Electromagnetic theories of surface-enhanced Raman spectroscopy
Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity...
Saved in:
Published in | Chemical Society reviews Vol. 46; no. 13; pp. 442 - 476 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
07.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical strategies for simulating the optical properties and consequential SERS performance of particle-on-substrate systems that might guide the design of SERS-active systems. Finally, some current theoretical attempts are briefly discussed for unifying EM and non-EM contribution to SERS.
A fundamental theoretical understanding of SERS, and SERS hotspots, leads to new design principles for SERS substrates and new applications in nanomaterials and chemical analysis. |
---|---|
AbstractList | Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical strategies for simulating the optical properties and consequential SERS performance of particle-on-substrate systems that might guide the design of SERS-active systems. Finally, some current theoretical attempts are briefly discussed for unifying EM and non-EM contribution to SERS.
A fundamental theoretical understanding of SERS, and SERS hotspots, leads to new design principles for SERS substrates and new applications in nanomaterials and chemical analysis. Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical strategies for simulating the optical properties and consequential SERS performance of particle-on-substrate systems that might guide the design of SERS-active systems. Finally, some current theoretical attempts are briefly discussed for unifying EM and non-EM contribution to SERS. Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical strategies for simulating the optical properties and consequential SERS performance of particle-on-substrate systems that might guide the design of SERS-active systems. Finally, some current theoretical attempts are briefly discussed for unifying EM and non-EM contribution to SERS.Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures. This review summarizes the development of theories over the past four decades pertinent to SERS, especially those contributing to our current understanding of SP-related SERS. Special emphasis is given to the salient strategies and theoretical approaches for optimizing nanostructures with hotspots as efficient EM near-field concentrating and far-field radiating substrates for SERS. A simple model is described in terms of which the upper limit of the SERS enhancement can be estimated. Several experimental strategies that may allow one to approach, or possibly exceed this limit, such as cascading the enhancement of the local and radiated EM field by the multiscale EM coupling of hierarchical structures, and generating hotspots by hybridizing an antenna mode with a plasmonic waveguide cavity mode, which would result in an increased local field enhancement, are discussed. Aiming to significantly broaden the application of SERS to other fields, and especially to material science, we consider hybrid structures of plasmonic nanostructures and other material phases and strategies for producing strong local EM fields at desired locations in such hybrid structures. In this vein, we consider some of the numerical strategies for simulating the optical properties and consequential SERS performance of particle-on-substrate systems that might guide the design of SERS-active systems. Finally, some current theoretical attempts are briefly discussed for unifying EM and non-EM contribution to SERS. |
Author | Tian, Zhong-Qun You, En-Ming Moskovits, Martin Ding, Song-Yuan |
AuthorAffiliation | Graphene Industry and Engineering Research Institute Department of Chemistry and Biochemistry Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry Xiamen University University of California College of Chemistry and Chemical Engineering State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) Santa Barbara |
AuthorAffiliation_xml | – name: University of California – name: Santa Barbara – name: College of Chemistry and Chemical Engineering – name: Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), and Department of Chemistry – name: State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS) – name: Graphene Industry and Engineering Research Institute – name: Xiamen University – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Song-Yuan surname: Ding fullname: Ding, Song-Yuan – sequence: 2 givenname: En-Ming surname: You fullname: You, En-Ming – sequence: 3 givenname: Zhong-Qun surname: Tian fullname: Tian, Zhong-Qun – sequence: 4 givenname: Martin surname: Moskovits fullname: Moskovits, Martin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28660954$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctLAzEQxoNUtFUv3pX1JsLq5LHJ5iRSWhUEwcd5SbMTu7Ivk-2h_71r6wNE1NMMzO8bZr5vRAZ1UyMh-xROKXB9ZpUNAIynboMMqZAQCyXEgAyBg4wBKNsmoxCe-44qybbINkulBJ2IITmflGg731TmqcausFE3x8YXGKLGRWHhnbEYYz03tcU8ujOVqaPQriTBNu1yl2w6Uwbce6875HE6eRhfxTe3l9fji5vYCqm6OHdaasCZQyNZknLHNEjkNtculRQTZ4RM6IwpLjhoTGhirAJJlcoFE5DzHXK83tv65mWBocuqIlgsS1NjswgZ61_STCgFf6JU9xcoSWXyD5SKVKQppz16-I4uZhXmWeuLyvhl9mFlD5ysAdtbEzy6T4RC9pZTNlbj-1VO0x6Gb7AtOtMVTd15U5Q_Sw7WEh_s5-qv6Pv50W_zrM0dfwXuQKe4 |
CitedBy_id | crossref_primary_10_3390_coatings12101419 crossref_primary_10_1002_smll_202207404 crossref_primary_10_1016_j_apsusc_2019_06_167 crossref_primary_10_3390_nano10030519 crossref_primary_10_1021_acsami_4c11308 crossref_primary_10_3390_nano9020185 crossref_primary_10_1021_acsanm_2c03400 crossref_primary_10_1039_D1RA07871B crossref_primary_10_1007_s00604_023_06075_5 crossref_primary_10_3866_PKU_WHXB202303037 crossref_primary_10_1016_j_sna_2022_113932 crossref_primary_10_1039_C9TB01598A crossref_primary_10_1016_j_carbon_2021_12_055 crossref_primary_10_1016_S1872_2067_22_64157_3 crossref_primary_10_1021_acsnano_1c00188 crossref_primary_10_1088_2053_1591_aad0db crossref_primary_10_1016_j_apsusc_2023_158982 crossref_primary_10_1016_j_apsusc_2019_144049 crossref_primary_10_1039_D3AY01006F crossref_primary_10_3390_nano11071728 crossref_primary_10_1016_j_saa_2022_121030 crossref_primary_10_1021_acs_jpcc_3c07334 crossref_primary_10_1021_acsomega_1c05746 crossref_primary_10_1039_D3TC03507G crossref_primary_10_1021_acs_langmuir_3c02635 crossref_primary_10_1007_s11237_020_09642_6 crossref_primary_10_1002_adsr_202400030 crossref_primary_10_1021_acs_analchem_3c01282 crossref_primary_10_1093_nsr_nwaa151 crossref_primary_10_1016_j_trac_2020_115920 crossref_primary_10_1016_j_esci_2024_100352 crossref_primary_10_1016_j_isci_2021_103384 crossref_primary_10_1002_jrs_5823 crossref_primary_10_1016_j_optcom_2021_127797 crossref_primary_10_1039_D0CE00786B crossref_primary_10_1021_acs_jpcc_2c00278 crossref_primary_10_3390_s22103877 crossref_primary_10_1021_cbmi_3c00017 crossref_primary_10_1149_1945_7111_abc0aa crossref_primary_10_3390_chemosensors11070399 crossref_primary_10_1002_anie_202007706 crossref_primary_10_1016_j_surfin_2023_103667 crossref_primary_10_1021_acs_jpcc_0c03246 crossref_primary_10_1021_acsnano_8b07066 crossref_primary_10_1007_s11664_019_07662_0 crossref_primary_10_1016_j_ijbiomac_2024_137115 crossref_primary_10_1021_acsphotonics_0c01569 crossref_primary_10_2147_IJN_S434854 crossref_primary_10_1016_j_saa_2022_122129 crossref_primary_10_1016_j_talanta_2019_120411 crossref_primary_10_1021_acs_jpcc_4c05827 crossref_primary_10_1021_acsomega_0c00677 crossref_primary_10_1016_j_apsusc_2019_07_182 crossref_primary_10_1186_s12951_022_01711_3 crossref_primary_10_1002_adma_202007988 crossref_primary_10_1016_j_molstruc_2023_136869 crossref_primary_10_1039_D4CY01361A crossref_primary_10_1016_j_saa_2020_118759 crossref_primary_10_1002_anie_201904452 crossref_primary_10_3390_bios13010102 crossref_primary_10_1021_acs_jpclett_1c03535 crossref_primary_10_1002_adfm_201900541 crossref_primary_10_1364_OE_454893 crossref_primary_10_3390_ma13092185 crossref_primary_10_1364_OME_411419 crossref_primary_10_3390_molecules29010218 crossref_primary_10_1002_adfm_202100342 crossref_primary_10_1021_acs_jpcc_2c07729 crossref_primary_10_1016_j_talanta_2021_122345 crossref_primary_10_1016_j_carbon_2021_11_040 crossref_primary_10_1016_j_talanta_2021_122585 crossref_primary_10_1016_j_scitotenv_2024_175045 crossref_primary_10_1021_acsnano_4c15183 crossref_primary_10_1021_acsphotonics_2c01205 crossref_primary_10_1016_j_vacuum_2024_113501 crossref_primary_10_1002_admi_201900966 crossref_primary_10_1002_ppsc_201900268 crossref_primary_10_1088_1361_6463_ac21fd crossref_primary_10_1021_acs_langmuir_4c02091 crossref_primary_10_1002_adom_202102001 crossref_primary_10_1039_D3NR01059G crossref_primary_10_1002_adom_202400109 crossref_primary_10_1002_admt_201900999 crossref_primary_10_1080_05704928_2021_2025068 crossref_primary_10_1021_acs_jctc_3c00177 crossref_primary_10_1039_D2TB02049A crossref_primary_10_2174_1573413716999201209105519 crossref_primary_10_1039_D1TC02163J crossref_primary_10_1016_j_snb_2021_131056 crossref_primary_10_1021_acsmaterialsau_2c00013 crossref_primary_10_1016_j_snb_2019_02_054 crossref_primary_10_3390_nano11071760 crossref_primary_10_1016_j_apsusc_2020_148908 crossref_primary_10_1021_acsphotonics_8b00554 crossref_primary_10_1016_j_molstruc_2019_03_001 crossref_primary_10_1021_acs_chemrev_0c00294 crossref_primary_10_1039_C8NR05650A crossref_primary_10_1016_j_catcom_2023_106672 crossref_primary_10_1002_advs_202301395 crossref_primary_10_1039_D0NA01007C crossref_primary_10_1039_D1AY02080C crossref_primary_10_1557_adv_2020_332 crossref_primary_10_1016_j_aca_2019_07_057 crossref_primary_10_1016_j_jhazmat_2022_130124 crossref_primary_10_1088_1361_6528_ac0ddd crossref_primary_10_1016_j_ijbiomac_2024_129941 crossref_primary_10_1016_j_surfcoat_2021_127132 crossref_primary_10_1021_acsami_0c03300 crossref_primary_10_1039_D1TA08918H crossref_primary_10_1002_smll_202204588 crossref_primary_10_1016_j_talanta_2020_122031 crossref_primary_10_1021_acs_jpcc_1c00670 crossref_primary_10_1002_adom_202401657 crossref_primary_10_1002_jbio_201960176 crossref_primary_10_1021_acs_jpclett_4c03017 crossref_primary_10_1016_j_microc_2022_108371 crossref_primary_10_1016_j_foodchem_2023_136433 crossref_primary_10_1103_PhysRevA_103_013725 crossref_primary_10_1021_acs_jpclett_4c02173 crossref_primary_10_1039_C9AN02051A crossref_primary_10_1039_D1LC01097B crossref_primary_10_1016_j_snb_2023_134709 crossref_primary_10_1039_D1CP04857K crossref_primary_10_1016_j_cocis_2022_101660 crossref_primary_10_1021_acssensors_3c01061 crossref_primary_10_1016_j_optmat_2024_114932 crossref_primary_10_1039_D4DT00523F crossref_primary_10_1039_D4TA05117C crossref_primary_10_1016_j_talanta_2021_122383 crossref_primary_10_1016_j_saa_2023_123562 crossref_primary_10_1016_j_trac_2023_117094 crossref_primary_10_1109_TNB_2021_3124055 crossref_primary_10_1016_j_ijleo_2020_165377 crossref_primary_10_3390_molecules26247443 crossref_primary_10_1016_j_microc_2024_110415 crossref_primary_10_1039_C8TC01168K crossref_primary_10_1016_j_saa_2022_122195 crossref_primary_10_3390_ijms232213868 crossref_primary_10_3390_coatings11101171 crossref_primary_10_1039_C7CS00786H crossref_primary_10_1016_j_vibspec_2023_103587 crossref_primary_10_1021_acs_analchem_8b02121 crossref_primary_10_1021_acsabm_1c00315 crossref_primary_10_1016_j_snb_2021_131245 crossref_primary_10_3390_ma13173677 crossref_primary_10_3390_nano10112308 crossref_primary_10_1016_j_jiec_2019_02_001 crossref_primary_10_1016_j_surfin_2022_102440 crossref_primary_10_1021_acs_jpcc_9b11018 crossref_primary_10_2139_ssrn_3991814 crossref_primary_10_3390_nano11061521 crossref_primary_10_1007_s00604_025_07025_z crossref_primary_10_1016_j_jmgm_2022_108234 crossref_primary_10_1360_SSC_2023_0157 crossref_primary_10_1039_C9NR06561J crossref_primary_10_1021_acsomega_4c06398 crossref_primary_10_1002_adom_202401640 crossref_primary_10_1002_anie_201801748 crossref_primary_10_1007_s00216_021_03419_z crossref_primary_10_1002_jrs_5662 crossref_primary_10_1142_S1793292020500435 crossref_primary_10_1039_C8SM00097B crossref_primary_10_1002_ppsc_202300143 crossref_primary_10_1021_acsnano_1c00352 crossref_primary_10_1016_j_nanoen_2019_04_095 crossref_primary_10_1021_acsanm_9b00420 crossref_primary_10_1016_j_optlastec_2023_109533 crossref_primary_10_1021_acs_jpcc_3c05339 crossref_primary_10_1039_D3QM00471F crossref_primary_10_1088_1402_4896_ad1c7f crossref_primary_10_1016_j_surfin_2023_103821 crossref_primary_10_1039_D2RA06074D crossref_primary_10_1002_jssc_201800852 crossref_primary_10_1016_j_snb_2022_131989 crossref_primary_10_1186_s41476_020_00144_5 crossref_primary_10_1063_5_0148043 crossref_primary_10_1016_j_snb_2022_131986 crossref_primary_10_1364_OE_446895 crossref_primary_10_1088_1361_6463_ac292d crossref_primary_10_1007_s12274_020_3014_3 crossref_primary_10_3390_s22072649 crossref_primary_10_1016_j_sna_2020_112225 crossref_primary_10_1021_acs_nanolett_9b02864 crossref_primary_10_1016_j_optmat_2020_110012 crossref_primary_10_1039_D0AY00483A crossref_primary_10_1016_j_saa_2024_124921 crossref_primary_10_1007_s12274_023_5732_9 crossref_primary_10_1016_j_apsusc_2025_163016 crossref_primary_10_1142_S1793292021500648 crossref_primary_10_1021_acsnano_3c10405 crossref_primary_10_3390_cryst10010038 crossref_primary_10_1016_j_jallcom_2023_169063 crossref_primary_10_1039_D1AN00624J crossref_primary_10_1002_jrs_6776 crossref_primary_10_1002_adom_201901305 