Temporal Difference Models and Reward-Related Learning in the Human Brain
Temporal difference learning has been proposed as a model for Pavlovian conditioning, in which an animal learns to predict delivery of reward following presentation of a conditioned stimulus (CS). A key component of this model is a prediction error signal, which, before learning, responds at the tim...
Saved in:
Published in | Neuron (Cambridge, Mass.) Vol. 38; no. 2; pp. 329 - 337 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.04.2003
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0896-6273 1097-4199 |
DOI | 10.1016/S0896-6273(03)00169-7 |
Cover
Loading…
Abstract | Temporal difference learning has been proposed as a model for Pavlovian conditioning, in which an animal learns to predict delivery of reward following presentation of a conditioned stimulus (CS). A key component of this model is a prediction error signal, which, before learning, responds at the time of presentation of reward but, after learning, shifts its response to the time of onset of the CS. In order to test for regions manifesting this signal profile, subjects were scanned using event-related fMRI while undergoing appetitive conditioning with a pleasant taste reward. Regression analyses revealed that responses in ventral striatum and orbitofrontal cortex were significantly correlated with this error signal, suggesting that, during appetitive conditioning, computations described by temporal difference learning are expressed in the human brain. |
---|---|
AbstractList | Temporal difference learning has been proposed as a model for Pavlovian conditioning, in which an animal learns to predict delivery of reward following presentation of a conditioned stimulus (CS). A key component of this model is a prediction error signal, which, before learning, responds at the time of presentation of reward but, after learning, shifts its response to the time of onset of the CS. In order to test for regions manifesting this signal profile, subjects were scanned using event-related fMRI while undergoing appetitive conditioning with a pleasant taste reward. Regression analyses revealed that responses in ventral striatum and orbitofrontal cortex were significantly correlated with this error signal, suggesting that, during appetitive conditioning, computations described by temporal difference learning are expressed in the human brain. Temporal difference learning has been proposed as a model for Pavlovian conditioning, in which an animal learns to predict delivery of reward following presentation of a conditioned stimulus (CS). A key component of this model is a prediction error signal, which, before learning, responds at the time of presentation of reward but, after learning, shifts its response to the time of onset of the CS. In order to test for regions manifesting this signal profile, subjects were scanned using event-related fMRI while undergoing appetitive conditioning with a pleasant taste reward. Regression analyses revealed that responses in ventral striatum and orbitofrontal cortex were significantly correlated with this error signal, suggesting that, during appetitive conditioning, computations described by temporal difference learning are expressed in the human brain.Temporal difference learning has been proposed as a model for Pavlovian conditioning, in which an animal learns to predict delivery of reward following presentation of a conditioned stimulus (CS). A key component of this model is a prediction error signal, which, before learning, responds at the time of presentation of reward but, after learning, shifts its response to the time of onset of the CS. In order to test for regions manifesting this signal profile, subjects were scanned using event-related fMRI while undergoing appetitive conditioning with a pleasant taste reward. Regression analyses revealed that responses in ventral striatum and orbitofrontal cortex were significantly correlated with this error signal, suggesting that, during appetitive conditioning, computations described by temporal difference learning are expressed in the human brain. |
Author | O'Doherty, John P. Friston, Karl Critchley, Hugo Dayan, Peter Dolan, Raymond J. |
Author_xml | – sequence: 1 givenname: John P. surname: O'Doherty fullname: O'Doherty, John P. email: j.odoherty@fil.ion.ucl.ac.uk organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom – sequence: 2 givenname: Peter surname: Dayan fullname: Dayan, Peter organization: Gatsby Computational Neuroscience Unit, University College London, London WC1N 3BG, United Kingdom – sequence: 3 givenname: Karl surname: Friston fullname: Friston, Karl organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom – sequence: 4 givenname: Hugo surname: Critchley fullname: Critchley, Hugo organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom – sequence: 5 givenname: Raymond J. surname: Dolan fullname: Dolan, Raymond J. organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12718865$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFDEUhoO02O3qT1ACQqkXo_mYJBO8KLZqW1gRar0OmeSMpsxk1mRG8d-bcWsverMQOBCe95zkPMfoII4REHpByRtKqHz7lTRaVpIpfkr4a1KudKWeoBUlWlU11foArR6QI3Sc812BaqHpU3REmaJNI8UKXd_CsB2T7fGH0HWQIDrAn0cPfcY2enwDv23y1Q30dgKPN2BTDPE7DhFPPwBfzYON-DzZEJ-hw872GZ7f1zX69unj7cVVtflyeX3xflO5Wqqp8l5Ra4G3nQXF2lr7BrjsrOMCQAvBha-lBSZa2bYebG2dkoopzQRhnlK-Rie7vts0_pwhT2YI2UHf2wjjnI3ijClC-F6QNqrmQrICvnoE3o1ziuUThgrCJeFCLdTLe2puB_Bmm8Jg0x_zf5cFeLcDXBpzTtAZFyY7hTFOZT-9ocQs5sw_c2bRYkg5i7ny6DUSj9IPA_bkzna5Ygx-BUgmu7BY9CGBm4wfw54OfwHOua4- |
CitedBy_id | crossref_primary_10_1016_j_bbr_2012_02_006 crossref_primary_10_1177_0269881107077716 crossref_primary_10_1111_ejn_12802 crossref_primary_10_1152_jn_01044_2007 crossref_primary_10_3389_fpsyg_2020_560080 crossref_primary_10_1007_s00221_009_2060_6 crossref_primary_10_1007_s12021_008_9042_x crossref_primary_10_1007_s12078_012_9130_z crossref_primary_10_1146_annurev_neuro_080317_061948 crossref_primary_10_1089_cap_2005_15_160 crossref_primary_10_1016_j_neuroimage_2021_117747 crossref_primary_10_3389_fncel_2024_1480845 crossref_primary_10_1073_pnas_1119969109 crossref_primary_10_1016_j_bandc_2013_04_011 crossref_primary_10_1038_nature15692 crossref_primary_10_1016_j_neuroimage_2011_07_072 crossref_primary_10_1093_cercor_bhp169 crossref_primary_10_1038_mp_2016_81 crossref_primary_10_1016_S0896_6273_03_00230_7 crossref_primary_10_1073_pnas_1507610113 crossref_primary_10_3390_electronics12244939 crossref_primary_10_1152_jn_00332_2014 crossref_primary_10_1371_journal_pcbi_1006707 crossref_primary_10_1111_bdi_12132 crossref_primary_10_1371_journal_pone_0028337 crossref_primary_10_1093_scan_nsaa089 crossref_primary_10_1371_journal_pcbi_1004523 crossref_primary_10_1016_j_cub_2023_09_033 crossref_primary_10_1016_j_bpsc_2023_07_007 crossref_primary_10_1016_j_neuroimage_2017_11_057 crossref_primary_10_1007_s00429_012_0485_3 crossref_primary_10_3389_fnbeh_2022_908454 crossref_primary_10_1016_j_neuroimage_2006_02_006 crossref_primary_10_3390_brainsci11121610 crossref_primary_10_3390_brainsci12101411 crossref_primary_10_1016_j_neuroimage_2011_06_051 crossref_primary_10_1016_j_neuroimage_2017_03_044 crossref_primary_10_1007_s11682_020_00389_1 crossref_primary_10_1016_j_neubiorev_2016_06_004 crossref_primary_10_1162_opmi_a_00139 crossref_primary_10_1177_1094428116644502 crossref_primary_10_1371_journal_pcbi_1005405 crossref_primary_10_1007_s11055_024_01583_0 crossref_primary_10_1016_j_ynstr_2020_100258 crossref_primary_10_1523_JNEUROSCI_6421_10_2011 crossref_primary_10_1523_JNEUROSCI_0897_08_2008 crossref_primary_10_1523_JNEUROSCI_6376_10_2011 crossref_primary_10_1016_j_biopsycho_2008_04_010 crossref_primary_10_1038_nn2077 crossref_primary_10_1016_j_neuroimage_2008_06_035 crossref_primary_10_1017_S0954579405050418 crossref_primary_10_1093_scan_nss079 crossref_primary_10_1134_S1019331606040034 crossref_primary_10_1016_j_neuron_2008_09_023 crossref_primary_10_1016_j_neuron_2009_12_027 crossref_primary_10_3389_fpsyg_2015_01948 crossref_primary_10_1016_j_cogbrainres_2005_01_001 crossref_primary_10_1371_journal_pcbi_1012175 crossref_primary_10_1038_sj_npp_npp2009124 crossref_primary_10_3758_CABN_9_4_343 crossref_primary_10_1002_psp4_12478 crossref_primary_10_1016_j_neulet_2020_135243 crossref_primary_10_1176_appi_ajp_2015_14050594 crossref_primary_10_1038_nn2065 crossref_primary_10_1093_cercor_bhh211 crossref_primary_10_1016_j_biopsych_2019_07_017 crossref_primary_10_1016_j_cortex_2009_02_022 crossref_primary_10_1016_j_cogsys_2018_10_002 crossref_primary_10_1016_j_neuroimage_2011_06_071 crossref_primary_10_1016_j_bandc_2013_11_011 crossref_primary_10_1002_hbm_20186 crossref_primary_10_1016_j_neuron_2022_07_005 crossref_primary_10_1371_journal_pbio_3002306 crossref_primary_10_1016_j_neubiorev_2019_04_018 crossref_primary_10_1038_s41598_021_97782_7 crossref_primary_10_1111_j_1460_9568_2009_06743_x crossref_primary_10_1007_s00213_011_2526_7 crossref_primary_10_7554_eLife_12029 crossref_primary_10_1016_j_neuron_2011_08_024 crossref_primary_10_1186_1866_1955_4_17 crossref_primary_10_1523_JNEUROSCI_2277_15_2015 crossref_primary_10_1016_j_neuroimage_2017_02_050 crossref_primary_10_1038_npp_2016_68 crossref_primary_10_1016_j_neuroimage_2006_01_001 crossref_primary_10_1007_s10827_020_00751_8 crossref_primary_10_1371_journal_pcbi_1005810 crossref_primary_10_1016_j_neuroimage_2011_05_037 crossref_primary_10_1016_j_brat_2020_103636 crossref_primary_10_1016_j_neubiorev_2019_04_006 crossref_primary_10_1515_REVNEURO_2009_20_5_6_383 crossref_primary_10_1016_j_neuroimage_2011_05_031 crossref_primary_10_1162_0899766053011555 crossref_primary_10_1162_jocn_a_02226 crossref_primary_10_3389_fpsyt_2022_886297 crossref_primary_10_1007_s13311_012_0134_9 crossref_primary_10_7554_eLife_91928 crossref_primary_10_1097_j_pain_0000000000000299 crossref_primary_10_1016_j_neuron_2004_11_022 crossref_primary_10_3390_app12073520 crossref_primary_10_1523_JNEUROSCI_1124_21_2022 crossref_primary_10_1038_nature03015 crossref_primary_10_1097_WNR_0b013e3281532bd7 crossref_primary_10_1111_ejn_12625 crossref_primary_10_1126_sciadv_adi4927 crossref_primary_10_1371_journal_pone_0059902 crossref_primary_10_1523_JNEUROSCI_2972_11_2011 crossref_primary_10_1080_15294145_2006_10773514 crossref_primary_10_1093_schbul_sbn134 crossref_primary_10_1073_pnas_1506367112 crossref_primary_10_1162_0899766053011546 crossref_primary_10_1523_JNEUROSCI_2118_07_2007 crossref_primary_10_1016_j_neubiorev_2006_11_002 crossref_primary_10_1093_nc_niw005 crossref_primary_10_1016_j_chc_2019_05_007 crossref_primary_10_1523_JNEUROSCI_5217_12_2013 crossref_primary_10_1038_s41593_018_0315_x crossref_primary_10_1098_rstb_2015_0355 crossref_primary_10_3389_fnhum_2016_00149 crossref_primary_10_1038_srep36206 crossref_primary_10_1521_soco_2008_26_5_593 crossref_primary_10_1371_journal_pone_0024390 crossref_primary_10_7554_eLife_26424 crossref_primary_10_1098_rstb_2015_0352 crossref_primary_10_1016_j_neunet_2008_09_004 crossref_primary_10_1093_nc_niw018 crossref_primary_10_1002_hbm_21039 crossref_primary_10_1016_j_neuroimage_2016_06_038 crossref_primary_10_1523_JNEUROSCI_5331_09_2010 crossref_primary_10_1016_j_pnpbp_2017_02_020 crossref_primary_10_1002_hbm_22561 crossref_primary_10_1007_s00406_014_0519_3 crossref_primary_10_1016_j_conb_2017_10_006 crossref_primary_10_21074_kjlcap_2007_8_3_283 crossref_primary_10_1016_j_neuron_2020_11_024 crossref_primary_10_1152_jn_00164_2012 crossref_primary_10_1152_jn_00762_2005 crossref_primary_10_1111_cdep_12001 crossref_primary_10_1523_JNEUROSCI_1394_18_2018 crossref_primary_10_1152_jn_00333_2015 crossref_primary_10_1038_sj_npp_1301437 crossref_primary_10_1162_jocn_a_01323 crossref_primary_10_3390_e24101484 crossref_primary_10_1152_jn_00745_2006 crossref_primary_10_1016_j_neuroimage_2011_08_047 crossref_primary_10_1038_s41386_022_01440_z crossref_primary_10_1016_j_neuroimage_2003_10_005 crossref_primary_10_1016_j_cobeha_2015_09_003 crossref_primary_10_1523_JNEUROSCI_2026_09_2009 crossref_primary_10_1016_j_neuron_2016_09_025 crossref_primary_10_1016_j_neuroimage_2009_04_095 crossref_primary_10_1093_cercor_bhab137 crossref_primary_10_1177_1073858413499407 crossref_primary_10_1016_j_cobeha_2018_12_012 crossref_primary_10_1017_S0033291718002520 crossref_primary_10_1016_j_neuroimage_2009_12_068 crossref_primary_10_1523_JNEUROSCI_1502_11_2011 crossref_primary_10_1016_j_schres_2014_01_015 crossref_primary_10_1126_science_1105783 crossref_primary_10_1073_pnas_1514539112 crossref_primary_10_1111_jnc_16243 crossref_primary_10_1016_j_conb_2006_03_006 crossref_primary_10_1017_S0140525X12003196 crossref_primary_10_1162_jocn_a_01541 crossref_primary_10_1523_JNEUROSCI_0873_20_2020 crossref_primary_10_1016_j_biopsych_2011_05_011 crossref_primary_10_1152_jn_91195_2008 crossref_primary_10_1523_JNEUROSCI_3417_03_2004 crossref_primary_10_1016_j_neuron_2012_10_017 crossref_primary_10_1186_s40708_022_00156_6 crossref_primary_10_1016_j_neuron_2012_02_038 crossref_primary_10_1523_JNEUROSCI_4236_12_2013 crossref_primary_10_1093_cercor_bhab391 crossref_primary_10_1007_s11571_010_9109_x crossref_primary_10_1111_ejn_15945 crossref_primary_10_1038_nn1817 crossref_primary_10_1111_j_1469_8986_2011_01291_x crossref_primary_10_1093_cercor_bhn161 crossref_primary_10_3389_fnint_2018_00061 crossref_primary_10_1007_s42113_022_00147_0 crossref_primary_10_1016_j_neuroimage_2011_09_078 crossref_primary_10_1371_journal_pbio_0040233 crossref_primary_10_1016_j_biopsych_2006_10_020 crossref_primary_10_1093_scan_nsq048 crossref_primary_10_1016_j_conb_2008_07_010 crossref_primary_10_1016_j_conb_2008_07_007 crossref_primary_10_1111_j_1460_9568_2012_07990_x crossref_primary_10_1093_scan_nsz086 crossref_primary_10_1080_23273798_2020_1862257 crossref_primary_10_1016_j_neuroimage_2003_10_032 crossref_primary_10_1109_TLT_2023_3262598 crossref_primary_10_1162_jocn_a_00677 crossref_primary_10_1093_cercor_bhm097 crossref_primary_10_3758_s13415_022_01006_y crossref_primary_10_1016_j_tics_2012_07_007 crossref_primary_10_1038_s41598_020_59415_3 crossref_primary_10_1093_brain_awn136 crossref_primary_10_1002_hbm_22513 crossref_primary_10_1111_adb_12570 crossref_primary_10_3758_s13414_022_02469_4 crossref_primary_10_1523_JNEUROSCI_1101_17_2017 crossref_primary_10_1016_j_bbr_2008_09_029 crossref_primary_10_1038_srep31378 crossref_primary_10_2139_ssrn_2129422 crossref_primary_10_1027_1618_3169_a000146 crossref_primary_10_1016_j_neuroimage_2014_03_014 crossref_primary_10_1016_j_conb_2010_01_007 crossref_primary_10_1371_journal_pone_0234434 crossref_primary_10_3389_fpsyg_2017_02035 crossref_primary_10_1073_pnas_2000759117 crossref_primary_10_1007_s11920_013_0396_x crossref_primary_10_1016_j_cobeha_2015_08_006 crossref_primary_10_1523_JNEUROSCI_1010_06_2006 crossref_primary_10_1038_mp_2016_102 crossref_primary_10_1111_j_1540_6261_2010_01591_x crossref_primary_10_1002_hbm_22540 crossref_primary_10_1111_j_1530_0277_2011_01520_x crossref_primary_10_1371_journal_pcbi_1011692 crossref_primary_10_3758_s13415_015_0338_7 crossref_primary_10_1016_j_jneumeth_2006_05_035 crossref_primary_10_1162_jocn_a_00892 crossref_primary_10_1038_nn_3068 crossref_primary_10_1073_pnas_1809298115 crossref_primary_10_1126_science_1174521 crossref_primary_10_1024_1661_4747_a000298 crossref_primary_10_1016_j_brainresbull_2005_06_016 crossref_primary_10_1016_j_brainresbull_2005_06_015 crossref_primary_10_1016_j_neuroimage_2004_10_002 crossref_primary_10_1016_j_conb_2008_08_003 crossref_primary_10_1016_j_tics_2012_07_009 crossref_primary_10_1371_journal_pone_0089129 crossref_primary_10_1016_j_neuron_2007_03_004 crossref_primary_10_3724_SP_J_1041_2008_00693 crossref_primary_10_1016_j_neuroimage_2005_07_060 crossref_primary_10_1080_23273798_2021_2014062 crossref_primary_10_1002_hbm_21431 crossref_primary_10_1186_2045_5380_3_12 crossref_primary_10_1155_2013_149329 crossref_primary_10_1523_JNEUROSCI_4458_09_2010 crossref_primary_10_1016_j_neuroimage_2015_11_060 crossref_primary_10_1038_s41467_022_30978_1 crossref_primary_10_3389_fnsys_2014_00206 crossref_primary_10_1016_j_neunet_2012_08_004 crossref_primary_10_3390_brainsci12010090 crossref_primary_10_1523_JNEUROSCI_3095_12_2013 crossref_primary_10_1038_s41467_019_13632_1 crossref_primary_10_1111_j_1460_9568_2012_08023_x crossref_primary_10_1002_wcs_1598 crossref_primary_10_3389_fneur_2023_1198262 crossref_primary_10_1038_nn1527 crossref_primary_10_1038_s41598_018_26075_3 crossref_primary_10_1016_j_brainres_2018_11_043 crossref_primary_10_1080_00952990_2019_1624764 crossref_primary_10_1162_jocn_2006_18_7_1198 crossref_primary_10_1089_neu_2008_0849 crossref_primary_10_1002_eat_22538 crossref_primary_10_1016_j_jneumeth_2016_04_022 crossref_primary_10_1177_0270467604264813 crossref_primary_10_1523_JNEUROSCI_2431_05_2005 crossref_primary_10_1016_j_neuroimage_2016_05_080 crossref_primary_10_1038_ncomms16033 crossref_primary_10_1371_journal_pone_0000103 crossref_primary_10_1002_wcs_154 crossref_primary_10_1016_j_neuroimage_2010_10_080 crossref_primary_10_1111_nyas_13740 crossref_primary_10_1016_j_neuroscience_2009_05_054 crossref_primary_10_1523_JNEUROSCI_4880_10_2011 crossref_primary_10_1016_j_neuron_2022_05_025 crossref_primary_10_1038_s41598_018_32990_2 crossref_primary_10_1016_j_neubiorev_2015_09_019 crossref_primary_10_1016_j_cortex_2014_08_016 crossref_primary_10_1016_j_cortex_2014_08_012 crossref_primary_10_1523_JNEUROSCI_0918_17_2017 crossref_primary_10_1016_j_neubiorev_2019_01_025 crossref_primary_10_1016_j_cogsys_2018_07_005 crossref_primary_10_3389_fnana_2016_00029 crossref_primary_10_1098_rstb_2019_0633 crossref_primary_10_1016_j_conb_2012_06_004 crossref_primary_10_1073_pnas_1000496107 crossref_primary_10_1101_lm_032995_113 crossref_primary_10_2139_ssrn_4757025 crossref_primary_10_1162_jocn_a_00972 crossref_primary_10_3758_s13415_018_0601_9 crossref_primary_10_1093_scan_nsp007 crossref_primary_10_1016_j_neuroimage_2007_08_009 crossref_primary_10_1002_hbm_23940 crossref_primary_10_1162_neco_2008_08_07_593 crossref_primary_10_1002_hbm_23944 crossref_primary_10_1016_j_resp_2009_04_001 crossref_primary_10_1111_apha_13928 crossref_primary_10_1016_j_biopsych_2012_04_004 crossref_primary_10_1016_j_bbr_2010_10_030 crossref_primary_10_3389_fncir_2018_00111 crossref_primary_10_1523_JNEUROSCI_5227_06_2007 crossref_primary_10_1016_j_neubiorev_2024_105737 crossref_primary_10_1016_j_jpsychires_2012_02_014 crossref_primary_10_1016_j_neuron_2011_05_042 crossref_primary_10_1038_s41398_018_0147_1 crossref_primary_10_1371_journal_pone_0072508 crossref_primary_10_1016_j_semcdb_2012_11_001 crossref_primary_10_1016_j_neuropharm_2009_07_026 crossref_primary_10_1016_S0166_2236_03_00177_2 crossref_primary_10_1101_lm_053558_121 crossref_primary_10_1162_jocn_a_00749 crossref_primary_10_1016_j_biosystems_2022_104612 crossref_primary_10_1038_npp_2015_315 crossref_primary_10_1016_j_jns_2011_06_043 crossref_primary_10_1002_wcs_57 crossref_primary_10_3758_s13415_012_0104_z crossref_primary_10_1093_cercor_bhx259 crossref_primary_10_1097_01_wnr_0000186601_50996_f7 crossref_primary_10_1177_1088868313495594 crossref_primary_10_1016_j_neuroimage_2007_07_012 crossref_primary_10_1523_JNEUROSCI_2496_07_2007 crossref_primary_10_1162_jocn_2009_21092 crossref_primary_10_1186_1744_9081_1_6 crossref_primary_10_1002_hbm_20611 crossref_primary_10_1371_journal_pone_0144083 crossref_primary_10_1523_JNEUROSCI_1731_13_2013 crossref_primary_10_1016_j_conb_2012_07_011 crossref_primary_10_3758_s13415_018_00678_9 crossref_primary_10_1046_j_0963_7214_2003_01265_x crossref_primary_10_3389_fpsyt_2020_00809 crossref_primary_10_1016_j_cortex_2015_11_006 crossref_primary_10_1016_j_neuron_2005_06_008 crossref_primary_10_1016_j_neubiorev_2005_03_024 crossref_primary_10_1016_j_bbr_2016_05_017 crossref_primary_10_1098_rspb_2023_2011 crossref_primary_10_1016_j_neuroimage_2018_07_038 crossref_primary_10_1093_brain_awz167 crossref_primary_10_1371_journal_pcbi_1005145 crossref_primary_10_1016_j_neuroimage_2009_06_045 crossref_primary_10_1111_j_1460_9568_2008_06489_x crossref_primary_10_1016_j_neuron_2016_08_031 crossref_primary_10_1016_j_nicl_2019_102075 crossref_primary_10_1523_JNEUROSCI_3360_04_2005 crossref_primary_10_1016_j_neuron_2005_07_022 crossref_primary_10_1016_j_neunet_2005_08_009 crossref_primary_10_1016_j_neuroimage_2022_119744 crossref_primary_10_1007_s11227_024_06198_3 crossref_primary_10_1016_j_tics_2010_12_005 crossref_primary_10_1038_nn_2128 crossref_primary_10_1176_appi_ajp_2012_11081244 crossref_primary_10_1007_s40519_024_01684_2 crossref_primary_10_1016_j_cortex_2019_04_024 crossref_primary_10_1016_j_physbeh_2019_04_009 crossref_primary_10_1176_appi_ajp_2010_10010129 crossref_primary_10_1016_j_physbeh_2019_04_007 crossref_primary_10_1007_s11682_019_00107_6 crossref_primary_10_1016_j_nicl_2015_02_025 crossref_primary_10_1073_pnas_0801489105 crossref_primary_10_1152_jn_01211_2006 crossref_primary_10_1007_s00726_015_1919_z crossref_primary_10_1016_j_biopsycho_2016_11_013 crossref_primary_10_1016_j_cub_2010_09_017 crossref_primary_10_1016_j_cortex_2017_05_020 crossref_primary_10_1523_JNEUROSCI_1719_10_2010 crossref_primary_10_1016_j_neuropharm_2013_07_002 crossref_primary_10_1146_annurev_psych_121208_131616 crossref_primary_10_1038_nn1339 crossref_primary_10_1016_j_neuroscience_2014_01_053 crossref_primary_10_1016_j_biopsych_2012_03_012 crossref_primary_10_1016_j_brainres_2009_06_078 crossref_primary_10_1038_nn1575 crossref_primary_10_1016_j_jmp_2016_01_001 crossref_primary_10_1073_pnas_1202229109 crossref_primary_10_1073_pnas_0608842104 crossref_primary_10_1016_j_nlm_2018_01_013 crossref_primary_10_1016_j_brainresrev_2007_10_007 crossref_primary_10_1038_srep34032 crossref_primary_10_1371_journal_pone_0007362 crossref_primary_10_1016_j_neuron_2016_05_015 crossref_primary_10_1093_scan_nsn002 crossref_primary_10_1016_j_conb_2013_02_007 crossref_primary_10_1038_s41586_020_2158_3 crossref_primary_10_1016_S0896_6273_03_00848_1 crossref_primary_10_1038_s41386_019_0564_8 crossref_primary_10_1016_j_concog_2014_09_018 crossref_primary_10_1523_JNEUROSCI_1747_10_2010 crossref_primary_10_3389_fnhum_2021_615313 crossref_primary_10_3390_brainsci10090647 crossref_primary_10_1016_j_brainresrev_2008_07_004 crossref_primary_10_1111_j_1460_9568_2012_08125_x crossref_primary_10_1016_j_jebo_2013_07_009 crossref_primary_10_1016_j_neuroimage_2025_121027 crossref_primary_10_1146_annurev_psych_122216_011643 crossref_primary_10_1017_S0033291714002517 crossref_primary_10_1038_tp_2011_10 crossref_primary_10_1016_j_biopsych_2005_06_004 crossref_primary_10_1038_s41562_016_0035 crossref_primary_10_1038_tp_2016_199 crossref_primary_10_1073_pnas_0711099105 crossref_primary_10_1007_s00702_021_02382_4 crossref_primary_10_1038_s41467_021_21696_1 crossref_primary_10_1371_journal_pone_0160503 crossref_primary_10_1038_ncomms7149 crossref_primary_10_1080_17470919_2017_1370010 crossref_primary_10_1126_science_1145876 crossref_primary_10_1016_j_physbeh_2017_04_001 crossref_primary_10_1002_hipo_20535 crossref_primary_10_1177_1039856217726224 crossref_primary_10_1016_j_neunet_2006_05_039 crossref_primary_10_1016_j_cognition_2009_09_005 crossref_primary_10_1016_j_bandc_2018_07_001 crossref_primary_10_1111_jcpp_12496 crossref_primary_10_3758_s13415_023_01064_w crossref_primary_10_1523_JNEUROSCI_1478_05_2005 crossref_primary_10_1097_FBP_0000000000000424 crossref_primary_10_1007_s13164_020_00490_w crossref_primary_10_1016_j_bpsc_2015_11_004 crossref_primary_10_1016_j_cortex_2019_07_019 crossref_primary_10_1016_j_dcn_2014_02_007 crossref_primary_10_1038_npp_2012_51 crossref_primary_10_1371_journal_pcbi_1008871 crossref_primary_10_1016_j_cobeha_2021_04_020 crossref_primary_10_1093_scan_nsu085 crossref_primary_10_1007_s00213_013_3313_4 crossref_primary_10_1038_nn1378 crossref_primary_10_1111_j_1749_6632_2011_06210_x crossref_primary_10_1002_erv_2713 crossref_primary_10_1162_jocn_2007_19_5_843 crossref_primary_10_1007_s00221_011_2771_3 crossref_primary_10_1016_j_neuron_2005_06_028 crossref_primary_10_1093_brain_awr059 crossref_primary_10_1016_j_neuroimage_2010_09_042 crossref_primary_10_1016_j_neuropsychologia_2019_107261 crossref_primary_10_1371_journal_pone_0108142 crossref_primary_10_1177_1534582304273251 crossref_primary_10_2308_accr_50841 crossref_primary_10_3389_fnhum_2016_00450 crossref_primary_10_2478_jagi_2020_0002 crossref_primary_10_1073_pnas_1008137107 crossref_primary_10_1038_nn_3842 crossref_primary_10_1016_j_cobeha_2020_10_003 crossref_primary_10_1016_j_neuroimage_2015_09_042 crossref_primary_10_1016_j_neuron_2007_08_004 crossref_primary_10_1093_cercor_bht049 crossref_primary_10_1101_lm_1191609 crossref_primary_10_1016_j_neubiorev_2021_09_005 crossref_primary_10_3758_s13415_014_0261_3 crossref_primary_10_1093_scan_nsl025 crossref_primary_10_1093_scan_nsw012 crossref_primary_10_1016_j_neubiorev_2021_09_009 crossref_primary_10_1093_scan_nsl021 crossref_primary_10_3389_fnins_2014_00056 crossref_primary_10_3389_fpsyg_2015_00995 crossref_primary_10_1080_09548980500361624 crossref_primary_10_7554_eLife_55701 crossref_primary_10_12688_wellcomeopenres_10331_1 crossref_primary_10_1016_j_neuroimage_2012_12_078 crossref_primary_10_1016_j_neuron_2013_09_007 crossref_primary_10_1016_j_neuron_2013_09_009 crossref_primary_10_1038_s41386_018_0047_3 crossref_primary_10_1371_journal_pbio_3000634 crossref_primary_10_1016_j_neuropsychologia_2019_107257 crossref_primary_10_3390_vision2040043 crossref_primary_10_1016_j_ijpsycho_2017_06_004 crossref_primary_10_1002_hbm_24370 crossref_primary_10_1371_journal_pcbi_1002028 crossref_primary_10_1016_j_biopsych_2012_02_037 crossref_primary_10_1038_s41598_018_26887_3 crossref_primary_10_1016_j_neubiorev_2009_08_006 crossref_primary_10_1016_j_tics_2007_10_002 crossref_primary_10_1371_journal_pcbi_1006632 crossref_primary_10_1371_journal_pone_0206780 crossref_primary_10_1016_j_neuropharm_2013_05_033 crossref_primary_10_1177_0269881115602486 crossref_primary_10_1073_pnas_0500899102 crossref_primary_10_1016_j_tbs_2024_100877 crossref_primary_10_31887_DCNS_2016_18_1_wschultz crossref_primary_10_1162_jocn_a_00090 crossref_primary_10_1371_journal_pbio_1000444 crossref_primary_10_1371_journal_pcbi_1004237 crossref_primary_10_1523_JNEUROSCI_4647_10_2011 crossref_primary_10_1038_npp_2008_222 crossref_primary_10_1521_soco_2008_26_5_621 crossref_primary_10_1073_pnas_1705643114 crossref_primary_10_1101_lm_1295509 crossref_primary_10_1523_JNEUROSCI_0400_07_2007 crossref_primary_10_1523_JNEUROSCI_6316_10_2011 crossref_primary_10_15690_vsp_v23i6_2838 crossref_primary_10_1016_j_physbeh_2017_03_037 crossref_primary_10_1126_science_1094285 crossref_primary_10_1038_npp_2014_21 crossref_primary_10_1111_j_1467_9280_2009_02402_x crossref_primary_10_1162_jocn_a_01191 crossref_primary_10_1016_j_neuroimage_2009_08_011 crossref_primary_10_1371_journal_pbio_3000899 crossref_primary_10_1192_bjp_bp_113_138099 crossref_primary_10_1016_j_bpsc_2018_09_015 crossref_primary_10_1016_j_dcn_2011_07_006 crossref_primary_10_1007_s00221_015_4542_z crossref_primary_10_1016_j_neuroimage_2010_09_017 crossref_primary_10_1002_hbm_24391 crossref_primary_10_1371_journal_pone_0066940 crossref_primary_10_1523_JNEUROSCI_5587_09_2010 crossref_primary_10_1371_journal_pcbi_1003387 crossref_primary_10_1007_s13311_012_0132_y crossref_primary_10_1016_j_cub_2013_08_035 crossref_primary_10_1002_eat_23814 crossref_primary_10_1016_j_bbr_2016_08_023 crossref_primary_10_1016_j_biopsych_2012_01_023 crossref_primary_10_1016_j_neuroimage_2021_118186 crossref_primary_10_1038_s41380_019_0490_5 crossref_primary_10_1016_j_dcn_2016_03_005 crossref_primary_10_3390_s22145131 crossref_primary_10_1126_science_1150605 crossref_primary_10_1016_j_neuroimage_2010_12_023 crossref_primary_10_1016_j_neuron_2008_10_027 crossref_primary_10_1016_j_neuron_2004_09_019 crossref_primary_10_3389_fpsyt_2022_836965 crossref_primary_10_1093_scan_nsu152 crossref_primary_10_2139_ssrn_4407488 crossref_primary_10_3389_fpsyg_2021_650042 crossref_primary_10_1002_hbm_21182 crossref_primary_10_1016_j_celrep_2023_112931 crossref_primary_10_1016_j_neuron_2008_10_038 crossref_primary_10_1126_science_1108062 crossref_primary_10_1002_hipo_22411 crossref_primary_10_1097_WNN_0000000000000303 crossref_primary_10_1016_j_neuroimage_2010_05_058 crossref_primary_10_1016_j_euroneuro_2011_07_003 crossref_primary_10_1016_j_jmp_2016_03_007 crossref_primary_10_1007_s00406_007_0783_6 crossref_primary_10_3389_fpsyt_2017_00103 crossref_primary_10_1016_j_neunet_2011_03_001 crossref_primary_10_1016_j_neuron_2011_02_027 crossref_primary_10_3724_SP_J_1041_2010_00279 crossref_primary_10_1016_j_neuropsychologia_2017_07_003 crossref_primary_10_7554_eLife_42816 crossref_primary_10_1038_npp_2015_172 crossref_primary_10_1016_j_neuroimage_2015_07_061 crossref_primary_10_1038_tp_2012_134 crossref_primary_10_2139_ssrn_4331775 crossref_primary_10_1016_j_bandc_2020_105657 crossref_primary_10_1093_brain_aww287 crossref_primary_10_1038_s41467_019_08922_7 crossref_primary_10_1016_j_addicn_2023_100066 crossref_primary_10_1016_j_bandc_2017_03_008 crossref_primary_10_1001_archpsyc_65_5_586 crossref_primary_10_1016_j_neuron_2011_02_019 crossref_primary_10_1016_j_bbr_2019_111938 crossref_primary_10_1016_j_neuroimage_2010_05_077 crossref_primary_10_1177_0956797612463080 crossref_primary_10_1523_JNEUROSCI_1093_08_2008 crossref_primary_10_1093_cercor_bhq144 crossref_primary_10_1073_pnas_1202129109 crossref_primary_10_1093_cercor_bhq145 crossref_primary_10_1016_S0896_6273_04_00183_7 crossref_primary_10_1038_s41467_023_43747_5 crossref_primary_10_1016_j_neuron_2008_02_021 crossref_primary_10_1177_1745691618776263 crossref_primary_10_1016_j_euroneuro_2020_04_008 crossref_primary_10_1038_s41598_023_44107_5 crossref_primary_10_1002_hbm_22000 crossref_primary_10_1016_j_neuroimage_2024_120670 crossref_primary_10_1016_j_neubiorev_2009_06_009 crossref_primary_10_1038_nn_2904 crossref_primary_10_1016_j_neuroimage_2009_07_022 crossref_primary_10_1016_j_neuroimage_2015_07_040 crossref_primary_10_1038_nn_2902 crossref_primary_10_1016_j_neubiorev_2010_12_012 crossref_primary_10_1097_YCO_0000000000000184 crossref_primary_10_1111_bph_13840 crossref_primary_10_1196_annals_1401_036 crossref_primary_10_1371_journal_pcbi_1009070 crossref_primary_10_1016_j_bbr_2011_02_045 crossref_primary_10_1016_j_neunet_2019_10_011 crossref_primary_10_1042_BST0370313 crossref_primary_10_1146_annurev_psych_010416_044216 crossref_primary_10_1016_j_neuroimage_2006_09_012 crossref_primary_10_1152_jn_00086_2014 crossref_primary_10_1016_j_rasd_2017_01_011 crossref_primary_10_1016_j_neuroimage_2004_07_028 crossref_primary_10_1016_j_pbb_2017_06_014 crossref_primary_10_3758_CABN_8_2_113 crossref_primary_10_1016_j_neuroimage_2018_04_058 crossref_primary_10_1146_annurev_neuro_29_051605_112903 crossref_primary_10_1016_j_neuroscience_2010_03_026 crossref_primary_10_1523_JNEUROSCI_4777_12_2013 crossref_primary_10_1111_joes_12676 crossref_primary_10_1016_j_celrep_2021_110185 crossref_primary_10_1523_JNEUROSCI_0204_14_2014 crossref_primary_10_1016_j_neuroimage_2007_03_029 crossref_primary_10_1038_s41386_019_0594_2 crossref_primary_10_1111_tops_12082 crossref_primary_10_1016_j_neuroimage_2010_03_043 crossref_primary_10_1016_j_cortex_2012_09_002 crossref_primary_10_1016_j_nbd_2012_05_007 crossref_primary_10_1196_annals_1401_017 crossref_primary_10_1016_j_neuroimage_2016_10_036 crossref_primary_10_1098_rstb_2011_0300 crossref_primary_10_1111_j_0021_8782_2004_00359_x crossref_primary_10_1016_j_neuroimage_2007_04_066 crossref_primary_10_1097_WNR_0b013e32832ff2f5 crossref_primary_10_1016_j_jbef_2017_12_011 crossref_primary_10_1037_0735_7044_119_1_336 crossref_primary_10_7554_eLife_47463 crossref_primary_10_1016_j_neuron_2009_09_003 crossref_primary_10_1016_j_neuroimage_2018_04_078 crossref_primary_10_1162_jocn_a_00145 crossref_primary_10_1016_j_neuroimage_2013_10_042 crossref_primary_10_1038_npp_2017_28 crossref_primary_10_1371_journal_pone_0206923 crossref_primary_10_1196_annals_1401_020 crossref_primary_10_1038_s42003_020_01465_4 crossref_primary_10_1001_jamapsychiatry_2018_1924 crossref_primary_10_1007_s00213_018_5131_1 crossref_primary_10_1038_srep24350 crossref_primary_10_1016_j_cortex_2017_08_022 crossref_primary_10_1523_JNEUROSCI_3501_10_2010 crossref_primary_10_1152_jn_00564_2014 crossref_primary_10_1016_j_pscychresns_2018_08_010 crossref_primary_10_1073_pnas_1014269108 crossref_primary_10_1016_j_neuron_2008_12_031 crossref_primary_10_1073_pnas_1101920108 crossref_primary_10_1162_qjec_2008_123_2_663 crossref_primary_10_1162_jocn_a_00114 crossref_primary_10_1016_j_conb_2011_02_009 crossref_primary_10_1093_brain_awy048 crossref_primary_10_1002_hbm_25948 crossref_primary_10_1016_j_bandc_2015_10_007 crossref_primary_10_1016_j_neuroimage_2015_12_016 crossref_primary_10_1016_j_neuron_2008_04_027 crossref_primary_10_1186_s41077_017_0036_3 crossref_primary_10_1038_s41598_019_38560_4 crossref_primary_10_1016_j_neuroimage_2013_01_048 crossref_primary_10_1016_j_pneurobio_2008_09_004 crossref_primary_10_1007_s11434_007_0193_1 crossref_primary_10_1523_JNEUROSCI_2636_14_2015 crossref_primary_10_1097_00001756_200411150_00022 crossref_primary_10_1002_hbm_22665 crossref_primary_10_1177_1073858420907591 crossref_primary_10_1073_pnas_1407535111 crossref_primary_10_1162_NECO_a_00049 crossref_primary_10_2139_ssrn_4578223 crossref_primary_10_1016_j_neuroimage_2017_08_069 crossref_primary_10_1038_s41380_020_0803_8 crossref_primary_10_3389_fpsyg_2023_1211528 crossref_primary_10_1017_S0305000921000544 crossref_primary_10_3389_fnsys_2014_00140 crossref_primary_10_1016_j_neuropsychologia_2009_12_010 crossref_primary_10_1017_S0029665114001530 crossref_primary_10_1126_sciadv_abf7129 crossref_primary_10_1152_jn_00046_2016 crossref_primary_10_1016_j_neuroimage_2018_02_035 crossref_primary_10_1523_JNEUROSCI_1309_08_2008 crossref_primary_10_1016_j_cub_2014_04_044 crossref_primary_10_1002_hbm_21369 crossref_primary_10_1016_j_bbr_2018_08_017 crossref_primary_10_1101_lm_196606 crossref_primary_10_1523_JNEUROSCI_4130_09_2010 crossref_primary_10_1162_neco_a_01025 crossref_primary_10_1002_hbm_20274 crossref_primary_10_1016_j_neunet_2019_04_022 crossref_primary_10_1001_jamapsychiatry_2021_1580 crossref_primary_10_1152_jn_01209_2003 crossref_primary_10_1016_j_neuroimage_2012_09_010 crossref_primary_10_1523_JNEUROSCI_4132_08_2009 crossref_primary_10_1111_ejn_13401 crossref_primary_10_1016_j_neuroimage_2015_05_084 crossref_primary_10_3758_s13415_014_0332_5 crossref_primary_10_1523_JNEUROSCI_3266_08_2009 crossref_primary_10_1080_17437199_2016_1219673 crossref_primary_10_1016_j_bbr_2011_10_042 crossref_primary_10_1038_s41467_018_03992_5 crossref_primary_10_1016_j_tics_2022_11_001 crossref_primary_10_1016_j_neuroimage_2006_08_060 crossref_primary_10_1016_j_conb_2011_03_003 crossref_primary_10_1016_j_brainres_2009_07_007 crossref_primary_10_1152_physrev_00023_2014 crossref_primary_10_1523_JNEUROSCI_2978_14_2015 crossref_primary_10_1016_j_neuroscience_2004_04_035 crossref_primary_10_1371_journal_pone_0025307 crossref_primary_10_1016_j_tins_2012_04_009 crossref_primary_10_1093_scan_nsr006 crossref_primary_10_1523_JNEUROSCI_2265_08_2008 crossref_primary_10_1016_j_dcn_2018_12_006 crossref_primary_10_1371_journal_pone_0033461 crossref_primary_10_1093_brain_awm150 crossref_primary_10_1523_JNEUROSCI_4679_05_2006 crossref_primary_10_1097_HTR_0000000000000925 crossref_primary_10_1196_annals_1390_022 crossref_primary_10_1196_annals_1390_020 crossref_primary_10_1523_JNEUROSCI_4677_14_2015 crossref_primary_10_3389_fnbeh_2023_1301406 crossref_primary_10_1016_j_neuron_2015_07_008 crossref_primary_10_3389_fncom_2016_00054 crossref_primary_10_1517_17530059_2012_673583 crossref_primary_10_1016_j_neuron_2013_11_028 crossref_primary_10_1016_j_neuron_2008_05_021 crossref_primary_10_1017_S1355617712001294 crossref_primary_10_1016_j_jmp_2016_06_008 crossref_primary_10_1016_j_neuroimage_2004_04_023 crossref_primary_10_1111_j_1460_9568_2005_04411_x crossref_primary_10_1016_j_evolhumbehav_2016_11_001 crossref_primary_10_1038_s41467_018_04055_5 crossref_primary_10_1016_j_neuron_2011_02_054 crossref_primary_10_1016_j_neuroimage_2010_11_027 crossref_primary_10_1523_JNEUROSCI_2154_18_2018 crossref_primary_10_1371_journal_pcbi_1002841 crossref_primary_10_1016_j_tics_2014_01_003 crossref_primary_10_1038_s41467_017_01369_8 crossref_primary_10_1111_j_1460_9568_2011_07686_x crossref_primary_10_1016_j_tics_2025_01_001 crossref_primary_10_1111_j_1467_9280_2009_02399_x crossref_primary_10_1162_jocn_a_01873 crossref_primary_10_1007_s10008_008_0755_4 crossref_primary_10_1196_annals_1390_002 crossref_primary_10_1167_jov_24_12_11 crossref_primary_10_1016_j_cub_2017_02_064 crossref_primary_10_1080_10400419_2015_1030311 crossref_primary_10_1098_rstb_2019_0323 crossref_primary_10_1016_j_neulet_2018_09_007 crossref_primary_10_1196_annals_1390_007 crossref_primary_10_1196_annals_1390_005 crossref_primary_10_1371_journal_pone_0185665 crossref_primary_10_1016_j_biopsych_2024_06_027 crossref_primary_10_1038_npp_2009_124 crossref_primary_10_1016_j_neuroimage_2012_04_024 crossref_primary_10_1038_npp_2009_129 crossref_primary_10_1111_j_1751_9004_2007_00064_x crossref_primary_10_1007_s10818_022_09330_6 crossref_primary_10_3389_fsoc_2018_00014 crossref_primary_10_1016_j_pscychresns_2012_06_003 crossref_primary_10_1016_j_neuroimage_2011_11_058 crossref_primary_10_1038_nn_3364 crossref_primary_10_1016_j_neuroimage_2003_09_060 crossref_primary_10_1259_bjr_20180942 crossref_primary_10_1523_JNEUROSCI_6157_08_2009 crossref_primary_10_1016_j_nlm_2011_08_006 crossref_primary_10_1038_tp_2017_60 crossref_primary_10_1523_JNEUROSCI_0919_12_2013 crossref_primary_10_3233_JPD_150600 crossref_primary_10_1111_j_1469_8986_2004_00152_x crossref_primary_10_1038_npp_2010_121 crossref_primary_10_1093_scan_nsx097 crossref_primary_10_1523_JNEUROSCI_2469_09_2009 crossref_primary_10_1016_j_neuropsychologia_2012_02_007 crossref_primary_10_1038_s41598_020_61257_y crossref_primary_10_3389_fpsyg_2019_02606 crossref_primary_10_1007_s11238_021_09830_3 crossref_primary_10_3389_fnhum_2017_00592 crossref_primary_10_1371_journal_pone_0126326 crossref_primary_10_1073_pnas_0606297104 crossref_primary_10_1523_JNEUROSCI_1995_17_2018 crossref_primary_10_1016_j_tics_2018_04_007 crossref_primary_10_1016_j_tics_2013_03_003 crossref_primary_10_1016_j_bbr_2014_10_024 crossref_primary_10_1093_schbul_sbi040 crossref_primary_10_2139_ssrn_3339123 crossref_primary_10_1523_JNEUROSCI_1640_14_2014 crossref_primary_10_1016_j_neubiorev_2020_04_014 crossref_primary_10_1001_jamapsychiatry_2018_2151 crossref_primary_10_1016_j_bbr_2017_09_050 crossref_primary_10_1002_hbm_24915 crossref_primary_10_1162_netn_a_00021 crossref_primary_10_1038_s41583_024_00898_8 crossref_primary_10_1002_wcs_1217 crossref_primary_10_1111_j_1467_8721_2008_00560_x crossref_primary_10_1038_s41467_024_53878_y crossref_primary_10_1016_j_cobeha_2018_10_006 crossref_primary_10_1371_journal_pone_0057257 crossref_primary_10_1016_j_cortex_2018_08_035 crossref_primary_10_1093_rfs_hhw010 crossref_primary_10_1038_mp_2011_75 crossref_primary_10_1007_s10462_016_9467_9 crossref_primary_10_1016_j_neuroimage_2014_09_054 crossref_primary_10_1016_j_neuron_2010_03_033 crossref_primary_10_1016_j_neuron_2018_03_042 crossref_primary_10_1016_j_neuropsychologia_2017_12_021 crossref_primary_10_1162_jocn_2009_21387 crossref_primary_10_1016_j_nlm_2012_02_003 crossref_primary_10_1002_pmh_1235 crossref_primary_10_1007_s11682_016_9660_0 crossref_primary_10_1002_hbm_20547 crossref_primary_10_1073_pnas_1323586111 crossref_primary_10_1523_JNEUROSCI_3489_09_2009 crossref_primary_10_1111_jcpp_12964 crossref_primary_10_1097_WNN_0b013e318192cce0 crossref_primary_10_3233_JIFS_211935 crossref_primary_10_1523_JNEUROSCI_2201_12_2013 crossref_primary_10_1111_jofi_12126 crossref_primary_10_1196_annals_1412_007 crossref_primary_10_1016_j_neunet_2022_05_012 crossref_primary_10_1016_j_pneurobio_2011_08_010 crossref_primary_10_1016_j_tins_2021_07_007 crossref_primary_10_1038_npp_2010_165 crossref_primary_10_1038_s41583_018_0002_7 crossref_primary_10_1038_npp_2010_163 crossref_primary_10_1523_JNEUROSCI_1642_12_2013 crossref_primary_10_1016_j_conb_2011_05_009 crossref_primary_10_1016_j_neuroimage_2009_12_031 crossref_primary_10_1016_j_baga_2012_06_005 crossref_primary_10_3390_brainsci13121677 crossref_primary_10_1002_wcs_1266 crossref_primary_10_1073_pnas_1014938108 crossref_primary_10_1152_jn_00173_2010 crossref_primary_10_5674_jjppp_1805si crossref_primary_10_1007_s00429_013_0535_5 crossref_primary_10_1016_j_conb_2006_02_001 crossref_primary_10_1016_j_neuroimage_2009_12_026 crossref_primary_10_1016_j_neuroimage_2018_10_083 crossref_primary_10_1007_s00213_017_4550_8 crossref_primary_10_1007_s00213_011_2346_9 crossref_primary_10_1016_j_biopsycho_2022_108350 crossref_primary_10_1016_j_neuroimage_2007_10_061 crossref_primary_10_1523_JNEUROSCI_1479_09_2009 crossref_primary_10_1007_s12078_018_9250_1 crossref_primary_10_31083_j_fbl2908277 crossref_primary_10_1111_ejn_14492 crossref_primary_10_7554_eLife_91928_3 crossref_primary_10_1523_JNEUROSCI_0973_13_2013 crossref_primary_10_1016_j_neuroimage_2008_04_253 crossref_primary_10_1371_journal_pbio_2000756 crossref_primary_10_1016_j_bbr_2013_02_004 crossref_primary_10_3389_fpsyg_2016_00655 crossref_primary_10_1016_j_pscychresns_2016_08_010 crossref_primary_10_1093_scan_nsw171 crossref_primary_10_1016_j_physbeh_2020_113014 crossref_primary_10_1371_journal_pcbi_1008738 crossref_primary_10_1523_JNEUROSCI_2263_13_2014 crossref_primary_10_1093_cercor_bhr198 crossref_primary_10_1002_cne_20749 crossref_primary_10_1177_0956797615618366 crossref_primary_10_1016_S0013_7006_06_78686_9 crossref_primary_10_1111_j_1460_9568_2011_07986_x crossref_primary_10_1093_cercor_bhs037 crossref_primary_10_1176_appi_ajp_2016_16060671 crossref_primary_10_1101_sqb_2018_83_038166 crossref_primary_10_1038_nrn2119 crossref_primary_10_1016_j_neunet_2020_12_001 crossref_primary_10_15717_bioedu_2012_40_1_109 crossref_primary_10_1038_nrn2357 crossref_primary_10_1038_s41467_020_17828_8 crossref_primary_10_1007_s11920_015_0559_z crossref_primary_10_2174_1570159X20666220310121441 crossref_primary_10_1016_j_neuropsychologia_2011_06_008 crossref_primary_10_1523_JNEUROSCI_5498_10_2012 crossref_primary_10_1016_j_neuropsychologia_2014_01_021 crossref_primary_10_1007_s11920_020_01213_9 crossref_primary_10_1007_s12559_021_09950_6 crossref_primary_10_1109_ACCESS_2024_3402089 crossref_primary_10_1016_j_neuroimage_2010_03_057 crossref_primary_10_1080_21622965_2015_1005487 crossref_primary_10_1523_JNEUROSCI_3084_15_2016 crossref_primary_10_1038_s42003_022_03756_4 crossref_primary_10_1038_srep25225 crossref_primary_10_1523_JNEUROSCI_0057_10_2010 crossref_primary_10_15717_bioedu_2013_41_3_435 crossref_primary_10_3917_rne_052_0069 crossref_primary_10_1038_s41467_022_35654_y crossref_primary_10_1111_j_1460_9568_2012_08017_x crossref_primary_10_1007_BF03217046 crossref_primary_10_2502_janip_66_2_4 crossref_primary_10_1146_annurev_financial_102708_141514 crossref_primary_10_1523_JNEUROSCI_2084_17_2018 crossref_primary_10_1126_science_1099898 crossref_primary_10_1152_jn_00352_2010 crossref_primary_10_1093_brain_aws083 crossref_primary_10_1002_hbm_26019 crossref_primary_10_1016_j_neuroimage_2012_06_058 crossref_primary_10_1093_cercor_bhj004 crossref_primary_10_1093_scan_nsw157 crossref_primary_10_1007_s11910_013_0365_0 crossref_primary_10_1016_j_bbr_2018_04_034 crossref_primary_10_1371_journal_pone_0160851 crossref_primary_10_1007_s10994_023_06363_4 crossref_primary_10_3390_jcm13195772 crossref_primary_10_1016_j_neuroimage_2020_117709 crossref_primary_10_1176_appi_ajp_2014_13121700 crossref_primary_10_1186_1744_859X_7_S1_S114 crossref_primary_10_1111_ejn_15144 crossref_primary_10_1038_ncomms12416 crossref_primary_10_1016_j_neuroimage_2007_10_027 crossref_primary_10_1038_srep28991 crossref_primary_10_1098_rstb_2008_0161 crossref_primary_10_1348_000712609X418480 crossref_primary_10_1038_nature02581 crossref_primary_10_1002_hbm_23173 crossref_primary_10_1098_rstb_2008_0155 crossref_primary_10_1097_WNR_0b013e3282e9a58c crossref_primary_10_1007_s12662_012_0230_3 crossref_primary_10_1038_nature04766 crossref_primary_10_1002_hbm_23171 crossref_primary_10_1080_17470919_2018_1518834 crossref_primary_10_1523_JNEUROSCI_2383_12_2012 crossref_primary_10_1016_j_cub_2012_07_031 crossref_primary_10_1016_j_bpsc_2021_04_005 crossref_primary_10_3902_jnns_31_82 crossref_primary_10_7554_eLife_56911 crossref_primary_10_1016_j_neuron_2010_04_016 crossref_primary_10_1002_wcs_1420 crossref_primary_10_1146_annurev_psych_010814_015156 crossref_primary_10_1523_JNEUROSCI_2558_12_2012 crossref_primary_10_1038_nn1279 crossref_primary_10_1007_s11571_016_9376_2 crossref_primary_10_1177_02666669241276427 crossref_primary_10_1016_j_neubiorev_2020_07_021 crossref_primary_10_1016_j_neuron_2021_04_014 crossref_primary_10_1038_ijo_2014_121 crossref_primary_10_1111_j_1460_9568_2009_06872_x crossref_primary_10_1111_j_1469_7610_2006_01596_x crossref_primary_10_1016_j_bbr_2022_113868 crossref_primary_10_1016_j_neuroimage_2014_07_013 crossref_primary_10_1016_j_neubiorev_2014_06_009 crossref_primary_10_1111_j_1460_9568_2011_07920_x crossref_primary_10_1007_s11920_025_01588_7 crossref_primary_10_1016_j_neuroimage_2010_01_036 crossref_primary_10_1007_s12078_018_9243_0 crossref_primary_10_1177_1073858404263526 crossref_primary_10_1016_j_neuron_2005_11_014 crossref_primary_10_1109_TNSRE_2008_2009788 crossref_primary_10_1371_journal_pbio_1001662 crossref_primary_10_1016_j_neuron_2017_06_011 crossref_primary_10_1016_j_bpsgos_2023_02_008 crossref_primary_10_1016_j_xinn_2021_100179 crossref_primary_10_1523_JNEUROSCI_4286_07_2008 crossref_primary_10_1523_JNEUROSCI_5445_12_2013 crossref_primary_10_1016_j_neuroimage_2011_10_081 crossref_primary_10_1016_j_molmet_2012_06_002 crossref_primary_10_1111_psyp_13463 crossref_primary_10_1523_JNEUROSCI_4246_06_2007 crossref_primary_10_1016_j_neuropsychologia_2016_05_023 crossref_primary_10_1111_j_1460_9568_2012_08026_x crossref_primary_10_1523_JNEUROSCI_2915_06_2006 crossref_primary_10_1126_sciadv_adq0261 crossref_primary_10_1016_j_tics_2013_04_001 crossref_primary_10_1038_s41467_023_38671_7 crossref_primary_10_1093_cercor_bhu269 crossref_primary_10_1016_j_celrep_2022_110756 crossref_primary_10_1523_JNEUROSCI_2799_09_2009 crossref_primary_10_1152_jn_00382_2005 crossref_primary_10_1523_JNEUROSCI_1869_11_2011 crossref_primary_10_1523_JNEUROSCI_3400_12_2013 crossref_primary_10_1016_j_biopsycho_2010_12_008 crossref_primary_10_1038_npp_2009_131 crossref_primary_10_3389_fnins_2014_00193 crossref_primary_10_3758_s13415_014_0297_4 |
Cites_doi | 10.1523/JNEUROSCI.21-16-j0002.2001 10.1152/jn.2001.85.3.1315 10.1523/JNEUROSCI.21-08-02793.2001 10.1016/0165-0173(87)90011-7 10.1152/jn.1998.80.1.1 10.1038/nn802 10.1002/hbm.460030303 10.1152/jn.1994.72.2.1024 10.1038/407 10.1038/4513 10.1093/cercor/10.3.263 10.1016/S0028-3908(98)00071-9 10.1097/00001756-199902250-00003 10.1097/00001756-200112040-00016 10.1037/0033-295X.87.6.532 10.1038/nn733 10.1038/379449a0 10.1016/0306-4522(94)90592-4 10.1038/81504 10.1152/jn.1992.68.3.945 10.1016/S0896-6273(01)00303-8 10.1002/(SICI)1096-9861(19970721)384:1<1::AID-CNE1>3.0.CO;2-5 10.1126/science.275.5306.1593 10.1523/JNEUROSCI.20-16-06159.2000 10.1152/jn.1992.67.1.145 10.1152/jn.2000.84.6.3072 10.1073/pnas.160266497 10.1002/cne.10312 10.1007/BF00115009 10.1016/S0896-6273(02)00603-7 |
ContentType | Journal Article |
Copyright | 2003 Cell Press Copyright Elsevier Limited Apr 24, 2003 |
Copyright_xml | – notice: 2003 Cell Press – notice: Copyright Elsevier Limited Apr 24, 2003 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 K9. NAPCQ P64 RC3 7X8 |
DOI | 10.1016/S0896-6273(03)00169-7 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4199 |
EndPage | 337 |
ExternalDocumentID | 3234560591 12718865 10_1016_S0896_6273_03_00169_7 S0896627303001697 |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -~X .55 .GJ 0R~ 123 1RT 1~5 26- 29N 2WC 3O- 3V. 4.4 457 4G. 53G 5RE 5VS 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAQFI AAQXK AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADEZE ADFRT ADJPV ADMUD AEFWE AENEX AEXQZ AFKRA AFTJW AGHFR AGKMS AHHHB AHMBA AHPSJ AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AQUVI ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BKNYI BPHCQ BVXVI CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FGOYB FIRID G-2 HCIFZ HVGLF HZ~ IAO IHE IHR INH IXB J1W JIG K-O KQ8 L7B LK8 LX5 M0R M0T M2M M2O M3Z M41 M7P MVM N9A NCXOZ O-L O9- OK1 OZT P2P P6G PQQKQ PROAC R2- RCE RIG ROL RPZ SCP SDP SES SSZ TR2 WOW WQ6 X7M ZA5 ZGI ZKB AAFWJ AAMRU AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION ITC 0SF CGR CUY CVF ECM EIF NPM PKN 7QP 7QR 7TK 8FD EFKBS FR3 K9. NAPCQ P64 RC3 7X8 |
ID | FETCH-LOGICAL-c467t-dd71aae3bfae72b49d8e36fac35ee95535d46ae25b6bbdea4ac7672792502d113 |
IEDL.DBID | IXB |
ISSN | 0896-6273 |
IngestDate | Thu Sep 04 21:36:48 EDT 2025 Fri Sep 05 06:33:54 EDT 2025 Fri Jul 25 11:07:19 EDT 2025 Wed Feb 19 02:35:41 EST 2025 Tue Jul 01 01:47:44 EDT 2025 Thu Apr 24 23:04:33 EDT 2025 Fri Feb 23 02:34:39 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-dd71aae3bfae72b49d8e36fac35ee95535d46ae25b6bbdea4ac7672792502d113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0896627303001697 |
PMID | 12718865 |
PQID | 1503603572 |
PQPubID | 2031076 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_73227003 proquest_miscellaneous_18743562 proquest_journals_1503603572 pubmed_primary_12718865 crossref_citationtrail_10_1016_S0896_6273_03_00169_7 crossref_primary_10_1016_S0896_6273_03_00169_7 elsevier_sciencedirect_doi_10_1016_S0896_6273_03_00169_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-04-24 |
PublicationDateYYYYMMDD | 2003-04-24 |
PublicationDate_xml | – month: 04 year: 2003 text: 2003-04-24 day: 24 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Neuron (Cambridge, Mass.) |
PublicationTitleAlternate | Neuron |
PublicationYear | 2003 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Friston, Tononi, Reeke, Sporns, Edelman (BIB11) 1994; 59 Duvernoy (BIB7) 1999 Rescorla, Wagner (BIB28) 1972 Schoenbaum, Chiba, Gallagher (BIB29) 1998; 1 Sutton (BIB33) 1988; 3 Hikosaka, Watanabe (BIB13) 2000; 10 Ljungberg, Apicella, Schultz (BIB18) 1992; 67 Fletcher, Anderson, Shanks, Honey, Carpenter, Donovan, Papadakis, Bullmore (BIB9) 2001; 4 Oades, Halliday (BIB24) 1987; 434 Schultz, Tremblay, Hollerman (BIB32) 1998; 37 Pagnoni, Zink, Montague, Berns (BIB25) 2002; 5 Schultz, Dayan, Montague (BIB31) 1997; 275 Breiter, Aharon, Kahneman, Dale, Shizgal (BIB3) 2001; 30 Sutton, Barto (BIB34) 1990 Apicella, Scarnati, Ljungberg, Schultz (BIB1) 1992; 68 Berns, McClure, Pagnoni, Montague (BIB2) 2001; 21 Duvernoy (BIB6) 1995 Knutson, Fong, Adams, Varner, Hommer (BIB16) 2001; 12 Schultz (BIB30) 1998; 80 Friston, Ashburner, Poline, Frith, Heather, Frackowiak (BIB12) 1995; 2 Francis, Rolls, Bowtell, McGlone, O'Doherty, Browning, Clare, Smith (BIB10) 1999; 10 Nobre, Coull, Frith, Mesulam (BIB21) 1999; 2 Ploghaus, Tracey, Clare, Gati, Rawlins, Matthews (BIB27) 2000; 97 Elliott, Friston, Dolan (BIB8) 2000; 20 Delgado, Nystrom, Fissell, Noll, Fiez (BIB5) 2000; 84 Mirenowicz, Schultz (BIB19) 1994; 72 Mirenowicz, Schultz (BIB20) 1996; 379 Dayan, Kakade, Montague (BIB4) 2000; 3 Karachi, Francois, Parain, Bardinet, Tande, Hirsch, Yelnik (BIB15) 2002; 450 O'Doherty, Rolls, Francis, Bowtell, McGlone (BIB22) 2001; 85 Holt, Graybiel, Saper (BIB14) 1997; 384 Pearce, Hall (BIB26) 1980; 87 O'Doherty, Deichmann, Crtichley, Dolan (BIB23) 2002; 33 Knutson, Adams, Fong, Hommer (BIB17) 2001; 21 Nobre (10.1016/S0896-6273(03)00169-7_BIB21) 1999; 2 Holt (10.1016/S0896-6273(03)00169-7_BIB14) 1997; 384 Knutson (10.1016/S0896-6273(03)00169-7_BIB16) 2001; 12 Knutson (10.1016/S0896-6273(03)00169-7_BIB17) 2001; 21 Friston (10.1016/S0896-6273(03)00169-7_BIB11) 1994; 59 Sutton (10.1016/S0896-6273(03)00169-7_BIB34) 1990 Elliott (10.1016/S0896-6273(03)00169-7_BIB8) 2000; 20 Karachi (10.1016/S0896-6273(03)00169-7_BIB15) 2002; 450 Friston (10.1016/S0896-6273(03)00169-7_BIB12) 1995; 2 Dayan (10.1016/S0896-6273(03)00169-7_BIB4) 2000; 3 Pearce (10.1016/S0896-6273(03)00169-7_BIB26) 1980; 87 Schultz (10.1016/S0896-6273(03)00169-7_BIB32) 1998; 37 Mirenowicz (10.1016/S0896-6273(03)00169-7_BIB19) 1994; 72 Sutton (10.1016/S0896-6273(03)00169-7_BIB33) 1988; 3 Berns (10.1016/S0896-6273(03)00169-7_BIB2) 2001; 21 Ljungberg (10.1016/S0896-6273(03)00169-7_BIB18) 1992; 67 Ploghaus (10.1016/S0896-6273(03)00169-7_BIB27) 2000; 97 Duvernoy (10.1016/S0896-6273(03)00169-7_BIB7) 1999 Hikosaka (10.1016/S0896-6273(03)00169-7_BIB13) 2000; 10 Oades (10.1016/S0896-6273(03)00169-7_BIB24) 1987; 434 Pagnoni (10.1016/S0896-6273(03)00169-7_BIB25) 2002; 5 O'Doherty (10.1016/S0896-6273(03)00169-7_BIB23) 2002; 33 Duvernoy (10.1016/S0896-6273(03)00169-7_BIB6) 1995 Apicella (10.1016/S0896-6273(03)00169-7_BIB1) 1992; 68 Breiter (10.1016/S0896-6273(03)00169-7_BIB3) 2001; 30 Delgado (10.1016/S0896-6273(03)00169-7_BIB5) 2000; 84 Francis (10.1016/S0896-6273(03)00169-7_BIB10) 1999; 10 Schultz (10.1016/S0896-6273(03)00169-7_BIB30) 1998; 80 Rescorla (10.1016/S0896-6273(03)00169-7_BIB28) 1972 O'Doherty (10.1016/S0896-6273(03)00169-7_BIB22) 2001; 85 Schoenbaum (10.1016/S0896-6273(03)00169-7_BIB29) 1998; 1 Fletcher (10.1016/S0896-6273(03)00169-7_BIB9) 2001; 4 Mirenowicz (10.1016/S0896-6273(03)00169-7_BIB20) 1996; 379 Schultz (10.1016/S0896-6273(03)00169-7_BIB31) 1997; 275 12718849 - Neuron. 2003 Apr 24;38(2):150-2 |
References_xml | – volume: 2 start-page: 11 year: 1999 end-page: 12 ident: BIB21 article-title: Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention publication-title: Nat. Neurosci. – volume: 68 start-page: 945 year: 1992 end-page: 960 ident: BIB1 article-title: Neuronal activity in monkey striatum related to the expectation of predictable environmental events publication-title: J. Neurophysiol. – volume: 85 start-page: 1315 year: 2001 end-page: 1321 ident: BIB22 article-title: Representation of pleasant and aversive taste in the human brain publication-title: J. Neurophysiol. – volume: 30 start-page: 619 year: 2001 end-page: 639 ident: BIB3 article-title: Functional imaging of neural responses to expectancy and experience of monetary gains and losses publication-title: Neuron – volume: 434 start-page: 117 year: 1987 end-page: 165 ident: BIB24 article-title: Ventral tegmental (A10) system publication-title: Brain Res. – volume: 450 start-page: 122 year: 2002 end-page: 134 ident: BIB15 article-title: Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity publication-title: J. Comp. Neurol. – volume: 21 start-page: 2793 year: 2001 end-page: 2798 ident: BIB2 article-title: Predictability modulates human brain response to reward publication-title: J. Neurosci. – volume: 10 start-page: 263 year: 2000 end-page: 271 ident: BIB13 article-title: Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards publication-title: Cereb. Cortex – volume: 1 start-page: 155 year: 1998 end-page: 159 ident: BIB29 article-title: Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning publication-title: Nat. Neurosci. – volume: 37 start-page: 421 year: 1998 end-page: 429 ident: BIB32 article-title: Reward prediction in primate basal ganglia and frontal cortex publication-title: Neuropharmacology – year: 1990 ident: BIB34 article-title: Time derivative models of Pavlovian reinforcement publication-title: Learning and Computational Neuroscience – volume: 80 start-page: 1 year: 1998 end-page: 27 ident: BIB30 article-title: Predictive reward signal of dopamine neurons publication-title: J. Neurophysiol. – volume: 4 start-page: 1043 year: 2001 end-page: 1048 ident: BIB9 article-title: Responses of human frontal cortex to surprising events are predicted by formal associative learning theory publication-title: Nat. Neurosci. – volume: 12 start-page: 3683 year: 2001 end-page: 3687 ident: BIB16 article-title: Dissociation of reward anticipation and outcome with event-related fMRI publication-title: Neuroreport – volume: 384 start-page: 1 year: 1997 end-page: 25 ident: BIB14 article-title: Neurochemical architecture of the human striatum publication-title: J. Comp. Neurol. – volume: 379 start-page: 449 year: 1996 end-page: 451 ident: BIB20 article-title: Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli publication-title: Nature – volume: 3 start-page: 9 year: 1988 end-page: 44 ident: BIB33 article-title: Learning to predict by the methods of temporal differences publication-title: Machine Learning – volume: 87 start-page: 532 year: 1980 end-page: 552 ident: BIB26 article-title: A model for Pavlovian learning publication-title: Psychol. Rev. – volume: 59 start-page: 229 year: 1994 end-page: 243 ident: BIB11 article-title: Value-dependent selection in the brain publication-title: Neuroscience – volume: 72 start-page: 1024 year: 1994 end-page: 1027 ident: BIB19 article-title: Importance of unpredictability for reward responses in primate dopamine neurons publication-title: J. Neurophysiol. – year: 1995 ident: BIB6 publication-title: The Human Brain Stem and Cerebellum – volume: 97 start-page: 9281 year: 2000 end-page: 9286 ident: BIB27 article-title: Learning about pain publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 453 year: 1999 end-page: 459 ident: BIB10 article-title: The representation of the pleasantness of touch in the human brain, and its relation to taste and olfactory areas publication-title: Neuroreport – volume: 84 start-page: 3072 year: 2000 end-page: 3077 ident: BIB5 article-title: Tracking the hemodynamic responses to reward and punishment in the striatum publication-title: J. Neurophysiol. – volume: 275 start-page: 1593 year: 1997 end-page: 1599 ident: BIB31 article-title: A neural substrate of prediction and reward publication-title: Science – volume: 5 start-page: 97 year: 2002 end-page: 98 ident: BIB25 article-title: Activity in human ventral striatum locked to errors of reward prediction publication-title: Nat. Neurosci. – volume: 3 start-page: 1218 year: 2000 end-page: 1223 ident: BIB4 article-title: Learning and selective attention publication-title: Nat. Neurosci. Suppl. – volume: 20 start-page: 6159 year: 2000 end-page: 6165 ident: BIB8 article-title: Dissociable neural responses in human reward systems publication-title: J. Neurosci. – year: 1999 ident: BIB7 publication-title: The Human Brain – volume: 2 start-page: 165 year: 1995 end-page: 189 ident: BIB12 article-title: Spatial registration and normalisation of images publication-title: Hum. Brain Mapp. – volume: 33 start-page: 815 year: 2002 end-page: 826 ident: BIB23 article-title: Neural responses during anticipation of a primary taste reward publication-title: Neuron – volume: 21 start-page: RC159 year: 2001 ident: BIB17 article-title: Anticipation of increasing monetary reward selectively recruits nucleus accumbens publication-title: J. Neurosci. – volume: 67 start-page: 145 year: 1992 end-page: 163 ident: BIB18 article-title: Responses of monkey dopamine neurons during learning of behavioral reactions publication-title: J. Neurophysiol. – year: 1972 ident: BIB28 article-title: A theory of Pavlovian conditioning publication-title: Classical Conditioning II – year: 1999 ident: 10.1016/S0896-6273(03)00169-7_BIB7 – volume: 21 start-page: RC159 year: 2001 ident: 10.1016/S0896-6273(03)00169-7_BIB17 article-title: Anticipation of increasing monetary reward selectively recruits nucleus accumbens publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-16-j0002.2001 – volume: 85 start-page: 1315 year: 2001 ident: 10.1016/S0896-6273(03)00169-7_BIB22 article-title: Representation of pleasant and aversive taste in the human brain publication-title: J. Neurophysiol. doi: 10.1152/jn.2001.85.3.1315 – volume: 21 start-page: 2793 year: 2001 ident: 10.1016/S0896-6273(03)00169-7_BIB2 article-title: Predictability modulates human brain response to reward publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-08-02793.2001 – year: 1995 ident: 10.1016/S0896-6273(03)00169-7_BIB6 – volume: 434 start-page: 117 year: 1987 ident: 10.1016/S0896-6273(03)00169-7_BIB24 article-title: Ventral tegmental (A10) system publication-title: Brain Res. doi: 10.1016/0165-0173(87)90011-7 – volume: 80 start-page: 1 year: 1998 ident: 10.1016/S0896-6273(03)00169-7_BIB30 article-title: Predictive reward signal of dopamine neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.80.1.1 – year: 1990 ident: 10.1016/S0896-6273(03)00169-7_BIB34 article-title: Time derivative models of Pavlovian reinforcement – volume: 5 start-page: 97 year: 2002 ident: 10.1016/S0896-6273(03)00169-7_BIB25 article-title: Activity in human ventral striatum locked to errors of reward prediction publication-title: Nat. Neurosci. doi: 10.1038/nn802 – volume: 2 start-page: 165 year: 1995 ident: 10.1016/S0896-6273(03)00169-7_BIB12 article-title: Spatial registration and normalisation of images publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460030303 – volume: 72 start-page: 1024 year: 1994 ident: 10.1016/S0896-6273(03)00169-7_BIB19 article-title: Importance of unpredictability for reward responses in primate dopamine neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.1994.72.2.1024 – volume: 1 start-page: 155 year: 1998 ident: 10.1016/S0896-6273(03)00169-7_BIB29 article-title: Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning publication-title: Nat. Neurosci. doi: 10.1038/407 – year: 1972 ident: 10.1016/S0896-6273(03)00169-7_BIB28 article-title: A theory of Pavlovian conditioning – volume: 2 start-page: 11 year: 1999 ident: 10.1016/S0896-6273(03)00169-7_BIB21 article-title: Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention publication-title: Nat. Neurosci. doi: 10.1038/4513 – volume: 10 start-page: 263 year: 2000 ident: 10.1016/S0896-6273(03)00169-7_BIB13 article-title: Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards publication-title: Cereb. Cortex doi: 10.1093/cercor/10.3.263 – volume: 37 start-page: 421 year: 1998 ident: 10.1016/S0896-6273(03)00169-7_BIB32 article-title: Reward prediction in primate basal ganglia and frontal cortex publication-title: Neuropharmacology doi: 10.1016/S0028-3908(98)00071-9 – volume: 10 start-page: 453 year: 1999 ident: 10.1016/S0896-6273(03)00169-7_BIB10 article-title: The representation of the pleasantness of touch in the human brain, and its relation to taste and olfactory areas publication-title: Neuroreport doi: 10.1097/00001756-199902250-00003 – volume: 12 start-page: 3683 year: 2001 ident: 10.1016/S0896-6273(03)00169-7_BIB16 article-title: Dissociation of reward anticipation and outcome with event-related fMRI publication-title: Neuroreport doi: 10.1097/00001756-200112040-00016 – volume: 87 start-page: 532 year: 1980 ident: 10.1016/S0896-6273(03)00169-7_BIB26 article-title: A model for Pavlovian learning publication-title: Psychol. Rev. doi: 10.1037/0033-295X.87.6.532 – volume: 4 start-page: 1043 year: 2001 ident: 10.1016/S0896-6273(03)00169-7_BIB9 article-title: Responses of human frontal cortex to surprising events are predicted by formal associative learning theory publication-title: Nat. Neurosci. doi: 10.1038/nn733 – volume: 379 start-page: 449 year: 1996 ident: 10.1016/S0896-6273(03)00169-7_BIB20 article-title: Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli publication-title: Nature doi: 10.1038/379449a0 – volume: 59 start-page: 229 year: 1994 ident: 10.1016/S0896-6273(03)00169-7_BIB11 article-title: Value-dependent selection in the brain publication-title: Neuroscience doi: 10.1016/0306-4522(94)90592-4 – volume: 3 start-page: 1218 year: 2000 ident: 10.1016/S0896-6273(03)00169-7_BIB4 article-title: Learning and selective attention publication-title: Nat. Neurosci. Suppl. doi: 10.1038/81504 – volume: 68 start-page: 945 year: 1992 ident: 10.1016/S0896-6273(03)00169-7_BIB1 article-title: Neuronal activity in monkey striatum related to the expectation of predictable environmental events publication-title: J. Neurophysiol. doi: 10.1152/jn.1992.68.3.945 – volume: 30 start-page: 619 year: 2001 ident: 10.1016/S0896-6273(03)00169-7_BIB3 article-title: Functional imaging of neural responses to expectancy and experience of monetary gains and losses publication-title: Neuron doi: 10.1016/S0896-6273(01)00303-8 – volume: 384 start-page: 1 year: 1997 ident: 10.1016/S0896-6273(03)00169-7_BIB14 article-title: Neurochemical architecture of the human striatum publication-title: J. Comp. Neurol. doi: 10.1002/(SICI)1096-9861(19970721)384:1<1::AID-CNE1>3.0.CO;2-5 – volume: 275 start-page: 1593 year: 1997 ident: 10.1016/S0896-6273(03)00169-7_BIB31 article-title: A neural substrate of prediction and reward publication-title: Science doi: 10.1126/science.275.5306.1593 – volume: 20 start-page: 6159 year: 2000 ident: 10.1016/S0896-6273(03)00169-7_BIB8 article-title: Dissociable neural responses in human reward systems publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-16-06159.2000 – volume: 67 start-page: 145 year: 1992 ident: 10.1016/S0896-6273(03)00169-7_BIB18 article-title: Responses of monkey dopamine neurons during learning of behavioral reactions publication-title: J. Neurophysiol. doi: 10.1152/jn.1992.67.1.145 – volume: 84 start-page: 3072 year: 2000 ident: 10.1016/S0896-6273(03)00169-7_BIB5 article-title: Tracking the hemodynamic responses to reward and punishment in the striatum publication-title: J. Neurophysiol. doi: 10.1152/jn.2000.84.6.3072 – volume: 97 start-page: 9281 year: 2000 ident: 10.1016/S0896-6273(03)00169-7_BIB27 article-title: Learning about pain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.160266497 – volume: 450 start-page: 122 year: 2002 ident: 10.1016/S0896-6273(03)00169-7_BIB15 article-title: Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity publication-title: J. Comp. Neurol. doi: 10.1002/cne.10312 – volume: 3 start-page: 9 year: 1988 ident: 10.1016/S0896-6273(03)00169-7_BIB33 article-title: Learning to predict by the methods of temporal differences publication-title: Machine Learning doi: 10.1007/BF00115009 – volume: 33 start-page: 815 year: 2002 ident: 10.1016/S0896-6273(03)00169-7_BIB23 article-title: Neural responses during anticipation of a primary taste reward publication-title: Neuron doi: 10.1016/S0896-6273(02)00603-7 – reference: 12718849 - Neuron. 2003 Apr 24;38(2):150-2 |
SSID | ssj0014591 |
Score | 2.3836033 |
Snippet | Temporal difference learning has been proposed as a model for Pavlovian conditioning, in which an animal learns to predict delivery of reward following... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 329 |
SubjectTerms | Adolescent Adult Algorithms Brain Brain - anatomy & histology Brain - physiology Brain Mapping Charitable foundations Conditioning, Classical - physiology Corpus Striatum - anatomy & histology Corpus Striatum - physiology Dopamine Female Frontal Lobe - anatomy & histology Frontal Lobe - physiology Humans Learning - physiology Magnetic Resonance Imaging Male Reference Values Reflex, Pupillary - physiology Reward Taste - physiology Time Perception - physiology |
Title | Temporal Difference Models and Reward-Related Learning in the Human Brain |
URI | https://dx.doi.org/10.1016/S0896-6273(03)00169-7 https://www.ncbi.nlm.nih.gov/pubmed/12718865 https://www.proquest.com/docview/1503603572 https://www.proquest.com/docview/18743562 https://www.proquest.com/docview/73227003 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5VRUhcELQ8AqX4gBAcTDZ-7h7TQlWoxKG0IjfL9s6iSGFb0fTQf8_Y6yTiEFXi6h1b3rE9_mzPzAfwTmOwSgU6qVoRuVJNzX3oJDeosfJVRBGyt8V3c3qpvs30bAeOV7Ewya2y2P7BpmdrXUrGRZvj6_l8_KOqm5S9nGxwwi1NiihPmVpSEN_saP2SoPTAmkfCPElvoniGFnLhh0p-zI1wu21_2oY_8z508gQeFwDJpkMfn8IO9nuwP-3p8Pz7jr1n2aUz35XvwcOBafJuH75eDCmoFuxzYUSJyBIP2uKG-b5l55i9Z7NrHLasZF39xeY9I4TI8lU_O0p0Es_g8uTLxfEpLywKPJIRXPK2tRPvUYbOoxVBNW2N0nQ-So3YaC11q4xHoYMJoUWvfLTpebYhcCTayUQ-h93-qseXwDpvdAzS140Sqq2U79DQOEfhCUea2o9ArXTnYkkxnpguFm7jS0Yqd0nlrpIuq9zZEXxaV7secmzcV6FeDYz7Z7I42gfuq3qwGkhXVuuNI1AsTSW1FSN4u_5M6yw9nvger25JpiasRWBxu4Ql22jJSI7gxTBBNj8jCAHURr_6_36_hkfZjbBSXKgD2F3-ucU3BIeW4RAeTM_Of54d5nn_F2lMAhg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIgQXBC2PQKE-IASHJRs_d49toUqg9ACplJtle2dRpLCtaHrov2fsdRJxiCpx9Y4t79gef_Z8ngF4p9AbKT2dVA0PhZR1VTjfikKjwtKVAblPbItzPb6QX2dqtgMnq7cwkVaZbX9v05O1ziXDrM3h1Xw-_FlWdYxeTjY44pba3IP7hAZ05HVNZsdrV4JUfdo8ki6i-OYZT99EKvxQio-plcJs26C2AdC0EZ0-gccZQbKjvpNPYQe7Pdg_6uj0_PuWvWeJ05kuy_fgQZ9q8nYfJtM-BtWCfc4pUQKymAhtcc1c17AfmOiziRuHDcthV3-xeccIIrJ018-OYz6JZ3Bx-mV6Mi5yGoUikBVcFk1jRs6h8K1Dw72smwqFbl0QCrFWSqhGaodcee19g066YKJ_tiZ0xJvRSDyH3e6yw5fAWqdV8MJVteSyKaVrUdNAB-4ISOrKDUCudGdDjjEeU10s7IZMRiq3UeW2FDap3JoBfFpXu-qDbNxVoVoNjP1ntljaCO6qerAaSJuX67UlVCx0KZThAzhcf6aFFr0nrsPLG5KpCGwRWtwuYcg4GrKSA3jRT5DNz3CCAJVWr_6_34fwcDz9fmbPJuffXsOjxCksZcHlAewu_9zgG8JGS_82zf2_YIYDnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Difference+Models+and+Reward-Related+Learning+in+the+Human+Brain&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=O%27Doherty%2C+J+P&rft.au=Dayan%2C+P&rft.au=Friston%2C+K&rft.au=Critchley%2C+H&rft.date=2003-04-24&rft.issn=0896-6273&rft.volume=38&rft.issue=2&rft.spage=329&rft.epage=337&rft_id=info:doi/10.1016%2FS0896-6273%2803%2900169-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon |