Electromagnetic theories of surface-enhanced Raman spectroscopy

Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 46; no. 13; pp. 442 - 476
Main Authors Ding, Song-Yuan, You, En-Ming, Tian, Zhong-Qun, Moskovits, Martin
Format Journal Article
LanguageEnglish
Published England 07.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical strategies for simulating the optical properties and consequential SERS performance of particle-on-substrate systems that might guide the design of SERS-active systems. Finally, some current theoretical attempts are briefly discussed for unifying EM and non-EM contribution to SERS. A fundamental theoretical understanding of SERS, and SERS hotspots, leads to new design principles for SERS substrates and new applications in nanomaterials and chemical analysis.
AbstractList Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical strategies for simulating the optical properties and consequential SERS performance of particle-on-substrate systems that might guide the design of SERS-active systems. Finally, some current theoretical attempts are briefly discussed for unifying EM and non-EM contribution to SERS. A fundamental theoretical understanding of SERS, and SERS hotspots, leads to new design principles for SERS substrates and new applications in nanomaterials and chemical analysis.
Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical strategies for simulating the optical properties and consequential SERS performance of particle-on-substrate systems that might guide the design of SERS-active systems. Finally, some current theoretical attempts are briefly discussed for unifying EM and non-EM contribution to SERS.
Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical strategies for simulating the optical properties and consequential SERS performance of particle-on-substrate systems that might guide the design of SERS-active systems. Finally, some current theoretical attempts are briefly discussed for unifying EM and non-EM contribution to SERS.Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical strategies for simulating the optical properties and consequential SERS performance of particle-on-substrate systems that might guide the design of SERS-active systems. Finally, some current theoretical attempts are briefly discussed for unifying EM and non-EM contribution to SERS.
Author Tian, Zhong-Qun
You, En-Ming
Moskovits, Martin
Ding, Song-Yuan
AuthorAffiliation Graphene Industry and Engineering Research Institute
Department of Chemistry and Biochemistry
Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
Xiamen University
University of California
College of Chemistry and Chemical Engineering
State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
Santa Barbara
AuthorAffiliation_xml – name: University of California
– name: Santa Barbara
– name: College of Chemistry and Chemical Engineering
– name: Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry
– name: State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS)
– name: Graphene Industry and Engineering Research Institute
– name: Xiamen University
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Song-Yuan
  surname: Ding
  fullname: Ding, Song-Yuan
– sequence: 2
  givenname: En-Ming
  surname: You
  fullname: You, En-Ming
– sequence: 3
  givenname: Zhong-Qun
  surname: Tian
  fullname: Tian, Zhong-Qun
– sequence: 4
  givenname: Martin
  surname: Moskovits
  fullname: Moskovits, Martin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28660954$$D View this record in MEDLINE/PubMed
BookMark eNqNkctLAzEQxoNUtFUv3pX1JsLq5LHJ5iRSWhUEwcd5SbMTu7Ivk-2h_71r6wNE1NMMzO8bZr5vRAZ1UyMh-xROKXB9ZpUNAIynboMMqZAQCyXEgAyBg4wBKNsmoxCe-44qybbINkulBJ2IITmflGg731TmqcausFE3x8YXGKLGRWHhnbEYYz03tcU8ujOVqaPQriTBNu1yl2w6Uwbce6875HE6eRhfxTe3l9fji5vYCqm6OHdaasCZQyNZknLHNEjkNtculRQTZ4RM6IwpLjhoTGhirAJJlcoFE5DzHXK83tv65mWBocuqIlgsS1NjswgZ61_STCgFf6JU9xcoSWXyD5SKVKQppz16-I4uZhXmWeuLyvhl9mFlD5ysAdtbEzy6T4RC9pZTNlbj-1VO0x6Gb7AtOtMVTd15U5Q_Sw7WEh_s5-qv6Pv50W_zrM0dfwXuQKe4
CitedBy_id crossref_primary_10_3390_coatings12101419
crossref_primary_10_1002_smll_202207404
crossref_primary_10_1016_j_apsusc_2019_06_167
crossref_primary_10_3390_nano10030519
crossref_primary_10_1021_acsami_4c11308
crossref_primary_10_3390_nano9020185
crossref_primary_10_1021_acsanm_2c03400
crossref_primary_10_1039_D1RA07871B
crossref_primary_10_1007_s00604_023_06075_5
crossref_primary_10_3866_PKU_WHXB202303037
crossref_primary_10_1016_j_sna_2022_113932
crossref_primary_10_1039_C9TB01598A
crossref_primary_10_1016_j_carbon_2021_12_055
crossref_primary_10_1016_S1872_2067_22_64157_3
crossref_primary_10_1021_acsnano_1c00188
crossref_primary_10_1088_2053_1591_aad0db
crossref_primary_10_1016_j_apsusc_2023_158982
crossref_primary_10_1016_j_apsusc_2019_144049
crossref_primary_10_1039_D3AY01006F
crossref_primary_10_3390_nano11071728
crossref_primary_10_1016_j_saa_2022_121030
crossref_primary_10_1021_acs_jpcc_3c07334
crossref_primary_10_1021_acsomega_1c05746
crossref_primary_10_1039_D3TC03507G
crossref_primary_10_1021_acs_langmuir_3c02635
crossref_primary_10_1007_s11237_020_09642_6
crossref_primary_10_1002_adsr_202400030
crossref_primary_10_1021_acs_analchem_3c01282
crossref_primary_10_1093_nsr_nwaa151
crossref_primary_10_1016_j_trac_2020_115920
crossref_primary_10_1016_j_esci_2024_100352
crossref_primary_10_1016_j_isci_2021_103384
crossref_primary_10_1002_jrs_5823
crossref_primary_10_1016_j_optcom_2021_127797
crossref_primary_10_1039_D0CE00786B
crossref_primary_10_1021_acs_jpcc_2c00278
crossref_primary_10_3390_s22103877
crossref_primary_10_1021_cbmi_3c00017
crossref_primary_10_1149_1945_7111_abc0aa
crossref_primary_10_3390_chemosensors11070399
crossref_primary_10_1002_anie_202007706
crossref_primary_10_1016_j_surfin_2023_103667
crossref_primary_10_1021_acs_jpcc_0c03246
crossref_primary_10_1021_acsnano_8b07066
crossref_primary_10_1007_s11664_019_07662_0
crossref_primary_10_1016_j_ijbiomac_2024_137115
crossref_primary_10_1021_acsphotonics_0c01569
crossref_primary_10_2147_IJN_S434854
crossref_primary_10_1016_j_saa_2022_122129
crossref_primary_10_1016_j_talanta_2019_120411
crossref_primary_10_1021_acs_jpcc_4c05827
crossref_primary_10_1021_acsomega_0c00677
crossref_primary_10_1016_j_apsusc_2019_07_182
crossref_primary_10_1186_s12951_022_01711_3
crossref_primary_10_1002_adma_202007988
crossref_primary_10_1016_j_molstruc_2023_136869
crossref_primary_10_1039_D4CY01361A
crossref_primary_10_1016_j_saa_2020_118759
crossref_primary_10_1002_anie_201904452
crossref_primary_10_3390_bios13010102
crossref_primary_10_1021_acs_jpclett_1c03535
crossref_primary_10_1002_adfm_201900541
crossref_primary_10_1364_OE_454893
crossref_primary_10_3390_ma13092185
crossref_primary_10_1364_OME_411419
crossref_primary_10_3390_molecules29010218
crossref_primary_10_1002_adfm_202100342
crossref_primary_10_1021_acs_jpcc_2c07729
crossref_primary_10_1016_j_talanta_2021_122345
crossref_primary_10_1016_j_carbon_2021_11_040
crossref_primary_10_1016_j_talanta_2021_122585
crossref_primary_10_1016_j_scitotenv_2024_175045
crossref_primary_10_1021_acsnano_4c15183
crossref_primary_10_1021_acsphotonics_2c01205
crossref_primary_10_1016_j_vacuum_2024_113501
crossref_primary_10_1002_admi_201900966
crossref_primary_10_1002_ppsc_201900268
crossref_primary_10_1088_1361_6463_ac21fd
crossref_primary_10_1021_acs_langmuir_4c02091
crossref_primary_10_1002_adom_202102001
crossref_primary_10_1039_D3NR01059G
crossref_primary_10_1002_adom_202400109
crossref_primary_10_1002_admt_201900999
crossref_primary_10_1080_05704928_2021_2025068
crossref_primary_10_1021_acs_jctc_3c00177
crossref_primary_10_1039_D2TB02049A
crossref_primary_10_2174_1573413716999201209105519
crossref_primary_10_1039_D1TC02163J
crossref_primary_10_1016_j_snb_2021_131056
crossref_primary_10_1021_acsmaterialsau_2c00013
crossref_primary_10_1016_j_snb_2019_02_054
crossref_primary_10_3390_nano11071760
crossref_primary_10_1016_j_apsusc_2020_148908
crossref_primary_10_1021_acsphotonics_8b00554
crossref_primary_10_1016_j_molstruc_2019_03_001
crossref_primary_10_1021_acs_chemrev_0c00294
crossref_primary_10_1039_C8NR05650A
crossref_primary_10_1016_j_catcom_2023_106672
crossref_primary_10_1002_advs_202301395
crossref_primary_10_1039_D0NA01007C
crossref_primary_10_1039_D1AY02080C
crossref_primary_10_1557_adv_2020_332
crossref_primary_10_1016_j_aca_2019_07_057
crossref_primary_10_1016_j_jhazmat_2022_130124
crossref_primary_10_1088_1361_6528_ac0ddd
crossref_primary_10_1016_j_ijbiomac_2024_129941
crossref_primary_10_1016_j_surfcoat_2021_127132
crossref_primary_10_1021_acsami_0c03300
crossref_primary_10_1039_D1TA08918H
crossref_primary_10_1002_smll_202204588
crossref_primary_10_1016_j_talanta_2020_122031
crossref_primary_10_1021_acs_jpcc_1c00670
crossref_primary_10_1002_adom_202401657
crossref_primary_10_1002_jbio_201960176
crossref_primary_10_1021_acs_jpclett_4c03017
crossref_primary_10_1016_j_microc_2022_108371
crossref_primary_10_1016_j_foodchem_2023_136433
crossref_primary_10_1103_PhysRevA_103_013725
crossref_primary_10_1021_acs_jpclett_4c02173
crossref_primary_10_1039_C9AN02051A
crossref_primary_10_1039_D1LC01097B
crossref_primary_10_1016_j_snb_2023_134709
crossref_primary_10_1039_D1CP04857K
crossref_primary_10_1016_j_cocis_2022_101660
crossref_primary_10_1021_acssensors_3c01061
crossref_primary_10_1016_j_optmat_2024_114932
crossref_primary_10_1039_D4DT00523F
crossref_primary_10_1039_D4TA05117C
crossref_primary_10_1016_j_talanta_2021_122383
crossref_primary_10_1016_j_saa_2023_123562
crossref_primary_10_1016_j_trac_2023_117094
crossref_primary_10_1109_TNB_2021_3124055
crossref_primary_10_1016_j_ijleo_2020_165377
crossref_primary_10_3390_molecules26247443
crossref_primary_10_1016_j_microc_2024_110415
crossref_primary_10_1039_C8TC01168K
crossref_primary_10_1016_j_saa_2022_122195
crossref_primary_10_3390_ijms232213868
crossref_primary_10_3390_coatings11101171
crossref_primary_10_1039_C7CS00786H
crossref_primary_10_1016_j_vibspec_2023_103587
crossref_primary_10_1021_acs_analchem_8b02121
crossref_primary_10_1021_acsabm_1c00315
crossref_primary_10_1016_j_snb_2021_131245
crossref_primary_10_3390_ma13173677
crossref_primary_10_3390_nano10112308
crossref_primary_10_1016_j_jiec_2019_02_001
crossref_primary_10_1016_j_surfin_2022_102440
crossref_primary_10_1021_acs_jpcc_9b11018
crossref_primary_10_2139_ssrn_3991814
crossref_primary_10_3390_nano11061521
crossref_primary_10_1007_s00604_025_07025_z
crossref_primary_10_1016_j_jmgm_2022_108234
crossref_primary_10_1360_SSC_2023_0157
crossref_primary_10_1039_C9NR06561J
crossref_primary_10_1021_acsomega_4c06398
crossref_primary_10_1002_adom_202401640
crossref_primary_10_1002_anie_201801748
crossref_primary_10_1007_s00216_021_03419_z
crossref_primary_10_1002_jrs_5662
crossref_primary_10_1142_S1793292020500435
crossref_primary_10_1039_C8SM00097B
crossref_primary_10_1002_ppsc_202300143
crossref_primary_10_1021_acsnano_1c00352
crossref_primary_10_1016_j_nanoen_2019_04_095
crossref_primary_10_1021_acsanm_9b00420
crossref_primary_10_1016_j_optlastec_2023_109533
crossref_primary_10_1021_acs_jpcc_3c05339
crossref_primary_10_1039_D3QM00471F
crossref_primary_10_1088_1402_4896_ad1c7f
crossref_primary_10_1016_j_surfin_2023_103821
crossref_primary_10_1039_D2RA06074D
crossref_primary_10_1002_jssc_201800852
crossref_primary_10_1016_j_snb_2022_131989
crossref_primary_10_1186_s41476_020_00144_5
crossref_primary_10_1063_5_0148043
crossref_primary_10_1016_j_snb_2022_131986
crossref_primary_10_1364_OE_446895
crossref_primary_10_1088_1361_6463_ac292d
crossref_primary_10_1007_s12274_020_3014_3
crossref_primary_10_3390_s22072649
crossref_primary_10_1016_j_sna_2020_112225
crossref_primary_10_1021_acs_nanolett_9b02864
crossref_primary_10_1016_j_optmat_2020_110012
crossref_primary_10_1039_D0AY00483A
crossref_primary_10_1016_j_saa_2024_124921
crossref_primary_10_1007_s12274_023_5732_9
crossref_primary_10_1016_j_apsusc_2025_163016
crossref_primary_10_1142_S1793292021500648
crossref_primary_10_1021_acsnano_3c10405
