Estimating individualized treatment rules in longitudinal studies with covariate-driven observation times
The sequential treatment decisions made by physicians to treat chronic diseases are formalized in the statistical literature as dynamic treatment regimes. To date, methods for dynamic treatment regimes have been developed under the assumption that observation times, that is, treatment and outcome mo...
Saved in:
Published in | Statistical methods in medical research Vol. 32; no. 5; pp. 868 - 884 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0962-2802 1477-0334 |
DOI | 10.1177/09622802231158733 |
Cover
Loading…
Abstract | The sequential treatment decisions made by physicians to treat chronic diseases are formalized in the statistical literature as dynamic treatment regimes. To date, methods for dynamic treatment regimes have been developed under the assumption that observation times, that is, treatment and outcome monitoring times, are determined by study investigators. That assumption is often not satisfied in electronic health records data in which the outcome, the observation times, and the treatment mechanism are associated with patients’ characteristics. The treatment and observation processes can lead to spurious associations between the treatment of interest and the outcome to be optimized under the dynamic treatment regime if not adequately considered in the analysis. We address these associations by incorporating two inverse weights that are functions of a patient’s covariates into dynamic weighted ordinary least squares to develop optimal single stage dynamic treatment regimes, known as individualized treatment rules. We show empirically that our methodology yields consistent, multiply robust estimators. In a cohort of new users of antidepressant drugs from the United Kingdom’s Clinical Practice Research Datalink, the proposed method is used to develop an optimal treatment rule that chooses between two antidepressants to optimize a utility function related to the change in body mass index. |
---|---|
AbstractList | The sequential treatment decisions made by physicians to treat chronic diseases are formalized in the statistical literature as dynamic treatment regimes. To date, methods for dynamic treatment regimes have been developed under the assumption that observation times, that is, treatment and outcome monitoring times, are determined by study investigators. That assumption is often not satisfied in electronic health records data in which the outcome, the observation times, and the treatment mechanism are associated with patients' characteristics. The treatment and observation processes can lead to spurious associations between the treatment of interest and the outcome to be optimized under the dynamic treatment regime if not adequately considered in the analysis. We address these associations by incorporating two inverse weights that are functions of a patient's covariates into dynamic weighted ordinary least squares to develop optimal single stage dynamic treatment regimes, known as individualized treatment rules. We show empirically that our methodology yields consistent, multiply robust estimators. In a cohort of new users of antidepressant drugs from the United Kingdom's Clinical Practice Research Datalink, the proposed method is used to develop an optimal treatment rule that chooses between two antidepressants to optimize a utility function related to the change in body mass index. |
Author | Moodie, Erica EM Shortreed, Susan M Renoux, Christel Coulombe, Janie |
Author_xml | – sequence: 1 givenname: Janie orcidid: 0000-0001-5531-841X surname: Coulombe fullname: Coulombe, Janie email: janie.coulombe@umontreal.ca – sequence: 2 givenname: Erica EM surname: Moodie fullname: Moodie, Erica EM – sequence: 3 givenname: Susan M surname: Shortreed fullname: Shortreed, Susan M – sequence: 4 givenname: Christel surname: Renoux fullname: Renoux, Christel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36927216$$D View this record in MEDLINE/PubMed |
BookMark | eNplkMtOwzAQRS1URNPCB7BB_oEUP-I4XqKqPKRKbGAdOfG0uEqdynaC4OtxVFixmRnNvbqjMws0c70DhG4pWVEq5T1RJWMVYYxTKirJ-QXKaCFlTjgvZiib9HwyzNEihAMhRJJCXaE5LxWTjJYZspsQ7VFH6_bYOmNHawbd2W8wOHrQ8QguYj90EJKMu97tbRyMdbrDYRrS_tPGD9z2o_ZWR8iNtyM43DcB_JiCe4fTBQjX6HKnuwA3v32J3h83b-vnfPv69LJ-2OZtUcqYAyNKqF1hjOKm2HGlFZelEaIFwZqEDYK0tBFcUKKZYCCAVbKsyqYVqRZ8ie7OuaehOYKpTz7x-a_6jzkZVmdD0HuoD_3gE02oKamnp9b_nsp_AIRNaks |
CitedBy_id | crossref_primary_10_1186_s12883_024_03577_4 crossref_primary_10_1002_bimj_202300027 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 |
Copyright_xml | – notice: The Author(s) 2023 |
DBID | AFRWT CGR CUY CVF ECM EIF NPM |
DOI | 10.1177/09622802231158733 |
DatabaseName | Sage Journals GOLD Open Access 2024 Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Mathematics |
EISSN | 1477-0334 |
EndPage | 884 |
ExternalDocumentID | 36927216 10.1177_09622802231158733 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Healthy Brains Healthy Lives grantid: HBHL 1c-II-11 – fundername: National Institute of Mental Health grantid: R01 MH114873 funderid: https://doi.org/10.13039/100000025 – fundername: Fonds de Recherche du Québec - Santé funderid: https://doi.org/10.13039/501100000156 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: https://doi.org/10.13039/501100000038 |
GroupedDBID | --- -TM .2G .2J .2N 0-V 01A 0R~ 123 1~K 29Q 31S 31U 31X 31Y 31Z 36B 4.4 53G 54M 5RE 5VS 6PF 7X7 88E 88I 8C1 8FE 8FG 8FI 8FJ 8R4 8R5 AABMB AABOD AACKU AACMV AACTG AADUE AAEWN AAGGD AAGLT AAJIQ AAJOX AAJPV AANSI AAPEO AAQDB AAQXH AAQXI AARDL AARIX AATAA AATBZ AAWTL AAYTG ABAWP ABCCA ABCJG ABDLQ ABDWY ABEIX ABFWQ ABHKI ABHQH ABIDT ABJCF ABJIS ABKRH ABLUO ABPGX ABPNF ABQKF ABQXT ABRHV ABTDE ABUJY ABUWG ABVFX ABVVC ABYTW ACARO ACDSZ ACDXX ACFEJ ACFMA ACGBL ACGFS ACGOD ACGZU ACIWK ACJER ACLHI ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADDLC ADEBD ADEIA ADNMO ADNON ADRRZ ADSTG ADTBJ ADUKL ADVBO ADYCS AECGH AECVZ AEDTQ AENEX AEPTA AEQLS AERKM AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFRWT AFUIA AFWMB AGKLV AGNHF AGQPQ AGWFA AGWNL AHDMH AHHFK AHMBA AJEFB AJMMQ AJUZI AJXAJ ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS ALSLI AMCVQ AMVHM ANDLU ARALO ARTOV ASOEW ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN AZQEC B8O B8R B8Z B93 B94 BBRGL BDDNI BENPR BGLVJ BKIIM BPACV BPHCQ BSEHC BVXVI BYIEH C45 CAG CBRKF CCPQU CFDXU COF CORYS CQQTX CS3 DC- DD- DD0 DE- DF0 DO- DOPDO DU5 DV7 DWQXO D~Y EBS EJD EMOBN F5P FEDTE FHBDP FYUFA GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HEHIP HF~ HMCUK HVGLF HZ~ J8X K.F K.J L6V M1P M2P M2S M7S N9A O9- OVD P.B P2P PHGZM PHGZT PQQKQ PROAC PSQYO PTHSS Q1R Q2X Q7K Q7L Q7X Q82 Q83 RIG ROL S01 SASJQ SAUOL SCNPE SDB SFB SFC SFK SFN SFT SGA SGP SGR SGV SGX SGZ SHG SNB SPJ SPV SQCSI STM TEORI TN5 UKHRP YHZ ZONMY ZPPRI ZRKOI AAEJI AAPII AJGYC AJVBE CGR CUY CVF ECM EIF NPM PJZUB POGQB PPXIY PQGLB PRQQA |
ID | FETCH-LOGICAL-c467t-e20959f4dd93d4f39a9376d55ce52b117e50c1b53510a252e5e287686bc568643 |
IEDL.DBID | AFRWT |
ISSN | 0962-2802 |
IngestDate | Mon Jul 21 06:06:17 EDT 2025 Tue Jun 17 22:36:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | One-stage dynamic treatment regime individualized treatment rule covariate-driven observation times,confounding repeated measures |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-e20959f4dd93d4f39a9376d55ce52b117e50c1b53510a252e5e287686bc568643 |
ORCID | 0000-0001-5531-841X |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/09622802231158733?utm_source=summon&utm_medium=discovery-provider |
PMID | 36927216 |
PageCount | 17 |
ParticipantIDs | pubmed_primary_36927216 sage_journals_10_1177_09622802231158733 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: England |
PublicationTitle | Statistical methods in medical research |
PublicationTitleAlternate | Stat Methods Med Res |
PublicationYear | 2023 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Henckel, Perković, Maathuis 2021; 84 Linn, Laber, Stefanski 2015; 64 Coulombe, Moodie, Shortreed 2021; 190 Cai, Lu, Zhang 2012; 68 Hernán, Robins 2006; 60 McGrath, Lin, Zhang 2020; 1 Liang, Lu, Ying 2009; 65 Johnson, Glicksberg, Hodos 2018; 2018 Robins, Hernán, Brumback 2000; 11 Wallace, Moodie, Stephens 2017; 80 Andersen, Gill 1982; 10 Pearl 1998; 27 Robins, Orellana, Rotnitzky 2008; 27 Horvitz, Thompson 1952; 47 Coulombe, Moodie, Platt 2021; 16 McCulloch, Neuhaus, Olin 2016; 72 Lin, Ying 2001; 96 Thall, Wooten, Logothetis 2007; 26 Hernán, McAdams, McGrath 2009; 18 Stuart 2010; 25 Wallace, Moodie 2015; 71 Zhu, Lawless, Cotton 2017; 36 Dai, Pan 2018; 45 Deas, Robson, Wong 2003; 21 Shahn, Li, Sun 2019; 2019 Rosenbaum, Rubin 1983; 70 Lin, Scharfstein, Rosenheck 2004; 66 Herrett, Gallagher, Bhaskaran 2015; 44 Rubin 1974; 66 Kosorok, Laber 2019; 6 Neugebauer, Schmittdiel, Adams 2017; 5 Neyman 1990; 5 Greenland 2003; 14 Lahiri 1999; 27 Simoneau, Moodie, Azoulay 2020; 189 Lok 2017; 45 Bůžkovà, Lumley 2009; 28 Robins, Blevins, Ritter 1992; 3 Coulombe, Moodie, Platt 2021; 77 Lawless, Nadeau 1995; 37 Rosenbaum 1987; 82 Lipsitz, Fitzmaurice, Ibrahim 2002; 58 Bang, Robins 2005; 61 Moodie, Chakraborty, Kramer 2012; 40 Goldstein, Phelan, Pagidipati 2019; 26 Sun, McCulloch, Marr 2021; 116 Schuler, Rose 2017; 185 |
References_xml | – volume: 26 start-page: 1609 year: 2019 end-page: 1617 article-title: How and when informative visit processes can bias inference when using electronic health records data for clinical research publication-title: J Am Med Inform Assoc – volume: 65 start-page: 377 year: 2009 end-page: 384 article-title: Joint modeling and analysis of longitudinal data with informative observation times publication-title: Biometrics – volume: 40 start-page: 629 year: 2012 end-page: 645 article-title: Q-learning for estimating optimal dynamic treatment rules from observational data publication-title: Can J Stat – volume: 66 start-page: 791 year: 2004 end-page: 813 article-title: Analysis of longitudinal data with irregular, outcome-dependent follow-up publication-title: J Roy Stat Soc B – volume: 28 start-page: 987 year: 2009 end-page: 1003 article-title: Semiparametric modeling of repeated measurements under outcome-dependent follow-up publication-title: Stat Med – volume: 71 start-page: 636 year: 2015 end-page: 644 article-title: Doubly-robust dynamic treatment regimen estimation via weighted least squares publication-title: Biometrics – volume: 66 start-page: 688 year: 1974 end-page: 701 article-title: Estimating causal effects of treatments in randomized and nonrandomized studies publication-title: J Educ Psychol – volume: 72 start-page: 1315 year: 2016 end-page: 1324 article-title: Biased and unbiased estimation in longitudinal studies with informative visit processes publication-title: Biometrics – volume: 36 start-page: 1548 year: 2017 end-page: 1567 article-title: Estimation of parametric failure time distributions based on interval-censored data with irregular dependent follow-up publication-title: Stat Med – volume: 2019 start-page: 789 year: 2019 end-page: 798 article-title: G-computation and hierarchical models for estimating multiple causal effects from observational disease registries with irregular visits publication-title: AMIA Jt Summits Transl Sci Proc – volume: 47 start-page: 663 year: 1952 end-page: 685 article-title: A generalization of sampling without replacement from a finite universe publication-title: J Am Stat Assoc – volume: 18 start-page: 27 year: 2009 end-page: 52 article-title: Observation plans in longitudinal studies with time-varying treatments publication-title: Stat Methods Med Res – volume: 6 start-page: 263 year: 2019 end-page: 286 article-title: Precision medicine publication-title: Annu Rev Stat App – volume: 185 start-page: 65 year: 2017 end-page: 73 article-title: Targeted maximum likelihood estimation for causal inference in observational studies publication-title: Am J Epidemiol – volume: 45 start-page: 571 year: 2018 end-page: 589 article-title: Joint modelling of survival and longitudinal data with informative observation times publication-title: Scand J Stat – volume: 26 start-page: 4687 year: 2007 end-page: 4702 article-title: Bayesian and frequentist two-stage treatment strategies based on sequential failure times subject to interval censoring publication-title: Stat Med – volume: 44 start-page: 827 year: 2015 end-page: 836 article-title: Data resource profile: clinical practice research datalink (CPRD) publication-title: Int J Epidemiol – volume: 58 start-page: 621 year: 2002 end-page: 630 article-title: Parameter estimation in longitudinal studies with outcome-dependent follow-up publication-title: Biometrics – volume: 64 start-page: 1 year: 2015 end-page: 32 article-title: iqLearn: interactive Q-learning in R publication-title: J Stat Softw – volume: 45 start-page: 461 year: 2017 end-page: 499 article-title: Mimicking counterfactual outcomes to estimate causal effects publication-title: Ann Stat – volume: 10 start-page: 1100 year: 1982 end-page: 1120 article-title: Cox’s regression model for counting processes: a large sample study publication-title: Ann Stat – volume: 68 start-page: 1093 year: 2012 end-page: 1102 article-title: Time-varying latent effect model for longitudinal data with informative observation times publication-title: Biometrics – volume: 82 start-page: 387 year: 1987 end-page: 394 article-title: Model-based direct adjustment publication-title: J Am Stat Assoc – volume: 14 start-page: 300 year: 2003 end-page: 306 article-title: Quantifying biases in causal models: classical confounding vs. collider-stratification bias publication-title: Epidemiology – volume: 61 start-page: 962 year: 2005 end-page: 973 article-title: Doubly robust estimation in missing data and causal inference models publication-title: Biometrics – volume: 3 start-page: 319 year: 1992 end-page: 336 article-title: G-estimation of the effect of prophylaxis therapy for pneumocystis carinii pneumonia on the survival of AIDS patients publication-title: Epidemiology – volume: 96 start-page: 103 year: 2001 end-page: 126 article-title: Semiparametric and nonparametric regression analysis of longitudinal data publication-title: J Am Stat Assoc – volume: 27 start-page: 4678 year: 2008 end-page: 4721 article-title: Estimation and extrapolation of optimal treatment and testing strategies publication-title: Stat Med – volume: 2018 start-page: 180 year: 2018 end-page: 191 article-title: Causal inference on electronic health records to assess blood pressure treatment targets: an application of the parametric g formula publication-title: Pacific Symposium on Biocomputing 2018: Proceedings of the Pacific Symposium – volume: 16 start-page: 1868 year: 2021 end-page: 1890 article-title: Estimation of the marginal effect of antidepressants on body mass index under confounding and endogenous covariate-driven monitoring times publication-title: Ann Appl Stat – volume: 5 start-page: 472 year: 1990 end-page: 480 article-title: On the application of probability theory to agricultural experiments. Essay on principles. Section 9 (translation published in 1990) publication-title: Stat Sci – volume: 60 start-page: 578 year: 2006 end-page: 586 article-title: Estimating causal effects from epidemiological data publication-title: J Epidemiol Commun H – volume: 27 start-page: 226 year: 1998 end-page: 284 article-title: Graphs, causality, and structural equation models publication-title: Sociol Method Res – volume: 37 start-page: 158 year: 1995 end-page: 168 article-title: Some simple robust methods for the analysis of recurrent events publication-title: Technometrics – volume: 5 start-page: 1 year: 2017 end-page: 66 article-title: Identification of the joint effect of a dynamic treatment intervention and a stochastic monitoring intervention under the no direct effect assumption publication-title: J Causal Inference – volume: 77 start-page: 162 year: 2021 end-page: 174 article-title: Weighted regression analysis to correct for informative monitoring times and confounders in longitudinal studies publication-title: Biometrics – volume: 70 start-page: 41 year: 1983 end-page: 55 article-title: The central role of the propensity score in observational studies for causal effects publication-title: Biometrika – volume: 11 start-page: 1044 year: 2000 end-page: 3983 article-title: Marginal structural models and causal inference in epidemiology publication-title: Epidemiology – volume: 116 start-page: 594 year: 2021 end-page: 604 article-title: Recurrent events analysis with data collected at informative clinical visits in electronic health records publication-title: J Am Stat Assoc – volume: 189 start-page: 461 year: 2020 end-page: 469 article-title: Adaptive treatment strategies with survival outcomes: an application to the treatment of type 2 diabetes using a large observational database publication-title: Am J Epidemiol – volume: 190 start-page: 1210 year: 2021 end-page: 1219 article-title: Can the risk of severe depression-related outcomes be reduced by tailoring the antidepressant therapy to patient characteristics? publication-title: Am J Epidemiol – volume: 27 start-page: 386 year: 1999 end-page: 404 article-title: Theoretical comparisons of block bootstrap methods publication-title: Ann Stat – volume: 1 start-page: 1 year: 2020 end-page: 12 article-title: gfoRmula: an R package for estimating the effects of sustained treatment strategies via the parametric g-formula publication-title: Patterns – volume: 21 start-page: 883 year: 2003 end-page: 903 article-title: Measuring neighbourhood deprivation: a critique of the index of multiple deprivation publication-title: Environ Plann C – volume: 25 start-page: 1 year: 2010 end-page: 21 article-title: Matching methods for causal inference: a review and a look forward publication-title: Stat Sci – volume: 80 start-page: 1 year: 2017 end-page: 20 article-title: Dynamic treatment regimen estimation via regression-based techniques: introducing R package DTRreg publication-title: J Stat Softw – volume: 84 start-page: 579 year: 2021 end-page: 599 article-title: Graphical criteria for efficient total effect estimation via adjustment in causal linear models publication-title: J R Stat Soc B |
SSID | ssj0007049 |
Score | 2.3555672 |
Snippet | The sequential treatment decisions made by physicians to treat chronic diseases are formalized in the statistical literature as dynamic treatment regimes. To... |
SourceID | pubmed sage |
SourceType | Index Database Publisher |
StartPage | 868 |
SubjectTerms | Humans Longitudinal Studies Models, Statistical |
Title | Estimating individualized treatment rules in longitudinal studies with covariate-driven observation times |
URI | https://journals.sagepub.com/doi/full/10.1177/09622802231158733 https://www.ncbi.nlm.nih.gov/pubmed/36927216 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qC1IPovVVH2UPgqfYJrubNicp0lKEFJEWewt5bKTQJtIkB_31zuRFEQ9eQkgWNjvZnf3msfMB3HMpvIGLZqpp6UpDe8PTXMEpTWyAaNYI1Sivzm_PzdlSvKzkqgFxdRamlGDySGlV-EW5sqbVTd7ofhlk7CPupjIuuLUhoBkNOX_K0q1TuLsrVg16QvHpbEuhbZ8SIr-06njbAbSIjEk0oTWevr0vauU9LBEzdqBRD2Ug9M9O9zatvSywfGOansBxiSjZuJgCp9BQUQeO7Loca9KBQ7uMoHegTeiyKM58BusJ3lCj6IOt65NZ628VsDoBne2yjUrwNdvExG2UBcSjxZIi_5CRH5fhsNHkRtSqBTvSniz2amcvy9nrz2E5nSyeZ1rJvaD5qDpTTRnkIAxFEFg8ECG3XMQxZiClr6ThoTyUHPi6JzmuadeQhpIKbS9zZHq-xKvgF9CM4khdARPSM1zhK84tLlCBWAIhkx6G-lAPEG7oXbgsxOh8FgU2HG5aBhUV6sIDydWpJoWjV8XJf_-K63-3vIE2McYXOYu30Ex3mbpDXJF6vXIu9OBg_mr_APZIx54 |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60Ba0H0fqqzz0IniJNdjdNjkVaqjY9SIu9hSS7kUJppGk9-OudSbahiAcvIZDdEGayM9_Mzn4DcM-liNsRhqmub2sL443YigSnMrE2olkn1V7Bzh-M3MFEvEzl1FRV0lkYI8H8kcqq8IsKY12tbmJK8l1icEGvhljG63C-C3WBXsurQb3bf3sfV3a4Y8AvTrBohtnT_PMlW_5nq6Cr8DH9Izg04JB1S20ew45eNOEgqJhV8ybsBWYzvAkNAoolz_IJzHp4Q4MWH2xWHbKafWvFqlpytlzPdY6P2TyjNkVrRS2xWF6WEjJKybIk-8LoGQGopZZkCFkWV3lbVjSiP4VJvzd-GlimjYKVoBVcWdqhXF8qlPK5Ein3I4QkrpIy0dKJUR5athM7lhyXZ-RIR0uNYZTruXEi8Sr4GdQW2UJfABMydiKRaM59LtAW-ALRj52mdsdWqAO7BeelGMPPkisj5K7vED9QCx5IruFGv6G94Rn_rYrLf4-8g_3BOBiGw-fR6xU0qBF8WYp4DbXVcq1vEC6s4lvzX_wA7vez-g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La4NAEB7aBEJ6KG36Sp97KPRko-6uxmNoI-kjoZSE5ibqriUQNMSkh_76zupGQumhFxHcFZlxZ7957DcAt5SzyAzRTXU8Sxrob0RGyKgqEzMRzdqJ7Bbs_MORM5iw5ymf6oCbOgujJZjfq7Iq_KLCWKvVvRBJR-cYOwi7FYsL7myIZ7oupbtQZ8xlZg3qPf_9Y1zZYlcDYJxgqBk6r_nnS7b2oK2irmKf8Q9gXwNE0is1egg7Mm3B3rBiV81b0BjqhHgLmgosllzLRzDr440alH6SWXXQavYtBanqyclyPZc5PibzTLUqWgvVFovkZTkhUWFZEmdf6EEjCDXEUhlDkkVV7JYUzeiPYeL3xw8DQ7dSMGK0hCtD2irelzAhPCpYQr0QYYkjOI8ltyOUh-RmbEWc4hINbW5LLtGVcrpOFHO8MnoCtTRL5RkQxiM7ZLGk1KMM7YHHEAFZSWK5lkD0YLXhtBRjsCj5MgLqeLbiCGrDnZJrsNFxYG24xn-r4vzfI2-g8fboB69Po5cLaKpe8GU14iXUVsu1vELEsIqu9W_xA81QtQo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+individualized+treatment+rules+in+longitudinal+studies+with+covariate-driven+observation+times&rft.jtitle=Statistical+methods+in+medical+research&rft.au=Coulombe%2C+Janie&rft.au=Moodie%2C+Erica+EM&rft.au=Shortreed%2C+Susan+M&rft.au=Renoux%2C+Christel&rft.date=2023-05-01&rft.pub=SAGE+Publications&rft.issn=0962-2802&rft.eissn=1477-0334&rft.volume=32&rft.issue=5&rft.spage=868&rft.epage=884&rft_id=info:doi/10.1177%2F09622802231158733&rft.externalDocID=10.1177_09622802231158733 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-2802&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-2802&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-2802&client=summon |