crossref_primary_10_1002_jrs_5849 crossref_primary_10_1016_j_talanta_2021_122188 crossref_primary_10_1364_PRJ_7_000526 crossref_primary_10_1002_cbic_201900191 crossref_primary_10_1039_D0AN00891E crossref_primary_10_1246_bcsj_20210160 crossref_primary_10_1016_j_molstruc_2022_132338 crossref_primary_10_1364_OE_423789 crossref_primary_10_1016_j_bios_2020_112918 crossref_primary_10_1007_s11706_021_0569_1 crossref_primary_10_1021_acs_jpclett_3c02926 crossref_primary_10_1016_j_optlastec_2024_111912 crossref_primary_10_1088_1402_4896_ad1c1f crossref_primary_10_1016_j_microc_2023_109598 crossref_primary_10_1016_j_apsusc_2019_143547 crossref_primary_10_1016_j_nxmate_2023_100036 crossref_primary_10_1021_acs_analchem_4c03733 crossref_primary_10_1002_tcr_201700065 crossref_primary_10_1016_j_snb_2024_136332 crossref_primary_10_1016_j_nantod_2020_101063 crossref_primary_10_1088_1361_6528_ab8400 crossref_primary_10_1002_anie_202007771 crossref_primary_10_1002_adom_202202991 crossref_primary_10_3390_photonics7030053 crossref_primary_10_1039_D2TC05148F crossref_primary_10_1364_OE_450918 crossref_primary_10_1016_j_tsf_2021_138595 crossref_primary_10_1021_acs_analchem_2c00157 crossref_primary_10_1039_C9CP02015B crossref_primary_10_1007_s11468_023_02126_y crossref_primary_10_1016_j_envpol_2022_120775 crossref_primary_10_3390_app13179982 crossref_primary_10_1039_D4CS00883A crossref_primary_10_1002_jrs_5620 crossref_primary_10_1016_j_cej_2024_152316 crossref_primary_10_1039_D3NR01456H crossref_primary_10_1039_C8NJ06206D crossref_primary_10_1016_j_chemphys_2018_11_015 crossref_primary_10_1016_j_apsadv_2022_100322 crossref_primary_10_1016_j_pdpdt_2024_104336 crossref_primary_10_1016_j_bios_2022_114004 crossref_primary_10_1016_j_trechm_2024_05_006 crossref_primary_10_3390_chemosensors11100531 crossref_primary_10_1021_acsnano_3c00657 crossref_primary_10_3390_nano14070566 crossref_primary_10_1016_j_electacta_2020_136560 crossref_primary_10_1002_ejic_201800132 crossref_primary_10_1111_1541_4337_12695 crossref_primary_10_1007_s12274_021_3477_x crossref_primary_10_1016_j_jallcom_2019_151735 crossref_primary_10_1021_acs_analchem_8b03276 crossref_primary_10_1039_D4NA00387J crossref_primary_10_3390_nano12040600 crossref_primary_10_1002_jrs_5634 crossref_primary_10_1002_anie_202205628 crossref_primary_10_1007_s11172_024_4374_8 crossref_primary_10_1021_acsami_2c05652 crossref_primary_10_3390_chemosensors11100541 crossref_primary_10_1021_acsapm_3c02978 crossref_primary_10_1039_C8CS00864G crossref_primary_10_1021_acsomega_2c03847 crossref_primary_10_1016_j_talanta_2020_120936 crossref_primary_10_1039_D4CS00861H crossref_primary_10_1016_j_snb_2022_131778 crossref_primary_10_3390_coatings10080799 crossref_primary_10_3389_fcell_2023_1160544 crossref_primary_10_1016_j_saa_2021_119957 crossref_primary_10_1021_acs_jpclett_2c00737 crossref_primary_10_3390_nano10061200 crossref_primary_10_1021_acs_chemrev_2c00316 crossref_primary_10_1088_2053_1583_acbc8a crossref_primary_10_1002_jrs_5400 crossref_primary_10_1002_admi_202200369 crossref_primary_10_1002_smll_202302410 crossref_primary_10_1364_JOSAB_36_002423 crossref_primary_10_1016_j_talanta_2023_124966 crossref_primary_10_1088_1361_6528_ac55d4 crossref_primary_10_3390_cryst12010024 crossref_primary_10_1016_j_saa_2024_124655 crossref_primary_10_1021_acsnano_4c00208 crossref_primary_10_1002_wcms_1665 crossref_primary_10_1088_1361_6528_ac9688 crossref_primary_10_3390_ma17061385 crossref_primary_10_1039_C7CS00451F crossref_primary_10_1016_j_trac_2023_117497 crossref_primary_10_3390_s25051370 crossref_primary_10_1021_acssensors_4c01357 crossref_primary_10_1002_smll_201801146 crossref_primary_10_1016_j_snb_2018_10_028 crossref_primary_10_3390_s20164397 crossref_primary_10_3390_ijms221910595 crossref_primary_10_3390_nano8060436 crossref_primary_10_1063_5_0025169 crossref_primary_10_1016_j_elecom_2021_106928 crossref_primary_10_1016_j_optlaseng_2024_108452 crossref_primary_10_1021_acsanm_0c00883 crossref_primary_10_1007_s12274_021_4017_4 crossref_primary_10_1002_smll_202303688 crossref_primary_10_1021_acs_jpcc_9b06751 crossref_primary_10_1039_C9CC09426A crossref_primary_10_1016_j_omx_2024_100362 crossref_primary_10_1002_ppsc_201800285 crossref_primary_10_1021_acs_jpcc_4c00930 crossref_primary_10_1109_JSEN_2021_3118107 crossref_primary_10_1039_C8AY00530C crossref_primary_10_1002_jrs_6006 crossref_primary_10_1016_j_trac_2024_117990 crossref_primary_10_31613_ceramist_2019_22_3_06 crossref_primary_10_1016_j_bios_2018_04_003 crossref_primary_10_1039_D4CS00460D crossref_primary_10_1364_OE_481440 crossref_primary_10_1039_D2MA00997H crossref_primary_10_1039_D4RA07061E crossref_primary_10_1021_acs_jpcc_2c01818 crossref_primary_10_1021_acsphotonics_9b00120 crossref_primary_10_1515_nanoph_2018_0073 crossref_primary_10_1039_D2SC01938H crossref_primary_10_1016_j_jhazmat_2024_136978 crossref_primary_10_1016_j_ccr_2021_213824 crossref_primary_10_1016_j_colsurfa_2018_02_069 crossref_primary_10_1016_j_surfin_2021_101556 crossref_primary_10_1002_adfm_201908825 crossref_primary_10_1002_chem_202400227 crossref_primary_10_3390_nano14090764 crossref_primary_10_1016_j_surfin_2024_105570 crossref_primary_10_1002_jrs_6014 crossref_primary_10_1038_s41570_018_0031_9 crossref_primary_10_1002_qute_202300265 crossref_primary_10_1142_S1793292020501222 crossref_primary_10_1002_ppsc_201700489 crossref_primary_10_1021_acs_analchem_1c01723 crossref_primary_10_3390_nano12101626 crossref_primary_10_1002_admi_201800672 crossref_primary_10_1007_s00604_023_06047_9 crossref_primary_10_1002_cnma_202200516 crossref_primary_10_1002_jrs_5331 crossref_primary_10_1016_j_apmt_2022_101598 crossref_primary_10_1016_j_aca_2021_339406 crossref_primary_10_1039_D0TC00040J crossref_primary_10_3390_nano10122377 crossref_primary_10_1021_acsnano_4c12469 crossref_primary_10_3390_chemosensors12080154 crossref_primary_10_1002_adom_201800292 crossref_primary_10_1021_acs_jpclett_7b02855 crossref_primary_10_1364_OE_438895 crossref_primary_10_1364_OL_44_003865 crossref_primary_10_1016_j_apsusc_2024_159974 crossref_primary_10_1088_1361_6528_ac0665 crossref_primary_10_1088_1361_6528_ac1754 crossref_primary_10_1002_smll_201802276 crossref_primary_10_1039_D2SM01693A crossref_primary_10_3390_app14199040 crossref_primary_10_3390_ijms231911741 crossref_primary_10_1021_acsnano_2c12457 crossref_primary_10_1016_j_snb_2021_130401 crossref_primary_10_1016_j_cej_2024_154454 crossref_primary_10_1016_j_apsusc_2020_147236 crossref_primary_10_1021_acs_langmuir_0c02271 crossref_primary_10_1016_j_colsurfa_2020_125414 crossref_primary_10_3390_nano10081455 crossref_primary_10_1007_s10008_020_04762_4 crossref_primary_10_1021_acsnano_4c15509 crossref_primary_10_1016_j_bios_2021_113153 crossref_primary_10_3390_cryst9110569 crossref_primary_10_1039_C8AN00606G crossref_primary_10_1021_jacs_3c11959 crossref_primary_10_1039_D0CP03902K crossref_primary_10_1016_j_jiec_2019_10_032 crossref_primary_10_3390_bios13080825 crossref_primary_10_1002_anie_201902620 crossref_primary_10_1021_acs_jpcc_4c06042 crossref_primary_10_1038_s41467_019_11829_y crossref_primary_10_3390_chemosensors12090175 crossref_primary_10_3390_ma16103634 crossref_primary_10_1039_D0RA05207H crossref_primary_10_1039_C9CC08317K crossref_primary_10_1155_2018_2849175 crossref_primary_10_1016_j_enmf_2024_08_002 crossref_primary_10_1016_j_jsamd_2023_100584 crossref_primary_10_1016_j_optmat_2024_116548 crossref_primary_10_1002_lpor_202401152 crossref_primary_10_3390_nano10010049 crossref_primary_10_1142_S0217979220400093 crossref_primary_10_1186_s43074_023_00098_0 crossref_primary_10_1016_j_apsusc_2024_159513 crossref_primary_10_1039_D0SC00809E crossref_primary_10_3390_molecules25215209 crossref_primary_10_1039_D0AN00484G crossref_primary_10_1021_acsphotonics_9b01648 crossref_primary_10_1039_D3CS01070H crossref_primary_10_1038_s41596_022_00782_8 crossref_primary_10_1016_j_arabjc_2022_104005 crossref_primary_10_1039_D0MA00509F crossref_primary_10_1002_jrs_6454 crossref_primary_10_1038_s41377_021_00599_2 crossref_primary_10_1016_j_talanta_2024_126483 crossref_primary_10_1021_acs_jpclett_2c03602 crossref_primary_10_1021_acssensors_4c02611 crossref_primary_10_3390_molecules24244423 crossref_primary_10_1016_j_talanta_2021_122823 crossref_primary_10_1007_s12668_024_01496_9 crossref_primary_10_1016_j_snb_2020_129319 crossref_primary_10_1016_j_apsusc_2020_146505 crossref_primary_10_1038_s41528_022_00192_6 crossref_primary_10_1039_C9TC03596F crossref_primary_10_1002_jrs_6068 crossref_primary_10_1007_s12274_021_3549_y crossref_primary_10_1039_C8CP01680A crossref_primary_10_1016_j_abst_2024_03_001 crossref_primary_10_1016_j_trac_2022_116603 crossref_primary_10_1002_nano_202200158 crossref_primary_10_1039_D0NA00849D crossref_primary_10_7566_JPSJ_91_113703 crossref_primary_10_1016_j_nantod_2017_10_001 crossref_primary_10_1088_1361_6439_ab4b8e crossref_primary_10_1515_nanoph_2021_0021 crossref_primary_10_1039_C8NR02783H crossref_primary_10_1088_1361_6528_ab2845 crossref_primary_10_1007_s11051_023_05777_4 crossref_primary_10_1021_acsanm_3c04414 crossref_primary_10_1109_JMMCT_2022_3147232 crossref_primary_10_1088_1361_6528_ac40be crossref_primary_10_1021_acsanm_3c04652 crossref_primary_10_1021_acssensors_3c02416 crossref_primary_10_1002_jrs_6073 crossref_primary_10_1016_j_snb_2020_129321 crossref_primary_10_1038_s41467_023_42943_7 crossref_primary_10_1039_D4SC00855C crossref_primary_10_1016_j_talanta_2024_126466 crossref_primary_10_1021_acs_jpcc_4c02703 crossref_primary_10_1021_acsphotonics_4c00332 crossref_primary_10_1039_D3NA00663H crossref_primary_10_1016_j_apsusc_2023_156832 crossref_primary_10_1016_j_snb_2019_02_012 crossref_primary_10_1038_s41598_019_53328_6 crossref_primary_10_1007_s12274_020_3085_1 crossref_primary_10_3390_nano13172417 crossref_primary_10_1016_j_apsusc_2022_153020 crossref_primary_10_3390_scipharm90030054 crossref_primary_10_1021_acssensors_8b00098 crossref_primary_10_1039_C9TA03151K crossref_primary_10_1016_j_aca_2022_339958 crossref_primary_10_1021_acs_jpcc_2c00319 crossref_primary_10_1002_adma_202005979 crossref_primary_10_1016_j_apsusc_2020_147615 crossref_primary_10_1021_acs_analchem_3c04359 crossref_primary_10_1021_acsnano_3c05510 crossref_primary_10_1016_j_optlastec_2024_111571 crossref_primary_10_1021_acs_analchem_8b01735 crossref_primary_10_1039_C8TC06588H crossref_primary_10_1007_s00604_024_06682_w crossref_primary_10_1016_j_optcom_2018_06_086 crossref_primary_10_1049_hve_2019_0157 crossref_primary_10_1166_jbn_2022_3356 crossref_primary_10_1016_j_jallcom_2024_175241 crossref_primary_10_1039_D0NR02972F crossref_primary_10_1016_j_talanta_2023_124590 crossref_primary_10_1016_j_jcis_2018_08_107 crossref_primary_10_1016_j_surfin_2023_103016 crossref_primary_10_1016_j_physleta_2023_129217 crossref_primary_10_1515_nanoph_2020_0313 crossref_primary_10_1016_j_saa_2022_121211 crossref_primary_10_1021_acsanm_3c05767 crossref_primary_10_1007_s10854_021_06669_w crossref_primary_10_1039_D1AN01251G crossref_primary_10_1007_s11468_024_02323_3 crossref_primary_10_1016_j_optcom_2024_130954 crossref_primary_10_1007_s10812_020_00992_6 crossref_primary_10_1039_D0TC01706J crossref_primary_10_3390_bios13120994 crossref_primary_10_1016_j_apsusc_2021_149092 crossref_primary_10_1016_j_rinp_2023_106247 crossref_primary_10_1016_j_bios_2023_115079 crossref_primary_10_1002_adma_201902733 crossref_primary_10_1016_j_ccr_2023_215349 crossref_primary_10_1016_j_optlastec_2021_107259 crossref_primary_10_1002_ange_201904452 crossref_primary_10_1049_mna2_12018 crossref_primary_10_1002_adom_202300508 crossref_primary_10_1088_1361_6528_abff8f crossref_primary_10_1016_j_ccr_2024_215861 crossref_primary_10_1016_j_surfcoat_2022_128285 crossref_primary_10_1016_j_trac_2022_116885 crossref_primary_10_1039_D1ME00016K crossref_primary_10_1186_s12951_022_01756_4 crossref_primary_10_1021_acs_jpcc_1c02339 crossref_primary_10_1016_j_cclet_2021_06_015 crossref_primary_10_3390_ma17174396 crossref_primary_10_1021_acs_jpcc_4c00568 crossref_primary_10_1039_D0NA00141D crossref_primary_10_1021_acsnano_0c04239 crossref_primary_10_1088_1361_6528_abe48b crossref_primary_10_3390_bios11120510 crossref_primary_10_1016_j_physe_2022_115426 crossref_primary_10_1111_ppa_13734 crossref_primary_10_1016_j_apmt_2019_03_005 crossref_primary_10_1016_j_engreg_2022_08_004 crossref_primary_10_1080_09540105_2022_2144145 crossref_primary_10_1139_cjc_2018_0365 crossref_primary_10_1016_j_snb_2023_134569 crossref_primary_10_1364_OE_430760 crossref_primary_10_1021_acs_jpcc_1c04524 crossref_primary_10_3390_nano13232998 crossref_primary_10_1002_agt2_559 crossref_primary_10_1016_j_mseb_2022_115984 crossref_primary_10_1016_j_mssp_2025_109349 crossref_primary_10_1002_adma_202405046 crossref_primary_10_1016_j_aca_2022_340740 crossref_primary_10_1016_j_saa_2022_121880 crossref_primary_10_1039_D3NR04112C crossref_primary_10_1021_acs_analchem_9b01514 crossref_primary_10_1021_acs_jpclett_1c03450 crossref_primary_10_1088_2040_8986_ad8459 crossref_primary_10_1016_j_talanta_2019_01_085 crossref_primary_10_1016_j_biosx_2024_100527 crossref_primary_10_1002_adom_202300770 crossref_primary_10_1088_1361_6528_ab95b7 crossref_primary_10_1364_OE_410966 crossref_primary_10_1021_acs_jpcc_1c02319 crossref_primary_10_1016_j_jallcom_2021_159158 crossref_primary_10_1021_acsanm_1c04421 crossref_primary_10_1039_D0LC00367K crossref_primary_10_1021_acs_jpclett_4c03419 crossref_primary_10_1016_j_optmat_2023_113820 