crossref_primary_10_3390_cryst10010038
crossref_primary_10_1016_j_jallcom_2023_169063
crossref_primary_10_1039_D1AN00624J
crossref_primary_10_1002_jrs_6776
crossref_primary_10_1002_adom_201901305
crossref_primary_10_1002_jrs_5849
crossref_primary_10_1016_j_talanta_2021_122188
crossref_primary_10_1364_PRJ_7_000526
crossref_primary_10_1002_cbic_201900191
crossref_primary_10_1039_D0AN00891E
crossref_primary_10_1246_bcsj_20210160
crossref_primary_10_1016_j_molstruc_2022_132338
crossref_primary_10_1364_OE_423789
crossref_primary_10_1016_j_bios_2020_112918
crossref_primary_10_1007_s11706_021_0569_1
crossref_primary_10_1021_acs_jpclett_3c02926
crossref_primary_10_1016_j_optlastec_2024_111912
crossref_primary_10_1088_1402_4896_ad1c1f
crossref_primary_10_1016_j_microc_2023_109598
crossref_primary_10_1016_j_apsusc_2019_143547
crossref_primary_10_1016_j_nxmate_2023_100036
crossref_primary_10_1021_acs_analchem_4c03733
crossref_primary_10_1002_tcr_201700065
crossref_primary_10_1016_j_snb_2024_136332
crossref_primary_10_1016_j_nantod_2020_101063
crossref_primary_10_1088_1361_6528_ab8400
crossref_primary_10_1002_anie_202007771
crossref_primary_10_1002_adom_202202991
crossref_primary_10_3390_photonics7030053
crossref_primary_10_1039_D2TC05148F
crossref_primary_10_1364_OE_450918
crossref_primary_10_1016_j_tsf_2021_138595
crossref_primary_10_1021_acs_analchem_2c00157
crossref_primary_10_1039_C9CP02015B
crossref_primary_10_1007_s11468_023_02126_y
crossref_primary_10_1016_j_envpol_2022_120775
crossref_primary_10_3390_app13179982
crossref_primary_10_1039_D4CS00883A
crossref_primary_10_1002_jrs_5620
crossref_primary_10_1016_j_cej_2024_152316
crossref_primary_10_1039_D3NR01456H
crossref_primary_10_1039_C8NJ06206D
crossref_primary_10_1016_j_chemphys_2018_11_015
crossref_primary_10_1016_j_apsadv_2022_100322
crossref_primary_10_1016_j_pdpdt_2024_104336
crossref_primary_10_1016_j_bios_2022_114004
crossref_primary_10_1016_j_trechm_2024_05_006
crossref_primary_10_3390_chemosensors11100531
crossref_primary_10_1021_acsnano_3c00657
crossref_primary_10_3390_nano14070566
crossref_primary_10_1016_j_electacta_2020_136560
crossref_primary_10_1002_ejic_201800132
crossref_primary_10_1111_1541_4337_12695
crossref_primary_10_1007_s12274_021_3477_x
crossref_primary_10_1016_j_jallcom_2019_151735
crossref_primary_10_1021_acs_analchem_8b03276
crossref_primary_10_1039_D4NA00387J
crossref_primary_10_3390_nano12040600
crossref_primary_10_1002_jrs_5634
crossref_primary_10_1002_anie_202205628
crossref_primary_10_1007_s11172_024_4374_8
crossref_primary_10_1021_acsami_2c05652
crossref_primary_10_3390_chemosensors11100541
crossref_primary_10_1021_acsapm_3c02978
crossref_primary_10_1039_C8CS00864G
crossref_primary_10_1021_acsomega_2c03847
crossref_primary_10_1016_j_talanta_2020_120936
crossref_primary_10_1039_D4CS00861H
crossref_primary_10_1016_j_snb_2022_131778
crossref_primary_10_3390_coatings10080799
crossref_primary_10_3389_fcell_2023_1160544
crossref_primary_10_1016_j_saa_2021_119957
crossref_primary_10_1021_acs_jpclett_2c00737
crossref_primary_10_3390_nano10061200
crossref_primary_10_1021_acs_chemrev_2c00316
crossref_primary_10_1088_2053_1583_acbc8a
crossref_primary_10_1002_jrs_5400
crossref_primary_10_1002_admi_202200369
crossref_primary_10_1002_smll_202302410
crossref_primary_10_1364_JOSAB_36_002423
crossref_primary_10_1016_j_talanta_2023_124966
crossref_primary_10_1088_1361_6528_ac55d4
crossref_primary_10_3390_cryst12010024
crossref_primary_10_1016_j_saa_2024_124655
crossref_primary_10_1021_acsnano_4c00208
crossref_primary_10_1002_wcms_1665
crossref_primary_10_1088_1361_6528_ac9688
crossref_primary_10_3390_ma17061385
crossref_primary_10_1039_C7CS00451F
crossref_primary_10_1016_j_trac_2023_117497
crossref_primary_10_3390_s25051370
crossref_primary_10_1021_acssensors_4c01357
crossref_primary_10_1002_smll_201801146
crossref_primary_10_1016_j_snb_2018_10_028
crossref_primary_10_3390_s20164397
crossref_primary_10_3390_ijms221910595
crossref_primary_10_3390_nano8060436
crossref_primary_10_1063_5_0025169
crossref_primary_10_1016_j_elecom_2021_106928
crossref_primary_10_1016_j_optlaseng_2024_108452
crossref_primary_10_1021_acsanm_0c00883
crossref_primary_10_1007_s12274_021_4017_4
crossref_primary_10_1002_smll_202303688
crossref_primary_10_1021_acs_jpcc_9b06751
crossref_primary_10_1039_C9CC09426A
crossref_primary_10_1016_j_omx_2024_100362
crossref_primary_10_1002_ppsc_201800285
crossref_primary_10_1021_acs_jpcc_4c00930
crossref_primary_10_1109_JSEN_2021_3118107
crossref_primary_10_1039_C8AY00530C
crossref_primary_10_1002_jrs_6006
crossref_primary_10_1016_j_trac_2024_117990
crossref_primary_10_31613_ceramist_2019_22_3_06
crossref_primary_10_1016_j_bios_2018_04_003
crossref_primary_10_1039_D4CS00460D
crossref_primary_10_1364_OE_481440
crossref_primary_10_1039_D2MA00997H
crossref_primary_10_1039_D4RA07061E
crossref_primary_10_1021_acs_jpcc_2c01818
crossref_primary_10_1021_acsphotonics_9b00120
crossref_primary_10_1515_nanoph_2018_0073
crossref_primary_10_1039_D2SC01938H
crossref_primary_10_1016_j_jhazmat_2024_136978
crossref_primary_10_1016_j_ccr_2021_213824
crossref_primary_10_1016_j_colsurfa_2018_02_069
crossref_primary_10_1016_j_surfin_2021_101556
crossref_primary_10_1002_adfm_201908825
crossref_primary_10_1002_chem_202400227
crossref_primary_10_3390_nano14090764
crossref_primary_10_1016_j_surfin_2024_105570
crossref_primary_10_1002_jrs_6014
crossref_primary_10_1038_s41570_018_0031_9
crossref_primary_10_1002_qute_202300265
crossref_primary_10_1142_S1793292020501222
crossref_primary_10_1002_ppsc_201700489
crossref_primary_10_1021_acs_analchem_1c01723
crossref_primary_10_3390_nano12101626
crossref_primary_10_1002_admi_201800672
crossref_primary_10_1007_s00604_023_06047_9
crossref_primary_10_1002_cnma_202200516
crossref_primary_10_1002_jrs_5331
crossref_primary_10_1016_j_apmt_2022_101598
crossref_primary_10_1016_j_aca_2021_339406
crossref_primary_10_1039_D0TC00040J
crossref_primary_10_3390_nano10122377
crossref_primary_10_1021_acsnano_4c12469
crossref_primary_10_3390_chemosensors12080154
crossref_primary_10_1002_adom_201800292
crossref_primary_10_1021_acs_jpclett_7b02855
crossref_primary_10_1364_OE_438895
crossref_primary_10_1364_OL_44_003865
crossref_primary_10_1016_j_apsusc_2024_159974
crossref_primary_10_1088_1361_6528_ac0665
crossref_primary_10_1088_1361_6528_ac1754
crossref_primary_10_1002_smll_201802276
crossref_primary_10_1039_D2SM01693A
crossref_primary_10_3390_app14199040
crossref_primary_10_3390_ijms231911741
crossref_primary_10_1021_acsnano_2c12457
crossref_primary_10_1016_j_snb_2021_130401
crossref_primary_10_1016_j_cej_2024_154454
crossref_primary_10_1016_j_apsusc_2020_147236
crossref_primary_10_1021_acs_langmuir_0c02271
crossref_primary_10_1016_j_colsurfa_2020_125414
crossref_primary_10_3390_nano10081455
crossref_primary_10_1007_s10008_020_04762_4
crossref_primary_10_1021_acsnano_4c15509
crossref_primary_10_1016_j_bios_2021_113153
crossref_primary_10_3390_cryst9110569
crossref_primary_10_1039_C8AN00606G
crossref_primary_10_1021_jacs_3c11959
crossref_primary_10_1039_D0CP03902K
crossref_primary_10_1016_j_jiec_2019_10_032
crossref_primary_10_3390_bios13080825
crossref_primary_10_1002_anie_201902620
crossref_primary_10_1021_acs_jpcc_4c06042
crossref_primary_10_1038_s41467_019_11829_y
crossref_primary_10_3390_chemosensors12090175
crossref_primary_10_3390_ma16103634
crossref_primary_10_1039_D0RA05207H
crossref_primary_10_1039_C9CC08317K
crossref_primary_10_1155_2018_2849175
crossref_primary_10_1016_j_enmf_2024_08_002
crossref_primary_10_1016_j_jsamd_2023_100584
crossref_primary_10_1016_j_optmat_2024_116548
crossref_primary_10_1002_lpor_202401152
crossref_primary_10_3390_nano10010049
crossref_primary_10_1142_S0217979220400093
crossref_primary_10_1186_s43074_023_00098_0
crossref_primary_10_1016_j_apsusc_2024_159513
crossref_primary_10_1039_D0SC00809E
crossref_primary_10_3390_molecules25215209
crossref_primary_10_1039_D0AN00484G
crossref_primary_10_1021_acsphotonics_9b01648
crossref_primary_10_1039_D3CS01070H
crossref_primary_10_1038_s41596_022_00782_8
crossref_primary_10_1016_j_arabjc_2022_104005
crossref_primary_10_1039_D0MA00509F
crossref_primary_10_1002_jrs_6454
crossref_primary_10_1038_s41377_021_00599_2
crossref_primary_10_1016_j_talanta_2024_126483
crossref_primary_10_1021_acs_jpclett_2c03602
crossref_primary_10_1021_acssensors_4c02611
crossref_primary_10_3390_molecules24244423
crossref_primary_10_1016_j_talanta_2021_122823
crossref_primary_10_1007_s12668_024_01496_9
crossref_primary_10_1016_j_snb_2020_129319
crossref_primary_10_1016_j_apsusc_2020_146505
crossref_primary_10_1038_s41528_022_00192_6
crossref_primary_10_1039_C9TC03596F
crossref_primary_10_1002_jrs_6068
crossref_primary_10_1007_s12274_021_3549_y
crossref_primary_10_1039_C8CP01680A
crossref_primary_10_1016_j_abst_2024_03_001
crossref_primary_10_1016_j_trac_2022_116603
crossref_primary_10_1002_nano_202200158
crossref_primary_10_1039_D0NA00849D
crossref_primary_10_7566_JPSJ_91_113703
crossref_primary_10_1016_j_nantod_2017_10_001
crossref_primary_10_1088_1361_6439_ab4b8e
crossref_primary_10_1515_nanoph_2021_0021
crossref_primary_10_1039_C8NR02783H
crossref_primary_10_1088_1361_6528_ab2845
crossref_primary_10_1007_s11051_023_05777_4
crossref_primary_10_1021_acsanm_3c04414
crossref_primary_10_1109_JMMCT_2022_3147232
crossref_primary_10_1088_1361_6528_ac40be
crossref_primary_10_1021_acsanm_3c04652
crossref_primary_10_1021_acssensors_3c02416
crossref_primary_10_1002_jrs_6073
crossref_primary_10_1016_j_snb_2020_129321
crossref_primary_10_1038_s41467_023_42943_7
crossref_primary_10_1039_D4SC00855C
crossref_primary_10_1016_j_talanta_2024_126466
crossref_primary_10_1021_acs_jpcc_4c02703
crossref_primary_10_1021_acsphotonics_4c00332
crossref_primary_10_1039_D3NA00663H
crossref_primary_10_1016_j_apsusc_2023_156832
crossref_primary_10_1016_j_snb_2019_02_012
crossref_primary_10_1038_s41598_019_53328_6
crossref_primary_10_1007_s12274_020_3085_1
crossref_primary_10_3390_nano13172417
crossref_primary_10_1016_j_apsusc_2022_153020
crossref_primary_10_3390_scipharm90030054
crossref_primary_10_1021_acssensors_8b00098
crossref_primary_10_1039_C9TA03151K
crossref_primary_10_1016_j_aca_2022_339958
crossref_primary_10_1021_acs_jpcc_2c00319
crossref_primary_10_1002_adma_202005979
crossref_primary_10_1016_j_apsusc_2020_147615
crossref_primary_10_1021_acs_analchem_3c04359
crossref_primary_10_1021_acsnano_3c05510
crossref_primary_10_1016_j_optlastec_2024_111571
crossref_primary_10_1021_acs_analchem_8b01735
crossref_primary_10_1039_C8TC06588H
crossref_primary_10_1007_s00604_024_06682_w
crossref_primary_10_1016_j_optcom_2018_06_086
crossref_primary_10_1049_hve_2019_0157
crossref_primary_10_1166_jbn_2022_3356
crossref_primary_10_1016_j_jallcom_2024_175241
crossref_primary_10_1039_D0NR02972F
crossref_primary_10_1016_j_talanta_2023_124590
crossref_primary_10_1016_j_jcis_2018_08_107
crossref_primary_10_1016_j_surfin_2023_103016
crossref_primary_10_1016_j_physleta_2023_129217
crossref_primary_10_1515_nanoph_2020_0313
crossref_primary_10_1016_j_saa_2022_121211
crossref_primary_10_1021_acsanm_3c05767
crossref_primary_10_1007_s10854_021_06669_w
crossref_primary_10_1039_D1AN01251G
crossref_primary_10_1007_s11468_024_02323_3
crossref_primary_10_1016_j_optcom_2024_130954
crossref_primary_10_1007_s10812_020_00992_6
crossref_primary_10_1039_D0TC01706J
crossref_primary_10_3390_bios13120994
crossref_primary_10_1016_j_apsusc_2021_149092
crossref_primary_10_1016_j_rinp_2023_106247
crossref_primary_10_1016_j_bios_2023_115079
crossref_primary_10_1002_adma_201902733
crossref_primary_10_1016_j_ccr_2023_215349
crossref_primary_10_1016_j_optlastec_2021_107259
crossref_primary_10_1002_ange_201904452
crossref_primary_10_1049_mna2_12018
crossref_primary_10_1002_adom_202300508
crossref_primary_10_1088_1361_6528_abff8f
crossref_primary_10_1016_j_ccr_2024_215861
crossref_primary_10_1016_j_surfcoat_2022_128285
crossref_primary_10_1016_j_trac_2022_116885
crossref_primary_10_1039_D1ME00016K
crossref_primary_10_1186_s12951_022_01756_4
crossref_primary_10_1021_acs_jpcc_1c02339
crossref_primary_10_1016_j_cclet_2021_06_015
crossref_primary_10_3390_ma17174396
crossref_primary_10_1021_acs_jpcc_4c00568
crossref_primary_10_1039_D0NA00141D
crossref_primary_10_1021_acsnano_0c04239
crossref_primary_10_1088_1361_6528_abe48b
crossref_primary_10_3390_bios11120510
crossref_primary_10_1016_j_physe_2022_115426
crossref_primary_10_1111_ppa_13734
crossref_primary_10_1016_j_apmt_2019_03_005
crossref_primary_10_1016_j_engreg_2022_08_004
crossref_primary_10_1080_09540105_2022_2144145
crossref_primary_10_1139_cjc_2018_0365
crossref_primary_10_1016_j_snb_2023_134569
crossref_primary_10_1364_OE_430760
crossref_primary_10_1021_acs_jpcc_1c04524
crossref_primary_10_3390_nano13232998
crossref_primary_10_1002_agt2_559
crossref_primary_10_1016_j_mseb_2022_115984
crossref_primary_10_1016_j_mssp_2025_109349
crossref_primary_10_1002_adma_202405046
crossref_primary_10_1016_j_aca_2022_340740
crossref_primary_10_1016_j_saa_2022_121880
crossref_primary_10_1039_D3NR04112C
crossref_primary_10_1021_acs_analchem_9b01514
crossref_primary_10_1021_acs_jpclett_1c03450
crossref_primary_10_1088_2040_8986_ad8459
crossref_primary_10_1016_j_talanta_2019_01_085
crossref_primary_10_1016_j_biosx_2024_100527
crossref_primary_10_1002_adom_202300770
crossref_primary_10_1088_1361_6528_ab95b7
crossref_primary_10_1364_OE_410966
crossref_primary_10_1021_acs_jpcc_1c02319
crossref_primary_10_1016_j_jallcom_2021_159158
crossref_primary_10_1021_acsanm_1c04421
crossref_primary_10_1039_D0LC00367K
crossref_primary_10_1021_acs_jpclett_4c03419
crossref_primary_10_1016_j_optmat_2023_113820
crossref_primary_10_1007_s11468_020_01229_0
crossref_primary_10_1016_j_apsusc_2020_148735
crossref_primary_10_1088_1361_6528_aae9b3
crossref_primary_10_1021_acsami_4c09301
crossref_primary_10_1002_jrs_6294
crossref_primary_10_1021_acs_jpcc_4c00350
crossref_primary_10_1142_S1793292018500017
crossref_primary_10_1016_j_saa_2022_121646
crossref_primary_10_1021_acsami_2c13820
crossref_primary_10_1039_D3CS01055D
crossref_primary_10_2139_ssrn_4071386
crossref_primary_10_1021_acssuschemeng_0c05065
crossref_primary_10_1016_j_saa_2018_12_001
crossref_primary_10_1039_C9TC06577F
crossref_primary_10_1364_OE_27_037012
crossref_primary_10_1016_j_electacta_2019_135561
crossref_primary_10_1016_j_talanta_2021_122426
crossref_primary_10_3390_bios13010021
crossref_primary_10_1016_j_colsurfa_2025_136373
crossref_primary_10_1039_D2AY01262F
crossref_primary_10_1016_j_optcom_2021_127200
crossref_primary_10_1039_D2NR02033E
crossref_primary_10_1007_s11468_024_02673_y
crossref_primary_10_1039_C7CC05979E
crossref_primary_10_1039_D4NR01413H
crossref_primary_10_1002_smll_202004802
crossref_primary_10_1016_j_carbon_2017_11_061
crossref_primary_10_1103_PhysRevLett_125_047401
crossref_primary_10_1021_acsanm_2c00490
crossref_primary_10_1088_1755_1315_358_4_042012
crossref_primary_10_1002_jrs_5932
crossref_primary_10_1016_j_sna_2024_115555
crossref_primary_10_1039_D0RA08477H
crossref_primary_10_1016_j_physleta_2024_130208
crossref_primary_10_1039_D4AY02098G
crossref_primary_10_1016_j_spmi_2018_01_020
crossref_primary_10_1016_j_eti_2024_103987
crossref_primary_10_1016_j_chempr_2023_03_031
crossref_primary_10_1016_j_talanta_2021_122678
crossref_primary_10_1016_j_jcis_2025_137275
crossref_primary_10_1021_acsphotonics_2c00685
crossref_primary_10_1016_j_jallcom_2024_173796
crossref_primary_10_1016_j_vibspec_2023_103616
crossref_primary_10_1016_j_cej_2025_160554
crossref_primary_10_1016_j_cis_2021_102399
crossref_primary_10_1016_j_bios_2023_115531
crossref_primary_10_1109_JSTQE_2021_3068801
crossref_primary_10_1016_j_molstruc_2022_134497
crossref_primary_10_1016_j_talanta_2023_125038
crossref_primary_10_1364_OE_420537
crossref_primary_10_1016_j_bios_2024_116949
crossref_primary_10_1016_j_ccr_2024_216375
crossref_primary_10_1016_j_bios_2023_115779
crossref_primary_10_1039_D0TB00351D
crossref_primary_10_1021_acssensors_2c02808
crossref_primary_10_1002_pssb_201800280
crossref_primary_10_3390_biomedicines10061389
crossref_primary_10_1016_j_optmat_2024_116187
crossref_primary_10_1364_OME_476077
crossref_primary_10_1016_j_coelec_2021_100892
crossref_primary_10_1016_j_jhazmat_2022_130046
crossref_primary_10_1007_s12274_022_4712_9
crossref_primary_10_1016_j_optlastec_2022_108407
crossref_primary_10_1016_j_talanta_2023_125281
crossref_primary_10_1002_eem2_12517
crossref_primary_10_1016_j_aca_2023_341920
crossref_primary_10_1016_j_jece_2024_113311
crossref_primary_10_1021_acsapm_4c00903
crossref_primary_10_1364_BOE_434053
crossref_primary_10_1016_j_optlastec_2020_106719
crossref_primary_10_1039_C9AN01811E
crossref_primary_10_1016_j_colsurfb_2021_112064
crossref_primary_10_1016_j_apsusc_2022_156117
crossref_primary_10_1002_adom_202402673
crossref_primary_10_3390_bios15030153
crossref_primary_10_1016_j_cclet_2019_02_006
crossref_primary_10_1021_acssensors_3c02285
crossref_primary_10_1016_j_optmat_2022_112483
crossref_primary_10_29235_1561_8323_2018_62_5_615_622
crossref_primary_10_1002_adfm_202400523
crossref_primary_10_1021_acsanm_2c03959
crossref_primary_10_1039_C8NR01198B
crossref_primary_10_1039_C9TC03195B
crossref_primary_10_1016_j_saa_2022_121580
crossref_primary_10_1021_acs_langmuir_3c01479
crossref_primary_10_1246_bcsj_20200088
crossref_primary_10_1002_ange_202007706
crossref_primary_10_1021_acsami_2c21378
crossref_primary_10_1021_acs_langmuir_9b01449
crossref_primary_10_1021_acsphotonics_4c00700
crossref_primary_10_1007_s00339_023_07144_5
crossref_primary_10_1016_j_saa_2024_123914
crossref_primary_10_1021_acs_langmuir_9b00371
crossref_primary_10_1002_anie_201909603
crossref_primary_10_3390_molecules28031472
crossref_primary_10_1039_D4TC02391A
crossref_primary_10_1021_acs_jafc_0c06231
crossref_primary_10_1021_acs_jpclett_9b01390
crossref_primary_10_1016_j_ceramint_2021_06_176
crossref_primary_10_1039_D4CP00641K
crossref_primary_10_1088_1361_6528_ab477c
crossref_primary_10_1039_C8NR00639C
crossref_primary_10_1021_acs_analchem_1c01061
crossref_primary_10_1021_acs_nanolett_2c01825
crossref_primary_10_1039_D2MH00263A
crossref_primary_10_1016_j_optmat_2020_110518
crossref_primary_10_1021_acs_analchem_4c01824
crossref_primary_10_1021_acs_analchem_4c02914
crossref_primary_10_1002_jrs_5902
crossref_primary_10_1016_j_matchemphys_2022_126883
crossref_primary_10_1016_j_talanta_2019_120569
crossref_primary_10_3390_molecules30010015
crossref_primary_10_1021_acs_jpcc_1c07177
crossref_primary_10_3390_molecules29102383
crossref_primary_10_1016_j_talanta_2021_122204
crossref_primary_10_1002_smll_202403672
crossref_primary_10_1016_j_mtphys_2021_100343
crossref_primary_10_1039_C8AN01667D
crossref_primary_10_1039_D0NR07344J
crossref_primary_10_1021_acsami_1c20893
crossref_primary_10_1002_lpor_202301056
crossref_primary_10_1039_D2MH01241C
crossref_primary_10_1016_j_isci_2022_104422
crossref_primary_10_3390_ma12010103
crossref_primary_10_1002_chem_202303391
crossref_primary_10_1002_ppsc_202100160
crossref_primary_10_1002_smm2_1058
crossref_primary_10_1021_acs_analchem_0c01886
crossref_primary_10_1039_D0CP01125H
crossref_primary_10_1016_j_colsurfa_2019_123600
crossref_primary_10_1039_D0AY00693A
crossref_primary_10_1021_acs_chemrev_8b00226
crossref_primary_10_1016_j_saa_2023_122762
crossref_primary_10_1007_s10854_024_12343_8
crossref_primary_10_1016_j_aca_2022_340333
crossref_primary_10_1016_j_omx_2023_100250
crossref_primary_10_1021_acsagscitech_4c00153
crossref_primary_10_1016_j_ccr_2024_216320
crossref_primary_10_1021_acsami_9b02953
crossref_primary_10_1039_C8RA02260G
crossref_primary_10_1364_OL_447995
crossref_primary_10_1088_1361_6528_ac7882
crossref_primary_10_1002_tcr_202300303
crossref_primary_10_1016_j_chempr_2023_01_017
crossref_primary_10_1021_acs_accounts_9b00358
crossref_primary_10_1007_s11468_020_01188_6
crossref_primary_10_1016_j_microc_2023_109888
crossref_primary_10_1021_acsami_0c04509
crossref_primary_10_1016_j_microc_2022_108018
crossref_primary_10_1021_acscatal_4c04578
crossref_primary_10_1016_j_saa_2023_122996
crossref_primary_10_1039_C9NR08118F
crossref_primary_10_1016_j_fbio_2023_102885
crossref_primary_10_1016_j_apsusc_2024_159821
crossref_primary_10_1016_j_saa_2025_126037
crossref_primary_10_1016_j_ccr_2025_216476
crossref_primary_10_1039_C8NR02174K
crossref_primary_10_1016_j_saa_2019_01_030
crossref_primary_10_1016_j_cclet_2023_108875
crossref_primary_10_1016_j_chempr_2022_06_008
crossref_primary_10_1021_acs_jpclett_0c00304
crossref_primary_10_3390_bios9020057
crossref_primary_10_34133_2020_7962024
crossref_primary_10_1080_10408398_2024_2413656
crossref_primary_10_1021_jacs_0c09392
crossref_primary_10_3390_data3030037
crossref_primary_10_1002_adma_202403373
crossref_primary_10_1070_QEL17475
crossref_primary_10_1021_acsami_1c08712
crossref_primary_10_1039_D3AN00827D
crossref_primary_10_1088_1361_648X_ab51f1
crossref_primary_10_1039_D4SD00014E
crossref_primary_10_1021_acs_analchem_3c00466
crossref_primary_10_1002_ange_201902620
crossref_primary_10_1360_TB_2022_1063
crossref_primary_10_1002_admi_202100412
crossref_primary_10_1016_j_colsurfa_2025_136511
crossref_primary_10_1016_j_ijleo_2020_165274
crossref_primary_10_1021_acs_jpcc_1c08640
crossref_primary_10_1016_j_jcis_2020_01_094
crossref_primary_10_1021_acs_jpcc_2c03067
crossref_primary_10_3390_ma11091534
crossref_primary_10_1007_s12274_023_5548_7
crossref_primary_10_1364_OE_28_004444
crossref_primary_10_1021_acscatal_2c04058
crossref_primary_10_1007_s10854_022_09518_6
crossref_primary_10_1088_1361_6528_ab1ff2
crossref_primary_10_1364_OE_431274
crossref_primary_10_1021_acs_langmuir_2c01836
crossref_primary_10_1038_s41467_023_37001_1
crossref_primary_10_1016_j_physb_2024_416482
crossref_primary_10_1039_D4SM01272K
crossref_primary_10_1039_C8RA03261K
crossref_primary_10_1039_D4CP01538J
crossref_primary_10_1007_s13204_023_02972_6
crossref_primary_10_26599_NR_2025_94907042
crossref_primary_10_3390_nano9111588
crossref_primary_10_1016_j_electacta_2018_06_079
crossref_primary_10_1021_acsanm_8b00444
crossref_primary_10_1038_s41467_022_30137_6
crossref_primary_10_1039_C9RA05399A
crossref_primary_10_1038_s41467_024_51916_3
crossref_primary_10_1039_D1JA00149C
crossref_primary_10_1016_j_comptc_2022_113813
crossref_primary_10_1002_EXP_20220072
crossref_primary_10_1038_s41565_019_0614_8
crossref_primary_10_1016_j_bios_2023_115948
crossref_primary_10_3390_nano14242036
crossref_primary_10_1088_2043_6262_ac2745
crossref_primary_10_1021_acs_jafc_2c07846
crossref_primary_10_1039_D4NA00247D
crossref_primary_10_3390_chemosensors10040128
crossref_primary_10_3390_nano13152156
crossref_primary_10_3390_chemosensors11040232
crossref_primary_10_1016_j_snb_2022_131851
crossref_primary_10_1364_PRJ_404092
crossref_primary_10_1021_acsami_0c16315
crossref_primary_10_1021_acs_jpclett_1c04088
crossref_primary_10_1021_acs_jpclett_8b02416
crossref_primary_10_3390_nano11092176
crossref_primary_10_1016_j_microc_2021_106875
crossref_primary_10_3390_nano11092174
crossref_primary_10_1007_s11051_023_05684_8
crossref_primary_10_1021_acs_nanolett_4c04339
crossref_primary_10_3390_nano12071202
crossref_primary_10_1007_s11051_024_06170_5
crossref_primary_10_3390_nano12234157
crossref_primary_10_1016_j_electacta_2023_142994
crossref_primary_10_3390_nano15060421
crossref_primary_10_1016_j_molliq_2023_123311
crossref_primary_10_3390_bios12050269
crossref_primary_10_1002_ange_202000474
crossref_primary_10_1021_acs_analchem_4c01437
crossref_primary_10_1016_j_colsurfa_2024_135356
crossref_primary_10_1016_j_cclet_2018_06_013
crossref_primary_10_1039_D0SC02877K
crossref_primary_10_1103_PhysRevB_102_045430
crossref_primary_10_1002_cjoc_202200508
crossref_primary_10_1016_j_optcom_2019_124631
crossref_primary_10_1016_j_saa_2020_118451
crossref_primary_10_1002_adom_202201549
crossref_primary_10_1002_jrs_5975
crossref_primary_10_1021_acs_nanolett_4c03254
crossref_primary_10_1021_acsami_3c08819
crossref_primary_10_3390_bios12050273
crossref_primary_10_1039_D0MA00644K
crossref_primary_10_3390_molecules27123805
crossref_primary_10_1016_j_snb_2018_05_139
crossref_primary_10_1038_s41545_023_00292_4
crossref_primary_10_1515_phys_2022_0270
crossref_primary_10_1016_j_snb_2022_131437
crossref_primary_10_1016_j_snb_2023_133919
crossref_primary_10_26599_NR_2025_94907096
crossref_primary_10_1002_cjoc_202000453
crossref_primary_10_3390_photonics9080523
crossref_primary_10_1103_PhysRevLett_128_216101
crossref_primary_10_1016_j_optlastec_2023_109429
crossref_primary_10_1364_PRJ_6_000357
crossref_primary_10_1007_s12274_018_2145_2
crossref_primary_10_1002_advs_201900925
crossref_primary_10_1021_acsanm_0c00846
crossref_primary_10_1021_acs_analchem_1c03646
crossref_primary_10_1021_acs_jpcc_2c05007
crossref_primary_10_1002_pol_20240094
crossref_primary_10_1177_0003702820937333
crossref_primary_10_1016_j_jcis_2024_06_076
crossref_primary_10_1016_j_cej_2024_149246
crossref_primary_10_1016_j_foodchem_2024_140843
crossref_primary_10_3390_biom11111553
crossref_primary_10_1039_C8NJ06524A
crossref_primary_10_1039_D3AY00653K
crossref_primary_10_1007_s00340_021_07705_7
crossref_primary_10_1016_j_talanta_2018_04_095
crossref_primary_10_1021_acs_jpcc_4c06448
crossref_primary_10_1016_j_susc_2018_02_003
crossref_primary_10_1021_acs_analchem_3c03515
crossref_primary_10_1016_j_aca_2019_11_049
crossref_primary_10_1039_D1NR04009J
crossref_primary_10_1021_acsmaterialslett_1c00047
crossref_primary_10_2217_nnm_2021_0298
crossref_primary_10_3390_nano11112905
crossref_primary_10_1038_s41598_024_61503_7
crossref_primary_10_1039_D0RA02490B
crossref_primary_10_1002_adom_202101866
crossref_primary_10_1002_elan_201900075
crossref_primary_10_1021_acsanm_4c06770
crossref_primary_10_3390_bios13040479
crossref_primary_10_1002_ange_202205628
crossref_primary_10_1002_asia_202000847
crossref_primary_10_1021_acs_jpcc_3c01359
crossref_primary_10_1002_aisy_202200420
crossref_primary_10_1016_j_microc_2025_112836
crossref_primary_10_1016_j_saa_2022_121932
crossref_primary_10_1021_acs_jctc_4c01567
crossref_primary_10_1016_j_colsurfa_2022_128590
crossref_primary_10_1021_acsami_0c00853
crossref_primary_10_1039_C9CP02160D
crossref_primary_10_3390_nano9111529
crossref_primary_10_1016_j_saa_2024_125631
crossref_primary_10_1039_D2CC00824F
crossref_primary_10_1088_1361_6528_acfe15
crossref_primary_10_1016_j_jallcom_2021_163345
crossref_primary_10_1039_C8AN01266K
crossref_primary_10_3233_CH_200861
crossref_primary_10_3390_s20051470
crossref_primary_10_1021_acsanm_4c03271
crossref_primary_10_1016_j_apsusc_2020_146217
crossref_primary_10_1016_j_apsusc_2020_148878
crossref_primary_10_1016_j_microc_2018_01_032
crossref_primary_10_15407_spqeo22_02_215
crossref_primary_10_1016_j_biomaterials_2018_07_045
crossref_primary_10_1360_SSC_2024_0169
crossref_primary_10_1016_j_colsurfa_2023_133091
crossref_primary_10_1021_acsenergylett_9b00990
crossref_primary_10_1039_D1AY01002F
crossref_primary_10_1016_j_cobme_2019_08_008
crossref_primary_10_1016_j_surfin_2021_101454
crossref_primary_10_1039_C9NR05892C
crossref_primary_10_1016_j_saa_2024_125629
crossref_primary_10_1016_j_lwt_2023_115310
crossref_primary_10_1063_5_0015246
crossref_primary_10_1002_admt_202400083
crossref_primary_10_1016_j_aca_2024_342767
crossref_primary_10_1039_D2NH00023G
crossref_primary_10_1016_j_apsusc_2024_159442
crossref_primary_10_1016_j_bios_2022_114843
crossref_primary_10_1021_acs_langmuir_4c03842
crossref_primary_10_1016_j_jhazmat_2024_134441
crossref_primary_10_1021_acsanm_3c05810
crossref_primary_10_1021_acs_nanolett_4c04951
crossref_primary_10_1515_nanoph_2018_0190
crossref_primary_10_1002_admi_201800332
crossref_primary_10_1002_smll_202107027
crossref_primary_10_1016_j_talanta_2024_127264
crossref_primary_10_1016_j_trac_2023_117357
crossref_primary_10_1021_acs_analchem_4c05978
crossref_primary_10_1016_j_physe_2021_114764
crossref_primary_10_3390_s20236899
crossref_primary_10_1039_C9NR03450A
crossref_primary_10_1016_j_vibspec_2018_06_011
crossref_primary_10_1093_micmic_ozac026
crossref_primary_10_1016_j_saa_2023_123375
crossref_primary_10_1016_j_jhazmat_2020_122222
crossref_primary_10_1016_j_jsamd_2018_03_003
crossref_primary_10_1016_j_aca_2018_08_022
crossref_primary_10_1016_j_saa_2024_124523
crossref_primary_10_1021_acsnano_4c07198
crossref_primary_10_1021_acs_jafc_4c09391
crossref_primary_10_1186_s12951_023_01890_7
crossref_primary_10_1016_j_jfutfo_2023_11_003
crossref_primary_10_1021_acs_analchem_4c05728
crossref_primary_10_1021_acs_jpcc_9b05527
crossref_primary_10_1080_10643389_2019_1576468
crossref_primary_10_1016_j_optcom_2022_128169
crossref_primary_10_1021_acs_jpca_0c04401
crossref_primary_10_1002_adom_202200467
crossref_primary_10_1016_j_addr_2024_115483
crossref_primary_10_1016_j_cej_2022_140441
crossref_primary_10_1021_acs_jpclett_2c01741
crossref_primary_10_1016_j_snb_2023_134035
crossref_primary_10_3390_mi14061197
crossref_primary_10_1016_j_bios_2022_114660
crossref_primary_10_1021_jacs_3c11812
crossref_primary_10_3390_mi11121109
crossref_primary_10_1021_acssensors_3c00302
crossref_primary_10_1364_PRJ_421415
crossref_primary_10_1039_C8RA10656H
crossref_primary_10_1364_OME_541106
crossref_primary_10_2217_nnm_2020_0361
crossref_primary_10_1021_acsanm_9b02395
crossref_primary_10_1016_j_dyepig_2023_111296
crossref_primary_10_1002_admi_201901133
crossref_primary_10_1039_D0CE01258K
crossref_primary_10_1016_j_cej_2020_127900
crossref_primary_10_1016_j_chroma_2022_463181
crossref_primary_10_1016_j_eti_2021_102033
crossref_primary_10_1002_bkcs_12387
crossref_primary_10_1016_j_snb_2019_127218
crossref_primary_10_1016_j_trac_2024_117866
crossref_primary_10_1021_acs_nanolett_3c01810
crossref_primary_10_3390_foods13193064
crossref_primary_10_1016_j_talanta_2024_127474
crossref_primary_10_1007_s11468_019_00929_6
crossref_primary_10_1021_acsami_0c19650
crossref_primary_10_3390_nano9111553
crossref_primary_10_1039_D0CP03470C
crossref_primary_10_1002_agt2_271
crossref_primary_10_3390_bios11030066
crossref_primary_10_1039_D4CC04813J
crossref_primary_10_1016_j_apsusc_2022_153746
crossref_primary_10_1007_s00604_019_3947_y
crossref_primary_10_1039_C8TC04269A
crossref_primary_10_1007_s12034_019_2017_8
crossref_primary_10_1002_ange_201909603
crossref_primary_10_1021_acs_jpcc_7b08691
crossref_primary_10_1088_2040_8986_ac4d73
crossref_primary_10_1039_C8NR02669F
crossref_primary_10_1021_acs_nanolett_1c00998
crossref_primary_10_1016_j_saa_2024_124323
crossref_primary_10_1016_j_snb_2024_135651
crossref_primary_10_3390_nano13010135
crossref_primary_10_1021_acsanm_4c04342
crossref_primary_10_1186_s11671_021_03510_5
crossref_primary_10_1016_j_coelec_2018_10_005
crossref_primary_10_1021_acs_nanolett_5c00391
crossref_primary_10_3390_molecules30030530
crossref_primary_10_1149_1945_7111_ac8023
crossref_primary_10_1016_j_scitotenv_2019_134956
crossref_primary_10_1016_j_cej_2025_161149
crossref_primary_10_1364_OE_521090
crossref_primary_10_1039_D3AY01196H
crossref_primary_10_1021_acsanm_8b01964
crossref_primary_10_1016_j_saa_2024_125648
crossref_primary_10_1021_jacs_2c05950
crossref_primary_10_3390_nano13061003
crossref_primary_10_1007_s11468_020_01270_z
crossref_primary_10_1021_acsomega_3c06740
crossref_primary_10_1021_acsphotonics_4c01548
crossref_primary_10_1021_acs_jpcc_4c01969
crossref_primary_10_1149_2162_8777_abeb52
crossref_primary_10_3390_s20143842
crossref_primary_10_3390_ma11020325
crossref_primary_10_1515_nanoph_2019_0097
crossref_primary_10_1039_D2MA00368F
crossref_primary_10_1007_s40843_022_2398_7
crossref_primary_10_1021_acssensors_1c00166
crossref_primary_10_1021_acsami_8b01550
crossref_primary_10_1007_s00604_023_05765_4
crossref_primary_10_1186_s41476_020_00128_5
crossref_primary_10_1021_acsanm_2c02392
crossref_primary_10_34133_adi_0041
crossref_primary_10_1016_j_aca_2021_338474
crossref_primary_10_1021_acs_analchem_2c04053
crossref_primary_10_1007_s11468_020_01302_8
crossref_primary_10_1021_acs_jpcc_1c03760
crossref_primary_10_1039_D1AN02289J
crossref_primary_10_1016_j_saa_2021_120163
crossref_primary_10_3390_ijms24010106
crossref_primary_10_1016_j_oceram_2022_100228
crossref_primary_10_1021_acs_jpclett_0c02286
crossref_primary_10_1016_j_electacta_2024_144689
crossref_primary_10_1016_j_jmat_2020_06_008
crossref_primary_10_1039_C9QM00592G
crossref_primary_10_1039_C8FD00139A
crossref_primary_10_1007_s11468_024_02324_2
crossref_primary_10_1021_acs_jpcc_9b07329
crossref_primary_10_1039_D4NJ04608K
crossref_primary_10_1557_jmr_2019_85
crossref_primary_10_3390_nano9040516
crossref_primary_10_1002_cnma_202300164
crossref_primary_10_1364_OE_27_009879
crossref_primary_10_1021_acs_jpcc_8b00701
crossref_primary_10_1021_acsnano_9b09834
crossref_primary_10_1021_acsanm_3c01050
crossref_primary_10_1002_lpor_202100316
crossref_primary_10_1016_j_cej_2024_150835
crossref_primary_10_3390_nano11020304
crossref_primary_10_1021_acssensors_3c02507
crossref_primary_10_1021_acssuschemeng_1c06685
crossref_primary_10_1021_acsagscitech_4c00005
crossref_primary_10_1016_j_foodchem_2022_133234
crossref_primary_10_1039_D3TC03558A
crossref_primary_10_1021_acsami_9b13518
crossref_primary_10_1088_1361_6463_ab6bec
crossref_primary_10_1002_admi_202102122
crossref_primary_10_1016_j_chempr_2019_07_022
crossref_primary_10_1364_BOE_408649
crossref_primary_10_1002_smll_202204541
crossref_primary_10_1364_OE_543072
crossref_primary_10_1016_j_apsusc_2024_160001
crossref_primary_10_1016_j_foodchem_2022_134794
crossref_primary_10_1039_D2RA02813A
crossref_primary_10_1039_D4AY00103F
crossref_primary_10_3390_chemosensors10120507
crossref_primary_10_1002_anie_202000474
crossref_primary_10_1038_s43246_024_00506_3
crossref_primary_10_1002_adom_202102550
crossref_primary_10_2139_ssrn_4189356
crossref_primary_10_1016_j_saa_2024_124177
crossref_primary_10_1021_acs_jpcc_2c01586
crossref_primary_10_1039_C8NR04971H
crossref_primary_10_1039_D0TC04364H
crossref_primary_10_1016_j_talanta_2023_125336
crossref_primary_10_1002_adom_202102757
crossref_primary_10_1021_acs_jpcc_2c03524
crossref_primary_10_3389_fchem_2019_00470
crossref_primary_10_1016_j_saa_2025_125787
crossref_primary_10_1149_2_0161808jes
crossref_primary_10_1007_s00604_019_3257_4
crossref_primary_10_1021_acs_jpclett_0c02494
crossref_primary_10_1002_adom_201701097
crossref_primary_10_1016_j_talanta_2024_126789
crossref_primary_10_1016_j_diamond_2021_108737
crossref_primary_10_1016_j_mtcomm_2022_105025
crossref_primary_10_1364_AO_383198
crossref_primary_10_1016_j_snb_2020_128543
crossref_primary_10_1021_acsanm_1c04569
crossref_primary_10_1021_acsami_0c00418
crossref_primary_10_1016_j_jiec_2021_01_020
crossref_primary_10_1515_nanoph_2021_0179
crossref_primary_10_3390_coatings9020086
crossref_primary_10_2139_ssrn_4171825
crossref_primary_10_1016_j_aca_2020_02_034
crossref_primary_10_1016_j_jscs_2023_101790
crossref_primary_10_1021_acsomega_4c04588
crossref_primary_10_1038_s41598_023_38154_1
crossref_primary_10_1364_AO_58_009345
crossref_primary_10_1016_j_apsusc_2022_154442
crossref_primary_10_1021_acs_jpcc_0c04664
crossref_primary_10_1007_s44211_023_00471_w
crossref_primary_10_1016_j_xinn_2022_100253
crossref_primary_10_1140_epjp_s13360_022_03560_3
crossref_primary_10_3390_bios13010052
crossref_primary_10_29026_oea_2023_230094
crossref_primary_10_1103_PhysRevApplied_17_024015
crossref_primary_10_3390_nano11051292
crossref_primary_10_1016_j_mtcomm_2023_106860
crossref_primary_10_1039_D1CP05681F
crossref_primary_10_1021_acs_analchem_7b04929
crossref_primary_10_1039_C8AY01369A
crossref_primary_10_1039_D1TC05009E
crossref_primary_10_1002_ange_202007771
crossref_primary_10_1016_j_bios_2020_112480
crossref_primary_10_1016_j_bios_2023_115178
crossref_primary_10_1140_epjp_s13360_020_00986_5
crossref_primary_10_1186_s40580_024_00431_8
crossref_primary_10_1021_acs_jpcb_3c01878
crossref_primary_10_1002_sstr_202000138
crossref_primary_10_1016_j_surfin_2024_104951
crossref_primary_10_1002_chem_201704370
crossref_primary_10_1016_j_cjac_2022_100180
crossref_primary_10_1039_D1TC02134F
crossref_primary_10_1016_j_vacuum_2023_112632
crossref_primary_10_3390_photonics8100415
crossref_primary_10_1002_ange_201801748
crossref_primary_10_1016_j_saa_2022_121995
crossref_primary_10_1016_j_snb_2024_135828
crossref_primary_10_1021_acs_jpcc_0c11150
crossref_primary_10_1039_D0NR06150F
crossref_primary_10_1016_j_heliyon_2023_e16598
crossref_primary_10_1007_s12274_023_5927_0
crossref_primary_10_1063_5_0138501
crossref_primary_10_1186_s40712_024_00196_2
crossref_primary_10_1016_j_aca_2020_02_058
crossref_primary_10_1016_j_optmat_2022_112310
crossref_primary_10_1021_acsphotonics_8b01136
crossref_primary_10_34133_adi_0008
crossref_primary_10_1007_s12274_021_3999_2
crossref_primary_10_1002_adom_202302812
crossref_primary_10_1002_sstr_202000150
crossref_primary_10_1364_AO_489036
crossref_primary_10_1016_j_vibspec_2021_103233
crossref_primary_10_1021_acs_jpcc_3c00481
crossref_primary_10_1039_D3AY01374J
crossref_primary_10_1364_OE_27_030031
crossref_primary_10_1016_j_jallcom_2024_176246
crossref_primary_10_1021_acs_jpcc_9b09922
crossref_primary_10_1103_PhysRevA_105_062609
crossref_primary_10_1021_acs_jpcc_1c01598
crossref_primary_10_1039_D0SC01926G
Cites_doi 10.1016/j.electacta.2011.04.107
10.1126/science.1248797
10.1021/nl3012038
10.1021/ja105248h
10.1515/zna-1968-1247
10.1016/j.biomaterials.2011.03.029
10.1016/0039-6028(81)90459-3
10.1021/ja110964d
10.1364/OE.14.002921
10.1039/B513431P
10.1039/C5CS00763A
10.1021/nl070214f
10.1021/nl803621x
10.1126/science.1224823
10.1021/nl200135r
10.1016/S0022-0728(77)80224-6
10.1021/jp211884s
10.1021/jp034632u
10.1016/j.susc.2014.07.019
10.1063/1.4862430
10.1039/C4CS00348A
10.1016/j.cplett.2006.05.111
10.1063/1.437735
10.1039/c3nr02924g
10.1021/ja035541d
10.1038/nmat3488
10.1364/OE.23.013804
10.1063/1.2961011
10.1063/1.3643381
10.1063/1.443370
10.1103/PhysRev.118.640
10.1021/jacs.5b04670
10.1063/1.2390694
10.1039/C4CP05082G
10.1016/0009-2614(74)85388-1
10.1021/nl300351j
10.1039/f29736900065
10.1021/acsnano.6b02484
10.1063/1.4896537
10.1364/OE.19.014919
10.1021/ja104174m
10.1364/AO.19.004159
10.1021/ph5004016
10.1103/PhysRevB.57.13265
10.1103/PhysRevLett.83.4357
10.1038/nature12151
10.1016/0039-6028(80)90214-9
10.1063/1.440560
10.1021/ar400075r
10.1002/adma.201404107
10.1021/acsnano.5b05605
10.1063/1.3109900
10.1007/BFb0048317
10.1021/jp025970i
10.1021/nl0486160
10.1016/0039-6028(81)90595-1
10.1002/anie.201508218
10.1021/jacs.5b03741
10.1364/OE.21.025271
10.1038/srep09240
10.1063/1.441403
10.1021/nn203173r
10.1002/9780470027318.a9276
10.1103/PhysRev.106.874
10.1002/9783527618156
10.1039/b707862p
10.1038/nature11615
10.1039/c3cp44103b
10.1126/science.1159499
10.1364/OE.15.010869
10.1021/jp013638l
10.1103/PhysRevB.76.085405
10.1021/jp022060s
10.1038/nnano.2015.170
10.1073/pnas.1016530108
10.1016/0039-6028(83)90806-3
10.1021/jp0257449
10.1103/PhysRevB.83.115428
10.1021/ar100031v
10.1364/OE.16.009144
10.1039/C7CS00067G
10.1103/PhysRevB.90.195402
10.1039/C7FD00144D
10.1038/nature08907
10.1007/0-387-37825-1
10.1021/nl104214c
10.1146/annurev.pc.36.100185.003001
10.1039/C3CP51730F
10.1021/nl3000453
10.1063/1.439002
10.1002/jrs.1355
10.1021/ar0401045
10.1063/1.1896356
10.1038/ncomms6228
10.1021/ja2074533
10.1103/PhysRevA.92.053811
10.1146/annurev.pc.35.100184.002451
10.1021/acs.jpclett.6b02175
10.1021/nn4021967
10.1126/science.267.5204.1629
10.1103/PhysRevLett.78.1667
10.1063/1.479235
10.1021/jp027642o
10.1103/PhysRevB.81.115406
10.1364/OE.19.022167
10.1063/1.126546
10.1021/jp2122938
10.1021/ar800028j
10.1103/PhysRevB.75.035411
10.1038/ncomms4448
10.1039/C4CS00509K
10.1039/b616986d
10.1038/nmat2596
10.1021/nl073346h
10.1063/1.3698292
10.1016/0039-6028(80)90632-9
10.1002/cphc.200800563
10.1017/CBO9780511794193
10.1039/C4CP04906C
10.1063/1.440142
10.1016/0009-2614(86)85021-7
10.1109/TNANO.2010.2054103
10.1103/RevModPhys.57.783
10.1021/acs.jpcc.5b05931
10.1039/c3an00447c
10.1039/C2CP42598J
10.1016/0009-2614(81)85172-X
10.1063/1.1629280
10.1021/nl803811g
10.1364/AO.55.002780
10.1021/ar00106a005
10.1021/jz200498z
10.1021/cr200061k
10.1039/C3CS60187K
10.1073/pnas.0605889103
10.1016/S1369-7021(12)70017-2
10.1021/nn401685p
10.1021/nl304078v
10.1039/b705969h
10.1038/nnano.2015.264
10.1016/0039-6028(82)90161-3
10.1039/B507773G
10.1021/ja00457a071
10.1021/nl200461w
10.1103/PhysRevLett.36.1207
10.1021/jp1043392
10.1021/jp027749b
10.1103/PhysRevB.73.035407
10.1063/1.3211969
10.1016/0009-2614(94)00779-9
10.1016/0039-6028(82)90309-0
10.1002/jrs.2429
10.1021/nl303896d
10.1126/science.275.5303.1102
10.1557/mrs.2013.161
10.1039/b706023h
10.1016/0039-6028(80)90637-8
10.1021/j150667a013
10.1016/0039-6028(80)90270-8
10.1021/nl400698w
10.1103/PhysRevA.78.042505
10.1021/ja055633y
10.1021/ja906954f
10.1364/OE.15.008309
10.1016/j.jphotochemrev.2014.09.001
10.1021/nn406263m
10.1021/jp307003p
10.1146/annurev.anchem.1.031207.112814
10.1021/jp952240k
10.1021/ja8051427
10.1016/S0030-4018(00)00894-4
10.1146/annurev-physchem-032511-143807
10.1021/ja0648615
10.1021/ja309300d
10.1021/ja900809z
10.1039/b710915f
10.1021/acsphotonics.5b00438
10.1002/adma.201201625
10.1146/annurev.physchem.58.032806.104607
10.1021/nl102443p
10.1103/PhysRevA.89.043841
10.1002/anie.201101632
10.1103/PhysRevE.62.4318
10.1063/1.439003
10.1021/ja809143c
10.1016/0039-6028(83)90283-2
10.1016/0009-2614(81)85441-3
10.1103/PhysRev.124.1866
10.1016/S0009-2614(99)01451-7
10.1063/1.4829617
10.1007/BF01391532
10.1021/acs.jpcc.5b02653
10.1002/jrs.1362
10.1038/natrevmats.2016.21
10.1098/rsnr.2011.0024
10.1021/jp207661y
10.1002/anie.201205748
10.1016/j.electacta.2014.04.034
10.1021/jp901355g
10.1063/1.464263
10.1039/b605292d
10.1038/ncomms1806
10.1103/PhysRevB.83.235427
10.1021/ar00104a002
10.1021/nl301029e
10.1007/BF01392504
10.1126/science.1198258
10.1103/PhysRevLett.50.997
10.1016/0038-1098(80)90870-4
10.1002/9781118703601.ch1
10.1039/f29797500790
10.1063/1.449452
10.1080/05704929108050881
10.1021/ac303269w
10.1016/S1386-1425(03)00190-2
10.1364/OE.16.010315
10.1002/jrs.2989
10.1063/1.436436
10.1557/mrs.2013.156
10.1063/1.450037
10.1039/c2cc31441j
10.1098/rsnr.2009.0061
10.1038/srep33218
10.1366/0003702884429896
10.1021/nl050928v
10.1002/adma.201205076
10.1063/1.437095
10.1016/S0022-0728(83)80219-8
10.1016/0009-2614(81)85442-5
10.1038/nmat2810
10.1038/ncomms5424
10.1038/nature11653
10.1038/ncomms1310
10.1016/0375-9601(80)90726-4
10.1021/acsphotonics.6b00908
10.1103/PhysRevLett.50.1301
10.1002/lpor.201200021
10.1021/acs.jpclett.5b02535
10.1021/ja0556326
10.1201/b15328-7
10.1021/jp060173w
10.1103/PhysRevB.22.1660
10.1021/acs.chemrev.6b00596
10.1364/AO.18.001180
10.1146/annurev-physchem-032511-143757
10.5796/electrochemistry.68.942
10.1007/3-540-11942-6_24
10.1021/jp0760962
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1039/c7cs00238f
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
AGRICOLA
PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 476
ExternalDocumentID 28660954
10_1039_C7CS00238F
c7cs00238f
Genre Journal Article
GroupedDBID -JG
0-7
705
70J
70~
7~J
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
GNO
H~N
IDZ
J3I
R7B
R7D
RCNCU
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
VH6
---
-DZ
-~X
0R~
0UZ
186
1TJ
29B
2WC
3EH
4.4
53G
5GY
6J9
6TJ
71~
85S
8WZ
9M8
A6W
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAUTI
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDPE
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACKIV
ACNCT
ACPVT
ACRPL
ADMRA
ADNMO
ADXHL
AENEX
AENGV
AESAV
AETEA
AETIL
AFFDN
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AI.
AIDUJ
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
AQHUZ
ASKNT
ASPBG
AVWKF
AZFZN
BBWZM
BLAPV
CAG
CITATION
COF
CS3
DU5
EBS
ECGLT
EEHRC
EJD
F5P
FA8
FEDTE
GGIMP
H13
HF~
HVGLF
HZ~
H~9
IDY
J3G
J3H
L-8
M4U
MVM
N9A
NDZJH
O9-
P2P
R56
RAOCF
RCLXC
RIG
RNS
ROL
RRXOS
SC5
TN5
TWZ
UPT
UQL
VH1
WH7
WHG
XJT
XOL
ZCG
ZKB
~02
NPM
UMC
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c467t-df9690ebfea62583f2906e3cd9f861e5fa4651b2734309e515ac706177d4240d3
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 03:21:53 EDT 2025
Thu Jul 10 22:59:18 EDT 2025
Fri Jul 11 16:45:51 EDT 2025
Tue Apr 29 04:32:12 EDT 2025
Tue Jul 01 04:18:39 EDT 2025
Thu Apr 24 22:54:20 EDT 2025
Mon Jan 28 17:20:02 EST 2019
Sat Jun 01 02:29:32 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-df9690ebfea62583f2906e3cd9f861e5fa4651b2734309e515ac706177d4240d3
Notes En-Ming You received his BSc at Nanjing University. He is now a PhD student at Xiamen University under the supervision of Prof. Zhong-Qun Tian and Dr Song-Yuan Ding working on surface-enhanced Raman spectroscopy, AFM-based infrared nanospectroscopy and imaging.
Zhong-Qun Tian obtained his BSc at Xiamen University in 1982 and his PhD under the supervision of Prof. Martin Fleischmann at the University of Southampton in 1987. He has been a full Professor of Chemistry at Xiamen University since 1991. Professor Tian is a Member of the Chinese Academy of Sciences and the Elected President of the International Society of Electrochemistry. Currently, his main research interests include surface-enhanced Raman spectroscopy, spectroelectrochemistry, nanochemistry, plasmonics and catalyzed molecular assembly.
Martin Moskovits has degrees in Physics and Chemistry from the University of Toronto, where he obtained his PhD in Chemical Physics in 1971. He has been a full professor since 1982 and has been working at the University of California, Santa Barbara, since 2000. Professor Moskovits is a Fellow of the American Association for the Advancement of Science, a Fellow of the Optical Society of America and a Fellow of the Royal Society of Canada. His research interests include surface-enhanced Raman spectroscopy, generally and more recently as applied to biosensing, plasmonics for sustainable energy and nanomaterials and nanoelectronics.
Song-Yuan Ding received his BSc in Chemical Physics at the University of Science and Technology of China in 2005 and his PhD in Chemistry under the supervision of Prof. Zhong-Qun Tian at Xiamen University in 2012. He is a Research Fellow in the Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) at Xiamen University. Currently, his research interests include surface-enhanced Raman spectroscopy for general materials, AFM-based infrared and Raman nanospectroscopy and imaging, ab initial interfacial electrochemistry and the theory of catalyzed molecular assembly.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9775-8189
0000-0002-0212-108X
0000-0001-6310-5908
0000-0002-1862-0713
PMID 28660954
PQID 1914848831
PQPubID 23479
PageCount 35
ParticipantIDs crossref_citationtrail_10_1039_C7CS00238F
proquest_miscellaneous_2286924770
proquest_miscellaneous_1914848831
pubmed_primary_28660954
proquest_miscellaneous_1925876165
crossref_primary_10_1039_C7CS00238F
rsc_primary_c7cs00238f
ProviderPackageCode RRA
J3I
ACLDK
RRC
7~J
AEFDR
70~
VH6
GNO
RCNCU
SLH
70J
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
IDZ
RPMJG
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
SKH
ADSRN
ABGFH
705
R7B
R7D
AAEMU
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-07
PublicationDateYYYYMMDD 2017-07-07
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2017
References Sharma (C7CS00238F-(cit40)/*[position()=1]) 2013; 38
(C7CS00238F-(cit61)/*[position()=1]) 1982
Albrecht (C7CS00238F-(cit12)/*[position()=1]) 1977; 99
Wang (C7CS00238F-(cit164)/*[position()=1]) 2012; 24
Yang (C7CS00238F-(cit201)/*[position()=1]) 2009; 40
Ding (C7CS00238F-(cit194)/*[position()=1]) 2015; 631
Sonntag (C7CS00238F-(cit42)/*[position()=1]) 2014; 43
King (C7CS00238F-(cit89)/*[position()=1]) 1978; 69
Oldenburg (C7CS00238F-(cit29)/*[position()=1]) 1999; 111
Rycenga (C7CS00238F-(cit188)/*[position()=1]) 2011; 50
Le Ru (C7CS00238F-(cit9)/*[position()=1]) 2012; 63
Rojas (C7CS00238F-(cit120)/*[position()=1]) 1993; 98
Schmidt (C7CS00238F-(cit253)/*[position()=1]) 2016; 10
Zuloaga (C7CS00238F-(cit174)/*[position()=1]) 2009; 9
Fang (C7CS00238F-(cit141)/*[position()=1]) 2008; 321
Gallinet (C7CS00238F-(cit221)/*[position()=1]) 2011; 5
Dick (C7CS00238F-(cit30)/*[position()=1]) 2002; 106
Gersten (C7CS00238F-(cit77)/*[position()=1]) 1980; 72
Hayazawa (C7CS00238F-(cit46)/*[position()=1]) 2000; 183
Kerker (C7CS00238F-(cit63)/*[position()=1]) 1984; 17
Meng (C7CS00238F-(cit207)/*[position()=1]) 2015; 5
Joshi (C7CS00238F-(cit170)/*[position()=1]) 2008; 16
Ye (C7CS00238F-(cit225)/*[position()=1]) 2012; 12
Mulvihill (C7CS00238F-(cit20)/*[position()=1]) 2010; 132
Furtak (C7CS00238F-(cit111)/*[position()=1]) 1983; 50
Laor (C7CS00238F-(cit86)/*[position()=1]) 1982; 76
Nordlander (C7CS00238F-(cit187)/*[position()=1]) 2004; 4
Kleinman (C7CS00238F-(cit149)/*[position()=1]) 2011; 133
McCall (C7CS00238F-(cit80)/*[position()=1]) 1980; 77
Iida (C7CS00238F-(cit119)/*[position()=1]) 2014; 141
Lombardi (C7CS00238F-(cit243)/*[position()=1]) 2012; 136
Boltasseva (C7CS00238F-(cit33)/*[position()=1]) 2011; 331
Lombardi (C7CS00238F-(cit96)/*[position()=1]) 1986; 84
Kretschmann (C7CS00238F-(cit107)/*[position()=1]) 1968; 23
Ahmed (C7CS00238F-(cit163)/*[position()=1]) 2012; 12
Halas (C7CS00238F-(cit217)/*[position()=1]) 2011; 111
Aroca (C7CS00238F-(cit59)/*[position()=1]) 2013; 15
Luk'yanchuk (C7CS00238F-(cit216)/*[position()=1]) 2010; 9
Efrima (C7CS00238F-(cit92)/*[position()=1]) 1979; 70
Wei (C7CS00238F-(cit139)/*[position()=1]) 2013; 5
Payton (C7CS00238F-(cit249)/*[position()=1]) 2014; 47
Naik (C7CS00238F-(cit34)/*[position()=1]) 2013; 25
Zhang (C7CS00238F-(cit27)/*[position()=1]) 2015; 27
Peng (C7CS00238F-(cit158)/*[position()=1]) 2013; 7
Gallinet (C7CS00238F-(cit222)/*[position()=1]) 2013; 7
Roelli (C7CS00238F-(cit252)/*[position()=1]) 2016; 11
Wiley (C7CS00238F-(cit144)/*[position()=1]) 2007; 7
Ding (C7CS00238F-(cit118)/*[position()=1]) 2012; 48
Cui (C7CS00238F-(cit210)/*[position()=1]) 2007; 15
Shen (C7CS00238F-(cit183)/*[position()=1]) 2013; 103
Laor (C7CS00238F-(cit85)/*[position()=1]) 1981; 82
Kurokawa (C7CS00238F-(cit169)/*[position()=1]) 2007; 75
Ausman (C7CS00238F-(cit122)/*[position()=1]) 2009; 131
Park (C7CS00238F-(cit179)/*[position()=1]) 2008; 9
Mullin (C7CS00238F-(cit245)/*[position()=1]) 2012; 116
Tsang (C7CS00238F-(cit75)/*[position()=1]) 1980; 35
Wu (C7CS00238F-(cit114)/*[position()=1]) 2002; 106
Moskovits (C7CS00238F-(cit13)/*[position()=1]) 1980; 73
Shalaev (C7CS00238F-(cit129)/*[position()=1]) 1998; 57
Bosnick (C7CS00238F-(cit146)/*[position()=1]) 2016; 120
Wang (C7CS00238F-(cit165)/*[position()=1]) 2013; 13
Kerker (C7CS00238F-(cit82)/*[position()=1]) 1980; 19
Tserkezis (C7CS00238F-(cit190)/*[position()=1]) 2015; 92
Nie (C7CS00238F-(cit6)/*[position()=1]) 1997; 275
Ciracì (C7CS00238F-(cit186)/*[position()=1]) 2012; 337
Hua (C7CS00238F-(cit226)/*[position()=1]) 2014; 89
Liao (C7CS00238F-(cit14)/*[position()=1]) 1981; 82
Le (C7CS00238F-(cit215)/*[position()=1]) 2006; 8
Thacker (C7CS00238F-(cit150)/*[position()=1]) 2014; 5
Huang (C7CS00238F-(cit193)/*[position()=1]) 2011; 56
Sigle (C7CS00238F-(cit185)/*[position()=1]) 2016; 7
Li (C7CS00238F-(cit198)/*[position()=1]) 2015; 137
Ahmed (C7CS00238F-(cit162)/*[position()=1]) 2011; 11
Campion (C7CS00238F-(cit67)/*[position()=1]) 1985; 36
Greeneltch (C7CS00238F-(cit26)/*[position()=1]) 2013; 85
Liu (C7CS00238F-(cit234)/*[position()=1]) 2011; 2
Zhao (C7CS00238F-(cit100)/*[position()=1]) 2006; 128
Tian (C7CS00238F-(cit112)/*[position()=1]) 2006; 132
Kleinman (C7CS00238F-(cit138)/*[position()=1]) 2013; 15
Halas (C7CS00238F-(cit41)/*[position()=1]) 2013; 38
Gruenke (C7CS00238F-(cit58)/*[position()=1]) 2016; 45
Jiang (C7CS00238F-(cit131)/*[position()=1]) 2003; 107
Honesty (C7CS00238F-(cit196)/*[position()=1]) 2012; 43
Otto (C7CS00238F-(cit103)/*[position()=1]) 2007; 52
Freeman (C7CS00238F-(cit17)/*[position()=1]) 1995; 267
Jeanmaire (C7CS00238F-(cit11)/*[position()=1]) 1977; 84
Yelk (C7CS00238F-(cit240)/*[position()=1]) 2008; 129
Duan (C7CS00238F-(cit231)/*[position()=1]) 2016; 55
Ward (C7CS00238F-(cit233)/*[position()=1]) 2008; 8
Metiu (C7CS00238F-(cit64)/*[position()=1]) 1984; 35
Chase (C7CS00238F-(cit50)/*[position()=1]) 1988; 42
Dionne (C7CS00238F-(cit171)/*[position()=1]) 2006; 73
Moskovits (C7CS00238F-(cit2)/*[position()=1]) 1978; 69
Li (C7CS00238F-(cit182)/*[position()=1]) 2013; 138
Tian (C7CS00238F-(cit232)/*[position()=1]) 2006; 128
Chen (C7CS00238F-(cit244)/*[position()=1]) 2010; 114
Tian (C7CS00238F-(cit15)/*[position()=1]) 2007
Kleinman (C7CS00238F-(cit214)/*[position()=1]) 2012; 135
Nie (C7CS00238F-(cit57)/*[position()=1]) 1991; 26
Kneipp (C7CS00238F-(cit7)/*[position()=1]) 1997; 78
Chikkaraddy (C7CS00238F-(cit191)/*[position()=1]) 2017; 4
Anderson (C7CS00238F-(cit45)/*[position()=1]) 2000; 76
Buchanan (C7CS00238F-(cit227)/*[position()=1]) 2016; 7
Ding (C7CS00238F-(cit5)/*[position()=1]) 2016; 1
Otto (C7CS00238F-(cit108)/*[position()=1]) 1968; 216
Yam (C7CS00238F-(cit247)/*[position()=1]) 2015; 44
Chen (C7CS00238F-(cit71)/*[position()=1]) 1976; 36
Talley (C7CS00238F-(cit142)/*[position()=1]) 2005; 5
Fang (C7CS00238F-(cit145)/*[position()=1]) 2011; 32
Fano (C7CS00238F-(cit242)/*[position()=1]) 1961; 124
Xu (C7CS00238F-(cit88)/*[position()=1]) 1999; 83
Furtak (C7CS00238F-(cit62)/*[position()=1]) 1983; 150
Joshi (C7CS00238F-(cit167)/*[position()=1]) 2010; 9
Zhang (C7CS00238F-(cit230)/*[position()=1]) 2015; 119
Andrawis (C7CS00238F-(cit241)/*[position()=1]) 2016; 55
Micic (C7CS00238F-(cit202)/*[position()=1]) 2003; 107
Novotny (C7CS00238F-(cit124)/*[position()=1]) 2012
Otto (C7CS00238F-(cit254)/*[position()=1]) 2005; 36
Duan (C7CS00238F-(cit229)/*[position()=1]) 2015; 137
Long (C7CS00238F-(cit184)/*[position()=1]) 2016; 6
Chu (C7CS00238F-(cit224)/*[position()=1]) 2011; 19
Bohren (C7CS00238F-(cit128)/*[position()=1]) 1998
Meng (C7CS00238F-(cit209)/*[position()=1]) 2015; 23
Camden (C7CS00238F-(cit151)/*[position()=1]) 2008; 130
Huang (C7CS00238F-(cit166)/*[position()=1]) 2011; 11
Rudnev (C7CS00238F-(cit197)/*[position()=1]) 2014; 133
Sharma (C7CS00238F-(cit39)/*[position()=1]) 2012; 15
Moskovits (C7CS00238F-(cit126)/*[position()=1]) 1984; 88
Barber (C7CS00238F-(cit73)/*[position()=1]) 1983; 50
Itoh (C7CS00238F-(cit121)/*[position()=1]) 2007; 76
Otto (C7CS00238F-(cit66)/*[position()=1]) 1984
Creighton (C7CS00238F-(cit70)/*[position()=1]) 2010; 64
Lim (C7CS00238F-(cit148)/*[position()=1]) 2010; 9
Stöckle (C7CS00238F-(cit44)/*[position()=1]) 2000; 318
Le Ru (C7CS00238F-(cit4)/*[position()=1]) 2009
Schlücker (C7CS00238F-(cit43)/*[position()=1]) 2014; 53
Wustholz (C7CS00238F-(cit152)/*[position()=1]) 2010; 132
Bowen (C7CS00238F-(cit189)/*[position()=1]) 2014; 90
Arenas (C7CS00238F-(cit98)/*[position()=1]) 1996; 100
McLellan (C7CS00238F-(cit143)/*[position()=1]) 2006; 427
Galperin (C7CS00238F-(cit237)/*[position()=1]) 2017
Li (C7CS00238F-(cit23)/*[position()=1]) 2009; 9
Pettinger (C7CS00238F-(cit74)/*[position()=1]) 1980; 101
Roy (C7CS00238F-(cit97)/*[position()=1]) 1986; 124
Rahmani (C7CS00238F-(cit218)/*[position()=1]) 2013; 7
Xu (C7CS00238F-(cit130)/*[position()=1]) 2000; 62
Masiello (C7CS00238F-(cit251)/*[position()=1]) 2008; 78
Lal (C7CS00238F-(cit37)/*[position()=1]) 2008; 37
Hao (C7CS00238F-(cit159)/*[position()=1]) 2004; 120
Kosuda (C7CS00238F-(cit213)/*[position()=1]) 2011
Downes (C7CS00238F-(cit204)/*[position()=1]) 2006; 110
Esteban (C7CS00238F-(cit178)/*[position()=1]) 2012; 3
Chen (C7CS00238F-(cit154)/*[position()=1]) 2009; 113
Wang (C7CS00238F-(cit19)/*[position()=1]) 2007; 40
Powell (C7CS00238F-(cit106)/*[position()=1]) 1960; 118
Stiles (C7CS00238F-(cit32)/*[position()=1]) 2008; 1
Moskovits (C7CS00238F-(cit132)/*[position()=1]) 2005; 36
Minkowski (C7CS00238F-(cit192)/*[position()=1]) 2014; 104
Ding (C7CS00238F-(cit113)/*[position()=1]) 2014
Tian (C7CS00238F-(cit115)/*[position()=1]) 2002; 106
Moreau (C7CS00238F-(cit136)/*[position()=1]) 2012; 492
Frontiera (C7CS00238F-(cit55)/*[position()=1]) 2011; 2
Morton (C7CS00238F-(cit248)/*[position()=1]) 2011; 135
Furtak (C7CS00238F-(cit60)/*[position()=1]) 1980; 93
Vivoni (C7CS00238F-(cit116)/*[position()=1]) 2003; 107
Kazemi-Zanjani (C7CS00238F-(cit206)/*[position()=1]) 2013; 21
Gandra (C7CS00238F-(cit155)/*[position()=1]) 2012; 12
Li (C7CS00238F-(cit22)/*[position()=1]) 2010; 464
Yang (C7CS00238F-(cit153)/*[position()=1]) 2015; 44
Jiang (C7CS00238F-(cit228)/*[position()=1]) 2015; 10
Morton (C7CS00238F-(cit117)/*[position()=1]) 2009; 131
Ding (C7CS00238F-(cit239)/*[position()=1]) 2017
Gallinet (C7CS00238F-(cit220)/*[position()=1]) 2013; 13
Zhang (C7CS00238F-(cit238)/*[position()=1]) 2011; 11
Teodorescu (C7CS00238F-(cit90)/*[position()=1]) 2015; 17
Chen (C7CS00238F-(cit199)/*[position()=1]) 2016; 10
Schatz (C7CS00238F-(cit65)/*[position()=1]) 1984; 17
Roth (C7CS00238F-(cit205)/*[position()=1]) 2006; 14
Cecchini (C7CS00238F-(cit157)/*[position()=1]) 2013; 12
Aravind (C7CS00238F-(cit83)/*[position()=1]) 1981; 110
Zhu (C7CS00238F-(cit173)/*[position()=1]) 2014; 5
Ausman (C7CS00238F-(cit125)/*[position()=1]) 2012; 116
Willets (C7CS00238F-(cit36)/*[position()=1]) 2007; 58
Savage (C7CS00238F-(cit175)/*[position()=1]) 2012; 491
Gersten (C7CS00238F-(cit76)/*[position()=1]) 1980; 72
Persson (C7CS00238F-(cit91)/*[position()=1]) 1981; 82
Hill (C7CS00238F-(cit180)/*[position()=1]) 2010; 10
Butcher (C7CS00238F-(cit195)/*[position()=1]) 2012; 116
Blatchford (C7CS00238F-(cit16)/*[position()=1]) 1981; 108
Tan (C7CS00238F-(cit177)/*[position()=1]) 2014; 343
Abdali (C7CS00238F-(cit52)/*[position()=1]) 2008; 37
Wu (C7CS00238F-(cit9
References_xml – issn: 1988
  end-page: p 91-116
  publication-title: Surface Plasmons on Smooth and Rough Surfaces and on Gratings
  doi: Raether
– issn: 2014
  end-page: p 1-17
  publication-title: Frontiers of Surface-Enhanced Raman Scattering
  doi: Schatz Valley
– issn: 2006
  end-page: p 125-146
  publication-title: Surface-Enhanced Raman Scattering
  doi: Tian Yang Ren Wu
– issn: 2013
  publication-title: Handbook of Molecular Plasmonics
  doi: Corni
– issn: 2007
  publication-title: Plasmonics: Fundamentals and Applications
  doi: Maier
– issn: 2012
  publication-title: Principles of Nano-Optics, second edition
  doi: Novotny Hecht
– issn: 1998
  publication-title: Absorption and Scattering of Light by Small Particles
  doi: Bohren Huffman
– issn: 2009
  publication-title: Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects
  doi: Le Ru Etchegoin
– issn: 1984
  end-page: p 289-418
  publication-title: Light Scattering in Solids IV: Electronics Scattering, Spin Effects, SERS, and Morphic Effects
  doi: Otto
– issn: 2014
  publication-title: Encyclopedia of Analytical Chemistry
  doi: Ding Zhang Ren Tian
– issn: 2011
  end-page: p 263-301
  publication-title: Comprehensive Nanoscience and Technology
  doi: Kosuda Bingham Wustholz Van Duyne
– issn: 1982
  publication-title: Surface Enhanced Raman Scattering
– volume: 56
  start-page: 10652
  year: 2011
  ident: C7CS00238F-(cit193)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.04.107
– volume: 343
  start-page: 1496
  year: 2014
  ident: C7CS00238F-(cit177)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1248797
– volume: 12
  start-page: 2645
  year: 2012
  ident: C7CS00238F-(cit155)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl3012038
– volume: 132
  start-page: 12820
  year: 2010
  ident: C7CS00238F-(cit24)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105248h
– volume: 23
  start-page: 2135
  year: 1968
  ident: C7CS00238F-(cit107)/*[position()=1]
  publication-title: Z. Naturforsch., A: Phys. Sci.
  doi: 10.1515/zna-1968-1247
– volume: 32
  start-page: 4877
  year: 2011
  ident: C7CS00238F-(cit145)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.03.029
– volume: 108
  start-page: 411
  year: 1981
  ident: C7CS00238F-(cit16)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(81)90459-3
– volume: 133
  start-page: 4115
  year: 2011
  ident: C7CS00238F-(cit149)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110964d
– volume: 14
  start-page: 2921
  year: 2006
  ident: C7CS00238F-(cit205)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.14.002921
– volume: 132
  start-page: 9
  year: 2006
  ident: C7CS00238F-(cit212)/*[position()=1]
  publication-title: Faraday Discuss.
  doi: 10.1039/B513431P
– volume: 45
  start-page: 2263
  year: 2016
  ident: C7CS00238F-(cit58)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00763A
– volume: 7
  start-page: 1032
  year: 2007
  ident: C7CS00238F-(cit144)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl070214f
– volume: 9
  start-page: 485
  year: 2009
  ident: C7CS00238F-(cit23)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl803621x
– volume: 337
  start-page: 1072
  year: 2012
  ident: C7CS00238F-(cit186)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1224823
– volume: 11
  start-page: 1657
  year: 2011
  ident: C7CS00238F-(cit238)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl200135r
– volume: 84
  start-page: 1
  year: 1977
  ident: C7CS00238F-(cit11)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(77)80224-6
– volume: 116
  start-page: 5128
  year: 2012
  ident: C7CS00238F-(cit195)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp211884s
– volume: 107
  start-page: 9964
  year: 2003
  ident: C7CS00238F-(cit131)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp034632u
– volume: 631
  start-page: 73
  year: 2015
  ident: C7CS00238F-(cit194)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2014.07.019
– volume: 104
  start-page: 021111
  year: 2014
  ident: C7CS00238F-(cit192)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4862430
– volume: 44
  start-page: 1763
  year: 2015
  ident: C7CS00238F-(cit247)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00348A
– volume: 427
  start-page: 122
  year: 2006
  ident: C7CS00238F-(cit143)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.05.111
– volume: 70
  start-page: 2297
  year: 1979
  ident: C7CS00238F-(cit92)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.437735
– volume: 5
  start-page: 10794
  year: 2013
  ident: C7CS00238F-(cit139)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr02924g
– volume: 125
  start-page: 9598
  year: 2003
  ident: C7CS00238F-(cit48)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja035541d
– volume: 12
  start-page: 165
  year: 2013
  ident: C7CS00238F-(cit157)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3488
– volume: 23
  start-page: 13804
  year: 2015
  ident: C7CS00238F-(cit209)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.23.013804
– volume: 129
  start-page: 064706
  year: 2008
  ident: C7CS00238F-(cit240)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2961011
– volume: 135
  start-page: 134103
  year: 2011
  ident: C7CS00238F-(cit248)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3643381
– volume: 76
  start-page: 2888
  year: 1982
  ident: C7CS00238F-(cit86)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.443370
– volume: 118
  start-page: 640
  year: 1960
  ident: C7CS00238F-(cit106)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.118.640
– volume: 137
  start-page: 7648
  year: 2015
  ident: C7CS00238F-(cit198)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04670
– volume: 125
  start-page: 204701
  year: 2006
  ident: C7CS00238F-(cit133)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2390694
– volume: 17
  start-page: 21302
  year: 2015
  ident: C7CS00238F-(cit90)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05082G
– volume: 26
  start-page: 163
  year: 1974
  ident: C7CS00238F-(cit10)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85388-1
– volume: 12
  start-page: 2088
  year: 2012
  ident: C7CS00238F-(cit181)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl300351j
– volume: 69
  start-page: 65
  year: 1973
  ident: C7CS00238F-(cit87)/*[position()=1]
  publication-title: J. Chem. Soc., Faraday Trans. 2
  doi: 10.1039/f29736900065
– volume: 10
  start-page: 6291
  year: 2016
  ident: C7CS00238F-(cit253)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02484
– volume: 141
  start-page: 124124
  year: 2014
  ident: C7CS00238F-(cit119)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4896537
– volume: 19
  start-page: 14919
  year: 2011
  ident: C7CS00238F-(cit224)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.19.014919
– volume: 132
  start-page: 10903
  year: 2010
  ident: C7CS00238F-(cit152)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104174m
– volume: 19
  start-page: 4159
  year: 1980
  ident: C7CS00238F-(cit82)/*[position()=1]
  publication-title: Appl. Opt.
  doi: 10.1364/AO.19.004159
– volume: 2
  start-page: 295
  year: 2015
  ident: C7CS00238F-(cit168)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/ph5004016
– volume: 57
  start-page: 13265
  year: 1998
  ident: C7CS00238F-(cit129)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.57.13265
– volume: 83
  start-page: 4357
  year: 1999
  ident: C7CS00238F-(cit88)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.4357
– volume: 498
  start-page: 82
  year: 2013
  ident: C7CS00238F-(cit200)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12151
– volume: 92
  start-page: 417
  year: 1980
  ident: C7CS00238F-(cit93)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(80)90214-9
– volume: 73
  start-page: 3023
  year: 1980
  ident: C7CS00238F-(cit78)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.440560
– volume: 47
  start-page: 88
  year: 2014
  ident: C7CS00238F-(cit249)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400075r
– volume: 27
  start-page: 1090
  year: 2015
  ident: C7CS00238F-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404107
– volume: 10
  start-page: 581
  year: 2016
  ident: C7CS00238F-(cit199)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05605
– volume: 130
  start-page: 144109
  year: 2009
  ident: C7CS00238F-(cit236)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3109900
– volume-title: Surface Plasmons on Smooth and Rough Surfaces and on Gratings
  year: 1988
  ident: C7CS00238F-(cit31)/*[position()=1]
  doi: 10.1007/BFb0048317
– volume: 106
  start-page: 9042
  year: 2002
  ident: C7CS00238F-(cit114)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp025970i
– volume: 4
  start-page: 2209
  year: 2004
  ident: C7CS00238F-(cit187)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl0486160
– volume: 110
  start-page: 189
  year: 1981
  ident: C7CS00238F-(cit83)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(81)90595-1
– volume: 55
  start-page: 1041
  year: 2016
  ident: C7CS00238F-(cit231)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201508218
– volume: 137
  start-page: 9515
  year: 2015
  ident: C7CS00238F-(cit229)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03741
– volume: 21
  start-page: 25271
  year: 2013
  ident: C7CS00238F-(cit206)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.21.025271
– volume: 5
  start-page: 9240
  year: 2015
  ident: C7CS00238F-(cit207)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep09240
– volume: 74
  start-page: 3070
  year: 1981
  ident: C7CS00238F-(cit94)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.441403
– volume: 5
  start-page: 8999
  year: 2011
  ident: C7CS00238F-(cit221)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn203173r
– volume-title: Encyclopedia of Analytical Chemistry
  year: 2014
  ident: C7CS00238F-(cit113)/*[position()=1]
  doi: 10.1002/9780470027318.a9276
– volume-title: Surface Enhanced Raman Scattering
  year: 1982
  ident: C7CS00238F-(cit61)/*[position()=1]
– volume: 106
  start-page: 874
  year: 1957
  ident: C7CS00238F-(cit105)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.106.874
– volume-title: Absorption and Scattering of Light by Small Particles
  year: 1998
  ident: C7CS00238F-(cit128)/*[position()=1]
  doi: 10.1002/9783527618156
– volume: 37
  start-page: 980
  year: 2008
  ident: C7CS00238F-(cit52)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b707862p
– volume: 492
  start-page: 86
  year: 2012
  ident: C7CS00238F-(cit136)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11615
– volume: 15
  start-page: 5355
  year: 2013
  ident: C7CS00238F-(cit59)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp44103b
– volume: 321
  start-page: 388
  year: 2008
  ident: C7CS00238F-(cit141)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1159499
– volume: 15
  start-page: 10869
  year: 2007
  ident: C7CS00238F-(cit172)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.15.010869
– volume: 106
  start-page: 853
  year: 2002
  ident: C7CS00238F-(cit30)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp013638l
– volume: 76
  start-page: 085405
  year: 2007
  ident: C7CS00238F-(cit121)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.085405
– volume: 107
  start-page: 1574
  year: 2003
  ident: C7CS00238F-(cit202)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp022060s
– volume: 10
  start-page: 865
  year: 2015
  ident: C7CS00238F-(cit228)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.170
– volume: 108
  start-page: 8157
  year: 2011
  ident: C7CS00238F-(cit25)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1016530108
– volume: 124
  start-page: 506
  year: 1983
  ident: C7CS00238F-(cit84)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(83)90806-3
– volume: 106
  start-page: 9463
  year: 2002
  ident: C7CS00238F-(cit115)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0257449
– volume: 83
  start-page: 115428
  year: 2011
  ident: C7CS00238F-(cit160)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.83.115428
– volume: 43
  start-page: 1135
  year: 2010
  ident: C7CS00238F-(cit8)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar100031v
– volume: 16
  start-page: 9144
  year: 2008
  ident: C7CS00238F-(cit161)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.16.009144
– year: 2017
  ident: C7CS00238F-(cit237)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00067G
– volume: 90
  start-page: 195402
  year: 2014
  ident: C7CS00238F-(cit189)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.195402
– year: 2017
  ident: C7CS00238F-(cit239)/*[position()=1]
  publication-title: Faraday Discuss.
  doi: 10.1039/C7FD00144D
– volume: 464
  start-page: 392
  year: 2010
  ident: C7CS00238F-(cit22)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature08907
– volume-title: Plasmonics: Fundamentals and Applications
  year: 2007
  ident: C7CS00238F-(cit35)/*[position()=1]
  doi: 10.1007/0-387-37825-1
– volume: 11
  start-page: 1221
  year: 2011
  ident: C7CS00238F-(cit166)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl104214c
– volume: 36
  start-page: 549
  year: 1985
  ident: C7CS00238F-(cit67)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.36.100185.003001
– volume: 16
  start-page: 2289
  year: 2014
  ident: C7CS00238F-(cit211)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C3CP51730F
– volume: 12
  start-page: 1660
  year: 2012
  ident: C7CS00238F-(cit225)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl3000453
– volume: 72
  start-page: 5779
  year: 1980
  ident: C7CS00238F-(cit76)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.439002
– volume: 36
  start-page: 497
  year: 2005
  ident: C7CS00238F-(cit254)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1355
– volume: 40
  start-page: 53
  year: 2007
  ident: C7CS00238F-(cit19)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar0401045
– volume: 122
  start-page: 184716
  year: 2005
  ident: C7CS00238F-(cit203)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1896356
– volume: 5
  start-page: 5228
  year: 2014
  ident: C7CS00238F-(cit173)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6228
– volume-title: Surface-Enhanced Raman Scattering
  year: 2006
  ident: C7CS00238F-(cit49)/*[position()=1]
– volume: 133
  start-page: 15922
  year: 2011
  ident: C7CS00238F-(cit134)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2074533
– volume: 92
  start-page: 053811
  year: 2015
  ident: C7CS00238F-(cit190)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.92.053811
– volume: 35
  start-page: 507
  year: 1984
  ident: C7CS00238F-(cit64)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.35.100184.002451
– volume: 7
  start-page: 4629
  year: 2016
  ident: C7CS00238F-(cit227)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02175
– volume: 7
  start-page: 6978
  year: 2013
  ident: C7CS00238F-(cit222)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn4021967
– volume: 267
  start-page: 1629
  year: 1995
  ident: C7CS00238F-(cit17)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.267.5204.1629
– volume: 78
  start-page: 1667
  year: 1997
  ident: C7CS00238F-(cit7)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1667
– volume: 111
  start-page: 4729
  year: 1999
  ident: C7CS00238F-(cit29)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.479235
– volume: 107
  start-page: 5547
  year: 2003
  ident: C7CS00238F-(cit116)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp027642o
– volume: 81
  start-page: 115406
  year: 2010
  ident: C7CS00238F-(cit123)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.115406
– volume: 19
  start-page: 22167
  year: 2011
  ident: C7CS00238F-(cit223)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.19.022167
– volume: 76
  start-page: 3130
  year: 2000
  ident: C7CS00238F-(cit45)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126546
– volume: 116
  start-page: 17318
  year: 2012
  ident: C7CS00238F-(cit125)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2122938
– volume: 41
  start-page: 1710
  year: 2008
  ident: C7CS00238F-(cit127)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800028j
– volume: 75
  start-page: 035411
  year: 2007
  ident: C7CS00238F-(cit169)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.75.035411
– volume: 5
  start-page: 3448
  year: 2014
  ident: C7CS00238F-(cit150)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4448
– volume: 44
  start-page: 2837
  year: 2015
  ident: C7CS00238F-(cit153)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00509K
– start-page: 3514
  year: 2007
  ident: C7CS00238F-(cit15)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b616986d
– volume: 9
  start-page: 60
  year: 2010
  ident: C7CS00238F-(cit148)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2596
– volume: 8
  start-page: 919
  year: 2008
  ident: C7CS00238F-(cit233)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl073346h
– volume: 136
  start-page: 144704
  year: 2012
  ident: C7CS00238F-(cit243)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3698292
– volume: 101
  start-page: 367
  year: 1980
  ident: C7CS00238F-(cit72)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(80)90632-9
– volume: 9
  start-page: 2491
  year: 2008
  ident: C7CS00238F-(cit179)/*[position()=1]
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200800563
– volume-title: Principles of Nano-Optics, second edition
  year: 2012
  ident: C7CS00238F-(cit124)/*[position()=1]
  doi: 10.1017/CBO9780511794193
– volume: 17
  start-page: 21254
  year: 2015
  ident: C7CS00238F-(cit235)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04906C
– volume: 73
  start-page: 6068
  year: 1980
  ident: C7CS00238F-(cit13)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.440142
– volume: 124
  start-page: 299
  year: 1986
  ident: C7CS00238F-(cit97)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(86)85021-7
– volume: 9
  start-page: 701
  year: 2010
  ident: C7CS00238F-(cit167)/*[position()=1]
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2010.2054103
– volume: 57
  start-page: 783
  year: 1985
  ident: C7CS00238F-(cit1)/*[position()=1]
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.57.783
– volume: 120
  start-page: 20506
  year: 2016
  ident: C7CS00238F-(cit146)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b05931
– volume: 138
  start-page: 4574
  year: 2013
  ident: C7CS00238F-(cit182)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c3an00447c
– volume: 15
  start-page: 21
  year: 2013
  ident: C7CS00238F-(cit138)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C2CP42598J
– volume: 82
  start-page: 355
  year: 1981
  ident: C7CS00238F-(cit14)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(81)85172-X
– volume: 120
  start-page: 357
  year: 2004
  ident: C7CS00238F-(cit159)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1629280
– volume: 9
  start-page: 887
  year: 2009
  ident: C7CS00238F-(cit174)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl803811g
– volume: 55
  start-page: 2780
  year: 2016
  ident: C7CS00238F-(cit241)/*[position()=1]
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.002780
– volume: 17
  start-page: 370
  year: 1984
  ident: C7CS00238F-(cit65)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00106a005
– volume: 2
  start-page: 1199
  year: 2011
  ident: C7CS00238F-(cit55)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz200498z
– volume: 111
  start-page: 3913
  year: 2011
  ident: C7CS00238F-(cit217)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200061k
– volume: 43
  start-page: 1230
  year: 2014
  ident: C7CS00238F-(cit42)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60187K
– volume: 103
  start-page: 13300
  year: 2006
  ident: C7CS00238F-(cit21)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0605889103
– volume: 15
  start-page: 16
  year: 2012
  ident: C7CS00238F-(cit39)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(12)70017-2
– volume: 7
  start-page: 5993
  year: 2013
  ident: C7CS00238F-(cit158)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn401685p
– volume: 13
  start-page: 564
  year: 2013
  ident: C7CS00238F-(cit176)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl304078v
– volume: 37
  start-page: 898
  year: 2008
  ident: C7CS00238F-(cit37)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b705969h
– volume: 11
  start-page: 164
  year: 2016
  ident: C7CS00238F-(cit252)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.264
– volume: 120
  start-page: 435
  year: 1982
  ident: C7CS00238F-(cit69)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(82)90161-3
– volume: 132
  start-page: 309
  year: 2006
  ident: C7CS00238F-(cit112)/*[position()=1]
  publication-title: Faraday Discuss.
  doi: 10.1039/B507773G
– volume: 99
  start-page: 5215
  year: 1977
  ident: C7CS00238F-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00457a071
– volume: 11
  start-page: 1800
  year: 2011
  ident: C7CS00238F-(cit162)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl200461w
– volume: 36
  start-page: 1207
  year: 1976
  ident: C7CS00238F-(cit71)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.36.1207
– volume: 114
  start-page: 14384
  year: 2010
  ident: C7CS00238F-(cit244)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1043392
– volume: 107
  start-page: 7426
  year: 2003
  ident: C7CS00238F-(cit18)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp027749b
– volume: 73
  start-page: 035407
  year: 2006
  ident: C7CS00238F-(cit171)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.73.035407
– volume: 131
  start-page: 084708
  year: 2009
  ident: C7CS00238F-(cit122)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3211969
– volume: 227
  start-page: 115
  year: 1994
  ident: C7CS00238F-(cit53)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)00779-9
– volume: 119
  start-page: 433
  year: 1982
  ident: C7CS00238F-(cit95)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(82)90309-0
– volume: 40
  start-page: 1343
  year: 2009
  ident: C7CS00238F-(cit201)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2429
– volume: 13
  start-page: 497
  year: 2013
  ident: C7CS00238F-(cit220)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl303896d
– volume: 275
  start-page: 1102
  year: 1997
  ident: C7CS00238F-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.275.5303.1102
– volume: 38
  start-page: 615
  year: 2013
  ident: C7CS00238F-(cit40)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2013.161
– volume: 37
  start-page: 1061
  year: 2008
  ident: C7CS00238F-(cit104)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b706023h
– volume: 101
  start-page: 409
  year: 1980
  ident: C7CS00238F-(cit74)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(80)90637-8
– volume: 88
  start-page: 5526
  year: 1984
  ident: C7CS00238F-(cit126)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150667a013
– volume: 93
  start-page: 351
  year: 1980
  ident: C7CS00238F-(cit60)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(80)90270-8
– volume: 13
  start-page: 2194
  year: 2013
  ident: C7CS00238F-(cit165)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl400698w
– volume: 78
  start-page: 042505
  year: 2008
  ident: C7CS00238F-(cit251)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.78.042505
– volume: 127
  start-page: 14992
  year: 2005
  ident: C7CS00238F-(cit156)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja055633y
– volume: 132
  start-page: 268
  year: 2010
  ident: C7CS00238F-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja906954f
– volume: 15
  start-page: 8309
  year: 2007
  ident: C7CS00238F-(cit210)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.15.008309
– volume: 21
  start-page: 2
  year: 2014
  ident: C7CS00238F-(cit140)/*[position()=1]
  publication-title: J. Photochem. Photobiol., C
  doi: 10.1016/j.jphotochemrev.2014.09.001
– volume: 8
  start-page: 3421
  year: 2014
  ident: C7CS00238F-(cit56)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn406263m
– volume: 116
  start-page: 9574
  year: 2012
  ident: C7CS00238F-(cit245)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp307003p
– volume: 1
  start-page: 601
  year: 2008
  ident: C7CS00238F-(cit32)/*[position()=1]
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev.anchem.1.031207.112814
– volume: 100
  start-page: 3199
  year: 1996
  ident: C7CS00238F-(cit98)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp952240k
– volume: 130
  start-page: 12616
  year: 2008
  ident: C7CS00238F-(cit151)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8051427
– volume: 183
  start-page: 333
  year: 2000
  ident: C7CS00238F-(cit46)/*[position()=1]
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(00)00894-4
– volume: 63
  start-page: 379
  year: 2012
  ident: C7CS00238F-(cit137)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-032511-143807
– volume: 128
  start-page: 14748
  year: 2006
  ident: C7CS00238F-(cit232)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0648615
– volume: 135
  start-page: 301
  year: 2012
  ident: C7CS00238F-(cit214)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309300d
– volume: 131
  start-page: 4218
  year: 2009
  ident: C7CS00238F-(cit147)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900809z
– volume: 37
  start-page: 885
  year: 2008
  ident: C7CS00238F-(cit38)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b710915f
– volume: 3
  start-page: 223
  year: 2016
  ident: C7CS00238F-(cit208)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.5b00438
– volume: 24
  start-page: 4376
  year: 2012
  ident: C7CS00238F-(cit164)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201625
– volume: 58
  start-page: 267
  year: 2007
  ident: C7CS00238F-(cit36)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.58.032806.104607
– volume: 10
  start-page: 4150
  year: 2010
  ident: C7CS00238F-(cit180)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl102443p
– volume: 89
  start-page: 043841
  year: 2014
  ident: C7CS00238F-(cit226)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.89.043841
– volume: 50
  start-page: 5473
  year: 2011
  ident: C7CS00238F-(cit188)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201101632
– volume: 62
  start-page: 4318
  year: 2000
  ident: C7CS00238F-(cit130)/*[position()=1]
  publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
  doi: 10.1103/PhysRevE.62.4318
– volume: 72
  start-page: 5780
  year: 1980
  ident: C7CS00238F-(cit77)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.439003
– volume: 131
  start-page: 4090
  year: 2009
  ident: C7CS00238F-(cit117)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809143c
– volume: 131
  start-page: 347
  year: 1983
  ident: C7CS00238F-(cit110)/*[position()=1]
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(83)90283-2
– volume: 82
  start-page: 561
  year: 1981
  ident: C7CS00238F-(cit91)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(81)85441-3
– volume: 124
  start-page: 1866
  year: 1961
  ident: C7CS00238F-(cit242)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.124.1866
– volume: 318
  start-page: 131
  year: 2000
  ident: C7CS00238F-(cit44)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)01451-7
– volume: 103
  start-page: 191119
  year: 2013
  ident: C7CS00238F-(cit183)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4829617
– volume: 216
  start-page: 398
  year: 1968
  ident: C7CS00238F-(cit108)/*[position()=1]
  publication-title: Z. Phys. A: Hadrons Nucl.
  doi: 10.1007/BF01391532
– volume: 119
  start-page: 11858
  year: 2015
  ident: C7CS00238F-(cit230)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b02653
– volume: 36
  start-page: 485
  year: 2005
  ident: C7CS00238F-(cit132)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1362
– volume: 1
  start-page: 16021
  year: 2016
  ident: C7CS00238F-(cit5)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.21
– volume: 66
  start-page: 195
  year: 2012
  ident: C7CS00238F-(cit68)/*[position()=1]
  publication-title: Notes Rec. R. Soc.
  doi: 10.1098/rsnr.2011.0024
– volume: 116
  start-page: 1627
  year: 2012
  ident: C7CS00238F-(cit135)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp207661y
– volume: 53
  start-page: 4756
  year: 2014
  ident: C7CS00238F-(cit43)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205748
– volume: 52
  start-page: 150
  year: 2007
  ident: C7CS00238F-(cit103)/*[position()=1]
  publication-title: Can. J. Anal. Sci. Spectrosc.
– volume: 133
  start-page: 132
  year: 2014
  ident: C7CS00238F-(cit197)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.04.034
– volume: 113
  start-page: 12167
  year: 2009
  ident: C7CS00238F-(cit154)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp901355g
– volume: 98
  start-page: 998
  year: 1993
  ident: C7CS00238F-(cit120)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464263
– volume: 8
  start-page: 3083
  year: 2006
  ident: C7CS00238F-(cit215)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b605292d
– volume: 3
  start-page: 825
  year: 2012
  ident: C7CS00238F-(cit178)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1806
– volume-title: Comprehensive Nanoscience and Technology
  year: 2011
  ident: C7CS00238F-(cit213)/*[position()=1]
– volume: 83
  start-page: 235427
  year: 2011
  ident: C7CS00238F-(cit219)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.83.235427
– volume: 17
  start-page: 271
  year: 1984
  ident: C7CS00238F-(cit63)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00104a002
– volume: 12
  start-page: 2625
  year: 2012
  ident: C7CS00238F-(cit163)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl301029e
– volume: 231
  start-page: 128
  year: 1970
  ident: C7CS00238F-(cit109)/*[position()=1]
  publication-title: Z. Phys. A: Hadrons Nucl.
  doi: 10.1007/BF01392504
– volume: 331
  start-page: 290
  year: 2011
  ident: C7CS00238F-(cit33)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1198258
– volume: 50
  start-page: 997
  year: 1983
  ident: C7CS00238F-(cit73)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.997
– volume: 35
  start-page: 667
  year: 1980
  ident: C7CS00238F-(cit75)/*[position()=1]
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(80)90870-4
– volume-title: Frontiers of Surface-Enhanced Raman Scattering
  year: 2014
  ident: C7CS00238F-(cit246)/*[position()=1]
  doi: 10.1002/9781118703601.ch1
– volume: 75
  start-page: 790
  year: 1979
  ident: C7CS00238F-(cit3)/*[position()=1]
  publication-title: J. Chem. Soc., Faraday Trans. 2
  doi: 10.1039/f29797500790
– volume: 83
  start-page: 1356
  year: 1985
  ident: C7CS00238F-(cit51)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.449452
– volume: 26
  start-page: 203
  year: 1991
  ident: C7CS00238F-(cit57)/*[position()=1]
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704929108050881
– volume: 85
  start-page: 2297
  year: 2013
  ident: C7CS00238F-(cit26)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac303269w
– volume: 60
  start-page: 137
  year: 2004
  ident: C7CS00238F-(cit99)/*[position()=1]
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/S1386-1425(03)00190-2
– volume: 16
  start-page: 10315
  year: 2008
  ident: C7CS00238F-(cit170)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.16.010315
– volume: 43
  start-page: 46
  year: 2012
  ident: C7CS00238F-(cit196)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.2989
– volume: 69
  start-page: 4472
  year: 1978
  ident: C7CS00238F-(cit89)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.436436
– volume: 38
  start-page: 607
  year: 2013
  ident: C7CS00238F-(cit41)/*[position()=1]
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2013.156
– volume: 84
  start-page: 4174
  year: 1986
  ident: C7CS00238F-(cit96)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.450037
– volume: 48
  start-page: 4962
  year: 2012
  ident: C7CS00238F-(cit118)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31441j
– volume: 64
  start-page: 175
  year: 2010
  ident: C7CS00238F-(cit70)/*[position()=1]
  publication-title: Notes Rec. R. Soc.
  doi: 10.1098/rsnr.2009.0061
– volume: 6
  start-page: 33218
  year: 2016
  ident: C7CS00238F-(cit184)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep33218
– volume: 42
  start-page: 1186
  year: 1988
  ident: C7CS00238F-(cit50)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702884429896
– volume: 5
  start-page: 1569
  year: 2005
  ident: C7CS00238F-(cit142)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl050928v
– volume: 25
  start-page: 3264
  year: 2013
  ident: C7CS00238F-(cit34)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201205076
– volume: 69
  start-page: 4159
  year: 1978
  ident: C7CS00238F-(cit2)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.437095
– volume: 150
  start-page: 375
  year: 1983
  ident: C7CS00238F-(cit62)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(83)80219-8
– volume: 82
  start-page: 566
  year: 1981
  ident: C7CS00238F-(cit85)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(81)85442-5
– volume: 9
  start-page: 707
  year: 2010
  ident: C7CS00238F-(cit216)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2810
– volume: 5
  start-page: 4424
  year: 2014
  ident: C7CS00238F-(cit54)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5424
– volume: 491
  start-page: 574
  year: 2012
  ident: C7CS00238F-(cit175)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature11653
– volume: 2
  start-page: 305
  year: 2011
  ident: C7CS00238F-(cit234)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1310
– volume: 77
  start-page: 381
  year: 1980
  ident: C7CS00238F-(cit80)/*[position()=1]
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(80)90726-4
– volume: 4
  start-page: 1143
  year: 1992
  ident: C7CS00238F-(cit102)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 4
  start-page: 469
  year: 2017
  ident: C7CS00238F-(cit191)/*[position()=1]
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00908
– volume: 50
  start-page: 1301
  year: 1983
  ident: C7CS00238F-(cit111)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.1301
– volume: 7
  start-page: 329
  year: 2013
  ident: C7CS00238F-(cit218)/*[position()=1]
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201200021
– volume: 7
  start-page: 704
  year: 2016
  ident: C7CS00238F-(cit185)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02535
– volume: 128
  start-page: 2911
  year: 2006
  ident: C7CS00238F-(cit100)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0556326
– volume-title: Handbook of Molecular Plasmonics
  year: 2013
  ident: C7CS00238F-(cit250)/*[position()=1]
  doi: 10.1201/b15328-7
– volume-title: Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects
  year: 2009
  ident: C7CS00238F-(cit4)/*[position()=1]
– volume: 110
  start-page: 6692
  year: 2006
  ident: C7CS00238F-(cit204)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp060173w
– volume: 22
  start-page: 1660
  year: 1980
  ident: C7CS00238F-(cit79)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.22.1660
– volume: 117
  start-page: 5002
  year: 2017
  ident: C7CS00238F-(cit28)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00596
– volume: 18
  start-page: 1180
  year: 1979
  ident: C7CS00238F-(cit81)/*[position()=1]
  publication-title: Appl. Opt.
  doi: 10.1364/AO.18.001180
– volume: 63
  start-page: 65
  year: 2012
  ident: C7CS00238F-(cit9)/*[position()=1]
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-032511-143757
– volume: 68
  start-page: 942
  year: 2000
  ident: C7CS00238F-(cit47)/*[position()=1]
  publication-title: Electrochemistry
  doi: 10.5796/electrochemistry.68.942
– volume-title: Light Scattering in Solids IV: Electronics Scattering, Spin Effects, SERS, and Morphic Effects
  year: 1984
  ident: C7CS00238F-(cit66)/*[position()=1]
  doi: 10.1007/3-540-11942-6_24
– volume: 112
  start-page: 4195
  year: 2008
  ident: C7CS00238F-(cit101)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0760962
SSID ssj0011762
Score 2.6938531
SecondaryResourceType review_article
Snippet Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 442
SubjectTerms gold
Hot spots
Hybrid structures
Mathematical models
nanogold
nanosilver
Nanostructure
optical properties
Optimization
Plasmonics
Raman spectroscopy
silver
Strategy
Title Electromagnetic theories of surface-enhanced Raman spectroscopy
URI https://www.ncbi.nlm.nih.gov/pubmed/28660954
https://www.proquest.com/docview/1914848831
https://www.proquest.com/docview/1925876165
https://www.proquest.com/docview/2286924770
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4AL4rVsl4eC4MLBSxI7cXJCq6rVgtpFsK1UuESxY--ugKRqUw78esavdB8FLVyiyh5FrmcyHns834fQ6yyBjjyqsKScYEpYiDNFIizzlHEKMWpqMviT4_RoRj_Mk7nnanfVJS0_EL-21pX8j1ahDfSqq2T_QbPdS6EBfoN-4QkahueNdDy0HDY_ytNa1yLaqsRzCyO7Wi9VKSSW9ZlN8n8u9XG9qazUCJbN4lJCtwMO8Nc4HUxpF-g67pOTpj7FX9YbmwJ3YfxpjSd-FTS3eu3B6tczLf9p3YlPmtW35ud5u3KFQh752x08ROZE0zLUOl9J0xBTZuEbD-SWNudg3RmjMyRywV3S0EJrXfPjIdEwqIKJlQkq1Ga18hn644_FaDYeF9PhfHob7cSwS4h7aOdwOH0_7tJIETOMst2oPD4tyd9u3n05Irm2zYCgY-nJYEzQMb2P7rndQnBoVf8A3ZL1Q3Rn4En6HqF3V0wg8CYQNCq4agKBMYHgogk8RrPRcDo4wo4TAwtY0lpcqRy-HsmVLGHnmhGl4folEVWusjSSiSo1uT3XoEUkzCVEq6VgOkxlFYXgrSK7qFc3tdzTl9pIXnKimMhKGoqUJ0nFORVRVnHG87iP3vh5KYQDjNe8Jd8Lc3GB5MWADU7MHI766FUnu7AwKVulXvrpLWCedGqqrGWzXhUaZTCDtYREf5OBP8zSKE3-LBPHWZrHlLGwj55Y_XXjgS6Nrkj7aBcU2jVvDKGP9rd3FItK7d9g7E_R3c2H8gz12uVaPoeYteUvnGX-BpT2l6M
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromagnetic+theories+of+surface-enhanced+Raman+spectroscopy&rft.jtitle=Chemical+Society+reviews&rft.au=Ding%2C+Song-Yuan&rft.au=You%2C+En-Ming&rft.au=Tian%2C+Zhong-Qun&rft.au=Moskovits%2C+Martin&rft.date=2017-07-07&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=46&rft.issue=13&rft.spage=4042&rft_id=info:doi/10.1039%2Fc7cs00238f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon