– volume: 27
  start-page: 226
  year: 1998
  end-page: 284
  article-title: Graphs, causality, and structural equation models
  publication-title: Sociol Method Res
– volume: 37
  start-page: 158
  year: 1995
  end-page: 168
  article-title: Some simple robust methods for the analysis of recurrent events
  publication-title: Technometrics
– volume: 5
  start-page: 1
  year: 2017
  end-page: 66
  article-title: Identification of the joint effect of a dynamic treatment intervention and a stochastic monitoring intervention under the no direct effect assumption
  publication-title: J Causal Inference
– volume: 77
  start-page: 162
  year: 2021
  end-page: 174
  article-title: Weighted regression analysis to correct for informative monitoring times and confounders in longitudinal studies
  publication-title: Biometrics
– volume: 70
  start-page: 41
  year: 1983
  end-page: 55
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
– volume: 11
  start-page: 1044
  year: 2000
  end-page: 3983
  article-title: Marginal structural models and causal inference in epidemiology
  publication-title: Epidemiology
– volume: 116
  start-page: 594
  year: 2021
  end-page: 604
  article-title: Recurrent events analysis with data collected at informative clinical visits in electronic health records
  publication-title: J Am Stat Assoc
– volume: 189
  start-page: 461
  year: 2020
  end-page: 469
  article-title: Adaptive treatment strategies with survival outcomes: an application to the treatment of type 2 diabetes using a large observational database
  publication-title: Am J Epidemiol
– volume: 190
  start-page: 1210
  year: 2021
  end-page: 1219
  article-title: Can the risk of severe depression-related outcomes be reduced by tailoring the antidepressant therapy to patient characteristics?
  publication-title: Am J Epidemiol
– volume: 27
  start-page: 386
  year: 1999
  end-page: 404
  article-title: Theoretical comparisons of block bootstrap methods
  publication-title: Ann Stat
– volume: 1
  start-page: 1
  year: 2020
  end-page: 12
  article-title: gfoRmula: an R package for estimating the effects of sustained treatment strategies via the parametric g-formula
  publication-title: Patterns
– volume: 21
  start-page: 883
  year: 2003
  end-page: 903
  article-title: Measuring neighbourhood deprivation: a critique of the index of multiple deprivation
  publication-title: Environ Plann C
– volume: 25
  start-page: 1
  year: 2010
  end-page: 21
  article-title: Matching methods for causal inference: a review and a look forward
  publication-title: Stat Sci
– volume: 80
  start-page: 1
  year: 2017
  end-page: 20
  article-title: Dynamic treatment regimen estimation via regression-based techniques: introducing R package DTRreg
  publication-title: J Stat Softw
– volume: 84
  start-page: 579
  year: 2021
  end-page: 599
  article-title: Graphical criteria for efficient total effect estimation via adjustment in causal linear models
  publication-title: J R Stat Soc B
SSID ssj0007049
Score 2.3555672
Snippet The sequential treatment decisions made by physicians to treat chronic diseases are formalized in the statistical literature as dynamic treatment regimes. To...
SourceID pubmed
sage
SourceType Index Database
Publisher
StartPage 868
SubjectTerms Humans
Longitudinal Studies
Models, Statistical
Title Estimating individualized treatment rules in longitudinal studies with covariate-driven observation times
URI https://journals.sagepub.com/doi/full/10.1177/09622802231158733
https://www.ncbi.nlm.nih.gov/pubmed/36927216
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qC1IPovVVH2UPgqfYJrubNicp0lKEFJEWewt5bKTQJtIkB_31zuRFEQ9eQkgWNjvZnf3msfMB3HMpvIGLZqpp6UpDe8PTXMEpTWyAaNYI1Sivzm_PzdlSvKzkqgFxdRamlGDySGlV-EW5sqbVTd7ofhlk7CPupjIuuLUhoBkNOX_K0q1TuLsrVg16QvHpbEuhbZ8SIr-06njbAbSIjEk0oTWevr0vauU9LBEzdqBRD2Ug9M9O9zatvSywfGOansBxiSjZuJgCp9BQUQeO7Loca9KBQ7uMoHegTeiyKM58BusJ3lCj6IOt65NZ628VsDoBne2yjUrwNdvExG2UBcSjxZIi_5CRH5fhsNHkRtSqBTvSniz2amcvy9nrz2E5nSyeZ1rJvaD5qDpTTRnkIAxFEFg8ECG3XMQxZiClr6ThoTyUHPi6JzmuadeQhpIKbS9zZHq-xKvgF9CM4khdARPSM1zhK84tLlCBWAIhkx6G-lAPEG7oXbgsxOh8FgU2HG5aBhUV6sIDydWpJoWjV8XJf_-K63-3vIE2McYXOYu30Ex3mbpDXJF6vXIu9OBg_mr_APZIx54
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60Ba0H0fqqzz0IniJNdjdNjkVaqjY9SIu9hSS7kUJppGk9-OudSbahiAcvIZDdEGayM9_Mzn4DcM-liNsRhqmub2sL443YigSnMrE2olkn1V7Bzh-M3MFEvEzl1FRV0lkYI8H8kcqq8IsKY12tbmJK8l1icEGvhljG63C-C3WBXsurQb3bf3sfV3a4Y8AvTrBohtnT_PMlW_5nq6Cr8DH9Izg04JB1S20ew45eNOEgqJhV8ybsBWYzvAkNAoolz_IJzHp4Q4MWH2xWHbKafWvFqlpytlzPdY6P2TyjNkVrRS2xWF6WEjJKybIk-8LoGQGopZZkCFkWV3lbVjSiP4VJvzd-GlimjYKVoBVcWdqhXF8qlPK5Ein3I4QkrpIy0dKJUR5athM7lhyXZ-RIR0uNYZTruXEi8Sr4GdQW2UJfABMydiKRaM59LtAW-ALRj52mdsdWqAO7BeelGMPPkisj5K7vED9QCx5IruFGv6G94Rn_rYrLf4-8g_3BOBiGw-fR6xU0qBF8WYp4DbXVcq1vEC6s4lvzX_wA7vez-g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La4NAEB7aBEJ6KG36Sp97KPRko-6uxmNoI-kjoZSE5ibqriUQNMSkh_76zupGQumhFxHcFZlxZ7957DcAt5SzyAzRTXU8Sxrob0RGyKgqEzMRzdqJ7Bbs_MORM5iw5ymf6oCbOgujJZjfq7Iq_KLCWKvVvRBJR-cYOwi7FYsL7myIZ7oupbtQZ8xlZg3qPf_9Y1zZYlcDYJxgqBk6r_nnS7b2oK2irmKf8Q9gXwNE0is1egg7Mm3B3rBiV81b0BjqhHgLmgosllzLRzDr440alH6SWXXQavYtBanqyclyPZc5PibzTLUqWgvVFovkZTkhUWFZEmdf6EEjCDXEUhlDkkVV7JYUzeiPYeL3xw8DQ7dSMGK0hCtD2irelzAhPCpYQr0QYYkjOI8ltyOUh-RmbEWc4hINbW5LLtGVcrpOFHO8MnoCtTRL5RkQxiM7ZLGk1KMM7YHHEAFZSWK5lkD0YLXhtBRjsCj5MgLqeLbiCGrDnZJrsNFxYG24xn-r4vzfI2-g8fboB69Po5cLaKpe8GU14iXUVsu1vELEsIqu9W_xA81QtQo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+individualized+treatment+rules+in+longitudinal+studies+with+covariate-driven+observation+times&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Coulombe%2C+Janie&rft.au=Moodie%2C+Erica+EM&rft.au=Shortreed%2C+Susan+M&rft.au=Renoux%2C+Christel&rft.date=2023-05-01&rft.pub=SAGE+Publications&rft.issn=0962-2802&rft.eissn=1477-0334&rft.volume=32&rft.issue=5&rft.spage=868&rft.epage=884&rft_id=info:doi/10.1177%2F09622802231158733&rft.externalDocID=10.1177_09622802231158733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-2802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-2802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-2802&client=summon