crossref_primary_10_1007_s11468_020_01229_0 crossref_primary_10_1016_j_apsusc_2020_148735 crossref_primary_10_1088_1361_6528_aae9b3 crossref_primary_10_1021_acsami_4c09301 crossref_primary_10_1002_jrs_6294 crossref_primary_10_1021_acs_jpcc_4c00350 crossref_primary_10_1142_S1793292018500017 crossref_primary_10_1016_j_saa_2022_121646 crossref_primary_10_1021_acsami_2c13820 crossref_primary_10_1039_D3CS01055D crossref_primary_10_2139_ssrn_4071386 crossref_primary_10_1021_acssuschemeng_0c05065 crossref_primary_10_1016_j_saa_2018_12_001 crossref_primary_10_1039_C9TC06577F crossref_primary_10_1364_OE_27_037012 crossref_primary_10_1016_j_electacta_2019_135561 crossref_primary_10_1016_j_talanta_2021_122426 crossref_primary_10_3390_bios13010021 crossref_primary_10_1016_j_colsurfa_2025_136373 crossref_primary_10_1039_D2AY01262F crossref_primary_10_1016_j_optcom_2021_127200 crossref_primary_10_1039_D2NR02033E crossref_primary_10_1007_s11468_024_02673_y crossref_primary_10_1039_C7CC05979E crossref_primary_10_1039_D4NR01413H crossref_primary_10_1002_smll_202004802 crossref_primary_10_1016_j_carbon_2017_11_061 crossref_primary_10_1103_PhysRevLett_125_047401 crossref_primary_10_1021_acsanm_2c00490 crossref_primary_10_1088_1755_1315_358_4_042012 crossref_primary_10_1002_jrs_5932 crossref_primary_10_1016_j_sna_2024_115555 crossref_primary_10_1039_D0RA08477H crossref_primary_10_1016_j_physleta_2024_130208 crossref_primary_10_1039_D4AY02098G crossref_primary_10_1016_j_spmi_2018_01_020 crossref_primary_10_1016_j_eti_2024_103987 crossref_primary_10_1016_j_chempr_2023_03_031 crossref_primary_10_1016_j_talanta_2021_122678 crossref_primary_10_1016_j_jcis_2025_137275 crossref_primary_10_1021_acsphotonics_2c00685 crossref_primary_10_1016_j_jallcom_2024_173796 crossref_primary_10_1016_j_vibspec_2023_103616 crossref_primary_10_1016_j_cej_2025_160554 crossref_primary_10_1016_j_cis_2021_102399 crossref_primary_10_1016_j_bios_2023_115531 crossref_primary_10_1109_JSTQE_2021_3068801 crossref_primary_10_1016_j_molstruc_2022_134497 crossref_primary_10_1016_j_talanta_2023_125038 crossref_primary_10_1364_OE_420537 crossref_primary_10_1016_j_bios_2024_116949 crossref_primary_10_1016_j_ccr_2024_216375 crossref_primary_10_1016_j_bios_2023_115779 crossref_primary_10_1039_D0TB00351D crossref_primary_10_1021_acssensors_2c02808 crossref_primary_10_1002_pssb_201800280 crossref_primary_10_3390_biomedicines10061389 crossref_primary_10_1016_j_optmat_2024_116187 crossref_primary_10_1364_OME_476077 crossref_primary_10_1016_j_coelec_2021_100892 crossref_primary_10_1016_j_jhazmat_2022_130046 crossref_primary_10_1007_s12274_022_4712_9 crossref_primary_10_1016_j_optlastec_2022_108407 crossref_primary_10_1016_j_talanta_2023_125281 crossref_primary_10_1002_eem2_12517 crossref_primary_10_1016_j_aca_2023_341920 crossref_primary_10_1016_j_jece_2024_113311 crossref_primary_10_1021_acsapm_4c00903 crossref_primary_10_1364_BOE_434053 crossref_primary_10_1016_j_optlastec_2020_106719 crossref_primary_10_1039_C9AN01811E crossref_primary_10_1016_j_colsurfb_2021_112064 crossref_primary_10_1016_j_apsusc_2022_156117 crossref_primary_10_1002_adom_202402673 crossref_primary_10_3390_bios15030153 crossref_primary_10_1016_j_cclet_2019_02_006 crossref_primary_10_1021_acssensors_3c02285 crossref_primary_10_1016_j_optmat_2022_112483 crossref_primary_10_29235_1561_8323_2018_62_5_615_622 crossref_primary_10_1002_adfm_202400523 crossref_primary_10_1021_acsanm_2c03959 crossref_primary_10_1039_C8NR01198B crossref_primary_10_1039_C9TC03195B crossref_primary_10_1016_j_saa_2022_121580 crossref_primary_10_1021_acs_langmuir_3c01479 crossref_primary_10_1246_bcsj_20200088 crossref_primary_10_1002_ange_202007706 crossref_primary_10_1021_acsami_2c21378 crossref_primary_10_1021_acs_langmuir_9b01449 crossref_primary_10_1021_acsphotonics_4c00700 crossref_primary_10_1007_s00339_023_07144_5 crossref_primary_10_1016_j_saa_2024_123914 crossref_primary_10_1021_acs_langmuir_9b00371 crossref_primary_10_1002_anie_201909603 crossref_primary_10_3390_molecules28031472 crossref_primary_10_1039_D4TC02391A crossref_primary_10_1021_acs_jafc_0c06231 crossref_primary_10_1021_acs_jpclett_9b01390 crossref_primary_10_1016_j_ceramint_2021_06_176 crossref_primary_10_1039_D4CP00641K crossref_primary_10_1088_1361_6528_ab477c crossref_primary_10_1039_C8NR00639C crossref_primary_10_1021_acs_analchem_1c01061 crossref_primary_10_1021_acs_nanolett_2c01825 crossref_primary_10_1039_D2MH00263A crossref_primary_10_1016_j_optmat_2020_110518 crossref_primary_10_1021_acs_analchem_4c01824 crossref_primary_10_1021_acs_analchem_4c02914 crossref_primary_10_1002_jrs_5902 crossref_primary_10_1016_j_matchemphys_2022_126883 crossref_primary_10_1016_j_talanta_2019_120569 crossref_primary_10_3390_molecules30010015 crossref_primary_10_1021_acs_jpcc_1c07177 crossref_primary_10_3390_molecules29102383 crossref_primary_10_1016_j_talanta_2021_122204 crossref_primary_10_1002_smll_202403672 crossref_primary_10_1016_j_mtphys_2021_100343 crossref_primary_10_1039_C8AN01667D crossref_primary_10_1039_D0NR07344J crossref_primary_10_1021_acsami_1c20893 crossref_primary_10_1002_lpor_202301056 crossref_primary_10_1039_D2MH01241C crossref_primary_10_1016_j_isci_2022_104422 crossref_primary_10_3390_ma12010103 crossref_primary_10_1002_chem_202303391 crossref_primary_10_1002_ppsc_202100160 crossref_primary_10_1002_smm2_1058 crossref_primary_10_1021_acs_analchem_0c01886 crossref_primary_10_1039_D0CP01125H crossref_primary_10_1016_j_colsurfa_2019_123600 crossref_primary_10_1039_D0AY00693A crossref_primary_10_1021_acs_chemrev_8b00226 crossref_primary_10_1016_j_saa_2023_122762 crossref_primary_10_1007_s10854_024_12343_8 crossref_primary_10_1016_j_aca_2022_340333 crossref_primary_10_1016_j_omx_2023_100250 crossref_primary_10_1021_acsagscitech_4c00153 crossref_primary_10_1016_j_ccr_2024_216320 crossref_primary_10_1021_acsami_9b02953 crossref_primary_10_1039_C8RA02260G crossref_primary_10_1364_OL_447995 crossref_primary_10_1088_1361_6528_ac7882 crossref_primary_10_1002_tcr_202300303 crossref_primary_10_1016_j_chempr_2023_01_017 crossref_primary_10_1021_acs_accounts_9b00358 crossref_primary_10_1007_s11468_020_01188_6 crossref_primary_10_1016_j_microc_2023_109888 crossref_primary_10_1021_acsami_0c04509 crossref_primary_10_1016_j_microc_2022_108018 crossref_primary_10_1021_acscatal_4c04578 crossref_primary_10_1016_j_saa_2023_122996 crossref_primary_10_1039_C9NR08118F crossref_primary_10_1016_j_fbio_2023_102885 crossref_primary_10_1016_j_apsusc_2024_159821 crossref_primary_10_1016_j_saa_2025_126037 crossref_primary_10_1016_j_ccr_2025_216476 crossref_primary_10_1039_C8NR02174K crossref_primary_10_1016_j_saa_2019_01_030 crossref_primary_10_1016_j_cclet_2023_108875 crossref_primary_10_1016_j_chempr_2022_06_008 crossref_primary_10_1021_acs_jpclett_0c00304 crossref_primary_10_3390_bios9020057 crossref_primary_10_34133_2020_7962024 crossref_primary_10_1080_10408398_2024_2413656 crossref_primary_10_1021_jacs_0c09392 crossref_primary_10_3390_data3030037 crossref_primary_10_1002_adma_202403373 crossref_primary_10_1070_QEL17475 crossref_primary_10_1021_acsami_1c08712 crossref_primary_10_1039_D3AN00827D crossref_primary_10_1088_1361_648X_ab51f1 crossref_primary_10_1039_D4SD00014E crossref_primary_10_1021_acs_analchem_3c00466 crossref_primary_10_1002_ange_201902620 crossref_primary_10_1360_TB_2022_1063 crossref_primary_10_1002_admi_202100412 crossref_primary_10_1016_j_colsurfa_2025_136511 crossref_primary_10_1016_j_ijleo_2020_165274 crossref_primary_10_1021_acs_jpcc_1c08640 crossref_primary_10_1016_j_jcis_2020_01_094 crossref_primary_10_1021_acs_jpcc_2c03067 crossref_primary_10_3390_ma11091534 crossref_primary_10_1007_s12274_023_5548_7 crossref_primary_10_1364_OE_28_004444 crossref_primary_10_1021_acscatal_2c04058 crossref_primary_10_1007_s10854_022_09518_6 crossref_primary_10_1088_1361_6528_ab1ff2 crossref_primary_10_1364_OE_431274 crossref_primary_10_1021_acs_langmuir_2c01836 crossref_primary_10_1038_s41467_023_37001_1 crossref_primary_10_1016_j_physb_2024_416482 crossref_primary_10_1039_D4SM01272K crossref_primary_10_1039_C8RA03261K crossref_primary_10_1039_D4CP01538J crossref_primary_10_1007_s13204_023_02972_6 crossref_primary_10_26599_NR_2025_94907042 crossref_primary_10_3390_nano9111588 crossref_primary_10_1016_j_electacta_2018_06_079 crossref_primary_10_1021_acsanm_8b00444 crossref_primary_10_1038_s41467_022_30137_6 crossref_primary_10_1039_C9RA05399A crossref_primary_10_1038_s41467_024_51916_3 crossref_primary_10_1039_D1JA00149C crossref_primary_10_1016_j_comptc_2022_113813 crossref_primary_10_1002_EXP_20220072 crossref_primary_10_1038_s41565_019_0614_8 crossref_primary_10_1016_j_bios_2023_115948 crossref_primary_10_3390_nano14242036 crossref_primary_10_1088_2043_6262_ac2745 crossref_primary_10_1021_acs_jafc_2c07846 crossref_primary_10_1039_D4NA00247D crossref_primary_10_3390_chemosensors10040128 crossref_primary_10_3390_nano13152156 crossref_primary_10_3390_chemosensors11040232 crossref_primary_10_1016_j_snb_2022_131851 crossref_primary_10_1364_PRJ_404092 crossref_primary_10_1021_acsami_0c16315 crossref_primary_10_1021_acs_jpclett_1c04088 crossref_primary_10_1021_acs_jpclett_8b02416 crossref_primary_10_3390_nano11092176 crossref_primary_10_1016_j_microc_2021_106875 crossref_primary_10_3390_nano11092174 crossref_primary_10_1007_s11051_023_05684_8 crossref_primary_10_1021_acs_nanolett_4c04339 crossref_primary_10_3390_nano12071202 crossref_primary_10_1007_s11051_024_06170_5 crossref_primary_10_3390_nano12234157 crossref_primary_10_1016_j_electacta_2023_142994 crossref_primary_10_3390_nano15060421 crossref_primary_10_1016_j_molliq_2023_123311 crossref_primary_10_3390_bios12050269 crossref_primary_10_1002_ange_202000474 crossref_primary_10_1021_acs_analchem_4c01437 crossref_primary_10_1016_j_colsurfa_2024_135356 crossref_primary_10_1016_j_cclet_2018_06_013 crossref_primary_10_1039_D0SC02877K crossref_primary_10_1103_PhysRevB_102_045430 crossref_primary_10_1002_cjoc_202200508 crossref_primary_10_1016_j_optcom_2019_124631 crossref_primary_10_1016_j_saa_2020_118451 crossref_primary_10_1002_adom_202201549 crossref_primary_10_1002_jrs_5975 crossref_primary_10_1021_acs_nanolett_4c03254 crossref_primary_10_1021_acsami_3c08819 crossref_primary_10_3390_bios12050273 crossref_primary_10_1039_D0MA00644K crossref_primary_10_3390_molecules27123805 crossref_primary_10_1016_j_snb_2018_05_139 crossref_primary_10_1038_s41545_023_00292_4 crossref_primary_10_1515_phys_2022_0270 crossref_primary_10_1016_j_snb_2022_131437 crossref_primary_10_1016_j_snb_2023_133919 crossref_primary_10_26599_NR_2025_94907096 crossref_primary_10_1002_cjoc_202000453 crossref_primary_10_3390_photonics9080523 crossref_primary_10_1103_PhysRevLett_128_216101 crossref_primary_10_1016_j_optlastec_2023_109429 crossref_primary_10_1364_PRJ_6_000357 crossref_primary_10_1007_s12274_018_2145_2 crossref_primary_10_1002_advs_201900925 crossref_primary_10_1021_acsanm_0c00846 crossref_primary_10_1021_acs_analchem_1c03646 crossref_primary_10_1021_acs_jpcc_2c05007 crossref_primary_10_1002_pol_20240094 crossref_primary_10_1177_0003702820937333 crossref_primary_10_1016_j_jcis_2024_06_076 crossref_primary_10_1016_j_cej_2024_149246 crossref_primary_10_1016_j_foodchem_2024_140843 crossref_primary_10_3390_biom11111553 crossref_primary_10_1039_C8NJ06524A crossref_primary_10_1039_D3AY00653K crossref_primary_10_1007_s00340_021_07705_7 crossref_primary_10_1016_j_talanta_2018_04_095 crossref_primary_10_1021_acs_jpcc_4c06448 crossref_primary_10_1016_j_susc_2018_02_003 crossref_primary_10_1021_acs_analchem_3c03515 crossref_primary_10_1016_j_aca_2019_11_049 crossref_primary_10_1039_D1NR04009J crossref_primary_10_1021_acsmaterialslett_1c00047 crossref_primary_10_2217_nnm_2021_0298 crossref_primary_10_3390_nano11112905 crossref_primary_10_1038_s41598_024_61503_7 crossref_primary_10_1039_D0RA02490B crossref_primary_10_1002_adom_202101866 crossref_primary_10_1002_elan_201900075 crossref_primary_10_1021_acsanm_4c06770 crossref_primary_10_3390_bios13040479 crossref_primary_10_1002_ange_202205628 crossref_primary_10_1002_asia_202000847 crossref_primary_10_1021_acs_jpcc_3c01359 crossref_primary_10_1002_aisy_202200420 crossref_primary_10_1016_j_microc_2025_112836 crossref_primary_10_1016_j_saa_2022_121932 crossref_primary_10_1021_acs_jctc_4c01567 crossref_primary_10_1016_j_colsurfa_2022_128590 crossref_primary_10_1021_acsami_0c00853 crossref_primary_10_1039_C9CP02160D crossref_primary_10_3390_nano9111529 crossref_primary_10_1016_j_saa_2024_125631 crossref_primary_10_1039_D2CC00824F crossref_primary_10_1088_1361_6528_acfe15 crossref_primary_10_1016_j_jallcom_2021_163345 crossref_primary_10_1039_C8AN01266K crossref_primary_10_3233_CH_200861 crossref_primary_10_3390_s20051470 crossref_primary_10_1021_acsanm_4c03271 crossref_primary_10_1016_j_apsusc_2020_146217 crossref_primary_10_1016_j_apsusc_2020_148878 crossref_primary_10_1016_j_microc_2018_01_032 crossref_primary_10_15407_spqeo22_02_215 crossref_primary_10_1016_j_biomaterials_2018_07_045 crossref_primary_10_1360_SSC_2024_0169 crossref_primary_10_1016_j_colsurfa_2023_133091 crossref_primary_10_1021_acsenergylett_9b00990 crossref_primary_10_1039_D1AY01002F crossref_primary_10_1016_j_cobme_2019_08_008 crossref_primary_10_1016_j_surfin_2021_101454 crossref_primary_10_1039_C9NR05892C crossref_primary_10_1016_j_saa_2024_125629 crossref_primary_10_1016_j_lwt_2023_115310 crossref_primary_10_1063_5_0015246 crossref_primary_10_1002_admt_202400083 crossref_primary_10_1016_j_aca_2024_342767 crossref_primary_10_1039_D2NH00023G crossref_primary_10_1016_j_apsusc_2024_159442 crossref_primary_10_1016_j_bios_2022_114843 crossref_primary_10_1021_acs_langmuir_4c03842 crossref_primary_10_1016_j_jhazmat_2024_134441 crossref_primary_10_1021_acsanm_3c05810 crossref_primary_10_1021_acs_nanolett_4c04951 crossref_primary_10_1515_nanoph_2018_0190 crossref_primary_10_1002_admi_201800332 crossref_primary_10_1002_smll_202107027 crossref_primary_10_1016_j_talanta_2024_127264 crossref_primary_10_1016_j_trac_2023_117357 crossref_primary_10_1021_acs_analchem_4c05978 crossref_primary_10_1016_j_physe_2021_114764 crossref_primary_10_3390_s20236899 crossref_primary_10_1039_C9NR03450A crossref_primary_10_1016_j_vibspec_2018_06_011 crossref_primary_10_1093_micmic_ozac026 crossref_primary_10_1016_j_saa_2023_123375 crossref_primary_10_1016_j_jhazmat_2020_122222 crossref_primary_10_1016_j_jsamd_2018_03_003 crossref_primary_10_1016_j_aca_2018_08_022 crossref_primary_10_1016_j_saa_2024_124523 crossref_primary_10_1021_acsnano_4c07198 crossref_primary_10_1021_acs_jafc_4c09391 crossref_primary_10_1186_s12951_023_01890_7 crossref_primary_10_1016_j_jfutfo_2023_11_003 crossref_primary_10_1021_acs_analchem_4c05728 crossref_primary_10_1021_acs_jpcc_9b05527 crossref_primary_10_1080_10643389_2019_1576468 crossref_primary_10_1016_j_optcom_2022_128169 crossref_primary_10_1021_acs_jpca_0c04401 crossref_primary_10_1002_adom_202200467 crossref_primary_10_1016_j_addr_2024_115483 crossref_primary_10_1016_j_cej_2022_140441 crossref_primary_10_1021_acs_jpclett_2c01741 crossref_primary_10_1016_j_snb_2023_134035 crossref_primary_10_3390_mi14061197 crossref_primary_10_1016_j_bios_2022_114660 crossref_primary_10_1021_jacs_3c11812 crossref_primary_10_3390_mi11121109 crossref_primary_10_1021_acssensors_3c00302 crossref_primary_10_1364_PRJ_421415 crossref_primary_10_1039_C8RA10656H crossref_primary_10_1364_OME_541106 crossref_primary_10_2217_nnm_2020_0361 crossref_primary_10_1021_acsanm_9b02395 crossref_primary_10_1016_j_dyepig_2023_111296 crossref_primary_10_1002_admi_201901133 crossref_primary_10_1039_D0CE01258K crossref_primary_10_1016_j_cej_2020_127900 crossref_primary_10_1016_j_chroma_2022_463181 crossref_primary_10_1016_j_eti_2021_102033 crossref_primary_10_1002_bkcs_12387 crossref_primary_10_1016_j_snb_2019_127218 crossref_primary_10_1016_j_trac_2024_117866 crossref_primary_10_1021_acs_nanolett_3c01810 crossref_primary_10_3390_foods13193064 crossref_primary_10_1016_j_talanta_2024_127474 crossref_primary_10_1007_s11468_019_00929_6 crossref_primary_10_1021_acsami_0c19650 crossref_primary_10_3390_nano9111553 crossref_primary_10_1039_D0CP03470C crossref_primary_10_1002_agt2_271 crossref_primary_10_3390_bios11030066 crossref_primary_10_1039_D4CC04813J crossref_primary_10_1016_j_apsusc_2022_153746 crossref_primary_10_1007_s00604_019_3947_y crossref_primary_10_1039_C8TC04269A crossref_primary_10_1007_s12034_019_2017_8 crossref_primary_10_1002_ange_201909603 crossref_primary_10_1021_acs_jpcc_7b08691 crossref_primary_10_1088_2040_8986_ac4d73 crossref_primary_10_1039_C8NR02669F crossref_primary_10_1021_acs_nanolett_1c00998 crossref_primary_10_1016_j_saa_2024_124323 crossref_primary_10_1016_j_snb_2024_135651 crossref_primary_10_3390_nano13010135 crossref_primary_10_1021_acsanm_4c04342 crossref_primary_10_1186_s11671_021_03510_5 crossref_primary_10_1016_j_coelec_2018_10_005 crossref_primary_10_1021_acs_nanolett_5c00391 crossref_primary_10_3390_molecules30030530 crossref_primary_10_1149_1945_7111_ac8023 crossref_primary_10_1016_j_scitotenv_2019_134956 crossref_primary_10_1016_j_cej_2025_161149 crossref_primary_10_1364_OE_521090 crossref_primary_10_1039_D3AY01196H crossref_primary_10_1021_acsanm_8b01964 crossref_primary_10_1016_j_saa_2024_125648 crossref_primary_10_1021_jacs_2c05950 crossref_primary_10_3390_nano13061003 crossref_primary_10_1007_s11468_020_01270_z crossref_primary_10_1021_acsomega_3c06740 crossref_primary_10_1021_acsphotonics_4c01548 crossref_primary_10_1021_acs_jpcc_4c01969 crossref_primary_10_1149_2162_8777_abeb52 crossref_primary_10_3390_s20143842 crossref_primary_10_3390_ma11020325 crossref_primary_10_1515_nanoph_2019_0097 crossref_primary_10_1039_D2MA00368F crossref_primary_10_1007_s40843_022_2398_7 crossref_primary_10_1021_acssensors_1c00166 crossref_primary_10_1021_acsami_8b01550 crossref_primary_10_1007_s00604_023_05765_4 crossref_primary_10_1186_s41476_020_00128_5 crossref_primary_10_1021_acsanm_2c02392 crossref_primary_10_34133_adi_0041 crossref_primary_10_1016_j_aca_2021_338474 crossref_primary_10_1021_acs_analchem_2c04053 crossref_primary_10_1007_s11468_020_01302_8 crossref_primary_10_1021_acs_jpcc_1c03760 crossref_primary_10_1039_D1AN02289J crossref_primary_10_1016_j_saa_2021_120163 crossref_primary_10_3390_ijms24010106 crossref_primary_10_1016_j_oceram_2022_100228 crossref_primary_10_1021_acs_jpclett_0c02286 crossref_primary_10_1016_j_electacta_2024_144689 crossref_primary_10_1016_j_jmat_2020_06_008 crossref_primary_10_1039_C9QM00592G crossref_primary_10_1039_C8FD00139A crossref_primary_10_1007_s11468_024_02324_2 crossref_primary_10_1021_acs_jpcc_9b07329 crossref_primary_10_1039_D4NJ04608K crossref_primary_10_1557_jmr_2019_85 crossref_primary_10_3390_nano9040516 crossref_primary_10_1002_cnma_202300164 crossref_primary_10_1364_OE_27_009879 crossref_primary_10_1021_acs_jpcc_8b00701 crossref_primary_10_1021_acsnano_9b09834 crossref_primary_10_1021_acsanm_3c01050 crossref_primary_10_1002_lpor_202100316 crossref_primary_10_1016_j_cej_2024_150835 crossref_primary_10_3390_nano11020304 crossref_primary_10_1021_acssensors_3c02507 crossref_primary_10_1021_acssuschemeng_1c06685 crossref_primary_10_1021_acsagscitech_4c00005 crossref_primary_10_1016_j_foodchem_2022_133234 crossref_primary_10_1039_D3TC03558A crossref_primary_10_1021_acsami_9b13518 crossref_primary_10_1088_1361_6463_ab6bec crossref_primary_10_1002_admi_202102122 crossref_primary_10_1016_j_chempr_2019_07_022 crossref_primary_10_1364_BOE_408649 crossref_primary_10_1002_smll_202204541 crossref_primary_10_1364_OE_543072 crossref_primary_10_1016_j_apsusc_2024_160001 crossref_primary_10_1016_j_foodchem_2022_134794 crossref_primary_10_1039_D2RA02813A crossref_primary_10_1039_D4AY00103F crossref_primary_10_3390_chemosensors10120507 crossref_primary_10_1002_anie_202000474 crossref_primary_10_1038_s43246_024_00506_3 crossref_primary_10_1002_adom_202102550 crossref_primary_10_2139_ssrn_4189356 crossref_primary_10_1016_j_saa_2024_124177 crossref_primary_10_1021_acs_jpcc_2c01586 crossref_primary_10_1039_C8NR04971H crossref_primary_10_1039_D0TC04364H crossref_primary_10_1016_j_talanta_2023_125336 crossref_primary_10_1002_adom_202102757 crossref_primary_10_1021_acs_jpcc_2c03524 crossref_primary_10_3389_fchem_2019_00470 crossref_primary_10_1016_j_saa_2025_125787 crossref_primary_10_1149_2_0161808jes crossref_primary_10_1007_s00604_019_3257_4 crossref_primary_10_1021_acs_jpclett_0c02494 crossref_primary_10_1002_adom_201701097 crossref_primary_10_1016_j_talanta_2024_126789 crossref_primary_10_1016_j_diamond_2021_108737 crossref_primary_10_1016_j_mtcomm_2022_105025 crossref_primary_10_1364_AO_383198 crossref_primary_10_1016_j_snb_2020_128543 crossref_primary_10_1021_acsanm_1c04569 crossref_primary_10_1021_acsami_0c00418 crossref_primary_10_1016_j_jiec_2021_01_020 crossref_primary_10_1515_nanoph_2021_0179 crossref_primary_10_3390_coatings9020086 crossref_primary_10_2139_ssrn_4171825 crossref_primary_10_1016_j_aca_2020_02_034 crossref_primary_10_1016_j_jscs_2023_101790 crossref_primary_10_1021_acsomega_4c04588 crossref_primary_10_1038_s41598_023_38154_1 crossref_primary_10_1364_AO_58_009345 crossref_primary_10_1016_j_apsusc_2022_154442 crossref_primary_10_1021_acs_jpcc_0c04664 crossref_primary_10_1007_s44211_023_00471_w crossref_primary_10_1016_j_xinn_2022_100253 crossref_primary_10_1140_epjp_s13360_022_03560_3 crossref_primary_10_3390_bios13010052 crossref_primary_10_29026_oea_2023_230094 crossref_primary_10_1103_PhysRevApplied_17_024015 crossref_primary_10_3390_nano11051292 crossref_primary_10_1016_j_mtcomm_2023_106860 crossref_primary_10_1039_D1CP05681F crossref_primary_10_1021_acs_analchem_7b04929 crossref_primary_10_1039_C8AY01369A crossref_primary_10_1039_D1TC05009E crossref_primary_10_1002_ange_202007771 crossref_primary_10_1016_j_bios_2020_112480 crossref_primary_10_1016_j_bios_2023_115178 crossref_primary_10_1140_epjp_s13360_020_00986_5 crossref_primary_10_1186_s40580_024_00431_8 crossref_primary_10_1021_acs_jpcb_3c01878 crossref_primary_10_1002_sstr_202000138 crossref_primary_10_1016_j_surfin_2024_104951 crossref_primary_10_1002_chem_201704370 crossref_primary_10_1016_j_cjac_2022_100180 crossref_primary_10_1039_D1TC02134F crossref_primary_10_1016_j_vacuum_2023_112632 crossref_primary_10_3390_photonics8100415 crossref_primary_10_1002_ange_201801748 crossref_primary_10_1016_j_saa_2022_121995 crossref_primary_10_1016_j_snb_2024_135828 crossref_primary_10_1021_acs_jpcc_0c11150 crossref_primary_10_1039_D0NR06150F crossref_primary_10_1016_j_heliyon_2023_e16598 crossref_primary_10_1007_s12274_023_5927_0 crossref_primary_10_1063_5_0138501 crossref_primary_10_1186_s40712_024_00196_2 crossref_primary_10_1016_j_aca_2020_02_058 crossref_primary_10_1016_j_optmat_2022_112310 crossref_primary_10_1021_acsphotonics_8b01136 crossref_primary_10_34133_adi_0008 crossref_primary_10_1007_s12274_021_3999_2 crossref_primary_10_1002_adom_202302812 crossref_primary_10_1002_sstr_202000150 crossref_primary_10_1364_AO_489036 crossref_primary_10_1016_j_vibspec_2021_103233 crossref_primary_10_1021_acs_jpcc_3c00481 crossref_primary_10_1039_D3AY01374J crossref_primary_10_1364_OE_27_030031 crossref_primary_10_1016_j_jallcom_2024_176246 crossref_primary_10_1021_acs_jpcc_9b09922 crossref_primary_10_1103_PhysRevA_105_062609 crossref_primary_10_1021_acs_jpcc_1c01598 crossref_primary_10_1039_D0SC01926G |
Cites_doi | 10.1016/j.electacta.2011.04.107 10.1126/science.1248797 10.1021/nl3012038 10.1021/ja105248h 10.1515/zna-1968-1247 10.1016/j.biomaterials.2011.03.029 10.1016/0039-6028(81)90459-3 10.1021/ja110964d 10.1364/OE.14.002921 10.1039/B513431P 10.1039/C5CS00763A 10.1021/nl070214f 10.1021/nl803621x 10.1126/science.1224823 10.1021/nl200135r 10.1016/S0022-0728(77)80224-6 10.1021/jp211884s 10.1021/jp034632u 10.1016/j.susc.2014.07.019 10.1063/1.4862430 10.1039/C4CS00348A 10.1016/j.cplett.2006.05.111 10.1063/1.437735 10.1039/c3nr02924g 10.1021/ja035541d 10.1038/nmat3488 10.1364/OE.23.013804 10.1063/1.2961011 10.1063/1.3643381 10.1063/1.443370 10.1103/PhysRev.118.640 10.1021/jacs.5b04670 10.1063/1.2390694 10.1039/C4CP05082G 10.1016/0009-2614(74)85388-1 10.1021/nl300351j 10.1039/f29736900065 10.1021/acsnano.6b02484 10.1063/1.4896537 10.1364/OE.19.014919 10.1021/ja104174m 10.1364/AO.19.004159 10.1021/ph5004016 10.1103/PhysRevB.57.13265 10.1103/PhysRevLett.83.4357 10.1038/nature12151 10.1016/0039-6028(80)90214-9 10.1063/1.440560 10.1021/ar400075r 10.1002/adma.201404107 10.1021/acsnano.5b05605 10.1063/1.3109900 10.1007/BFb0048317 10.1021/jp025970i 10.1021/nl0486160 10.1016/0039-6028(81)90595-1 10.1002/anie.201508218 10.1021/jacs.5b03741 10.1364/OE.21.025271 10.1038/srep09240 10.1063/1.441403 10.1021/nn203173r 10.1002/9780470027318.a9276 10.1103/PhysRev.106.874 10.1002/9783527618156 10.1039/b707862p 10.1038/nature11615 10.1039/c3cp44103b 10.1126/science.1159499 10.1364/OE.15.010869 10.1021/jp013638l 10.1103/PhysRevB.76.085405 10.1021/jp022060s 10.1038/nnano.2015.170 10.1073/pnas.1016530108 10.1016/0039-6028(83)90806-3 10.1021/jp0257449 10.1103/PhysRevB.83.115428 10.1021/ar100031v 10.1364/OE.16.009144 10.1039/C7CS00067G 10.1103/PhysRevB.90.195402 10.1039/C7FD00144D 10.1038/nature08907 10.1007/0-387-37825-1 10.1021/nl104214c 10.1146/annurev.pc.36.100185.003001 10.1039/C3CP51730F 10.1021/nl3000453 10.1063/1.439002 10.1002/jrs.1355 10.1021/ar0401045 10.1063/1.1896356 10.1038/ncomms6228 10.1021/ja2074533 10.1103/PhysRevA.92.053811 10.1146/annurev.pc.35.100184.002451 10.1021/acs.jpclett.6b02175 10.1021/nn4021967 10.1126/science.267.5204.1629 10.1103/PhysRevLett.78.1667 10.1063/1.479235 10.1021/jp027642o 10.1103/PhysRevB.81.115406 10.1364/OE.19.022167 10.1063/1.126546 10.1021/jp2122938 10.1021/ar800028j 10.1103/PhysRevB.75.035411 10.1038/ncomms4448 10.1039/C4CS00509K 10.1039/b616986d 10.1038/nmat2596 10.1021/nl073346h 10.1063/1.3698292 10.1016/0039-6028(80)90632-9 10.1002/cphc.200800563 10.1017/CBO9780511794193 10.1039/C4CP04906C 10.1063/1.440142 10.1016/0009-2614(86)85021-7 10.1109/TNANO.2010.2054103 10.1103/RevModPhys.57.783 10.1021/acs.jpcc.5b05931 10.1039/c3an00447c 10.1039/C2CP42598J 10.1016/0009-2614(81)85172-X 10.1063/1.1629280 10.1021/nl803811g 10.1364/AO.55.002780 10.1021/ar00106a005 10.1021/jz200498z 10.1021/cr200061k 10.1039/C3CS60187K 10.1073/pnas.0605889103 10.1016/S1369-7021(12)70017-2 10.1021/nn401685p 10.1021/nl304078v 10.1039/b705969h 10.1038/nnano.2015.264 10.1016/0039-6028(82)90161-3 10.1039/B507773G 10.1021/ja00457a071 10.1021/nl200461w 10.1103/PhysRevLett.36.1207 10.1021/jp1043392 10.1021/jp027749b 10.1103/PhysRevB.73.035407 10.1063/1.3211969 10.1016/0009-2614(94)00779-9 10.1016/0039-6028(82)90309-0 10.1002/jrs.2429 10.1021/nl303896d 10.1126/science.275.5303.1102 10.1557/mrs.2013.161 10.1039/b706023h 10.1016/0039-6028(80)90637-8 10.1021/j150667a013 10.1016/0039-6028(80)90270-8 10.1021/nl400698w 10.1103/PhysRevA.78.042505 10.1021/ja055633y 10.1021/ja906954f 10.1364/OE.15.008309 10.1016/j.jphotochemrev.2014.09.001 10.1021/nn406263m 10.1021/jp307003p 10.1146/annurev.anchem.1.031207.112814 10.1021/jp952240k 10.1021/ja8051427 10.1016/S0030-4018(00)00894-4 10.1146/annurev-physchem-032511-143807 10.1021/ja0648615 10.1021/ja309300d 10.1021/ja900809z 10.1039/b710915f 10.1021/acsphotonics.5b00438 10.1002/adma.201201625 10.1146/annurev.physchem.58.032806.104607 10.1021/nl102443p 10.1103/PhysRevA.89.043841 10.1002/anie.201101632 10.1103/PhysRevE.62.4318 10.1063/1.439003 10.1021/ja809143c 10.1016/0039-6028(83)90283-2 10.1016/0009-2614(81)85441-3 10.1103/PhysRev.124.1866 10.1016/S0009-2614(99)01451-7 10.1063/1.4829617 10.1007/BF01391532 10.1021/acs.jpcc.5b02653 10.1002/jrs.1362 10.1038/natrevmats.2016.21 10.1098/rsnr.2011.0024 10.1021/jp207661y 10.1002/anie.201205748 10.1016/j.electacta.2014.04.034 10.1021/jp901355g 10.1063/1.464263 10.1039/b605292d 10.1038/ncomms1806 10.1103/PhysRevB.83.235427 10.1021/ar00104a002 10.1021/nl301029e 10.1007/BF01392504 10.1126/science.1198258 10.1103/PhysRevLett.50.997 10.1016/0038-1098(80)90870-4 10.1002/9781118703601.ch1 10.1039/f29797500790 10.1063/1.449452 10.1080/05704929108050881 10.1021/ac303269w 10.1016/S1386-1425(03)00190-2 10.1364/OE.16.010315 10.1002/jrs.2989 10.1063/1.436436 10.1557/mrs.2013.156 10.1063/1.450037 10.1039/c2cc31441j 10.1098/rsnr.2009.0061 10.1038/srep33218 10.1366/0003702884429896 10.1021/nl050928v 10.1002/adma.201205076 10.1063/1.437095 10.1016/S0022-0728(83)80219-8 10.1016/0009-2614(81)85442-5 10.1038/nmat2810 10.1038/ncomms5424 10.1038/nature11653 10.1038/ncomms1310 10.1016/0375-9601(80)90726-4 10.1021/acsphotonics.6b00908 10.1103/PhysRevLett.50.1301 10.1002/lpor.201200021 10.1021/acs.jpclett.5b02535 10.1021/ja0556326 10.1201/b15328-7 10.1021/jp060173w 10.1103/PhysRevB.22.1660 10.1021/acs.chemrev.6b00596 10.1364/AO.18.001180 10.1146/annurev-physchem-032511-143757 10.5796/electrochemistry.68.942 10.1007/3-540-11942-6_24 10.1021/jp0760962 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1039/c7cs00238f |
DatabaseName | CrossRef PubMed MEDLINE - Academic Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 476 |
ExternalDocumentID | 28660954 10_1039_C7CS00238F c7cs00238f |
Genre | Journal Article |
GroupedDBID | -JG 0-7 705 70J 70~ 7~J AAEMU ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- GNO H~N IDZ J3I R7B R7D RCNCU RPMJG RRA RRC RSCEA SKA SKH SLH VH6 --- -DZ -~X 0R~ 0UZ 186 1TJ 29B 2WC 3EH 4.4 53G 5GY 6J9 6TJ 71~ 85S 8WZ 9M8 A6W AAHBH AAIWI AAJAE AAMEH AANOJ AAUTI AAWGC AAXHV AAXPP AAYXX ABASK ABDPE ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACKIV ACNCT ACPVT ACRPL ADMRA ADNMO ADXHL AENEX AENGV AESAV AETEA AETIL AFFDN AFFNX AFLYV AFOGI AFRDS AFRZK AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AI. AIDUJ AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP AQHUZ ASKNT ASPBG AVWKF AZFZN BBWZM BLAPV CAG CITATION COF CS3 DU5 EBS ECGLT EEHRC EJD F5P FA8 FEDTE GGIMP H13 HF~ HVGLF HZ~ H~9 IDY J3G J3H L-8 M4U MVM N9A NDZJH O9- P2P R56 RAOCF RCLXC RIG RNS ROL RRXOS SC5 TN5 TWZ UPT UQL VH1 WH7 WHG XJT XOL ZCG ZKB ~02 NPM UMC 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-df9690ebfea62583f2906e3cd9f861e5fa4651b2734309e515ac706177d4240d3 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 03:21:53 EDT 2025 Thu Jul 10 22:59:18 EDT 2025 Fri Jul 11 16:45:51 EDT 2025 Tue Apr 29 04:32:12 EDT 2025 Tue Jul 01 04:18:39 EDT 2025 Thu Apr 24 22:54:20 EDT 2025 Mon Jan 28 17:20:02 EST 2019 Sat Jun 01 02:29:32 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c467t-df9690ebfea62583f2906e3cd9f861e5fa4651b2734309e515ac706177d4240d3 |
Notes | En-Ming You received his BSc at Nanjing University. He is now a PhD student at Xiamen University under the supervision of Prof. Zhong-Qun Tian and Dr Song-Yuan Ding working on surface-enhanced Raman spectroscopy, AFM-based infrared nanospectroscopy and imaging. Zhong-Qun Tian obtained his BSc at Xiamen University in 1982 and his PhD under the supervision of Prof. Martin Fleischmann at the University of Southampton in 1987. He has been a full Professor of Chemistry at Xiamen University since 1991. Professor Tian is a Member of the Chinese Academy of Sciences and the Elected President of the International Society of Electrochemistry. Currently, his main research interests include surface-enhanced Raman spectroscopy, spectroelectrochemistry, nanochemistry, plasmonics and catalyzed molecular assembly. Martin Moskovits has degrees in Physics and Chemistry from the University of Toronto, where he obtained his PhD in Chemical Physics in 1971. He has been a full professor since 1982 and has been working at the University of California, Santa Barbara, since 2000. Professor Moskovits is a Fellow of the American Association for the Advancement of Science, a Fellow of the Optical Society of America and a Fellow of the Royal Society of Canada. His research interests include surface-enhanced Raman spectroscopy, generally and more recently as applied to biosensing, plasmonics for sustainable energy and nanomaterials and nanoelectronics. Song-Yuan Ding received his BSc in Chemical Physics at the University of Science and Technology of China in 2005 and his PhD in Chemistry under the supervision of Prof. Zhong-Qun Tian at Xiamen University in 2012. He is a Research Fellow in the Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) at Xiamen University. Currently, his research interests include surface-enhanced Raman spectroscopy for general materials, AFM-based infrared and Raman nanospectroscopy and imaging, ab initial interfacial electrochemistry and the theory of catalyzed molecular assembly. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9775-8189 0000-0002-0212-108X 0000-0001-6310-5908 0000-0002-1862-0713 |
PMID | 28660954 |
PQID | 1914848831 |
PQPubID | 23479 |
PageCount | 35 |
ParticipantIDs | crossref_citationtrail_10_1039_C7CS00238F proquest_miscellaneous_2286924770 proquest_miscellaneous_1914848831 pubmed_primary_28660954 proquest_miscellaneous_1925876165 crossref_primary_10_1039_C7CS00238F rsc_primary_c7cs00238f |
ProviderPackageCode | RRA J3I ACLDK RRC 7~J AEFDR 70~ VH6 GNO RCNCU SLH 70J EE0 RSCEA AFVBQ C6K H~N 0-7 IDZ RPMJG SKA -JG AGSTE AUDPV EF- BSQNT SKH ADSRN ABGFH 705 R7B R7D AAEMU CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-07 |
PublicationDateYYYYMMDD | 2017-07-07 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2017 |
References | Sharma (C7CS00238F-(cit40)/*[position()=1]) 2013; 38 (C7CS00238F-(cit61)/*[position()=1]) 1982 Albrecht (C7CS00238F-(cit12)/*[position()=1]) 1977; 99 Wang (C7CS00238F-(cit164)/*[position()=1]) 2012; 24 Yang (C7CS00238F-(cit201)/*[position()=1]) 2009; 40 Ding (C7CS00238F-(cit194)/*[position()=1]) 2015; 631 Sonntag (C7CS00238F-(cit42)/*[position()=1]) 2014; 43 King (C7CS00238F-(cit89)/*[position()=1]) 1978; 69 Oldenburg (C7CS00238F-(cit29)/*[position()=1]) 1999; 111 Rycenga (C7CS00238F-(cit188)/*[position()=1]) 2011; 50 Le Ru (C7CS00238F-(cit9)/*[position()=1]) 2012; 63 Rojas (C7CS00238F-(cit120)/*[position()=1]) 1993; 98 Schmidt (C7CS00238F-(cit253)/*[position()=1]) 2016; 10 Zuloaga (C7CS00238F-(cit174)/*[position()=1]) 2009; 9 Fang (C7CS00238F-(cit141)/*[position()=1]) 2008; 321 Gallinet (C7CS00238F-(cit221)/*[position()=1]) 2011; 5 Dick (C7CS00238F-(cit30)/*[position()=1]) 2002; 106 Gersten (C7CS00238F-(cit77)/*[position()=1]) 1980; 72 Hayazawa (C7CS00238F-(cit46)/*[position()=1]) 2000; 183 Kerker (C7CS00238F-(cit63)/*[position()=1]) 1984; 17 Meng (C7CS00238F-(cit207)/*[position()=1]) 2015; 5 Joshi (C7CS00238F-(cit170)/*[position()=1]) 2008; 16 Ye (C7CS00238F-(cit225)/*[position()=1]) 2012; 12 Mulvihill (C7CS00238F-(cit20)/*[position()=1]) 2010; 132 Furtak (C7CS00238F-(cit111)/*[position()=1]) 1983; 50 Laor (C7CS00238F-(cit86)/*[position()=1]) 1982; 76 Nordlander (C7CS00238F-(cit187)/*[position()=1]) 2004; 4 Kleinman (C7CS00238F-(cit149)/*[position()=1]) 2011; 133 McCall (C7CS00238F-(cit80)/*[position()=1]) 1980; 77 Iida (C7CS00238F-(cit119)/*[position()=1]) 2014; 141 Lombardi (C7CS00238F-(cit243)/*[position()=1]) 2012; 136 Boltasseva (C7CS00238F-(cit33)/*[position()=1]) 2011; 331 Lombardi (C7CS00238F-(cit96)/*[position()=1]) 1986; 84 Kretschmann (C7CS00238F-(cit107)/*[position()=1]) 1968; 23 Ahmed (C7CS00238F-(cit163)/*[position()=1]) 2012; 12 Halas (C7CS00238F-(cit217)/*[position()=1]) 2011; 111 Aroca (C7CS00238F-(cit59)/*[position()=1]) 2013; 15 Luk'yanchuk (C7CS00238F-(cit216)/*[position()=1]) 2010; 9 Efrima (C7CS00238F-(cit92)/*[position()=1]) 1979; 70 Wei (C7CS00238F-(cit139)/*[position()=1]) 2013; 5 Payton (C7CS00238F-(cit249)/*[position()=1]) 2014; 47 Naik (C7CS00238F-(cit34)/*[position()=1]) 2013; 25 Zhang (C7CS00238F-(cit27)/*[position()=1]) 2015; 27 Peng (C7CS00238F-(cit158)/*[position()=1]) 2013; 7 Gallinet (C7CS00238F-(cit222)/*[position()=1]) 2013; 7 Roelli (C7CS00238F-(cit252)/*[position()=1]) 2016; 11 Wiley (C7CS00238F-(cit144)/*[position()=1]) 2007; 7 Ding (C7CS00238F-(cit118)/*[position()=1]) 2012; 48 Cui (C7CS00238F-(cit210)/*[position()=1]) 2007; 15 Shen (C7CS00238F-(cit183)/*[position()=1]) 2013; 103 Laor (C7CS00238F-(cit85)/*[position()=1]) 1981; 82 Kurokawa (C7CS00238F-(cit169)/*[position()=1]) 2007; 75 Ausman (C7CS00238F-(cit122)/*[position()=1]) 2009; 131 Park (C7CS00238F-(cit179)/*[position()=1]) 2008; 9 Mullin (C7CS00238F-(cit245)/*[position()=1]) 2012; 116 Tsang (C7CS00238F-(cit75)/*[position()=1]) 1980; 35 Wu (C7CS00238F-(cit114)/*[position()=1]) 2002; 106 Moskovits (C7CS00238F-(cit13)/*[position()=1]) 1980; 73 Shalaev (C7CS00238F-(cit129)/*[position()=1]) 1998; 57 Bosnick (C7CS00238F-(cit146)/*[position()=1]) 2016; 120 Wang (C7CS00238F-(cit165)/*[position()=1]) 2013; 13 Kerker (C7CS00238F-(cit82)/*[position()=1]) 1980; 19 Tserkezis (C7CS00238F-(cit190)/*[position()=1]) 2015; 92 Nie (C7CS00238F-(cit6)/*[position()=1]) 1997; 275 Ciracì (C7CS00238F-(cit186)/*[position()=1]) 2012; 337 Hua (C7CS00238F-(cit226)/*[position()=1]) 2014; 89 Liao (C7CS00238F-(cit14)/*[position()=1]) 1981; 82 Le (C7CS00238F-(cit215)/*[position()=1]) 2006; 8 Thacker (C7CS00238F-(cit150)/*[position()=1]) 2014; 5 Huang (C7CS00238F-(cit193)/*[position()=1]) 2011; 56 Sigle (C7CS00238F-(cit185)/*[position()=1]) 2016; 7 Li (C7CS00238F-(cit198)/*[position()=1]) 2015; 137 Ahmed (C7CS00238F-(cit162)/*[position()=1]) 2011; 11 Campion (C7CS00238F-(cit67)/*[position()=1]) 1985; 36 Greeneltch (C7CS00238F-(cit26)/*[position()=1]) 2013; 85 Liu (C7CS00238F-(cit234)/*[position()=1]) 2011; 2 Zhao (C7CS00238F-(cit100)/*[position()=1]) 2006; 128 Tian (C7CS00238F-(cit112)/*[position()=1]) 2006; 132 Kleinman (C7CS00238F-(cit138)/*[position()=1]) 2013; 15 Halas (C7CS00238F-(cit41)/*[position()=1]) 2013; 38 Gruenke (C7CS00238F-(cit58)/*[position()=1]) 2016; 45 Jiang (C7CS00238F-(cit131)/*[position()=1]) 2003; 107 Honesty (C7CS00238F-(cit196)/*[position()=1]) 2012; 43 Otto (C7CS00238F-(cit103)/*[position()=1]) 2007; 52 Freeman (C7CS00238F-(cit17)/*[position()=1]) 1995; 267 Jeanmaire (C7CS00238F-(cit11)/*[position()=1]) 1977; 84 Yelk (C7CS00238F-(cit240)/*[position()=1]) 2008; 129 Duan (C7CS00238F-(cit231)/*[position()=1]) 2016; 55 Ward (C7CS00238F-(cit233)/*[position()=1]) 2008; 8 Metiu (C7CS00238F-(cit64)/*[position()=1]) 1984; 35 Chase (C7CS00238F-(cit50)/*[position()=1]) 1988; 42 Dionne (C7CS00238F-(cit171)/*[position()=1]) 2006; 73 Moskovits (C7CS00238F-(cit2)/*[position()=1]) 1978; 69 Li (C7CS00238F-(cit182)/*[position()=1]) 2013; 138 Tian (C7CS00238F-(cit232)/*[position()=1]) 2006; 128 Chen (C7CS00238F-(cit244)/*[position()=1]) 2010; 114 Tian (C7CS00238F-(cit15)/*[position()=1]) 2007 Kleinman (C7CS00238F-(cit214)/*[position()=1]) 2012; 135 Nie (C7CS00238F-(cit57)/*[position()=1]) 1991; 26 Kneipp (C7CS00238F-(cit7)/*[position()=1]) 1997; 78 Chikkaraddy (C7CS00238F-(cit191)/*[position()=1]) 2017; 4 Anderson (C7CS00238F-(cit45)/*[position()=1]) 2000; 76 Buchanan (C7CS00238F-(cit227)/*[position()=1]) 2016; 7 Ding (C7CS00238F-(cit5)/*[position()=1]) 2016; 1 Otto (C7CS00238F-(cit108)/*[position()=1]) 1968; 216 Yam (C7CS00238F-(cit247)/*[position()=1]) 2015; 44 Chen (C7CS00238F-(cit71)/*[position()=1]) 1976; 36 Talley (C7CS00238F-(cit142)/*[position()=1]) 2005; 5 Fang (C7CS00238F-(cit145)/*[position()=1]) 2011; 32 Fano (C7CS00238F-(cit242)/*[position()=1]) 1961; 124 Xu (C7CS00238F-(cit88)/*[position()=1]) 1999; 83 Furtak (C7CS00238F-(cit62)/*[position()=1]) 1983; 150 Joshi (C7CS00238F-(cit167)/*[position()=1]) 2010; 9 Zhang (C7CS00238F-(cit230)/*[position()=1]) 2015; 119 Andrawis (C7CS00238F-(cit241)/*[position()=1]) 2016; 55 Micic (C7CS00238F-(cit202)/*[position()=1]) 2003; 107 Novotny (C7CS00238F-(cit124)/*[position()=1]) 2012 Otto (C7CS00238F-(cit254)/*[position()=1]) 2005; 36 Duan (C7CS00238F-(cit229)/*[position()=1]) 2015; 137 Long (C7CS00238F-(cit184)/*[position()=1]) 2016; 6 Chu (C7CS00238F-(cit224)/*[position()=1]) 2011; 19 Bohren (C7CS00238F-(cit128)/*[position()=1]) 1998 Meng (C7CS00238F-(cit209)/*[position()=1]) 2015; 23 Camden (C7CS00238F-(cit151)/*[position()=1]) 2008; 130 Huang (C7CS00238F-(cit166)/*[position()=1]) 2011; 11 Rudnev (C7CS00238F-(cit197)/*[position()=1]) 2014; 133 Sharma (C7CS00238F-(cit39)/*[position()=1]) 2012; 15 Moskovits (C7CS00238F-(cit126)/*[position()=1]) 1984; 88 Barber (C7CS00238F-(cit73)/*[position()=1]) 1983; 50 Itoh (C7CS00238F-(cit121)/*[position()=1]) 2007; 76 Otto (C7CS00238F-(cit66)/*[position()=1]) 1984 Creighton (C7CS00238F-(cit70)/*[position()=1]) 2010; 64 Lim (C7CS00238F-(cit148)/*[position()=1]) 2010; 9 Stöckle (C7CS00238F-(cit44)/*[position()=1]) 2000; 318 Le Ru (C7CS00238F-(cit4)/*[position()=1]) 2009 Schlücker (C7CS00238F-(cit43)/*[position()=1]) 2014; 53 Wustholz (C7CS00238F-(cit152)/*[position()=1]) 2010; 132 Bowen (C7CS00238F-(cit189)/*[position()=1]) 2014; 90 Arenas (C7CS00238F-(cit98)/*[position()=1]) 1996; 100 McLellan (C7CS00238F-(cit143)/*[position()=1]) 2006; 427 Galperin (C7CS00238F-(cit237)/*[position()=1]) 2017 Li (C7CS00238F-(cit23)/*[position()=1]) 2009; 9 Pettinger (C7CS00238F-(cit74)/*[position()=1]) 1980; 101 Roy (C7CS00238F-(cit97)/*[position()=1]) 1986; 124 Rahmani (C7CS00238F-(cit218)/*[position()=1]) 2013; 7 Xu (C7CS00238F-(cit130)/*[position()=1]) 2000; 62 Masiello (C7CS00238F-(cit251)/*[position()=1]) 2008; 78 Lal (C7CS00238F-(cit37)/*[position()=1]) 2008; 37 Hao (C7CS00238F-(cit159)/*[position()=1]) 2004; 120 Kosuda (C7CS00238F-(cit213)/*[position()=1]) 2011 Downes (C7CS00238F-(cit204)/*[position()=1]) 2006; 110 Esteban (C7CS00238F-(cit178)/*[position()=1]) 2012; 3 Chen (C7CS00238F-(cit154)/*[position()=1]) 2009; 113 Wang (C7CS00238F-(cit19)/*[position()=1]) 2007; 40 Powell (C7CS00238F-(cit106)/*[position()=1]) 1960; 118 Stiles (C7CS00238F-(cit32)/*[position()=1]) 2008; 1 Moskovits (C7CS00238F-(cit132)/*[position()=1]) 2005; 36 Minkowski (C7CS00238F-(cit192)/*[position()=1]) 2014; 104 Ding (C7CS00238F-(cit113)/*[position()=1]) 2014 Tian (C7CS00238F-(cit115)/*[position()=1]) 2002; 106 Moreau (C7CS00238F-(cit136)/*[position()=1]) 2012; 492 Frontiera (C7CS00238F-(cit55)/*[position()=1]) 2011; 2 Morton (C7CS00238F-(cit248)/*[position()=1]) 2011; 135 Furtak (C7CS00238F-(cit60)/*[position()=1]) 1980; 93 Vivoni (C7CS00238F-(cit116)/*[position()=1]) 2003; 107 Kazemi-Zanjani (C7CS00238F-(cit206)/*[position()=1]) 2013; 21 Gandra (C7CS00238F-(cit155)/*[position()=1]) 2012; 12 Li (C7CS00238F-(cit22)/*[position()=1]) 2010; 464 Yang (C7CS00238F-(cit153)/*[position()=1]) 2015; 44 Jiang (C7CS00238F-(cit228)/*[position()=1]) 2015; 10 Morton (C7CS00238F-(cit117)/*[position()=1]) 2009; 131 Ding (C7CS00238F-(cit239)/*[position()=1]) 2017 Gallinet (C7CS00238F-(cit220)/*[position()=1]) 2013; 13 Zhang (C7CS00238F-(cit238)/*[position()=1]) 2011; 11 Teodorescu (C7CS00238F-(cit90)/*[position()=1]) 2015; 17 Chen (C7CS00238F-(cit199)/*[position()=1]) 2016; 10 Schatz (C7CS00238F-(cit65)/*[position()=1]) 1984; 17 Roth (C7CS00238F-(cit205)/*[position()=1]) 2006; 14 Cecchini (C7CS00238F-(cit157)/*[position()=1]) 2013; 12 Aravind (C7CS00238F-(cit83)/*[position()=1]) 1981; 110 Zhu (C7CS00238F-(cit173)/*[position()=1]) 2014; 5 Ausman (C7CS00238F-(cit125)/*[position()=1]) 2012; 116 Willets (C7CS00238F-(cit36)/*[position()=1]) 2007; 58 Savage (C7CS00238F-(cit175)/*[position()=1]) 2012; 491 Gersten (C7CS00238F-(cit76)/*[position()=1]) 1980; 72 Persson (C7CS00238F-(cit91)/*[position()=1]) 1981; 82 Hill (C7CS00238F-(cit180)/*[position()=1]) 2010; 10 Butcher (C7CS00238F-(cit195)/*[position()=1]) 2012; 116 Blatchford (C7CS00238F-(cit16)/*[position()=1]) 1981; 108 Tan (C7CS00238F-(cit177)/*[position()=1]) 2014; 343 Abdali (C7CS00238F-(cit52)/*[position()=1]) 2008; 37 Wu (C7CS00238F-(cit9 |
References_xml | – issn: 1988 end-page: p 91-116 publication-title: Surface Plasmons on Smooth and Rough Surfaces and on Gratings doi: Raether – issn: 2014 end-page: p 1-17 publication-title: Frontiers of Surface-Enhanced Raman Scattering doi: Schatz Valley – issn: 2006 end-page: p 125-146 publication-title: Surface-Enhanced Raman Scattering doi: Tian Yang Ren Wu – issn: 2013 publication-title: Handbook of Molecular Plasmonics doi: Corni – issn: 2007 publication-title: Plasmonics: Fundamentals and Applications doi: Maier – issn: 2012 publication-title: Principles of Nano-Optics, second edition doi: Novotny Hecht – issn: 1998 publication-title: Absorption and Scattering of Light by Small Particles doi: Bohren Huffman – issn: 2009 publication-title: Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects doi: Le Ru Etchegoin – issn: 1984 end-page: p 289-418 publication-title: Light Scattering in Solids IV: Electronics Scattering, Spin Effects, SERS, and Morphic Effects doi: Otto – issn: 2014 publication-title: Encyclopedia of Analytical Chemistry doi: Ding Zhang Ren Tian – issn: 2011 end-page: p 263-301 publication-title: Comprehensive Nanoscience and Technology doi: Kosuda Bingham Wustholz Van Duyne – issn: 1982 publication-title: Surface Enhanced Raman Scattering – volume: 56 start-page: 10652 year: 2011 ident: C7CS00238F-(cit193)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.04.107 – volume: 343 start-page: 1496 year: 2014 ident: C7CS00238F-(cit177)/*[position()=1] publication-title: Science doi: 10.1126/science.1248797 – volume: 12 start-page: 2645 year: 2012 ident: C7CS00238F-(cit155)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl3012038 – volume: 132 start-page: 12820 year: 2010 ident: C7CS00238F-(cit24)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105248h – volume: 23 start-page: 2135 year: 1968 ident: C7CS00238F-(cit107)/*[position()=1] publication-title: Z. Naturforsch., A: Phys. Sci. doi: 10.1515/zna-1968-1247 – volume: 32 start-page: 4877 year: 2011 ident: C7CS00238F-(cit145)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.03.029 – volume: 108 start-page: 411 year: 1981 ident: C7CS00238F-(cit16)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/0039-6028(81)90459-3 – volume: 133 start-page: 4115 year: 2011 ident: C7CS00238F-(cit149)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110964d – volume: 14 start-page: 2921 year: 2006 ident: C7CS00238F-(cit205)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.14.002921 – volume: 132 start-page: 9 year: 2006 ident: C7CS00238F-(cit212)/*[position()=1] publication-title: Faraday Discuss. doi: 10.1039/B513431P – volume: 45 start-page: 2263 year: 2016 ident: C7CS00238F-(cit58)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00763A – volume: 7 start-page: 1032 year: 2007 ident: C7CS00238F-(cit144)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl070214f – volume: 9 start-page: 485 year: 2009 ident: C7CS00238F-(cit23)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl803621x – volume: 337 start-page: 1072 year: 2012 ident: C7CS00238F-(cit186)/*[position()=1] publication-title: Science doi: 10.1126/science.1224823 – volume: 11 start-page: 1657 year: 2011 ident: C7CS00238F-(cit238)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl200135r – volume: 84 start-page: 1 year: 1977 ident: C7CS00238F-(cit11)/*[position()=1] publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(77)80224-6 – volume: 116 start-page: 5128 year: 2012 ident: C7CS00238F-(cit195)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp211884s – volume: 107 start-page: 9964 year: 2003 ident: C7CS00238F-(cit131)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp034632u – volume: 631 start-page: 73 year: 2015 ident: C7CS00238F-(cit194)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/j.susc.2014.07.019 – volume: 104 start-page: 021111 year: 2014 ident: C7CS00238F-(cit192)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4862430 – volume: 44 start-page: 1763 year: 2015 ident: C7CS00238F-(cit247)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00348A – volume: 427 start-page: 122 year: 2006 ident: C7CS00238F-(cit143)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.05.111 – volume: 70 start-page: 2297 year: 1979 ident: C7CS00238F-(cit92)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.437735 – volume: 5 start-page: 10794 year: 2013 ident: C7CS00238F-(cit139)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr02924g – volume: 125 start-page: 9598 year: 2003 ident: C7CS00238F-(cit48)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja035541d – volume: 12 start-page: 165 year: 2013 ident: C7CS00238F-(cit157)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3488 – volume: 23 start-page: 13804 year: 2015 ident: C7CS00238F-(cit209)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.23.013804 – volume: 129 start-page: 064706 year: 2008 ident: C7CS00238F-(cit240)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2961011 – volume: 135 start-page: 134103 year: 2011 ident: C7CS00238F-(cit248)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3643381 – volume: 76 start-page: 2888 year: 1982 ident: C7CS00238F-(cit86)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.443370 – volume: 118 start-page: 640 year: 1960 ident: C7CS00238F-(cit106)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.118.640 – volume: 137 start-page: 7648 year: 2015 ident: C7CS00238F-(cit198)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04670 – volume: 125 start-page: 204701 year: 2006 ident: C7CS00238F-(cit133)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2390694 – volume: 17 start-page: 21302 year: 2015 ident: C7CS00238F-(cit90)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05082G – volume: 26 start-page: 163 year: 1974 ident: C7CS00238F-(cit10)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85388-1 – volume: 12 start-page: 2088 year: 2012 ident: C7CS00238F-(cit181)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl300351j – volume: 69 start-page: 65 year: 1973 ident: C7CS00238F-(cit87)/*[position()=1] publication-title: J. Chem. Soc., Faraday Trans. 2 doi: 10.1039/f29736900065 – volume: 10 start-page: 6291 year: 2016 ident: C7CS00238F-(cit253)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b02484 – volume: 141 start-page: 124124 year: 2014 ident: C7CS00238F-(cit119)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4896537 – volume: 19 start-page: 14919 year: 2011 ident: C7CS00238F-(cit224)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.19.014919 – volume: 132 start-page: 10903 year: 2010 ident: C7CS00238F-(cit152)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104174m – volume: 19 start-page: 4159 year: 1980 ident: C7CS00238F-(cit82)/*[position()=1] publication-title: Appl. Opt. doi: 10.1364/AO.19.004159 – volume: 2 start-page: 295 year: 2015 ident: C7CS00238F-(cit168)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/ph5004016 – volume: 57 start-page: 13265 year: 1998 ident: C7CS00238F-(cit129)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.57.13265 – volume: 83 start-page: 4357 year: 1999 ident: C7CS00238F-(cit88)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.4357 – volume: 498 start-page: 82 year: 2013 ident: C7CS00238F-(cit200)/*[position()=1] publication-title: Nature doi: 10.1038/nature12151 – volume: 92 start-page: 417 year: 1980 ident: C7CS00238F-(cit93)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/0039-6028(80)90214-9 – volume: 73 start-page: 3023 year: 1980 ident: C7CS00238F-(cit78)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.440560 – volume: 47 start-page: 88 year: 2014 ident: C7CS00238F-(cit249)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar400075r – volume: 27 start-page: 1090 year: 2015 ident: C7CS00238F-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201404107 – volume: 10 start-page: 581 year: 2016 ident: C7CS00238F-(cit199)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b05605 – volume: 130 start-page: 144109 year: 2009 ident: C7CS00238F-(cit236)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3109900 – volume-title: Surface Plasmons on Smooth and Rough Surfaces and on Gratings year: 1988 ident: C7CS00238F-(cit31)/*[position()=1] doi: 10.1007/BFb0048317 – volume: 106 start-page: 9042 year: 2002 ident: C7CS00238F-(cit114)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp025970i – volume: 4 start-page: 2209 year: 2004 ident: C7CS00238F-(cit187)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl0486160 – volume: 110 start-page: 189 year: 1981 ident: C7CS00238F-(cit83)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/0039-6028(81)90595-1 – volume: 55 start-page: 1041 year: 2016 ident: C7CS00238F-(cit231)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201508218 – volume: 137 start-page: 9515 year: 2015 ident: C7CS00238F-(cit229)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03741 – volume: 21 start-page: 25271 year: 2013 ident: C7CS00238F-(cit206)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.21.025271 – volume: 5 start-page: 9240 year: 2015 ident: C7CS00238F-(cit207)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep09240 – volume: 74 start-page: 3070 year: 1981 ident: C7CS00238F-(cit94)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.441403 – volume: 5 start-page: 8999 year: 2011 ident: C7CS00238F-(cit221)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn203173r – volume-title: Encyclopedia of Analytical Chemistry year: 2014 ident: C7CS00238F-(cit113)/*[position()=1] doi: 10.1002/9780470027318.a9276 – volume-title: Surface Enhanced Raman Scattering year: 1982 ident: C7CS00238F-(cit61)/*[position()=1] – volume: 106 start-page: 874 year: 1957 ident: C7CS00238F-(cit105)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.106.874 – volume-title: Absorption and Scattering of Light by Small Particles year: 1998 ident: C7CS00238F-(cit128)/*[position()=1] doi: 10.1002/9783527618156 – volume: 37 start-page: 980 year: 2008 ident: C7CS00238F-(cit52)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b707862p – volume: 492 start-page: 86 year: 2012 ident: C7CS00238F-(cit136)/*[position()=1] publication-title: Nature doi: 10.1038/nature11615 – volume: 15 start-page: 5355 year: 2013 ident: C7CS00238F-(cit59)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp44103b – volume: 321 start-page: 388 year: 2008 ident: C7CS00238F-(cit141)/*[position()=1] publication-title: Science doi: 10.1126/science.1159499 – volume: 15 start-page: 10869 year: 2007 ident: C7CS00238F-(cit172)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.15.010869 – volume: 106 start-page: 853 year: 2002 ident: C7CS00238F-(cit30)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp013638l – volume: 76 start-page: 085405 year: 2007 ident: C7CS00238F-(cit121)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.76.085405 – volume: 107 start-page: 1574 year: 2003 ident: C7CS00238F-(cit202)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp022060s – volume: 10 start-page: 865 year: 2015 ident: C7CS00238F-(cit228)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.170 – volume: 108 start-page: 8157 year: 2011 ident: C7CS00238F-(cit25)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1016530108 – volume: 124 start-page: 506 year: 1983 ident: C7CS00238F-(cit84)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/0039-6028(83)90806-3 – volume: 106 start-page: 9463 year: 2002 ident: C7CS00238F-(cit115)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0257449 – volume: 83 start-page: 115428 year: 2011 ident: C7CS00238F-(cit160)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.115428 – volume: 43 start-page: 1135 year: 2010 ident: C7CS00238F-(cit8)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar100031v – volume: 16 start-page: 9144 year: 2008 ident: C7CS00238F-(cit161)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.16.009144 – year: 2017 ident: C7CS00238F-(cit237)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00067G – volume: 90 start-page: 195402 year: 2014 ident: C7CS00238F-(cit189)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.90.195402 – year: 2017 ident: C7CS00238F-(cit239)/*[position()=1] publication-title: Faraday Discuss. doi: 10.1039/C7FD00144D – volume: 464 start-page: 392 year: 2010 ident: C7CS00238F-(cit22)/*[position()=1] publication-title: Nature doi: 10.1038/nature08907 – volume-title: Plasmonics: Fundamentals and Applications year: 2007 ident: C7CS00238F-(cit35)/*[position()=1] doi: 10.1007/0-387-37825-1 – volume: 11 start-page: 1221 year: 2011 ident: C7CS00238F-(cit166)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl104214c – volume: 36 start-page: 549 year: 1985 ident: C7CS00238F-(cit67)/*[position()=1] publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.36.100185.003001 – volume: 16 start-page: 2289 year: 2014 ident: C7CS00238F-(cit211)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C3CP51730F – volume: 12 start-page: 1660 year: 2012 ident: C7CS00238F-(cit225)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl3000453 – volume: 72 start-page: 5779 year: 1980 ident: C7CS00238F-(cit76)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.439002 – volume: 36 start-page: 497 year: 2005 ident: C7CS00238F-(cit254)/*[position()=1] publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1355 – volume: 40 start-page: 53 year: 2007 ident: C7CS00238F-(cit19)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar0401045 – volume: 122 start-page: 184716 year: 2005 ident: C7CS00238F-(cit203)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1896356 – volume: 5 start-page: 5228 year: 2014 ident: C7CS00238F-(cit173)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms6228 – volume-title: Surface-Enhanced Raman Scattering year: 2006 ident: C7CS00238F-(cit49)/*[position()=1] – volume: 133 start-page: 15922 year: 2011 ident: C7CS00238F-(cit134)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2074533 – volume: 92 start-page: 053811 year: 2015 ident: C7CS00238F-(cit190)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.92.053811 – volume: 35 start-page: 507 year: 1984 ident: C7CS00238F-(cit64)/*[position()=1] publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.35.100184.002451 – volume: 7 start-page: 4629 year: 2016 ident: C7CS00238F-(cit227)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02175 – volume: 7 start-page: 6978 year: 2013 ident: C7CS00238F-(cit222)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn4021967 – volume: 267 start-page: 1629 year: 1995 ident: C7CS00238F-(cit17)/*[position()=1] publication-title: Science doi: 10.1126/science.267.5204.1629 – volume: 78 start-page: 1667 year: 1997 ident: C7CS00238F-(cit7)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1667 – volume: 111 start-page: 4729 year: 1999 ident: C7CS00238F-(cit29)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.479235 – volume: 107 start-page: 5547 year: 2003 ident: C7CS00238F-(cit116)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp027642o – volume: 81 start-page: 115406 year: 2010 ident: C7CS00238F-(cit123)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.115406 – volume: 19 start-page: 22167 year: 2011 ident: C7CS00238F-(cit223)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.19.022167 – volume: 76 start-page: 3130 year: 2000 ident: C7CS00238F-(cit45)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.126546 – volume: 116 start-page: 17318 year: 2012 ident: C7CS00238F-(cit125)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp2122938 – volume: 41 start-page: 1710 year: 2008 ident: C7CS00238F-(cit127)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar800028j – volume: 75 start-page: 035411 year: 2007 ident: C7CS00238F-(cit169)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.75.035411 – volume: 5 start-page: 3448 year: 2014 ident: C7CS00238F-(cit150)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms4448 – volume: 44 start-page: 2837 year: 2015 ident: C7CS00238F-(cit153)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00509K – start-page: 3514 year: 2007 ident: C7CS00238F-(cit15)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b616986d – volume: 9 start-page: 60 year: 2010 ident: C7CS00238F-(cit148)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2596 – volume: 8 start-page: 919 year: 2008 ident: C7CS00238F-(cit233)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl073346h – volume: 136 start-page: 144704 year: 2012 ident: C7CS00238F-(cit243)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3698292 – volume: 101 start-page: 367 year: 1980 ident: C7CS00238F-(cit72)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/0039-6028(80)90632-9 – volume: 9 start-page: 2491 year: 2008 ident: C7CS00238F-(cit179)/*[position()=1] publication-title: ChemPhysChem doi: 10.1002/cphc.200800563 – volume-title: Principles of Nano-Optics, second edition year: 2012 ident: C7CS00238F-(cit124)/*[position()=1] doi: 10.1017/CBO9780511794193 – volume: 17 start-page: 21254 year: 2015 ident: C7CS00238F-(cit235)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04906C – volume: 73 start-page: 6068 year: 1980 ident: C7CS00238F-(cit13)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.440142 – volume: 124 start-page: 299 year: 1986 ident: C7CS00238F-(cit97)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(86)85021-7 – volume: 9 start-page: 701 year: 2010 ident: C7CS00238F-(cit167)/*[position()=1] publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2010.2054103 – volume: 57 start-page: 783 year: 1985 ident: C7CS00238F-(cit1)/*[position()=1] publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.57.783 – volume: 120 start-page: 20506 year: 2016 ident: C7CS00238F-(cit146)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b05931 – volume: 138 start-page: 4574 year: 2013 ident: C7CS00238F-(cit182)/*[position()=1] publication-title: Analyst doi: 10.1039/c3an00447c – volume: 15 start-page: 21 year: 2013 ident: C7CS00238F-(cit138)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C2CP42598J – volume: 82 start-page: 355 year: 1981 ident: C7CS00238F-(cit14)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(81)85172-X – volume: 120 start-page: 357 year: 2004 ident: C7CS00238F-(cit159)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1629280 – volume: 9 start-page: 887 year: 2009 ident: C7CS00238F-(cit174)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl803811g – volume: 55 start-page: 2780 year: 2016 ident: C7CS00238F-(cit241)/*[position()=1] publication-title: Appl. Opt. doi: 10.1364/AO.55.002780 – volume: 17 start-page: 370 year: 1984 ident: C7CS00238F-(cit65)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar00106a005 – volume: 2 start-page: 1199 year: 2011 ident: C7CS00238F-(cit55)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz200498z – volume: 111 start-page: 3913 year: 2011 ident: C7CS00238F-(cit217)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200061k – volume: 43 start-page: 1230 year: 2014 ident: C7CS00238F-(cit42)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60187K – volume: 103 start-page: 13300 year: 2006 ident: C7CS00238F-(cit21)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0605889103 – volume: 15 start-page: 16 year: 2012 ident: C7CS00238F-(cit39)/*[position()=1] publication-title: Mater. Today doi: 10.1016/S1369-7021(12)70017-2 – volume: 7 start-page: 5993 year: 2013 ident: C7CS00238F-(cit158)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn401685p – volume: 13 start-page: 564 year: 2013 ident: C7CS00238F-(cit176)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl304078v – volume: 37 start-page: 898 year: 2008 ident: C7CS00238F-(cit37)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b705969h – volume: 11 start-page: 164 year: 2016 ident: C7CS00238F-(cit252)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.264 – volume: 120 start-page: 435 year: 1982 ident: C7CS00238F-(cit69)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/0039-6028(82)90161-3 – volume: 132 start-page: 309 year: 2006 ident: C7CS00238F-(cit112)/*[position()=1] publication-title: Faraday Discuss. doi: 10.1039/B507773G – volume: 99 start-page: 5215 year: 1977 ident: C7CS00238F-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00457a071 – volume: 11 start-page: 1800 year: 2011 ident: C7CS00238F-(cit162)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl200461w – volume: 36 start-page: 1207 year: 1976 ident: C7CS00238F-(cit71)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.36.1207 – volume: 114 start-page: 14384 year: 2010 ident: C7CS00238F-(cit244)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp1043392 – volume: 107 start-page: 7426 year: 2003 ident: C7CS00238F-(cit18)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp027749b – volume: 73 start-page: 035407 year: 2006 ident: C7CS00238F-(cit171)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.73.035407 – volume: 131 start-page: 084708 year: 2009 ident: C7CS00238F-(cit122)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.3211969 – volume: 227 start-page: 115 year: 1994 ident: C7CS00238F-(cit53)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(94)00779-9 – volume: 119 start-page: 433 year: 1982 ident: C7CS00238F-(cit95)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/0039-6028(82)90309-0 – volume: 40 start-page: 1343 year: 2009 ident: C7CS00238F-(cit201)/*[position()=1] publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2429 – volume: 13 start-page: 497 year: 2013 ident: C7CS00238F-(cit220)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl303896d – volume: 275 start-page: 1102 year: 1997 ident: C7CS00238F-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.275.5303.1102 – volume: 38 start-page: 615 year: 2013 ident: C7CS00238F-(cit40)/*[position()=1] publication-title: MRS Bull. doi: 10.1557/mrs.2013.161 – volume: 37 start-page: 1061 year: 2008 ident: C7CS00238F-(cit104)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b706023h – volume: 101 start-page: 409 year: 1980 ident: C7CS00238F-(cit74)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/0039-6028(80)90637-8 – volume: 88 start-page: 5526 year: 1984 ident: C7CS00238F-(cit126)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j150667a013 – volume: 93 start-page: 351 year: 1980 ident: C7CS00238F-(cit60)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/0039-6028(80)90270-8 – volume: 13 start-page: 2194 year: 2013 ident: C7CS00238F-(cit165)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl400698w – volume: 78 start-page: 042505 year: 2008 ident: C7CS00238F-(cit251)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.78.042505 – volume: 127 start-page: 14992 year: 2005 ident: C7CS00238F-(cit156)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055633y – volume: 132 start-page: 268 year: 2010 ident: C7CS00238F-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906954f – volume: 15 start-page: 8309 year: 2007 ident: C7CS00238F-(cit210)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.15.008309 – volume: 21 start-page: 2 year: 2014 ident: C7CS00238F-(cit140)/*[position()=1] publication-title: J. Photochem. Photobiol., C doi: 10.1016/j.jphotochemrev.2014.09.001 – volume: 8 start-page: 3421 year: 2014 ident: C7CS00238F-(cit56)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn406263m – volume: 116 start-page: 9574 year: 2012 ident: C7CS00238F-(cit245)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp307003p – volume: 1 start-page: 601 year: 2008 ident: C7CS00238F-(cit32)/*[position()=1] publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev.anchem.1.031207.112814 – volume: 100 start-page: 3199 year: 1996 ident: C7CS00238F-(cit98)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/jp952240k – volume: 130 start-page: 12616 year: 2008 ident: C7CS00238F-(cit151)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8051427 – volume: 183 start-page: 333 year: 2000 ident: C7CS00238F-(cit46)/*[position()=1] publication-title: Opt. Commun. doi: 10.1016/S0030-4018(00)00894-4 – volume: 63 start-page: 379 year: 2012 ident: C7CS00238F-(cit137)/*[position()=1] publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-032511-143807 – volume: 128 start-page: 14748 year: 2006 ident: C7CS00238F-(cit232)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0648615 – volume: 135 start-page: 301 year: 2012 ident: C7CS00238F-(cit214)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309300d – volume: 131 start-page: 4218 year: 2009 ident: C7CS00238F-(cit147)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900809z – volume: 37 start-page: 885 year: 2008 ident: C7CS00238F-(cit38)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/b710915f – volume: 3 start-page: 223 year: 2016 ident: C7CS00238F-(cit208)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.5b00438 – volume: 24 start-page: 4376 year: 2012 ident: C7CS00238F-(cit164)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201201625 – volume: 58 start-page: 267 year: 2007 ident: C7CS00238F-(cit36)/*[position()=1] publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.58.032806.104607 – volume: 10 start-page: 4150 year: 2010 ident: C7CS00238F-(cit180)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl102443p – volume: 89 start-page: 043841 year: 2014 ident: C7CS00238F-(cit226)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.89.043841 – volume: 50 start-page: 5473 year: 2011 ident: C7CS00238F-(cit188)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201101632 – volume: 62 start-page: 4318 year: 2000 ident: C7CS00238F-(cit130)/*[position()=1] publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. doi: 10.1103/PhysRevE.62.4318 – volume: 72 start-page: 5780 year: 1980 ident: C7CS00238F-(cit77)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.439003 – volume: 131 start-page: 4090 year: 2009 ident: C7CS00238F-(cit117)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809143c – volume: 131 start-page: 347 year: 1983 ident: C7CS00238F-(cit110)/*[position()=1] publication-title: Surf. Sci. doi: 10.1016/0039-6028(83)90283-2 – volume: 82 start-page: 561 year: 1981 ident: C7CS00238F-(cit91)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(81)85441-3 – volume: 124 start-page: 1866 year: 1961 ident: C7CS00238F-(cit242)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.124.1866 – volume: 318 start-page: 131 year: 2000 ident: C7CS00238F-(cit44)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)01451-7 – volume: 103 start-page: 191119 year: 2013 ident: C7CS00238F-(cit183)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4829617 – volume: 216 start-page: 398 year: 1968 ident: C7CS00238F-(cit108)/*[position()=1] publication-title: Z. Phys. A: Hadrons Nucl. doi: 10.1007/BF01391532 – volume: 119 start-page: 11858 year: 2015 ident: C7CS00238F-(cit230)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b02653 – volume: 36 start-page: 485 year: 2005 ident: C7CS00238F-(cit132)/*[position()=1] publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1362 – volume: 1 start-page: 16021 year: 2016 ident: C7CS00238F-(cit5)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.21 – volume: 66 start-page: 195 year: 2012 ident: C7CS00238F-(cit68)/*[position()=1] publication-title: Notes Rec. R. Soc. doi: 10.1098/rsnr.2011.0024 – volume: 116 start-page: 1627 year: 2012 ident: C7CS00238F-(cit135)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp207661y – volume: 53 start-page: 4756 year: 2014 ident: C7CS00238F-(cit43)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201205748 – volume: 52 start-page: 150 year: 2007 ident: C7CS00238F-(cit103)/*[position()=1] publication-title: Can. J. Anal. Sci. Spectrosc. – volume: 133 start-page: 132 year: 2014 ident: C7CS00238F-(cit197)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.04.034 – volume: 113 start-page: 12167 year: 2009 ident: C7CS00238F-(cit154)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp901355g – volume: 98 start-page: 998 year: 1993 ident: C7CS00238F-(cit120)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.464263 – volume: 8 start-page: 3083 year: 2006 ident: C7CS00238F-(cit215)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b605292d – volume: 3 start-page: 825 year: 2012 ident: C7CS00238F-(cit178)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1806 – volume-title: Comprehensive Nanoscience and Technology year: 2011 ident: C7CS00238F-(cit213)/*[position()=1] – volume: 83 start-page: 235427 year: 2011 ident: C7CS00238F-(cit219)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.235427 – volume: 17 start-page: 271 year: 1984 ident: C7CS00238F-(cit63)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar00104a002 – volume: 12 start-page: 2625 year: 2012 ident: C7CS00238F-(cit163)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl301029e – volume: 231 start-page: 128 year: 1970 ident: C7CS00238F-(cit109)/*[position()=1] publication-title: Z. Phys. A: Hadrons Nucl. doi: 10.1007/BF01392504 – volume: 331 start-page: 290 year: 2011 ident: C7CS00238F-(cit33)/*[position()=1] publication-title: Science doi: 10.1126/science.1198258 – volume: 50 start-page: 997 year: 1983 ident: C7CS00238F-(cit73)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.997 – volume: 35 start-page: 667 year: 1980 ident: C7CS00238F-(cit75)/*[position()=1] publication-title: Solid State Commun. doi: 10.1016/0038-1098(80)90870-4 – volume-title: Frontiers of Surface-Enhanced Raman Scattering year: 2014 ident: C7CS00238F-(cit246)/*[position()=1] doi: 10.1002/9781118703601.ch1 – volume: 75 start-page: 790 year: 1979 ident: C7CS00238F-(cit3)/*[position()=1] publication-title: J. Chem. Soc., Faraday Trans. 2 doi: 10.1039/f29797500790 – volume: 83 start-page: 1356 year: 1985 ident: C7CS00238F-(cit51)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.449452 – volume: 26 start-page: 203 year: 1991 ident: C7CS00238F-(cit57)/*[position()=1] publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704929108050881 – volume: 85 start-page: 2297 year: 2013 ident: C7CS00238F-(cit26)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac303269w – volume: 60 start-page: 137 year: 2004 ident: C7CS00238F-(cit99)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/S1386-1425(03)00190-2 – volume: 16 start-page: 10315 year: 2008 ident: C7CS00238F-(cit170)/*[position()=1] publication-title: Opt. Express doi: 10.1364/OE.16.010315 – volume: 43 start-page: 46 year: 2012 ident: C7CS00238F-(cit196)/*[position()=1] publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.2989 – volume: 69 start-page: 4472 year: 1978 ident: C7CS00238F-(cit89)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.436436 – volume: 38 start-page: 607 year: 2013 ident: C7CS00238F-(cit41)/*[position()=1] publication-title: MRS Bull. doi: 10.1557/mrs.2013.156 – volume: 84 start-page: 4174 year: 1986 ident: C7CS00238F-(cit96)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.450037 – volume: 48 start-page: 4962 year: 2012 ident: C7CS00238F-(cit118)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc31441j – volume: 64 start-page: 175 year: 2010 ident: C7CS00238F-(cit70)/*[position()=1] publication-title: Notes Rec. R. Soc. doi: 10.1098/rsnr.2009.0061 – volume: 6 start-page: 33218 year: 2016 ident: C7CS00238F-(cit184)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep33218 – volume: 42 start-page: 1186 year: 1988 ident: C7CS00238F-(cit50)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/0003702884429896 – volume: 5 start-page: 1569 year: 2005 ident: C7CS00238F-(cit142)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl050928v – volume: 25 start-page: 3264 year: 2013 ident: C7CS00238F-(cit34)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201205076 – volume: 69 start-page: 4159 year: 1978 ident: C7CS00238F-(cit2)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.437095 – volume: 150 start-page: 375 year: 1983 ident: C7CS00238F-(cit62)/*[position()=1] publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(83)80219-8 – volume: 82 start-page: 566 year: 1981 ident: C7CS00238F-(cit85)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(81)85442-5 – volume: 9 start-page: 707 year: 2010 ident: C7CS00238F-(cit216)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2810 – volume: 5 start-page: 4424 year: 2014 ident: C7CS00238F-(cit54)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5424 – volume: 491 start-page: 574 year: 2012 ident: C7CS00238F-(cit175)/*[position()=1] publication-title: Nature doi: 10.1038/nature11653 – volume: 2 start-page: 305 year: 2011 ident: C7CS00238F-(cit234)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1310 – volume: 77 start-page: 381 year: 1980 ident: C7CS00238F-(cit80)/*[position()=1] publication-title: Phys. Lett. A doi: 10.1016/0375-9601(80)90726-4 – volume: 4 start-page: 1143 year: 1992 ident: C7CS00238F-(cit102)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 4 start-page: 469 year: 2017 ident: C7CS00238F-(cit191)/*[position()=1] publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00908 – volume: 50 start-page: 1301 year: 1983 ident: C7CS00238F-(cit111)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.1301 – volume: 7 start-page: 329 year: 2013 ident: C7CS00238F-(cit218)/*[position()=1] publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201200021 – volume: 7 start-page: 704 year: 2016 ident: C7CS00238F-(cit185)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02535 – volume: 128 start-page: 2911 year: 2006 ident: C7CS00238F-(cit100)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0556326 – volume-title: Handbook of Molecular Plasmonics year: 2013 ident: C7CS00238F-(cit250)/*[position()=1] doi: 10.1201/b15328-7 – volume-title: Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects year: 2009 ident: C7CS00238F-(cit4)/*[position()=1] – volume: 110 start-page: 6692 year: 2006 ident: C7CS00238F-(cit204)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp060173w – volume: 22 start-page: 1660 year: 1980 ident: C7CS00238F-(cit79)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.22.1660 – volume: 117 start-page: 5002 year: 2017 ident: C7CS00238F-(cit28)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00596 – volume: 18 start-page: 1180 year: 1979 ident: C7CS00238F-(cit81)/*[position()=1] publication-title: Appl. Opt. doi: 10.1364/AO.18.001180 – volume: 63 start-page: 65 year: 2012 ident: C7CS00238F-(cit9)/*[position()=1] publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-032511-143757 – volume: 68 start-page: 942 year: 2000 ident: C7CS00238F-(cit47)/*[position()=1] publication-title: Electrochemistry doi: 10.5796/electrochemistry.68.942 – volume-title: Light Scattering in Solids IV: Electronics Scattering, Spin Effects, SERS, and Morphic Effects year: 1984 ident: C7CS00238F-(cit66)/*[position()=1] doi: 10.1007/3-540-11942-6_24 – volume: 112 start-page: 4195 year: 2008 ident: C7CS00238F-(cit101)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp0760962 |
SSID | ssj0011762 |
Score | 2.6938531 |
SecondaryResourceType | review_article |
Snippet | Surface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 442 |
SubjectTerms | gold Hot spots Hybrid structures Mathematical models nanogold nanosilver Nanostructure optical properties Optimization Plasmonics Raman spectroscopy silver Strategy |
Title | Electromagnetic theories of surface-enhanced Raman spectroscopy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28660954 https://www.proquest.com/docview/1914848831 https://www.proquest.com/docview/1925876165 https://www.proquest.com/docview/2286924770 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4AL4rVsl4eC4MLBSxI7cXJCq6rVgtpFsK1UuESxY--ugKRqUw78esavdB8FLVyiyh5FrmcyHns834fQ6yyBjjyqsKScYEpYiDNFIizzlHEKMWpqMviT4_RoRj_Mk7nnanfVJS0_EL-21pX8j1ahDfSqq2T_QbPdS6EBfoN-4QkahueNdDy0HDY_ytNa1yLaqsRzCyO7Wi9VKSSW9ZlN8n8u9XG9qazUCJbN4lJCtwMO8Nc4HUxpF-g67pOTpj7FX9YbmwJ3YfxpjSd-FTS3eu3B6tczLf9p3YlPmtW35ud5u3KFQh752x08ROZE0zLUOl9J0xBTZuEbD-SWNudg3RmjMyRywV3S0EJrXfPjIdEwqIKJlQkq1Ga18hn644_FaDYeF9PhfHob7cSwS4h7aOdwOH0_7tJIETOMst2oPD4tyd9u3n05Irm2zYCgY-nJYEzQMb2P7rndQnBoVf8A3ZL1Q3Rn4En6HqF3V0wg8CYQNCq4agKBMYHgogk8RrPRcDo4wo4TAwtY0lpcqRy-HsmVLGHnmhGl4folEVWusjSSiSo1uT3XoEUkzCVEq6VgOkxlFYXgrSK7qFc3tdzTl9pIXnKimMhKGoqUJ0nFORVRVnHG87iP3vh5KYQDjNe8Jd8Lc3GB5MWADU7MHI766FUnu7AwKVulXvrpLWCedGqqrGWzXhUaZTCDtYREf5OBP8zSKE3-LBPHWZrHlLGwj55Y_XXjgS6Nrkj7aBcU2jVvDKGP9rd3FItK7d9g7E_R3c2H8gz12uVaPoeYteUvnGX-BpT2l6M |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromagnetic+theories+of+surface-enhanced+Raman+spectroscopy&rft.jtitle=Chemical+Society+reviews&rft.au=Ding%2C+Song-Yuan&rft.au=You%2C+En-Ming&rft.au=Tian%2C+Zhong-Qun&rft.au=Moskovits%2C+Martin&rft.date=2017-07-07&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=46&rft.issue=13&rft.spage=4042&rft_id=info:doi/10.1039%2Fc7cs00238f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |