Temporal Difference Models and Reward-Related Learning in the Human Brain

Temporal difference learning has been proposed as a model for Pavlovian conditioning, in which an animal learns to predict delivery of reward following presentation of a conditioned stimulus (CS). A key component of this model is a prediction error signal, which, before learning, responds at the tim...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 38; no. 2; pp. 329 - 337
Main Authors O'Doherty, John P., Dayan, Peter, Friston, Karl, Critchley, Hugo, Dolan, Raymond J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.04.2003
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0896-6273
1097-4199
DOI10.1016/S0896-6273(03)00169-7

Cover

Loading…
Abstract Temporal difference learning has been proposed as a model for Pavlovian conditioning, in which an animal learns to predict delivery of reward following presentation of a conditioned stimulus (CS). A key component of this model is a prediction error signal, which, before learning, responds at the time of presentation of reward but, after learning, shifts its response to the time of onset of the CS. In order to test for regions manifesting this signal profile, subjects were scanned using event-related fMRI while undergoing appetitive conditioning with a pleasant taste reward. Regression analyses revealed that responses in ventral striatum and orbitofrontal cortex were significantly correlated with this error signal, suggesting that, during appetitive conditioning, computations described by temporal difference learning are expressed in the human brain.
AbstractList Temporal difference learning has been proposed as a model for Pavlovian conditioning, in which an animal learns to predict delivery of reward following presentation of a conditioned stimulus (CS). A key component of this model is a prediction error signal, which, before learning, responds at the time of presentation of reward but, after learning, shifts its response to the time of onset of the CS. In order to test for regions manifesting this signal profile, subjects were scanned using event-related fMRI while undergoing appetitive conditioning with a pleasant taste reward. Regression analyses revealed that responses in ventral striatum and orbitofrontal cortex were significantly correlated with this error signal, suggesting that, during appetitive conditioning, computations described by temporal difference learning are expressed in the human brain.
Temporal difference learning has been proposed as a model for Pavlovian conditioning, in which an animal learns to predict delivery of reward following presentation of a conditioned stimulus (CS). A key component of this model is a prediction error signal, which, before learning, responds at the time of presentation of reward but, after learning, shifts its response to the time of onset of the CS. In order to test for regions manifesting this signal profile, subjects were scanned using event-related fMRI while undergoing appetitive conditioning with a pleasant taste reward. Regression analyses revealed that responses in ventral striatum and orbitofrontal cortex were significantly correlated with this error signal, suggesting that, during appetitive conditioning, computations described by temporal difference learning are expressed in the human brain.Temporal difference learning has been proposed as a model for Pavlovian conditioning, in which an animal learns to predict delivery of reward following presentation of a conditioned stimulus (CS). A key component of this model is a prediction error signal, which, before learning, responds at the time of presentation of reward but, after learning, shifts its response to the time of onset of the CS. In order to test for regions manifesting this signal profile, subjects were scanned using event-related fMRI while undergoing appetitive conditioning with a pleasant taste reward. Regression analyses revealed that responses in ventral striatum and orbitofrontal cortex were significantly correlated with this error signal, suggesting that, during appetitive conditioning, computations described by temporal difference learning are expressed in the human brain.
Author O'Doherty, John P.
Friston, Karl
Critchley, Hugo
Dayan, Peter
Dolan, Raymond J.
Author_xml – sequence: 1
  givenname: John P.
  surname: O'Doherty
  fullname: O'Doherty, John P.
  email: j.odoherty@fil.ion.ucl.ac.uk
  organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
– sequence: 2
  givenname: Peter
  surname: Dayan
  fullname: Dayan, Peter
  organization: Gatsby Computational Neuroscience Unit, University College London, London WC1N 3BG, United Kingdom
– sequence: 3
  givenname: Karl
  surname: Friston
  fullname: Friston, Karl
  organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
– sequence: 4
  givenname: Hugo
  surname: Critchley
  fullname: Critchley, Hugo
  organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
– sequence: 5
  givenname: Raymond J.
  surname: Dolan
  fullname: Dolan, Raymond J.
  organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12718865$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoO02O3qT1ACQqkXo_mYJBO8KLZqW1gRar0OmeSMpsxk1mRG8d-bcWsverMQOBCe95zkPMfoII4REHpByRtKqHz7lTRaVpIpfkr4a1KudKWeoBUlWlU11foArR6QI3Sc812BaqHpU3REmaJNI8UKXd_CsB2T7fGH0HWQIDrAn0cPfcY2enwDv23y1Q30dgKPN2BTDPE7DhFPPwBfzYON-DzZEJ-hw872GZ7f1zX69unj7cVVtflyeX3xflO5Wqqp8l5Ra4G3nQXF2lr7BrjsrOMCQAvBha-lBSZa2bYebG2dkoopzQRhnlK-Rie7vts0_pwhT2YI2UHf2wjjnI3ijClC-F6QNqrmQrICvnoE3o1ziuUThgrCJeFCLdTLe2puB_Bmm8Jg0x_zf5cFeLcDXBpzTtAZFyY7hTFOZT-9ocQs5sw_c2bRYkg5i7ny6DUSj9IPA_bkzna5Ygx-BUgmu7BY9CGBm4wfw54OfwHOua4-
CitedBy_id crossref_primary_10_1016_j_bbr_2012_02_006
crossref_primary_10_1177_0269881107077716
crossref_primary_10_1111_ejn_12802
crossref_primary_10_1152_jn_01044_2007
crossref_primary_10_3389_fpsyg_2020_560080
crossref_primary_10_1007_s00221_009_2060_6
crossref_primary_10_1007_s12021_008_9042_x
crossref_primary_10_1007_s12078_012_9130_z
crossref_primary_10_1146_annurev_neuro_080317_061948
crossref_primary_10_1089_cap_2005_15_160
crossref_primary_10_1016_j_neuroimage_2021_117747
crossref_primary_10_3389_fncel_2024_1480845
crossref_primary_10_1073_pnas_1119969109
crossref_primary_10_1016_j_bandc_2013_04_011
crossref_primary_10_1038_nature15692
crossref_primary_10_1016_j_neuroimage_2011_07_072
crossref_primary_10_1093_cercor_bhp169
crossref_primary_10_1038_mp_2016_81
crossref_primary_10_1016_S0896_6273_03_00230_7
crossref_primary_10_1073_pnas_1507610113
crossref_primary_10_3390_electronics12244939
crossref_primary_10_1152_jn_00332_2014
crossref_primary_10_1371_journal_pcbi_1006707
crossref_primary_10_1111_bdi_12132
crossref_primary_10_1371_journal_pone_0028337
crossref_primary_10_1093_scan_nsaa089
crossref_primary_10_1371_journal_pcbi_1004523
crossref_primary_10_1016_j_cub_2023_09_033
crossref_primary_10_1016_j_bpsc_2023_07_007
crossref_primary_10_1016_j_neuroimage_2017_11_057
crossref_primary_10_1007_s00429_012_0485_3
crossref_primary_10_3389_fnbeh_2022_908454
crossref_primary_10_1016_j_neuroimage_2006_02_006
crossref_primary_10_3390_brainsci11121610
crossref_primary_10_3390_brainsci12101411
crossref_primary_10_1016_j_neuroimage_2011_06_051
crossref_primary_10_1016_j_neuroimage_2017_03_044
crossref_primary_10_1007_s11682_020_00389_1
crossref_primary_10_1016_j_neubiorev_2016_06_004
crossref_primary_10_1162_opmi_a_00139
crossref_primary_10_1177_1094428116644502
crossref_primary_10_1371_journal_pcbi_1005405
crossref_primary_10_1007_s11055_024_01583_0
crossref_primary_10_1016_j_ynstr_2020_100258
crossref_primary_10_1523_JNEUROSCI_6421_10_2011
crossref_primary_10_1523_JNEUROSCI_0897_08_2008
crossref_primary_10_1523_JNEUROSCI_6376_10_2011
crossref_primary_10_1016_j_biopsycho_2008_04_010
crossref_primary_10_1038_nn2077
crossref_primary_10_1016_j_neuroimage_2008_06_035
crossref_primary_10_1017_S0954579405050418
crossref_primary_10_1093_scan_nss079
crossref_primary_10_1134_S1019331606040034
crossref_primary_10_1016_j_neuron_2008_09_023
crossref_primary_10_1016_j_neuron_2009_12_027
crossref_primary_10_3389_fpsyg_2015_01948
crossref_primary_10_1016_j_cogbrainres_2005_01_001
crossref_primary_10_1371_journal_pcbi_1012175
crossref_primary_10_1038_sj_npp_npp2009124
crossref_primary_10_3758_CABN_9_4_343
crossref_primary_10_1002_psp4_12478
crossref_primary_10_1016_j_neulet_2020_135243
crossref_primary_10_1176_appi_ajp_2015_14050594
crossref_primary_10_1038_nn2065
crossref_primary_10_1093_cercor_bhh211
crossref_primary_10_1016_j_biopsych_2019_07_017
crossref_primary_10_1016_j_cortex_2009_02_022
crossref_primary_10_1016_j_cogsys_2018_10_002
crossref_primary_10_1016_j_neuroimage_2011_06_071
crossref_primary_10_1016_j_bandc_2013_11_011
crossref_primary_10_1002_hbm_20186
crossref_primary_10_1016_j_neuron_2022_07_005
crossref_primary_10_1371_journal_pbio_3002306
crossref_primary_10_1016_j_neubiorev_2019_04_018
crossref_primary_10_1038_s41598_021_97782_7
crossref_primary_10_1111_j_1460_9568_2009_06743_x
crossref_primary_10_1007_s00213_011_2526_7
crossref_primary_10_7554_eLife_12029
crossref_primary_10_1016_j_neuron_2011_08_024
crossref_primary_10_1186_1866_1955_4_17
crossref_primary_10_1523_JNEUROSCI_2277_15_2015
crossref_primary_10_1016_j_neuroimage_2017_02_050
crossref_primary_10_1038_npp_2016_68
crossref_primary_10_1016_j_neuroimage_2006_01_001
crossref_primary_10_1007_s10827_020_00751_8
crossref_primary_10_1371_journal_pcbi_1005810
crossref_primary_10_1016_j_neuroimage_2011_05_037
crossref_primary_10_1016_j_brat_2020_103636
crossref_primary_10_1016_j_neubiorev_2019_04_006
crossref_primary_10_1515_REVNEURO_2009_20_5_6_383
crossref_primary_10_1016_j_neuroimage_2011_05_031
crossref_primary_10_1162_0899766053011555
crossref_primary_10_1162_jocn_a_02226
crossref_primary_10_3389_fpsyt_2022_886297
crossref_primary_10_1007_s13311_012_0134_9
crossref_primary_10_7554_eLife_91928
crossref_primary_10_1097_j_pain_0000000000000299
crossref_primary_10_1016_j_neuron_2004_11_022
crossref_primary_10_3390_app12073520
crossref_primary_10_1523_JNEUROSCI_1124_21_2022
crossref_primary_10_1038_nature03015
crossref_primary_10_1097_WNR_0b013e3281532bd7
crossref_primary_10_1111_ejn_12625
crossref_primary_10_1126_sciadv_adi4927
crossref_primary_10_1371_journal_pone_0059902
crossref_primary_10_1523_JNEUROSCI_2972_11_2011
crossref_primary_10_1080_15294145_2006_10773514
crossref_primary_10_1093_schbul_sbn134
crossref_primary_10_1073_pnas_1506367112
crossref_primary_10_1162_0899766053011546
crossref_primary_10_1523_JNEUROSCI_2118_07_2007
crossref_primary_10_1016_j_neubiorev_2006_11_002
crossref_primary_10_1093_nc_niw005
crossref_primary_10_1016_j_chc_2019_05_007
crossref_primary_10_1523_JNEUROSCI_5217_12_2013
crossref_primary_10_1038_s41593_018_0315_x
crossref_primary_10_1098_rstb_2015_0355
crossref_primary_10_3389_fnhum_2016_00149
crossref_primary_10_1038_srep36206
crossref_primary_10_1521_soco_2008_26_5_593
crossref_primary_10_1371_journal_pone_0024390
crossref_primary_10_7554_eLife_26424
crossref_primary_10_1098_rstb_2015_0352
crossref_primary_10_1016_j_neunet_2008_09_004
crossref_primary_10_1093_nc_niw018
crossref_primary_10_1002_hbm_21039
crossref_primary_10_1016_j_neuroimage_2016_06_038
crossref_primary_10_1523_JNEUROSCI_5331_09_2010
crossref_primary_10_1016_j_pnpbp_2017_02_020
crossref_primary_10_1002_hbm_22561
crossref_primary_10_1007_s00406_014_0519_3
crossref_primary_10_1016_j_conb_2017_10_006
crossref_primary_10_21074_kjlcap_2007_8_3_283
crossref_primary_10_1016_j_neuron_2020_11_024
crossref_primary_10_1152_jn_00164_2012
crossref_primary_10_1152_jn_00762_2005
crossref_primary_10_1111_cdep_12001
crossref_primary_10_1523_JNEUROSCI_1394_18_2018
crossref_primary_10_1152_jn_00333_2015
crossref_primary_10_1038_sj_npp_1301437
crossref_primary_10_1162_jocn_a_01323
crossref_primary_10_3390_e24101484
crossref_primary_10_1152_jn_00745_2006
crossref_primary_10_1016_j_neuroimage_2011_08_047
crossref_primary_10_1038_s41386_022_01440_z
crossref_primary_10_1016_j_neuroimage_2003_10_005
crossref_primary_10_1016_j_cobeha_2015_09_003
crossref_primary_10_1523_JNEUROSCI_2026_09_2009
crossref_primary_10_1016_j_neuron_2016_09_025
crossref_primary_10_1016_j_neuroimage_2009_04_095
crossref_primary_10_1093_cercor_bhab137
crossref_primary_10_1177_1073858413499407
crossref_primary_10_1016_j_cobeha_2018_12_012
crossref_primary_10_1017_S0033291718002520
crossref_primary_10_1016_j_neuroimage_2009_12_068
crossref_primary_10_1523_JNEUROSCI_1502_11_2011
crossref_primary_10_1016_j_schres_2014_01_015
crossref_primary_10_1126_science_1105783
crossref_primary_10_1073_pnas_1514539112
crossref_primary_10_1111_jnc_16243
crossref_primary_10_1016_j_conb_2006_03_006
crossref_primary_10_1017_S0140525X12003196
crossref_primary_10_1162_jocn_a_01541
crossref_primary_10_1523_JNEUROSCI_0873_20_2020
crossref_primary_10_1016_j_biopsych_2011_05_011
crossref_primary_10_1152_jn_91195_2008
crossref_primary_10_1523_JNEUROSCI_3417_03_2004
crossref_primary_10_1016_j_neuron_2012_10_017
crossref_primary_10_1186_s40708_022_00156_6
crossref_primary_10_1016_j_neuron_2012_02_038
crossref_primary_10_1523_JNEUROSCI_4236_12_2013
crossref_primary_10_1093_cercor_bhab391
crossref_primary_10_1007_s11571_010_9109_x
crossref_primary_10_1111_ejn_15945
crossref_primary_10_1038_nn1817
crossref_primary_10_1111_j_1469_8986_2011_01291_x
crossref_primary_10_1093_cercor_bhn161
crossref_primary_10_3389_fnint_2018_00061
crossref_primary_10_1007_s42113_022_00147_0
crossref_primary_10_1016_j_neuroimage_2011_09_078
crossref_primary_10_1371_journal_pbio_0040233
crossref_primary_10_1016_j_biopsych_2006_10_020
crossref_primary_10_1093_scan_nsq048
crossref_primary_10_1016_j_conb_2008_07_010
crossref_primary_10_1016_j_conb_2008_07_007
crossref_primary_10_1111_j_1460_9568_2012_07990_x
crossref_primary_10_1093_scan_nsz086
crossref_primary_10_1080_23273798_2020_1862257
crossref_primary_10_1016_j_neuroimage_2003_10_032
crossref_primary_10_1109_TLT_2023_3262598
crossref_primary_10_1162_jocn_a_00677
crossref_primary_10_1093_cercor_bhm097
crossref_primary_10_3758_s13415_022_01006_y
crossref_primary_10_1016_j_tics_2012_07_007
crossref_primary_10_1038_s41598_020_59415_3
crossref_primary_10_1093_brain_awn136
crossref_primary_10_1002_hbm_22513
crossref_primary_10_1111_adb_12570
crossref_primary_10_3758_s13414_022_02469_4
crossref_primary_10_1523_JNEUROSCI_1101_17_2017
crossref_primary_10_1016_j_bbr_2008_09_029
crossref_primary_10_1038_srep31378
crossref_primary_10_2139_ssrn_2129422
crossref_primary_10_1027_1618_3169_a000146
crossref_primary_10_1016_j_neuroimage_2014_03_014
crossref_primary_10_1016_j_conb_2010_01_007
crossref_primary_10_1371_journal_pone_0234434
crossref_primary_10_3389_fpsyg_2017_02035
crossref_primary_10_1073_pnas_2000759117
crossref_primary_10_1007_s11920_013_0396_x
crossref_primary_10_1016_j_cobeha_2015_08_006
crossref_primary_10_1523_JNEUROSCI_1010_06_2006
crossref_primary_10_1038_mp_2016_102
crossref_primary_10_1111_j_1540_6261_2010_01591_x
crossref_primary_10_1002_hbm_22540
crossref_primary_10_1111_j_1530_0277_2011_01520_x
crossref_primary_10_1371_journal_pcbi_1011692
crossref_primary_10_3758_s13415_015_0338_7
crossref_primary_10_1016_j_jneumeth_2006_05_035
crossref_primary_10_1162_jocn_a_00892
crossref_primary_10_1038_nn_3068
crossref_primary_10_1073_pnas_1809298115
crossref_primary_10_1126_science_1174521
crossref_primary_10_1024_1661_4747_a000298
crossref_primary_10_1016_j_brainresbull_2005_06_016
crossref_primary_10_1016_j_brainresbull_2005_06_015
crossref_primary_10_1016_j_neuroimage_2004_10_002
crossref_primary_10_1016_j_conb_2008_08_003
crossref_primary_10_1016_j_tics_2012_07_009
crossref_primary_10_1371_journal_pone_0089129
crossref_primary_10_1016_j_neuron_2007_03_004
crossref_primary_10_3724_SP_J_1041_2008_00693
crossref_primary_10_1016_j_neuroimage_2005_07_060
crossref_primary_10_1080_23273798_2021_2014062
crossref_primary_10_1002_hbm_21431
crossref_primary_10_1186_2045_5380_3_12
crossref_primary_10_1155_2013_149329
crossref_primary_10_1523_JNEUROSCI_4458_09_2010
crossref_primary_10_1016_j_neuroimage_2015_11_060
crossref_primary_10_1038_s41467_022_30978_1
crossref_primary_10_3389_fnsys_2014_00206
crossref_primary_10_1016_j_neunet_2012_08_004
crossref_primary_10_3390_brainsci12010090
crossref_primary_10_1523_JNEUROSCI_3095_12_2013
crossref_primary_10_1038_s41467_019_13632_1
crossref_primary_10_1111_j_1460_9568_2012_08023_x
crossref_primary_10_1002_wcs_1598
crossref_primary_10_3389_fneur_2023_1198262
crossref_primary_10_1038_nn1527
crossref_primary_10_1038_s41598_018_26075_3
crossref_primary_10_1016_j_brainres_2018_11_043
crossref_primary_10_1080_00952990_2019_1624764
crossref_primary_10_1162_jocn_2006_18_7_1198
crossref_primary_10_1089_neu_2008_0849
crossref_primary_10_1002_eat_22538
crossref_primary_10_1016_j_jneumeth_2016_04_022
crossref_primary_10_1177_0270467604264813
crossref_primary_10_1523_JNEUROSCI_2431_05_2005
crossref_primary_10_1016_j_neuroimage_2016_05_080
crossref_primary_10_1038_ncomms16033
crossref_primary_10_1371_journal_pone_0000103
crossref_primary_10_1002_wcs_154
crossref_primary_10_1016_j_neuroimage_2010_10_080
crossref_primary_10_1111_nyas_13740
crossref_primary_10_1016_j_neuroscience_2009_05_054
crossref_primary_10_1523_JNEUROSCI_4880_10_2011
crossref_primary_10_1016_j_neuron_2022_05_025
crossref_primary_10_1038_s41598_018_32990_2
crossref_primary_10_1016_j_neubiorev_2015_09_019
crossref_primary_10_1016_j_cortex_2014_08_016
crossref_primary_10_1016_j_cortex_2014_08_012
crossref_primary_10_1523_JNEUROSCI_0918_17_2017
crossref_primary_10_1016_j_neubiorev_2019_01_025
crossref_primary_10_1016_j_cogsys_2018_07_005
crossref_primary_10_3389_fnana_2016_00029
crossref_primary_10_1098_rstb_2019_0633
crossref_primary_10_1016_j_conb_2012_06_004
crossref_primary_10_1073_pnas_1000496107
crossref_primary_10_1101_lm_032995_113
crossref_primary_10_2139_ssrn_4757025
crossref_primary_10_1162_jocn_a_00972
crossref_primary_10_3758_s13415_018_0601_9
crossref_primary_10_1093_scan_nsp007
crossref_primary_10_1016_j_neuroimage_2007_08_009
crossref_primary_10_1002_hbm_23940
crossref_primary_10_1162_neco_2008_08_07_593
crossref_primary_10_1002_hbm_23944
crossref_primary_10_1016_j_resp_2009_04_001
crossref_primary_10_1111_apha_13928
crossref_primary_10_1016_j_biopsych_2012_04_004
crossref_primary_10_1016_j_bbr_2010_10_030
crossref_primary_10_3389_fncir_2018_00111
crossref_primary_10_1523_JNEUROSCI_5227_06_2007
crossref_primary_10_1016_j_neubiorev_2024_105737
crossref_primary_10_1016_j_jpsychires_2012_02_014
crossref_primary_10_1016_j_neuron_2011_05_042
crossref_primary_10_1038_s41398_018_0147_1
crossref_primary_10_1371_journal_pone_0072508
crossref_primary_10_1016_j_semcdb_2012_11_001
crossref_primary_10_1016_j_neuropharm_2009_07_026
crossref_primary_10_1016_S0166_2236_03_00177_2
crossref_primary_10_1101_lm_053558_121
crossref_primary_10_1162_jocn_a_00749
crossref_primary_10_1016_j_biosystems_2022_104612
crossref_primary_10_1038_npp_2015_315
crossref_primary_10_1016_j_jns_2011_06_043
crossref_primary_10_1002_wcs_57
crossref_primary_10_3758_s13415_012_0104_z
crossref_primary_10_1093_cercor_bhx259
crossref_primary_10_1097_01_wnr_0000186601_50996_f7
crossref_primary_10_1177_1088868313495594
crossref_primary_10_1016_j_neuroimage_2007_07_012
crossref_primary_10_1523_JNEUROSCI_2496_07_2007
crossref_primary_10_1162_jocn_2009_21092
crossref_primary_10_1186_1744_9081_1_6
crossref_primary_10_1002_hbm_20611
crossref_primary_10_1371_journal_pone_0144083
crossref_primary_10_1523_JNEUROSCI_1731_13_2013
crossref_primary_10_1016_j_conb_2012_07_011
crossref_primary_10_3758_s13415_018_00678_9
crossref_primary_10_1046_j_0963_7214_2003_01265_x
crossref_primary_10_3389_fpsyt_2020_00809
crossref_primary_10_1016_j_cortex_2015_11_006
crossref_primary_10_1016_j_neuron_2005_06_008
crossref_primary_10_1016_j_neubiorev_2005_03_024
crossref_primary_10_1016_j_bbr_2016_05_017
crossref_primary_10_1098_rspb_2023_2011
crossref_primary_10_1016_j_neuroimage_2018_07_038
crossref_primary_10_1093_brain_awz167
crossref_primary_10_1371_journal_pcbi_1005145
crossref_primary_10_1016_j_neuroimage_2009_06_045
crossref_primary_10_1111_j_1460_9568_2008_06489_x
crossref_primary_10_1016_j_neuron_2016_08_031
crossref_primary_10_1016_j_nicl_2019_102075
crossref_primary_10_1523_JNEUROSCI_3360_04_2005
crossref_primary_10_1016_j_neuron_2005_07_022
crossref_primary_10_1016_j_neunet_2005_08_009
crossref_primary_10_1016_j_neuroimage_2022_119744
crossref_primary_10_1007_s11227_024_06198_3
crossref_primary_10_1016_j_tics_2010_12_005
crossref_primary_10_1038_nn_2128
crossref_primary_10_1176_appi_ajp_2012_11081244
crossref_primary_10_1007_s40519_024_01684_2
crossref_primary_10_1016_j_cortex_2019_04_024
crossref_primary_10_1016_j_physbeh_2019_04_009
crossref_primary_10_1176_appi_ajp_2010_10010129
crossref_primary_10_1016_j_physbeh_2019_04_007
crossref_primary_10_1007_s11682_019_00107_6
crossref_primary_10_1016_j_nicl_2015_02_025
crossref_primary_10_1073_pnas_0801489105
crossref_primary_10_1152_jn_01211_2006
crossref_primary_10_1007_s00726_015_1919_z
crossref_primary_10_1016_j_biopsycho_2016_11_013
crossref_primary_10_1016_j_cub_2010_09_017
crossref_primary_10_1016_j_cortex_2017_05_020
crossref_primary_10_1523_JNEUROSCI_1719_10_2010
crossref_primary_10_1016_j_neuropharm_2013_07_002
crossref_primary_10_1146_annurev_psych_121208_131616
crossref_primary_10_1038_nn1339
crossref_primary_10_1016_j_neuroscience_2014_01_053
crossref_primary_10_1016_j_biopsych_2012_03_012
crossref_primary_10_1016_j_brainres_2009_06_078
crossref_primary_10_1038_nn1575
crossref_primary_10_1016_j_jmp_2016_01_001
crossref_primary_10_1073_pnas_1202229109
crossref_primary_10_1073_pnas_0608842104
crossref_primary_10_1016_j_nlm_2018_01_013
crossref_primary_10_1016_j_brainresrev_2007_10_007
crossref_primary_10_1038_srep34032
crossref_primary_10_1371_journal_pone_0007362
crossref_primary_10_1016_j_neuron_2016_05_015
crossref_primary_10_1093_scan_nsn002
crossref_primary_10_1016_j_conb_2013_02_007
crossref_primary_10_1038_s41586_020_2158_3
crossref_primary_10_1016_S0896_6273_03_00848_1
crossref_primary_10_1038_s41386_019_0564_8
crossref_primary_10_1016_j_concog_2014_09_018
crossref_primary_10_1523_JNEUROSCI_1747_10_2010
crossref_primary_10_3389_fnhum_2021_615313
crossref_primary_10_3390_brainsci10090647
crossref_primary_10_1016_j_brainresrev_2008_07_004
crossref_primary_10_1111_j_1460_9568_2012_08125_x
crossref_primary_10_1016_j_jebo_2013_07_009
crossref_primary_10_1016_j_neuroimage_2025_121027
crossref_primary_10_1146_annurev_psych_122216_011643
crossref_primary_10_1017_S0033291714002517
crossref_primary_10_1038_tp_2011_10
crossref_primary_10_1016_j_biopsych_2005_06_004
crossref_primary_10_1038_s41562_016_0035
crossref_primary_10_1038_tp_2016_199
crossref_primary_10_1073_pnas_0711099105
crossref_primary_10_1007_s00702_021_02382_4
crossref_primary_10_1038_s41467_021_21696_1
crossref_primary_10_1371_journal_pone_0160503
crossref_primary_10_1038_ncomms7149
crossref_primary_10_1080_17470919_2017_1370010
crossref_primary_10_1126_science_1145876
crossref_primary_10_1016_j_physbeh_2017_04_001
crossref_primary_10_1002_hipo_20535
crossref_primary_10_1177_1039856217726224
crossref_primary_10_1016_j_neunet_2006_05_039
crossref_primary_10_1016_j_cognition_2009_09_005
crossref_primary_10_1016_j_bandc_2018_07_001
crossref_primary_10_1111_jcpp_12496
crossref_primary_10_3758_s13415_023_01064_w
crossref_primary_10_1523_JNEUROSCI_1478_05_2005
crossref_primary_10_1097_FBP_0000000000000424
crossref_primary_10_1007_s13164_020_00490_w
crossref_primary_10_1016_j_bpsc_2015_11_004
crossref_primary_10_1016_j_cortex_2019_07_019
crossref_primary_10_1016_j_dcn_2014_02_007
crossref_primary_10_1038_npp_2012_51
crossref_primary_10_1371_journal_pcbi_1008871
crossref_primary_10_1016_j_cobeha_2021_04_020
crossref_primary_10_1093_scan_nsu085
crossref_primary_10_1007_s00213_013_3313_4
crossref_primary_10_1038_nn1378
crossref_primary_10_1111_j_1749_6632_2011_06210_x
crossref_primary_10_1002_erv_2713
crossref_primary_10_1162_jocn_2007_19_5_843
crossref_primary_10_1007_s00221_011_2771_3
crossref_primary_10_1016_j_neuron_2005_06_028
crossref_primary_10_1093_brain_awr059
crossref_primary_10_1016_j_neuroimage_2010_09_042
crossref_primary_10_1016_j_neuropsychologia_2019_107261
crossref_primary_10_1371_journal_pone_0108142
crossref_primary_10_1177_1534582304273251
crossref_primary_10_2308_accr_50841
crossref_primary_10_3389_fnhum_2016_00450
crossref_primary_10_2478_jagi_2020_0002
crossref_primary_10_1073_pnas_1008137107
crossref_primary_10_1038_nn_3842
crossref_primary_10_1016_j_cobeha_2020_10_003
crossref_primary_10_1016_j_neuroimage_2015_09_042
crossref_primary_10_1016_j_neuron_2007_08_004
crossref_primary_10_1093_cercor_bht049
crossref_primary_10_1101_lm_1191609
crossref_primary_10_1016_j_neubiorev_2021_09_005
crossref_primary_10_3758_s13415_014_0261_3
crossref_primary_10_1093_scan_nsl025
crossref_primary_10_1093_scan_nsw012
crossref_primary_10_1016_j_neubiorev_2021_09_009
crossref_primary_10_1093_scan_nsl021
crossref_primary_10_3389_fnins_2014_00056
crossref_primary_10_3389_fpsyg_2015_00995
crossref_primary_10_1080_09548980500361624
crossref_primary_10_7554_eLife_55701
crossref_primary_10_12688_wellcomeopenres_10331_1
crossref_primary_10_1016_j_neuroimage_2012_12_078
crossref_primary_10_1016_j_neuron_2013_09_007
crossref_primary_10_1016_j_neuron_2013_09_009
crossref_primary_10_1038_s41386_018_0047_3
crossref_primary_10_1371_journal_pbio_3000634
crossref_primary_10_1016_j_neuropsychologia_2019_107257
crossref_primary_10_3390_vision2040043
crossref_primary_10_1016_j_ijpsycho_2017_06_004
crossref_primary_10_1002_hbm_24370
crossref_primary_10_1371_journal_pcbi_1002028
crossref_primary_10_1016_j_biopsych_2012_02_037
crossref_primary_10_1038_s41598_018_26887_3
crossref_primary_10_1016_j_neubiorev_2009_08_006
crossref_primary_10_1016_j_tics_2007_10_002
crossref_primary_10_1371_journal_pcbi_1006632
crossref_primary_10_1371_journal_pone_0206780
crossref_primary_10_1016_j_neuropharm_2013_05_033
crossref_primary_10_1177_0269881115602486
crossref_primary_10_1073_pnas_0500899102
crossref_primary_10_1016_j_tbs_2024_100877
crossref_primary_10_31887_DCNS_2016_18_1_wschultz
crossref_primary_10_1162_jocn_a_00090
crossref_primary_10_1371_journal_pbio_1000444
crossref_primary_10_1371_journal_pcbi_1004237
crossref_primary_10_1523_JNEUROSCI_4647_10_2011
crossref_primary_10_1038_npp_2008_222
crossref_primary_10_1521_soco_2008_26_5_621
crossref_primary_10_1073_pnas_1705643114
crossref_primary_10_1101_lm_1295509
crossref_primary_10_1523_JNEUROSCI_0400_07_2007
crossref_primary_10_1523_JNEUROSCI_6316_10_2011
crossref_primary_10_15690_vsp_v23i6_2838
crossref_primary_10_1016_j_physbeh_2017_03_037
crossref_primary_10_1126_science_1094285
crossref_primary_10_1038_npp_2014_21
crossref_primary_10_1111_j_1467_9280_2009_02402_x
crossref_primary_10_1162_jocn_a_01191
crossref_primary_10_1016_j_neuroimage_2009_08_011
crossref_primary_10_1371_journal_pbio_3000899
crossref_primary_10_1192_bjp_bp_113_138099
crossref_primary_10_1016_j_bpsc_2018_09_015
crossref_primary_10_1016_j_dcn_2011_07_006
crossref_primary_10_1007_s00221_015_4542_z
crossref_primary_10_1016_j_neuroimage_2010_09_017
crossref_primary_10_1002_hbm_24391
crossref_primary_10_1371_journal_pone_0066940
crossref_primary_10_1523_JNEUROSCI_5587_09_2010
crossref_primary_10_1371_journal_pcbi_1003387
crossref_primary_10_1007_s13311_012_0132_y
crossref_primary_10_1016_j_cub_2013_08_035
crossref_primary_10_1002_eat_23814
crossref_primary_10_1016_j_bbr_2016_08_023
crossref_primary_10_1016_j_biopsych_2012_01_023
crossref_primary_10_1016_j_neuroimage_2021_118186
crossref_primary_10_1038_s41380_019_0490_5
crossref_primary_10_1016_j_dcn_2016_03_005
crossref_primary_10_3390_s22145131
crossref_primary_10_1126_science_1150605
crossref_primary_10_1016_j_neuroimage_2010_12_023
crossref_primary_10_1016_j_neuron_2008_10_027
crossref_primary_10_1016_j_neuron_2004_09_019
crossref_primary_10_3389_fpsyt_2022_836965
crossref_primary_10_1093_scan_nsu152
crossref_primary_10_2139_ssrn_4407488
crossref_primary_10_3389_fpsyg_2021_650042
crossref_primary_10_1002_hbm_21182
crossref_primary_10_1016_j_celrep_2023_112931
crossref_primary_10_1016_j_neuron_2008_10_038
crossref_primary_10_1126_science_1108062
crossref_primary_10_1002_hipo_22411
crossref_primary_10_1097_WNN_0000000000000303
crossref_primary_10_1016_j_neuroimage_2010_05_058
crossref_primary_10_1016_j_euroneuro_2011_07_003
crossref_primary_10_1016_j_jmp_2016_03_007
crossref_primary_10_1007_s00406_007_0783_6
crossref_primary_10_3389_fpsyt_2017_00103
crossref_primary_10_1016_j_neunet_2011_03_001
crossref_primary_10_1016_j_neuron_2011_02_027
crossref_primary_10_3724_SP_J_1041_2010_00279
crossref_primary_10_1016_j_neuropsychologia_2017_07_003
crossref_primary_10_7554_eLife_42816
crossref_primary_10_1038_npp_2015_172
crossref_primary_10_1016_j_neuroimage_2015_07_061
crossref_primary_10_1038_tp_2012_134
crossref_primary_10_2139_ssrn_4331775
crossref_primary_10_1016_j_bandc_2020_105657
crossref_primary_10_1093_brain_aww287
crossref_primary_10_1038_s41467_019_08922_7
crossref_primary_10_1016_j_addicn_2023_100066
crossref_primary_10_1016_j_bandc_2017_03_008
crossref_primary_10_1001_archpsyc_65_5_586
crossref_primary_10_1016_j_neuron_2011_02_019
crossref_primary_10_1016_j_bbr_2019_111938
crossref_primary_10_1016_j_neuroimage_2010_05_077
crossref_primary_10_1177_0956797612463080
crossref_primary_10_1523_JNEUROSCI_1093_08_2008
crossref_primary_10_1093_cercor_bhq144
crossref_primary_10_1073_pnas_1202129109
crossref_primary_10_1093_cercor_bhq145
crossref_primary_10_1016_S0896_6273_04_00183_7
crossref_primary_10_1038_s41467_023_43747_5
crossref_primary_10_1016_j_neuron_2008_02_021
crossref_primary_10_1177_1745691618776263
crossref_primary_10_1016_j_euroneuro_2020_04_008
crossref_primary_10_1038_s41598_023_44107_5
crossref_primary_10_1002_hbm_22000
crossref_primary_10_1016_j_neuroimage_2024_120670
crossref_primary_10_1016_j_neubiorev_2009_06_009
crossref_primary_10_1038_nn_2904
crossref_primary_10_1016_j_neuroimage_2009_07_022
crossref_primary_10_1016_j_neuroimage_2015_07_040
crossref_primary_10_1038_nn_2902
crossref_primary_10_1016_j_neubiorev_2010_12_012
crossref_primary_10_1097_YCO_0000000000000184
crossref_primary_10_1111_bph_13840
crossref_primary_10_1196_annals_1401_036
crossref_primary_10_1371_journal_pcbi_1009070
crossref_primary_10_1016_j_bbr_2011_02_045
crossref_primary_10_1016_j_neunet_2019_10_011
crossref_primary_10_1042_BST0370313
crossref_primary_10_1146_annurev_psych_010416_044216
crossref_primary_10_1016_j_neuroimage_2006_09_012
crossref_primary_10_1152_jn_00086_2014
crossref_primary_10_1016_j_rasd_2017_01_011
crossref_primary_10_1016_j_neuroimage_2004_07_028
crossref_primary_10_1016_j_pbb_2017_06_014
crossref_primary_10_3758_CABN_8_2_113
crossref_primary_10_1016_j_neuroimage_2018_04_058
crossref_primary_10_1146_annurev_neuro_29_051605_112903
crossref_primary_10_1016_j_neuroscience_2010_03_026
crossref_primary_10_1523_JNEUROSCI_4777_12_2013
crossref_primary_10_1111_joes_12676
crossref_primary_10_1016_j_celrep_2021_110185
crossref_primary_10_1523_JNEUROSCI_0204_14_2014
crossref_primary_10_1016_j_neuroimage_2007_03_029
crossref_primary_10_1038_s41386_019_0594_2
crossref_primary_10_1111_tops_12082
crossref_primary_10_1016_j_neuroimage_2010_03_043
crossref_primary_10_1016_j_cortex_2012_09_002
crossref_primary_10_1016_j_nbd_2012_05_007
crossref_primary_10_1196_annals_1401_017
crossref_primary_10_1016_j_neuroimage_2016_10_036
crossref_primary_10_1098_rstb_2011_0300
crossref_primary_10_1111_j_0021_8782_2004_00359_x
crossref_primary_10_1016_j_neuroimage_2007_04_066
crossref_primary_10_1097_WNR_0b013e32832ff2f5
crossref_primary_10_1016_j_jbef_2017_12_011
crossref_primary_10_1037_0735_7044_119_1_336
crossref_primary_10_7554_eLife_47463
crossref_primary_10_1016_j_neuron_2009_09_003
crossref_primary_10_1016_j_neuroimage_2018_04_078
crossref_primary_10_1162_jocn_a_00145
crossref_primary_10_1016_j_neuroimage_2013_10_042
crossref_primary_10_1038_npp_2017_28
crossref_primary_10_1371_journal_pone_0206923
crossref_primary_10_1196_annals_1401_020
crossref_primary_10_1038_s42003_020_01465_4
crossref_primary_10_1001_jamapsychiatry_2018_1924
crossref_primary_10_1007_s00213_018_5131_1
crossref_primary_10_1038_srep24350
crossref_primary_10_1016_j_cortex_2017_08_022
crossref_primary_10_1523_JNEUROSCI_3501_10_2010
crossref_primary_10_1152_jn_00564_2014
crossref_primary_10_1016_j_pscychresns_2018_08_010
crossref_primary_10_1073_pnas_1014269108
crossref_primary_10_1016_j_neuron_2008_12_031
crossref_primary_10_1073_pnas_1101920108
crossref_primary_10_1162_qjec_2008_123_2_663
crossref_primary_10_1162_jocn_a_00114
crossref_primary_10_1016_j_conb_2011_02_009
crossref_primary_10_1093_brain_awy048
crossref_primary_10_1002_hbm_25948
crossref_primary_10_1016_j_bandc_2015_10_007
crossref_primary_10_1016_j_neuroimage_2015_12_016
crossref_primary_10_1016_j_neuron_2008_04_027
crossref_primary_10_1186_s41077_017_0036_3
crossref_primary_10_1038_s41598_019_38560_4
crossref_primary_10_1016_j_neuroimage_2013_01_048
crossref_primary_10_1016_j_pneurobio_2008_09_004
crossref_primary_10_1007_s11434_007_0193_1
crossref_primary_10_1523_JNEUROSCI_2636_14_2015
crossref_primary_10_1097_00001756_200411150_00022
crossref_primary_10_1002_hbm_22665
crossref_primary_10_1177_1073858420907591
crossref_primary_10_1073_pnas_1407535111
crossref_primary_10_1162_NECO_a_00049
crossref_primary_10_2139_ssrn_4578223
crossref_primary_10_1016_j_neuroimage_2017_08_069
crossref_primary_10_1038_s41380_020_0803_8
crossref_primary_10_3389_fpsyg_2023_1211528
crossref_primary_10_1017_S0305000921000544
crossref_primary_10_3389_fnsys_2014_00140
crossref_primary_10_1016_j_neuropsychologia_2009_12_010
crossref_primary_10_1017_S0029665114001530
crossref_primary_10_1126_sciadv_abf7129
crossref_primary_10_1152_jn_00046_2016
crossref_primary_10_1016_j_neuroimage_2018_02_035
crossref_primary_10_1523_JNEUROSCI_1309_08_2008
crossref_primary_10_1016_j_cub_2014_04_044
crossref_primary_10_1002_hbm_21369
crossref_primary_10_1016_j_bbr_2018_08_017
crossref_primary_10_1101_lm_196606
crossref_primary_10_1523_JNEUROSCI_4130_09_2010
crossref_primary_10_1162_neco_a_01025
crossref_primary_10_1002_hbm_20274
crossref_primary_10_1016_j_neunet_2019_04_022
crossref_primary_10_1001_jamapsychiatry_2021_1580
crossref_primary_10_1152_jn_01209_2003
crossref_primary_10_1016_j_neuroimage_2012_09_010
crossref_primary_10_1523_JNEUROSCI_4132_08_2009
crossref_primary_10_1111_ejn_13401
crossref_primary_10_1016_j_neuroimage_2015_05_084
crossref_primary_10_3758_s13415_014_0332_5
crossref_primary_10_1523_JNEUROSCI_3266_08_2009
crossref_primary_10_1080_17437199_2016_1219673
crossref_primary_10_1016_j_bbr_2011_10_042
crossref_primary_10_1038_s41467_018_03992_5
crossref_primary_10_1016_j_tics_2022_11_001
crossref_primary_10_1016_j_neuroimage_2006_08_060
crossref_primary_10_1016_j_conb_2011_03_003
crossref_primary_10_1016_j_brainres_2009_07_007
crossref_primary_10_1152_physrev_00023_2014
crossref_primary_10_1523_JNEUROSCI_2978_14_2015
crossref_primary_10_1016_j_neuroscience_2004_04_035
crossref_primary_10_1371_journal_pone_0025307
crossref_primary_10_1016_j_tins_2012_04_009
crossref_primary_10_1093_scan_nsr006
crossref_primary_10_1523_JNEUROSCI_2265_08_2008
crossref_primary_10_1016_j_dcn_2018_12_006
crossref_primary_10_1371_journal_pone_0033461
crossref_primary_10_1093_brain_awm150
crossref_primary_10_1523_JNEUROSCI_4679_05_2006
crossref_primary_10_1097_HTR_0000000000000925
crossref_primary_10_1196_annals_1390_022
crossref_primary_10_1196_annals_1390_020
crossref_primary_10_1523_JNEUROSCI_4677_14_2015
crossref_primary_10_3389_fnbeh_2023_1301406
crossref_primary_10_1016_j_neuron_2015_07_008
crossref_primary_10_3389_fncom_2016_00054
crossref_primary_10_1517_17530059_2012_673583
crossref_primary_10_1016_j_neuron_2013_11_028
crossref_primary_10_1016_j_neuron_2008_05_021
crossref_primary_10_1017_S1355617712001294
crossref_primary_10_1016_j_jmp_2016_06_008
crossref_primary_10_1016_j_neuroimage_2004_04_023
crossref_primary_10_1111_j_1460_9568_2005_04411_x
crossref_primary_10_1016_j_evolhumbehav_2016_11_001
crossref_primary_10_1038_s41467_018_04055_5
crossref_primary_10_1016_j_neuron_2011_02_054
crossref_primary_10_1016_j_neuroimage_2010_11_027
crossref_primary_10_1523_JNEUROSCI_2154_18_2018
crossref_primary_10_1371_journal_pcbi_1002841
crossref_primary_10_1016_j_tics_2014_01_003
crossref_primary_10_1038_s41467_017_01369_8
crossref_primary_10_1111_j_1460_9568_2011_07686_x
crossref_primary_10_1016_j_tics_2025_01_001
crossref_primary_10_1111_j_1467_9280_2009_02399_x
crossref_primary_10_1162_jocn_a_01873
crossref_primary_10_1007_s10008_008_0755_4
crossref_primary_10_1196_annals_1390_002
crossref_primary_10_1167_jov_24_12_11
crossref_primary_10_1016_j_cub_2017_02_064
crossref_primary_10_1080_10400419_2015_1030311
crossref_primary_10_1098_rstb_2019_0323
crossref_primary_10_1016_j_neulet_2018_09_007
crossref_primary_10_1196_annals_1390_007
crossref_primary_10_1196_annals_1390_005
crossref_primary_10_1371_journal_pone_0185665
crossref_primary_10_1016_j_biopsych_2024_06_027
crossref_primary_10_1038_npp_2009_124
crossref_primary_10_1016_j_neuroimage_2012_04_024
crossref_primary_10_1038_npp_2009_129
crossref_primary_10_1111_j_1751_9004_2007_00064_x
crossref_primary_10_1007_s10818_022_09330_6
crossref_primary_10_3389_fsoc_2018_00014
crossref_primary_10_1016_j_pscychresns_2012_06_003
crossref_primary_10_1016_j_neuroimage_2011_11_058
crossref_primary_10_1038_nn_3364
crossref_primary_10_1016_j_neuroimage_2003_09_060
crossref_primary_10_1259_bjr_20180942
crossref_primary_10_1523_JNEUROSCI_6157_08_2009
crossref_primary_10_1016_j_nlm_2011_08_006
crossref_primary_10_1038_tp_2017_60
crossref_primary_10_1523_JNEUROSCI_0919_12_2013
crossref_primary_10_3233_JPD_150600
crossref_primary_10_1111_j_1469_8986_2004_00152_x
crossref_primary_10_1038_npp_2010_121
crossref_primary_10_1093_scan_nsx097
crossref_primary_10_1523_JNEUROSCI_2469_09_2009
crossref_primary_10_1016_j_neuropsychologia_2012_02_007
crossref_primary_10_1038_s41598_020_61257_y
crossref_primary_10_3389_fpsyg_2019_02606
crossref_primary_10_1007_s11238_021_09830_3
crossref_primary_10_3389_fnhum_2017_00592
crossref_primary_10_1371_journal_pone_0126326
crossref_primary_10_1073_pnas_0606297104
crossref_primary_10_1523_JNEUROSCI_1995_17_2018
crossref_primary_10_1016_j_tics_2018_04_007
crossref_primary_10_1016_j_tics_2013_03_003
crossref_primary_10_1016_j_bbr_2014_10_024
crossref_primary_10_1093_schbul_sbi040
crossref_primary_10_2139_ssrn_3339123
crossref_primary_10_1523_JNEUROSCI_1640_14_2014
crossref_primary_10_1016_j_neubiorev_2020_04_014
crossref_primary_10_1001_jamapsychiatry_2018_2151
crossref_primary_10_1016_j_bbr_2017_09_050
crossref_primary_10_1002_hbm_24915
crossref_primary_10_1162_netn_a_00021
crossref_primary_10_1038_s41583_024_00898_8
crossref_primary_10_1002_wcs_1217
crossref_primary_10_1111_j_1467_8721_2008_00560_x
crossref_primary_10_1038_s41467_024_53878_y
crossref_primary_10_1016_j_cobeha_2018_10_006
crossref_primary_10_1371_journal_pone_0057257
crossref_primary_10_1016_j_cortex_2018_08_035
crossref_primary_10_1093_rfs_hhw010
crossref_primary_10_1038_mp_2011_75
crossref_primary_10_1007_s10462_016_9467_9
crossref_primary_10_1016_j_neuroimage_2014_09_054
crossref_primary_10_1016_j_neuron_2010_03_033
crossref_primary_10_1016_j_neuron_2018_03_042
crossref_primary_10_1016_j_neuropsychologia_2017_12_021
crossref_primary_10_1162_jocn_2009_21387
crossref_primary_10_1016_j_nlm_2012_02_003
crossref_primary_10_1002_pmh_1235
crossref_primary_10_1007_s11682_016_9660_0
crossref_primary_10_1002_hbm_20547
crossref_primary_10_1073_pnas_1323586111
crossref_primary_10_1523_JNEUROSCI_3489_09_2009
crossref_primary_10_1111_jcpp_12964
crossref_primary_10_1097_WNN_0b013e318192cce0
crossref_primary_10_3233_JIFS_211935
crossref_primary_10_1523_JNEUROSCI_2201_12_2013
crossref_primary_10_1111_jofi_12126
crossref_primary_10_1196_annals_1412_007
crossref_primary_10_1016_j_neunet_2022_05_012
crossref_primary_10_1016_j_pneurobio_2011_08_010
crossref_primary_10_1016_j_tins_2021_07_007
crossref_primary_10_1038_npp_2010_165
crossref_primary_10_1038_s41583_018_0002_7
crossref_primary_10_1038_npp_2010_163
crossref_primary_10_1523_JNEUROSCI_1642_12_2013
crossref_primary_10_1016_j_conb_2011_05_009
crossref_primary_10_1016_j_neuroimage_2009_12_031
crossref_primary_10_1016_j_baga_2012_06_005
crossref_primary_10_3390_brainsci13121677
crossref_primary_10_1002_wcs_1266
crossref_primary_10_1073_pnas_1014938108
crossref_primary_10_1152_jn_00173_2010
crossref_primary_10_5674_jjppp_1805si
crossref_primary_10_1007_s00429_013_0535_5
crossref_primary_10_1016_j_conb_2006_02_001
crossref_primary_10_1016_j_neuroimage_2009_12_026
crossref_primary_10_1016_j_neuroimage_2018_10_083
crossref_primary_10_1007_s00213_017_4550_8
crossref_primary_10_1007_s00213_011_2346_9
crossref_primary_10_1016_j_biopsycho_2022_108350
crossref_primary_10_1016_j_neuroimage_2007_10_061
crossref_primary_10_1523_JNEUROSCI_1479_09_2009
crossref_primary_10_1007_s12078_018_9250_1
crossref_primary_10_31083_j_fbl2908277
crossref_primary_10_1111_ejn_14492
crossref_primary_10_7554_eLife_91928_3
crossref_primary_10_1523_JNEUROSCI_0973_13_2013
crossref_primary_10_1016_j_neuroimage_2008_04_253
crossref_primary_10_1371_journal_pbio_2000756
crossref_primary_10_1016_j_bbr_2013_02_004
crossref_primary_10_3389_fpsyg_2016_00655
crossref_primary_10_1016_j_pscychresns_2016_08_010
crossref_primary_10_1093_scan_nsw171
crossref_primary_10_1016_j_physbeh_2020_113014
crossref_primary_10_1371_journal_pcbi_1008738
crossref_primary_10_1523_JNEUROSCI_2263_13_2014
crossref_primary_10_1093_cercor_bhr198
crossref_primary_10_1002_cne_20749
crossref_primary_10_1177_0956797615618366
crossref_primary_10_1016_S0013_7006_06_78686_9
crossref_primary_10_1111_j_1460_9568_2011_07986_x
crossref_primary_10_1093_cercor_bhs037
crossref_primary_10_1176_appi_ajp_2016_16060671
crossref_primary_10_1101_sqb_2018_83_038166
crossref_primary_10_1038_nrn2119
crossref_primary_10_1016_j_neunet_2020_12_001
crossref_primary_10_15717_bioedu_2012_40_1_109
crossref_primary_10_1038_nrn2357
crossref_primary_10_1038_s41467_020_17828_8
crossref_primary_10_1007_s11920_015_0559_z
crossref_primary_10_2174_1570159X20666220310121441
crossref_primary_10_1016_j_neuropsychologia_2011_06_008
crossref_primary_10_1523_JNEUROSCI_5498_10_2012
crossref_primary_10_1016_j_neuropsychologia_2014_01_021
crossref_primary_10_1007_s11920_020_01213_9
crossref_primary_10_1007_s12559_021_09950_6
crossref_primary_10_1109_ACCESS_2024_3402089
crossref_primary_10_1016_j_neuroimage_2010_03_057
crossref_primary_10_1080_21622965_2015_1005487
crossref_primary_10_1523_JNEUROSCI_3084_15_2016
crossref_primary_10_1038_s42003_022_03756_4
crossref_primary_10_1038_srep25225
crossref_primary_10_1523_JNEUROSCI_0057_10_2010
crossref_primary_10_15717_bioedu_2013_41_3_435
crossref_primary_10_3917_rne_052_0069
crossref_primary_10_1038_s41467_022_35654_y
crossref_primary_10_1111_j_1460_9568_2012_08017_x
crossref_primary_10_1007_BF03217046
crossref_primary_10_2502_janip_66_2_4
crossref_primary_10_1146_annurev_financial_102708_141514
crossref_primary_10_1523_JNEUROSCI_2084_17_2018
crossref_primary_10_1126_science_1099898
crossref_primary_10_1152_jn_00352_2010
crossref_primary_10_1093_brain_aws083
crossref_primary_10_1002_hbm_26019
crossref_primary_10_1016_j_neuroimage_2012_06_058
crossref_primary_10_1093_cercor_bhj004
crossref_primary_10_1093_scan_nsw157
crossref_primary_10_1007_s11910_013_0365_0
crossref_primary_10_1016_j_bbr_2018_04_034
crossref_primary_10_1371_journal_pone_0160851
crossref_primary_10_1007_s10994_023_06363_4
crossref_primary_10_3390_jcm13195772
crossref_primary_10_1016_j_neuroimage_2020_117709
crossref_primary_10_1176_appi_ajp_2014_13121700
crossref_primary_10_1186_1744_859X_7_S1_S114
crossref_primary_10_1111_ejn_15144
crossref_primary_10_1038_ncomms12416
crossref_primary_10_1016_j_neuroimage_2007_10_027
crossref_primary_10_1038_srep28991
crossref_primary_10_1098_rstb_2008_0161
crossref_primary_10_1348_000712609X418480
crossref_primary_10_1038_nature02581
crossref_primary_10_1002_hbm_23173
crossref_primary_10_1098_rstb_2008_0155
crossref_primary_10_1097_WNR_0b013e3282e9a58c
crossref_primary_10_1007_s12662_012_0230_3
crossref_primary_10_1038_nature04766
crossref_primary_10_1002_hbm_23171
crossref_primary_10_1080_17470919_2018_1518834
crossref_primary_10_1523_JNEUROSCI_2383_12_2012
crossref_primary_10_1016_j_cub_2012_07_031
crossref_primary_10_1016_j_bpsc_2021_04_005
crossref_primary_10_3902_jnns_31_82
crossref_primary_10_7554_eLife_56911
crossref_primary_10_1016_j_neuron_2010_04_016
crossref_primary_10_1002_wcs_1420
crossref_primary_10_1146_annurev_psych_010814_015156
crossref_primary_10_1523_JNEUROSCI_2558_12_2012
crossref_primary_10_1038_nn1279
crossref_primary_10_1007_s11571_016_9376_2
crossref_primary_10_1177_02666669241276427
crossref_primary_10_1016_j_neubiorev_2020_07_021
crossref_primary_10_1016_j_neuron_2021_04_014
crossref_primary_10_1038_ijo_2014_121
crossref_primary_10_1111_j_1460_9568_2009_06872_x
crossref_primary_10_1111_j_1469_7610_2006_01596_x
crossref_primary_10_1016_j_bbr_2022_113868
crossref_primary_10_1016_j_neuroimage_2014_07_013
crossref_primary_10_1016_j_neubiorev_2014_06_009
crossref_primary_10_1111_j_1460_9568_2011_07920_x
crossref_primary_10_1007_s11920_025_01588_7
crossref_primary_10_1016_j_neuroimage_2010_01_036
crossref_primary_10_1007_s12078_018_9243_0
crossref_primary_10_1177_1073858404263526
crossref_primary_10_1016_j_neuron_2005_11_014
crossref_primary_10_1109_TNSRE_2008_2009788
crossref_primary_10_1371_journal_pbio_1001662
crossref_primary_10_1016_j_neuron_2017_06_011
crossref_primary_10_1016_j_bpsgos_2023_02_008
crossref_primary_10_1016_j_xinn_2021_100179
crossref_primary_10_1523_JNEUROSCI_4286_07_2008
crossref_primary_10_1523_JNEUROSCI_5445_12_2013
crossref_primary_10_1016_j_neuroimage_2011_10_081
crossref_primary_10_1016_j_molmet_2012_06_002
crossref_primary_10_1111_psyp_13463
crossref_primary_10_1523_JNEUROSCI_4246_06_2007
crossref_primary_10_1016_j_neuropsychologia_2016_05_023
crossref_primary_10_1111_j_1460_9568_2012_08026_x
crossref_primary_10_1523_JNEUROSCI_2915_06_2006
crossref_primary_10_1126_sciadv_adq0261
crossref_primary_10_1016_j_tics_2013_04_001
crossref_primary_10_1038_s41467_023_38671_7
crossref_primary_10_1093_cercor_bhu269
crossref_primary_10_1016_j_celrep_2022_110756
crossref_primary_10_1523_JNEUROSCI_2799_09_2009
crossref_primary_10_1152_jn_00382_2005
crossref_primary_10_1523_JNEUROSCI_1869_11_2011
crossref_primary_10_1523_JNEUROSCI_3400_12_2013
crossref_primary_10_1016_j_biopsycho_2010_12_008
crossref_primary_10_1038_npp_2009_131
crossref_primary_10_3389_fnins_2014_00193
crossref_primary_10_3758_s13415_014_0297_4
Cites_doi 10.1523/JNEUROSCI.21-16-j0002.2001
10.1152/jn.2001.85.3.1315
10.1523/JNEUROSCI.21-08-02793.2001
10.1016/0165-0173(87)90011-7
10.1152/jn.1998.80.1.1
10.1038/nn802
10.1002/hbm.460030303
10.1152/jn.1994.72.2.1024
10.1038/407
10.1038/4513
10.1093/cercor/10.3.263
10.1016/S0028-3908(98)00071-9
10.1097/00001756-199902250-00003
10.1097/00001756-200112040-00016
10.1037/0033-295X.87.6.532
10.1038/nn733
10.1038/379449a0
10.1016/0306-4522(94)90592-4
10.1038/81504
10.1152/jn.1992.68.3.945
10.1016/S0896-6273(01)00303-8
10.1002/(SICI)1096-9861(19970721)384:1<1::AID-CNE1>3.0.CO;2-5
10.1126/science.275.5306.1593
10.1523/JNEUROSCI.20-16-06159.2000
10.1152/jn.1992.67.1.145
10.1152/jn.2000.84.6.3072
10.1073/pnas.160266497
10.1002/cne.10312
10.1007/BF00115009
10.1016/S0896-6273(02)00603-7
ContentType Journal Article
Copyright 2003 Cell Press
Copyright Elsevier Limited Apr 24, 2003
Copyright_xml – notice: 2003 Cell Press
– notice: Copyright Elsevier Limited Apr 24, 2003
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1016/S0896-6273(03)00169-7
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Nursing & Allied Health Premium
MEDLINE
MEDLINE - Academic
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 337
ExternalDocumentID 3234560591
12718865
10_1016_S0896_6273_03_00169_7
S0896627303001697
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-~X
.55
.GJ
0R~
123
1RT
1~5
26-
29N
2WC
3O-
3V.
4.4
457
4G.
53G
5RE
5VS
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAQFI
AAQXK
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
ADMUD
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGHFR
AGKMS
AHHHB
AHMBA
AHPSJ
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FGOYB
FIRID
G-2
HCIFZ
HVGLF
HZ~
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
MVM
N9A
NCXOZ
O-L
O9-
OK1
OZT
P2P
P6G
PQQKQ
PROAC
R2-
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
X7M
ZA5
ZGI
ZKB
AAFWJ
AAMRU
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ITC
0SF
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QP
7QR
7TK
8FD
EFKBS
FR3
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c467t-dd71aae3bfae72b49d8e36fac35ee95535d46ae25b6bbdea4ac7672792502d113
IEDL.DBID IXB
ISSN 0896-6273
IngestDate Thu Sep 04 21:36:48 EDT 2025
Fri Sep 05 06:33:54 EDT 2025
Fri Jul 25 11:07:19 EDT 2025
Wed Feb 19 02:35:41 EST 2025
Tue Jul 01 01:47:44 EDT 2025
Thu Apr 24 23:04:33 EDT 2025
Fri Feb 23 02:34:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-dd71aae3bfae72b49d8e36fac35ee95535d46ae25b6bbdea4ac7672792502d113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0896627303001697
PMID 12718865
PQID 1503603572
PQPubID 2031076
PageCount 9
ParticipantIDs proquest_miscellaneous_73227003
proquest_miscellaneous_18743562
proquest_journals_1503603572
pubmed_primary_12718865
crossref_citationtrail_10_1016_S0896_6273_03_00169_7
crossref_primary_10_1016_S0896_6273_03_00169_7
elsevier_sciencedirect_doi_10_1016_S0896_6273_03_00169_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-04-24
PublicationDateYYYYMMDD 2003-04-24
PublicationDate_xml – month: 04
  year: 2003
  text: 2003-04-24
  day: 24
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2003
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Friston, Tononi, Reeke, Sporns, Edelman (BIB11) 1994; 59
Duvernoy (BIB7) 1999
Rescorla, Wagner (BIB28) 1972
Schoenbaum, Chiba, Gallagher (BIB29) 1998; 1
Sutton (BIB33) 1988; 3
Hikosaka, Watanabe (BIB13) 2000; 10
Ljungberg, Apicella, Schultz (BIB18) 1992; 67
Fletcher, Anderson, Shanks, Honey, Carpenter, Donovan, Papadakis, Bullmore (BIB9) 2001; 4
Oades, Halliday (BIB24) 1987; 434
Schultz, Tremblay, Hollerman (BIB32) 1998; 37
Pagnoni, Zink, Montague, Berns (BIB25) 2002; 5
Schultz, Dayan, Montague (BIB31) 1997; 275
Breiter, Aharon, Kahneman, Dale, Shizgal (BIB3) 2001; 30
Sutton, Barto (BIB34) 1990
Apicella, Scarnati, Ljungberg, Schultz (BIB1) 1992; 68
Berns, McClure, Pagnoni, Montague (BIB2) 2001; 21
Duvernoy (BIB6) 1995
Knutson, Fong, Adams, Varner, Hommer (BIB16) 2001; 12
Schultz (BIB30) 1998; 80
Friston, Ashburner, Poline, Frith, Heather, Frackowiak (BIB12) 1995; 2
Francis, Rolls, Bowtell, McGlone, O'Doherty, Browning, Clare, Smith (BIB10) 1999; 10
Nobre, Coull, Frith, Mesulam (BIB21) 1999; 2
Ploghaus, Tracey, Clare, Gati, Rawlins, Matthews (BIB27) 2000; 97
Elliott, Friston, Dolan (BIB8) 2000; 20
Delgado, Nystrom, Fissell, Noll, Fiez (BIB5) 2000; 84
Mirenowicz, Schultz (BIB19) 1994; 72
Mirenowicz, Schultz (BIB20) 1996; 379
Dayan, Kakade, Montague (BIB4) 2000; 3
Karachi, Francois, Parain, Bardinet, Tande, Hirsch, Yelnik (BIB15) 2002; 450
O'Doherty, Rolls, Francis, Bowtell, McGlone (BIB22) 2001; 85
Holt, Graybiel, Saper (BIB14) 1997; 384
Pearce, Hall (BIB26) 1980; 87
O'Doherty, Deichmann, Crtichley, Dolan (BIB23) 2002; 33
Knutson, Adams, Fong, Hommer (BIB17) 2001; 21
Nobre (10.1016/S0896-6273(03)00169-7_BIB21) 1999; 2
Holt (10.1016/S0896-6273(03)00169-7_BIB14) 1997; 384
Knutson (10.1016/S0896-6273(03)00169-7_BIB16) 2001; 12
Knutson (10.1016/S0896-6273(03)00169-7_BIB17) 2001; 21
Friston (10.1016/S0896-6273(03)00169-7_BIB11) 1994; 59
Sutton (10.1016/S0896-6273(03)00169-7_BIB34) 1990
Elliott (10.1016/S0896-6273(03)00169-7_BIB8) 2000; 20
Karachi (10.1016/S0896-6273(03)00169-7_BIB15) 2002; 450
Friston (10.1016/S0896-6273(03)00169-7_BIB12) 1995; 2
Dayan (10.1016/S0896-6273(03)00169-7_BIB4) 2000; 3
Pearce (10.1016/S0896-6273(03)00169-7_BIB26) 1980; 87
Schultz (10.1016/S0896-6273(03)00169-7_BIB32) 1998; 37
Mirenowicz (10.1016/S0896-6273(03)00169-7_BIB19) 1994; 72
Sutton (10.1016/S0896-6273(03)00169-7_BIB33) 1988; 3
Berns (10.1016/S0896-6273(03)00169-7_BIB2) 2001; 21
Ljungberg (10.1016/S0896-6273(03)00169-7_BIB18) 1992; 67
Ploghaus (10.1016/S0896-6273(03)00169-7_BIB27) 2000; 97
Duvernoy (10.1016/S0896-6273(03)00169-7_BIB7) 1999
Hikosaka (10.1016/S0896-6273(03)00169-7_BIB13) 2000; 10
Oades (10.1016/S0896-6273(03)00169-7_BIB24) 1987; 434
Pagnoni (10.1016/S0896-6273(03)00169-7_BIB25) 2002; 5
O'Doherty (10.1016/S0896-6273(03)00169-7_BIB23) 2002; 33
Duvernoy (10.1016/S0896-6273(03)00169-7_BIB6) 1995
Apicella (10.1016/S0896-6273(03)00169-7_BIB1) 1992; 68
Breiter (10.1016/S0896-6273(03)00169-7_BIB3) 2001; 30
Delgado (10.1016/S0896-6273(03)00169-7_BIB5) 2000; 84
Francis (10.1016/S0896-6273(03)00169-7_BIB10) 1999; 10
Schultz (10.1016/S0896-6273(03)00169-7_BIB30) 1998; 80
Rescorla (10.1016/S0896-6273(03)00169-7_BIB28) 1972
O'Doherty (10.1016/S0896-6273(03)00169-7_BIB22) 2001; 85
Schoenbaum (10.1016/S0896-6273(03)00169-7_BIB29) 1998; 1
Fletcher (10.1016/S0896-6273(03)00169-7_BIB9) 2001; 4
Mirenowicz (10.1016/S0896-6273(03)00169-7_BIB20) 1996; 379
Schultz (10.1016/S0896-6273(03)00169-7_BIB31) 1997; 275
12718849 - Neuron. 2003 Apr 24;38(2):150-2
References_xml – volume: 2
  start-page: 11
  year: 1999
  end-page: 12
  ident: BIB21
  article-title: Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention
  publication-title: Nat. Neurosci.
– volume: 68
  start-page: 945
  year: 1992
  end-page: 960
  ident: BIB1
  article-title: Neuronal activity in monkey striatum related to the expectation of predictable environmental events
  publication-title: J. Neurophysiol.
– volume: 85
  start-page: 1315
  year: 2001
  end-page: 1321
  ident: BIB22
  article-title: Representation of pleasant and aversive taste in the human brain
  publication-title: J. Neurophysiol.
– volume: 30
  start-page: 619
  year: 2001
  end-page: 639
  ident: BIB3
  article-title: Functional imaging of neural responses to expectancy and experience of monetary gains and losses
  publication-title: Neuron
– volume: 434
  start-page: 117
  year: 1987
  end-page: 165
  ident: BIB24
  article-title: Ventral tegmental (A10) system
  publication-title: Brain Res.
– volume: 450
  start-page: 122
  year: 2002
  end-page: 134
  ident: BIB15
  article-title: Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity
  publication-title: J. Comp. Neurol.
– volume: 21
  start-page: 2793
  year: 2001
  end-page: 2798
  ident: BIB2
  article-title: Predictability modulates human brain response to reward
  publication-title: J. Neurosci.
– volume: 10
  start-page: 263
  year: 2000
  end-page: 271
  ident: BIB13
  article-title: Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards
  publication-title: Cereb. Cortex
– volume: 1
  start-page: 155
  year: 1998
  end-page: 159
  ident: BIB29
  article-title: Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning
  publication-title: Nat. Neurosci.
– volume: 37
  start-page: 421
  year: 1998
  end-page: 429
  ident: BIB32
  article-title: Reward prediction in primate basal ganglia and frontal cortex
  publication-title: Neuropharmacology
– year: 1990
  ident: BIB34
  article-title: Time derivative models of Pavlovian reinforcement
  publication-title: Learning and Computational Neuroscience
– volume: 80
  start-page: 1
  year: 1998
  end-page: 27
  ident: BIB30
  article-title: Predictive reward signal of dopamine neurons
  publication-title: J. Neurophysiol.
– volume: 4
  start-page: 1043
  year: 2001
  end-page: 1048
  ident: BIB9
  article-title: Responses of human frontal cortex to surprising events are predicted by formal associative learning theory
  publication-title: Nat. Neurosci.
– volume: 12
  start-page: 3683
  year: 2001
  end-page: 3687
  ident: BIB16
  article-title: Dissociation of reward anticipation and outcome with event-related fMRI
  publication-title: Neuroreport
– volume: 384
  start-page: 1
  year: 1997
  end-page: 25
  ident: BIB14
  article-title: Neurochemical architecture of the human striatum
  publication-title: J. Comp. Neurol.
– volume: 379
  start-page: 449
  year: 1996
  end-page: 451
  ident: BIB20
  article-title: Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli
  publication-title: Nature
– volume: 3
  start-page: 9
  year: 1988
  end-page: 44
  ident: BIB33
  article-title: Learning to predict by the methods of temporal differences
  publication-title: Machine Learning
– volume: 87
  start-page: 532
  year: 1980
  end-page: 552
  ident: BIB26
  article-title: A model for Pavlovian learning
  publication-title: Psychol. Rev.
– volume: 59
  start-page: 229
  year: 1994
  end-page: 243
  ident: BIB11
  article-title: Value-dependent selection in the brain
  publication-title: Neuroscience
– volume: 72
  start-page: 1024
  year: 1994
  end-page: 1027
  ident: BIB19
  article-title: Importance of unpredictability for reward responses in primate dopamine neurons
  publication-title: J. Neurophysiol.
– year: 1995
  ident: BIB6
  publication-title: The Human Brain Stem and Cerebellum
– volume: 97
  start-page: 9281
  year: 2000
  end-page: 9286
  ident: BIB27
  article-title: Learning about pain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 453
  year: 1999
  end-page: 459
  ident: BIB10
  article-title: The representation of the pleasantness of touch in the human brain, and its relation to taste and olfactory areas
  publication-title: Neuroreport
– volume: 84
  start-page: 3072
  year: 2000
  end-page: 3077
  ident: BIB5
  article-title: Tracking the hemodynamic responses to reward and punishment in the striatum
  publication-title: J. Neurophysiol.
– volume: 275
  start-page: 1593
  year: 1997
  end-page: 1599
  ident: BIB31
  article-title: A neural substrate of prediction and reward
  publication-title: Science
– volume: 5
  start-page: 97
  year: 2002
  end-page: 98
  ident: BIB25
  article-title: Activity in human ventral striatum locked to errors of reward prediction
  publication-title: Nat. Neurosci.
– volume: 3
  start-page: 1218
  year: 2000
  end-page: 1223
  ident: BIB4
  article-title: Learning and selective attention
  publication-title: Nat. Neurosci. Suppl.
– volume: 20
  start-page: 6159
  year: 2000
  end-page: 6165
  ident: BIB8
  article-title: Dissociable neural responses in human reward systems
  publication-title: J. Neurosci.
– year: 1999
  ident: BIB7
  publication-title: The Human Brain
– volume: 2
  start-page: 165
  year: 1995
  end-page: 189
  ident: BIB12
  article-title: Spatial registration and normalisation of images
  publication-title: Hum. Brain Mapp.
– volume: 33
  start-page: 815
  year: 2002
  end-page: 826
  ident: BIB23
  article-title: Neural responses during anticipation of a primary taste reward
  publication-title: Neuron
– volume: 21
  start-page: RC159
  year: 2001
  ident: BIB17
  article-title: Anticipation of increasing monetary reward selectively recruits nucleus accumbens
  publication-title: J. Neurosci.
– volume: 67
  start-page: 145
  year: 1992
  end-page: 163
  ident: BIB18
  article-title: Responses of monkey dopamine neurons during learning of behavioral reactions
  publication-title: J. Neurophysiol.
– year: 1972
  ident: BIB28
  article-title: A theory of Pavlovian conditioning
  publication-title: Classical Conditioning II
– year: 1999
  ident: 10.1016/S0896-6273(03)00169-7_BIB7
– volume: 21
  start-page: RC159
  year: 2001
  ident: 10.1016/S0896-6273(03)00169-7_BIB17
  article-title: Anticipation of increasing monetary reward selectively recruits nucleus accumbens
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-16-j0002.2001
– volume: 85
  start-page: 1315
  year: 2001
  ident: 10.1016/S0896-6273(03)00169-7_BIB22
  article-title: Representation of pleasant and aversive taste in the human brain
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2001.85.3.1315
– volume: 21
  start-page: 2793
  year: 2001
  ident: 10.1016/S0896-6273(03)00169-7_BIB2
  article-title: Predictability modulates human brain response to reward
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-08-02793.2001
– year: 1995
  ident: 10.1016/S0896-6273(03)00169-7_BIB6
– volume: 434
  start-page: 117
  year: 1987
  ident: 10.1016/S0896-6273(03)00169-7_BIB24
  article-title: Ventral tegmental (A10) system
  publication-title: Brain Res.
  doi: 10.1016/0165-0173(87)90011-7
– volume: 80
  start-page: 1
  year: 1998
  ident: 10.1016/S0896-6273(03)00169-7_BIB30
  article-title: Predictive reward signal of dopamine neurons
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.80.1.1
– year: 1990
  ident: 10.1016/S0896-6273(03)00169-7_BIB34
  article-title: Time derivative models of Pavlovian reinforcement
– volume: 5
  start-page: 97
  year: 2002
  ident: 10.1016/S0896-6273(03)00169-7_BIB25
  article-title: Activity in human ventral striatum locked to errors of reward prediction
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn802
– volume: 2
  start-page: 165
  year: 1995
  ident: 10.1016/S0896-6273(03)00169-7_BIB12
  article-title: Spatial registration and normalisation of images
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460030303
– volume: 72
  start-page: 1024
  year: 1994
  ident: 10.1016/S0896-6273(03)00169-7_BIB19
  article-title: Importance of unpredictability for reward responses in primate dopamine neurons
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1994.72.2.1024
– volume: 1
  start-page: 155
  year: 1998
  ident: 10.1016/S0896-6273(03)00169-7_BIB29
  article-title: Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning
  publication-title: Nat. Neurosci.
  doi: 10.1038/407
– year: 1972
  ident: 10.1016/S0896-6273(03)00169-7_BIB28
  article-title: A theory of Pavlovian conditioning
– volume: 2
  start-page: 11
  year: 1999
  ident: 10.1016/S0896-6273(03)00169-7_BIB21
  article-title: Orbitofrontal cortex is activated during breaches of expectation in tasks of visual attention
  publication-title: Nat. Neurosci.
  doi: 10.1038/4513
– volume: 10
  start-page: 263
  year: 2000
  ident: 10.1016/S0896-6273(03)00169-7_BIB13
  article-title: Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/10.3.263
– volume: 37
  start-page: 421
  year: 1998
  ident: 10.1016/S0896-6273(03)00169-7_BIB32
  article-title: Reward prediction in primate basal ganglia and frontal cortex
  publication-title: Neuropharmacology
  doi: 10.1016/S0028-3908(98)00071-9
– volume: 10
  start-page: 453
  year: 1999
  ident: 10.1016/S0896-6273(03)00169-7_BIB10
  article-title: The representation of the pleasantness of touch in the human brain, and its relation to taste and olfactory areas
  publication-title: Neuroreport
  doi: 10.1097/00001756-199902250-00003
– volume: 12
  start-page: 3683
  year: 2001
  ident: 10.1016/S0896-6273(03)00169-7_BIB16
  article-title: Dissociation of reward anticipation and outcome with event-related fMRI
  publication-title: Neuroreport
  doi: 10.1097/00001756-200112040-00016
– volume: 87
  start-page: 532
  year: 1980
  ident: 10.1016/S0896-6273(03)00169-7_BIB26
  article-title: A model for Pavlovian learning
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.87.6.532
– volume: 4
  start-page: 1043
  year: 2001
  ident: 10.1016/S0896-6273(03)00169-7_BIB9
  article-title: Responses of human frontal cortex to surprising events are predicted by formal associative learning theory
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn733
– volume: 379
  start-page: 449
  year: 1996
  ident: 10.1016/S0896-6273(03)00169-7_BIB20
  article-title: Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli
  publication-title: Nature
  doi: 10.1038/379449a0
– volume: 59
  start-page: 229
  year: 1994
  ident: 10.1016/S0896-6273(03)00169-7_BIB11
  article-title: Value-dependent selection in the brain
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(94)90592-4
– volume: 3
  start-page: 1218
  year: 2000
  ident: 10.1016/S0896-6273(03)00169-7_BIB4
  article-title: Learning and selective attention
  publication-title: Nat. Neurosci. Suppl.
  doi: 10.1038/81504
– volume: 68
  start-page: 945
  year: 1992
  ident: 10.1016/S0896-6273(03)00169-7_BIB1
  article-title: Neuronal activity in monkey striatum related to the expectation of predictable environmental events
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1992.68.3.945
– volume: 30
  start-page: 619
  year: 2001
  ident: 10.1016/S0896-6273(03)00169-7_BIB3
  article-title: Functional imaging of neural responses to expectancy and experience of monetary gains and losses
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00303-8
– volume: 384
  start-page: 1
  year: 1997
  ident: 10.1016/S0896-6273(03)00169-7_BIB14
  article-title: Neurochemical architecture of the human striatum
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(19970721)384:1<1::AID-CNE1>3.0.CO;2-5
– volume: 275
  start-page: 1593
  year: 1997
  ident: 10.1016/S0896-6273(03)00169-7_BIB31
  article-title: A neural substrate of prediction and reward
  publication-title: Science
  doi: 10.1126/science.275.5306.1593
– volume: 20
  start-page: 6159
  year: 2000
  ident: 10.1016/S0896-6273(03)00169-7_BIB8
  article-title: Dissociable neural responses in human reward systems
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-16-06159.2000
– volume: 67
  start-page: 145
  year: 1992
  ident: 10.1016/S0896-6273(03)00169-7_BIB18
  article-title: Responses of monkey dopamine neurons during learning of behavioral reactions
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1992.67.1.145
– volume: 84
  start-page: 3072
  year: 2000
  ident: 10.1016/S0896-6273(03)00169-7_BIB5
  article-title: Tracking the hemodynamic responses to reward and punishment in the striatum
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2000.84.6.3072
– volume: 97
  start-page: 9281
  year: 2000
  ident: 10.1016/S0896-6273(03)00169-7_BIB27
  article-title: Learning about pain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.160266497
– volume: 450
  start-page: 122
  year: 2002
  ident: 10.1016/S0896-6273(03)00169-7_BIB15
  article-title: Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.10312
– volume: 3
  start-page: 9
  year: 1988
  ident: 10.1016/S0896-6273(03)00169-7_BIB33
  article-title: Learning to predict by the methods of temporal differences
  publication-title: Machine Learning
  doi: 10.1007/BF00115009
– volume: 33
  start-page: 815
  year: 2002
  ident: 10.1016/S0896-6273(03)00169-7_BIB23
  article-title: Neural responses during anticipation of a primary taste reward
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00603-7
– reference: 12718849 - Neuron. 2003 Apr 24;38(2):150-2
SSID ssj0014591
Score 2.3836033
Snippet Temporal difference learning has been proposed as a model for Pavlovian conditioning, in which an animal learns to predict delivery of reward following...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 329
SubjectTerms Adolescent
Adult
Algorithms
Brain
Brain - anatomy & histology
Brain - physiology
Brain Mapping
Charitable foundations
Conditioning, Classical - physiology
Corpus Striatum - anatomy & histology
Corpus Striatum - physiology
Dopamine
Female
Frontal Lobe - anatomy & histology
Frontal Lobe - physiology
Humans
Learning - physiology
Magnetic Resonance Imaging
Male
Reference Values
Reflex, Pupillary - physiology
Reward
Taste - physiology
Time Perception - physiology
Title Temporal Difference Models and Reward-Related Learning in the Human Brain
URI https://dx.doi.org/10.1016/S0896-6273(03)00169-7
https://www.ncbi.nlm.nih.gov/pubmed/12718865
https://www.proquest.com/docview/1503603572
https://www.proquest.com/docview/18743562
https://www.proquest.com/docview/73227003
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5VRUhcELQ8AqX4gBAcTDZ-7h7TQlWoxKG0IjfL9s6iSGFb0fTQf8_Y6yTiEFXi6h1b3rE9_mzPzAfwTmOwSgU6qVoRuVJNzX3oJDeosfJVRBGyt8V3c3qpvs30bAeOV7Ewya2y2P7BpmdrXUrGRZvj6_l8_KOqm5S9nGxwwi1NiihPmVpSEN_saP2SoPTAmkfCPElvoniGFnLhh0p-zI1wu21_2oY_8z508gQeFwDJpkMfn8IO9nuwP-3p8Pz7jr1n2aUz35XvwcOBafJuH75eDCmoFuxzYUSJyBIP2uKG-b5l55i9Z7NrHLasZF39xeY9I4TI8lU_O0p0Es_g8uTLxfEpLywKPJIRXPK2tRPvUYbOoxVBNW2N0nQ-So3YaC11q4xHoYMJoUWvfLTpebYhcCTayUQ-h93-qseXwDpvdAzS140Sqq2U79DQOEfhCUea2o9ArXTnYkkxnpguFm7jS0Yqd0nlrpIuq9zZEXxaV7secmzcV6FeDYz7Z7I42gfuq3qwGkhXVuuNI1AsTSW1FSN4u_5M6yw9nvger25JpiasRWBxu4Ql22jJSI7gxTBBNj8jCAHURr_6_36_hkfZjbBSXKgD2F3-ucU3BIeW4RAeTM_Of54d5nn_F2lMAhg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIgQXBC2PQKE-IASHJRs_d49toUqg9ACplJtle2dRpLCtaHrov2fsdRJxiCpx9Y4t79gef_Z8ngF4p9AbKT2dVA0PhZR1VTjfikKjwtKVAblPbItzPb6QX2dqtgMnq7cwkVaZbX9v05O1ziXDrM3h1Xw-_FlWdYxeTjY44pba3IP7hAZ05HVNZsdrV4JUfdo8ki6i-OYZT99EKvxQio-plcJs26C2AdC0EZ0-gccZQbKjvpNPYQe7Pdg_6uj0_PuWvWeJ05kuy_fgQZ9q8nYfJtM-BtWCfc4pUQKymAhtcc1c17AfmOiziRuHDcthV3-xeccIIrJ018-OYz6JZ3Bx-mV6Mi5yGoUikBVcFk1jRs6h8K1Dw72smwqFbl0QCrFWSqhGaodcee19g066YKJ_tiZ0xJvRSDyH3e6yw5fAWqdV8MJVteSyKaVrUdNAB-4ISOrKDUCudGdDjjEeU10s7IZMRiq3UeW2FDap3JoBfFpXu-qDbNxVoVoNjP1ntljaCO6qerAaSJuX67UlVCx0KZThAzhcf6aFFr0nrsPLG5KpCGwRWtwuYcg4GrKSA3jRT5DNz3CCAJVWr_6_34fwcDz9fmbPJuffXsOjxCksZcHlAewu_9zgG8JGS_82zf2_YIYDnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Difference+Models+and+Reward-Related+Learning+in+the+Human+Brain&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=O%27Doherty%2C+J+P&rft.au=Dayan%2C+P&rft.au=Friston%2C+K&rft.au=Critchley%2C+H&rft.date=2003-04-24&rft.issn=0896-6273&rft.volume=38&rft.issue=2&rft.spage=329&rft.epage=337&rft_id=info:doi/10.1016%2FS0896-6273%2803%2900169-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon