Efficacious bioconversion of waste walnut shells to xylotetrose and xylopentose by free xylanase (Xy) and MOF immobilized xylanase (Xy-Cu-BTC)
[Display omitted] •Xylanase (Xy) extracted from Bacillus pumilus bacterial strain was partially purified.•Production of Cu-BTC MOF was done at room temperature.•Xy was immobilized onto Cu-BTC MOF to form blue crystals of Xy-Cu-BTC.•Xylan was extracted from waste walnut shell.•Bioconversion of xylan...
Saved in:
Published in | Bioresource technology Vol. 357; p. 127374 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Xylanase (Xy) extracted from Bacillus pumilus bacterial strain was partially purified.•Production of Cu-BTC MOF was done at room temperature.•Xy was immobilized onto Cu-BTC MOF to form blue crystals of Xy-Cu-BTC.•Xylan was extracted from waste walnut shell.•Bioconversion of xylan to xylooligosaccharides by free and immobilized enzyme system.
This study uses a cost effective and efficient method for production of higher DP (degree of polymerization) Xylooligosaccharides (XOS) from xylan extracted from the waste walnut shells. Copper based metal organic framework (Cu-BTC MOF) was prepared for immobilization of free xylanase (Xy) enzyme by green synthesis method. Both free and immobilized xylanase (Xy-Cu-BTC) were able to cause the bioconversion of xylan (87.4% yield) into XOS. Predominant production of xylotetrose (X4) and xylopentose (X5) was observed for both the methods. Percentage XOS conversion for free enzyme (Xy) was found to be 4.1% X4 and 60.57% X5 whereas these values increased in case of immobilized system where 11.8% X4 and 64.2% X5 were produced. Xylose production was minute in case of immobilized xylanase 0.88% which makes it a better method for XOS production free from xylose interference. Xy-Cu-BTC MOF can hence be used as an attractive alternative for pure XOS production. |
---|---|
AbstractList | This study uses a cost effective and efficient method for production of higher DP (degree of polymerization) Xylooligosaccharides (XOS) from xylan extracted from the waste walnut shells. Copper based metal organic framework (Cu-BTC MOF) was prepared for immobilization of free xylanase (Xy) enzyme by green synthesis method. Both free and immobilized xylanase (Xy-Cu-BTC) were able to cause the bioconversion of xylan (87.4% yield) into XOS. Predominant production of xylotetrose (X4) and xylopentose (X5) was observed for both the methods. Percentage XOS conversion for free enzyme (Xy) was found to be 4.1% X4 and 60.57% X5 whereas these values increased in case of immobilized system where 11.8% X4 and 64.2% X5 were produced. Xylose production was minute in case of immobilized xylanase 0.88% which makes it a better method for XOS production free from xylose interference. Xy-Cu-BTC MOF can hence be used as an attractive alternative for pure XOS production. This study uses a cost effective and efficient method for production of higher DP (degree of polymerization) Xylooligosaccharides (XOS) from xylan extracted from the waste walnut shells. Copper based metal organic framework (Cu-BTC MOF) was prepared for immobilization of free xylanase (Xy) enzyme by green synthesis method. Both free and immobilized xylanase (Xy-Cu-BTC) were able to cause the bioconversion of xylan (87.4% yield) into XOS. Predominant production of xylotetrose (X4) and xylopentose (X5) was observed for both the methods. Percentage XOS conversion for free enzyme (Xy) was found to be 4.1% X4 and 60.57% X5 whereas these values increased in case of immobilized system where 11.8% X4 and 64.2% X5 were produced. Xylose production was minute in case of immobilized xylanase 0.88% which makes it a better method for XOS production free from xylose interference. Xy-Cu-BTC MOF can hence be used as an attractive alternative for pure XOS production.This study uses a cost effective and efficient method for production of higher DP (degree of polymerization) Xylooligosaccharides (XOS) from xylan extracted from the waste walnut shells. Copper based metal organic framework (Cu-BTC MOF) was prepared for immobilization of free xylanase (Xy) enzyme by green synthesis method. Both free and immobilized xylanase (Xy-Cu-BTC) were able to cause the bioconversion of xylan (87.4% yield) into XOS. Predominant production of xylotetrose (X4) and xylopentose (X5) was observed for both the methods. Percentage XOS conversion for free enzyme (Xy) was found to be 4.1% X4 and 60.57% X5 whereas these values increased in case of immobilized system where 11.8% X4 and 64.2% X5 were produced. Xylose production was minute in case of immobilized xylanase 0.88% which makes it a better method for XOS production free from xylose interference. Xy-Cu-BTC MOF can hence be used as an attractive alternative for pure XOS production. [Display omitted] •Xylanase (Xy) extracted from Bacillus pumilus bacterial strain was partially purified.•Production of Cu-BTC MOF was done at room temperature.•Xy was immobilized onto Cu-BTC MOF to form blue crystals of Xy-Cu-BTC.•Xylan was extracted from waste walnut shell.•Bioconversion of xylan to xylooligosaccharides by free and immobilized enzyme system. This study uses a cost effective and efficient method for production of higher DP (degree of polymerization) Xylooligosaccharides (XOS) from xylan extracted from the waste walnut shells. Copper based metal organic framework (Cu-BTC MOF) was prepared for immobilization of free xylanase (Xy) enzyme by green synthesis method. Both free and immobilized xylanase (Xy-Cu-BTC) were able to cause the bioconversion of xylan (87.4% yield) into XOS. Predominant production of xylotetrose (X4) and xylopentose (X5) was observed for both the methods. Percentage XOS conversion for free enzyme (Xy) was found to be 4.1% X4 and 60.57% X5 whereas these values increased in case of immobilized system where 11.8% X4 and 64.2% X5 were produced. Xylose production was minute in case of immobilized xylanase 0.88% which makes it a better method for XOS production free from xylose interference. Xy-Cu-BTC MOF can hence be used as an attractive alternative for pure XOS production. |
ArticleNumber | 127374 |
Author | Arya, Shailendra Kumar Woong Chang, Soon Rajagopal, Rajinikanth Ravindran, Balasubramani Kaushal, Jyoti Kumar Awasthi, Mukesh Khatri, Madhu Izyan Wan Azelee, Nur Singh, Gursharan |
Author_xml | – sequence: 1 givenname: Jyoti surname: Kaushal fullname: Kaushal, Jyoti organization: Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India – sequence: 2 givenname: Shailendra Kumar surname: Arya fullname: Arya, Shailendra Kumar organization: Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India – sequence: 3 givenname: Madhu surname: Khatri fullname: Khatri, Madhu organization: Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India – sequence: 4 givenname: Gursharan surname: Singh fullname: Singh, Gursharan organization: Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India – sequence: 5 givenname: Nur surname: Izyan Wan Azelee fullname: Izyan Wan Azelee, Nur organization: School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor Bahru, Malaysia – sequence: 6 givenname: Rajinikanth surname: Rajagopal fullname: Rajagopal, Rajinikanth organization: Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada – sequence: 7 givenname: Soon surname: Woong Chang fullname: Woong Chang, Soon organization: Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon 19, Gyeonggi-Do 16227, Republic of Korea – sequence: 8 givenname: Balasubramani surname: Ravindran fullname: Ravindran, Balasubramani organization: Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon 19, Gyeonggi-Do 16227, Republic of Korea – sequence: 9 givenname: Mukesh surname: Kumar Awasthi fullname: Kumar Awasthi, Mukesh email: mukesh_awasthi45@yahoo.com, mukeshawasthi85@nwafu.edu.cn organization: College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35623605$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URKeFV6iybBcZHDuxY4kFdNQCUlE3RWJn-edG9SixB9spDA_BM-PpdBawKRtb9-qcY_k7J-jIBw8InTV42eCGvV0vtQsxg7lfEkzIsiGc8vYFWjQ9pzURnB2hBRYM131H2mN0ktIaY0wbTl6hY9oxQhnuFuj31TA4o4wLc6pKpAn-AWJywVdhqH6olKGco59zle5hHFOVQ_VzO4YMOYYElfL2cd6Az7tZb6shAux2yquyOP-2vXhUfbm9rtw0Be1G9wvsX4p6NdeXd6uL1-jloMYEb57uU_T1-upu9am-uf34efXhpjYt47m2YrBgOm4o1bjvBROsMf0guCGEi1Zg27aEEqbU0AprFVjgHdeiw1qTTmt6is73uZsYvs-QspxcMuV_ykMhIQnjXccbWoj9h7TAZ4SxIj17ks56Ais30U0qbuUBdxG82wtMYZciDNK4rHKhnaNyo2yw3LUr1_LQrty1K_ftFjv7x3544Vnj-70RCtMHB1Em48AbsC6CydIG91zEHxvKw_Y |
CitedBy_id | crossref_primary_10_1007_s11244_023_01898_1 crossref_primary_10_1016_j_procbio_2024_11_025 crossref_primary_10_3390_polym16071010 crossref_primary_10_1016_j_biortech_2024_131702 crossref_primary_10_1016_j_biortech_2023_129660 crossref_primary_10_1016_j_biortech_2022_128572 crossref_primary_10_1007_s13399_023_04610_1 crossref_primary_10_3390_foods13040527 crossref_primary_10_1016_j_biteb_2024_101801 crossref_primary_10_1016_j_ijbiomac_2024_134014 crossref_primary_10_1007_s13205_023_03844_0 crossref_primary_10_1016_j_biortech_2023_128679 crossref_primary_10_1007_s13399_023_04538_6 crossref_primary_10_1007_s12257_024_00007_7 crossref_primary_10_1016_j_biombioe_2023_107038 crossref_primary_10_1016_j_rcradv_2025_200243 crossref_primary_10_1016_j_ijbiomac_2024_129277 crossref_primary_10_3390_membranes13070673 crossref_primary_10_1016_j_indcrop_2024_119967 crossref_primary_10_1016_j_enzmictec_2022_110134 crossref_primary_10_1016_j_jphotochem_2023_115244 |
Cites_doi | 10.1016/j.biortech.2021.125953 10.1016/j.biortech.2021.126319 10.1007/s12257-010-0116-x 10.1016/j.biortech.2021.125063 10.1016/j.biortech.2018.06.070 10.1016/j.biortech.2021.125955 10.1016/j.biortech.2021.125174 10.1016/j.biortech.2020.124611 10.1016/0168-1656(92)90074-J 10.1016/j.biortech.2007.10.051 10.1016/j.biortech.2020.124228 10.1016/j.carbpol.2021.117932 10.1016/j.biortech.2021.125969 10.1016/j.ijbiomac.2021.10.194 10.1016/j.btre.2018.e00258 10.1039/C7TA07294E 10.1016/j.biortech.2021.125979 10.1016/j.seppur.2020.117979 10.1016/j.cattod.2017.10.022 10.1016/j.biortech.2020.123685 |
ContentType | Journal Article |
Copyright | 2022 Copyright © 2022. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier Ltd. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2022.127374 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 35623605 10_1016_j_biortech_2022_127374 S0960852422007039 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-d9fdec57c33b08896961c8f97c2279490d442326aaf49ddaede757b950bb25bb3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Wed Jul 30 11:23:14 EDT 2025 Fri Jul 11 10:54:12 EDT 2025 Mon Jul 21 06:02:39 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Tue Jul 01 03:19:05 EDT 2025 Fri Feb 23 02:40:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Metal organic framework Xylanase Hemicellulosic Xylotetrose Immobilization Xylooligosaccharides (XOS) Xylopentose immobilization metal organic framework hemicellulosic xylanase |
Language | English |
License | Copyright © 2022. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-d9fdec57c33b08896961c8f97c2279490d442326aaf49ddaede757b950bb25bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35623605 |
PQID | 2671276266 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2675571300 proquest_miscellaneous_2671276266 pubmed_primary_35623605 crossref_citationtrail_10_1016_j_biortech_2022_127374 crossref_primary_10_1016_j_biortech_2022_127374 elsevier_sciencedirect_doi_10_1016_j_biortech_2022_127374 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kaushal, Seema, Singh, Arya (b0045) 2018; 18 Phuong, Buess-Herman, Thom, Nam, Dai Lam, Thanh (b0085) 2016; 5 Singh, Arya, Gupta, Sharma (b0095) 2017; 2 Liao, Ying, Li, Zhu, Xu, Zhang (b0050) 2022 Xu, Huang, Guo, Qiao, Zhong (b0115) 2021; 257 Lin, Villacorta, Ge, Zhu (b0055) 2018; 6 Ariaeenejad, Motamedi, Hosseini Salekdeh (b0010) 2021; 319 Cebin, Ralet, Vigouroux, Karača, Martinić, Komes, Bonnin (b0020) 2021; 263 Valladares-Diestra, Porto de Souza Vandenberghe, Soccol (b0105) 2021; 333 Su, Fang, Wang, Lai, Huang, Ling, Sun, Yong (b0100) 2021; 342 Fan, Dresler, Tissen, Wen, Czermak (b0025) 2021; 342 Lu, Lu, Lu, Bie, Zhao, Wang (b0070) 2008; 99 Bailey, Biely, Poutanen (b0015) 1992; 23 Lian, Wang, Luo, Lai, Yong, Yu (b0060) 2020; 314 Pagolu, Singh, Shanmugam, Kondaveeti, Patel, Kalia, Lee (b0080) 2021; 331 Wang, Zheng, Chen, Wu (b0110) 2021; 323 Gascón, Jiménez, Blanco, Sanchez-Sanchez (b0030) 2018; 304 Romero-Fernández, Moreno-Perez, H. Orrego, Martins de Oliveira, I. Santamaría, Díaz, Guisan, Rocha-Martin (b0090) 2018; 266 Menon, Mody, Keshri, Jha (b0075) 2010; 15 Kaushal, Khatri, Singh, Arya (b0040) 2021; 193 Gufe, Ngenyoung, Rattanarojpong, Khunrae (b0035) 2022; 344 Liao, Li, Lian, Xu, Zhang (b0065) 2021; 342 Álvarez, González, Ballesteros, Negro (b0005) 2021; 342 Menon (10.1016/j.biortech.2022.127374_b0075) 2010; 15 Liao (10.1016/j.biortech.2022.127374_b0050) 2022 Liao (10.1016/j.biortech.2022.127374_b0065) 2021; 342 Kaushal (10.1016/j.biortech.2022.127374_b0040) 2021; 193 Lian (10.1016/j.biortech.2022.127374_b0060) 2020; 314 Álvarez (10.1016/j.biortech.2022.127374_b0005) 2021; 342 Lu (10.1016/j.biortech.2022.127374_b0070) 2008; 99 Pagolu (10.1016/j.biortech.2022.127374_b0080) 2021; 331 Singh (10.1016/j.biortech.2022.127374_b0095) 2017; 2 Gufe (10.1016/j.biortech.2022.127374_b0035) 2022; 344 Valladares-Diestra (10.1016/j.biortech.2022.127374_b0105) 2021; 333 Su (10.1016/j.biortech.2022.127374_b0100) 2021; 342 Fan (10.1016/j.biortech.2022.127374_b0025) 2021; 342 Lin (10.1016/j.biortech.2022.127374_b0055) 2018; 6 Cebin (10.1016/j.biortech.2022.127374_b0020) 2021; 263 Ariaeenejad (10.1016/j.biortech.2022.127374_b0010) 2021; 319 Wang (10.1016/j.biortech.2022.127374_b0110) 2021; 323 Kaushal (10.1016/j.biortech.2022.127374_b0045) 2018; 18 Romero-Fernández (10.1016/j.biortech.2022.127374_b0090) 2018; 266 Bailey (10.1016/j.biortech.2022.127374_b0015) 1992; 23 Xu (10.1016/j.biortech.2022.127374_b0115) 2021; 257 Gascón (10.1016/j.biortech.2022.127374_b0030) 2018; 304 Phuong (10.1016/j.biortech.2022.127374_b0085) 2016; 5 |
References_xml | – volume: 263 year: 2021 ident: b0020 article-title: Valorisation of walnut shell and pea pod as novel sources for the production of xylooligosaccharides publication-title: Carbohydrate Polymers – volume: 18 start-page: e00258 year: 2018 ident: b0045 article-title: Immobilization of catalase onto chitosan and chitosan–bentonite complex: A comparative study publication-title: Biotechnol. Rep. – volume: 23 start-page: 257 year: 1992 end-page: 270 ident: b0015 article-title: Interlaboratory testing of methods for assay of xylanase activity publication-title: J. Biotechnol. – volume: 342 start-page: 125969 year: 2021 ident: b0025 article-title: In situ purification and enrichment of fructo-oligosaccharides by fermentative treatment with Bacillus coagulans and selective catalysis using immobilized fructosyltransferase publication-title: Bioresour. Technol. – volume: 193 start-page: 1350 year: 2021 end-page: 1361 ident: b0040 article-title: A multifaceted enzyme conspicuous in fruit juice clarification: An elaborate review on xylanase publication-title: Int. J. Biol. Macromol. – volume: 319 start-page: 124228 year: 2021 ident: b0010 article-title: Application of the immobilized enzyme on magnetic graphene oxide nano-carrier as a versatile bi-functional tool for efficient removal of dye from water publication-title: Bioresour. Technol. – volume: 6 start-page: 293 year: 2018 end-page: 312 ident: b0055 article-title: Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces publication-title: J. Mater. Chem. A. – volume: 99 start-page: 5938 year: 2008 end-page: 5941 ident: b0070 article-title: Purification and characterization of xylanase from Aspergillus ficuum AF-98 publication-title: Bioresour. Technol. – volume: 266 start-page: 249 year: 2018 end-page: 258 ident: b0090 article-title: Designing continuous flow reaction of xylan hydrolysis for xylooligosaccharides production in packed-bed reactors using xylanase immobilized on methacrylic polymer-based supports publication-title: Bioresour. Technol. – start-page: 126683 year: 2022 ident: b0050 article-title: Optimized production of xylooligosaccharides from poplar: a biorefinery strategy with sequential acetic acid/sodium acetate hydrolysis followed by xylanase hydrolysis – volume: 342 start-page: 125955 year: 2021 ident: b0100 article-title: Efficient production of xylooligosaccharides rich in xylobiose and xylotriose from poplar by hydrothermal pretreatment coupled with post-enzymatic hydrolysis publication-title: Bioresour. Technol. – volume: 257 start-page: 117979 year: 2021 ident: b0115 article-title: Highly selective gas transport channels in mixed matrix membranes fabricated by using water-stable Cu-BTC publication-title: Sep. Purif. Technol. – volume: 331 start-page: 125063 year: 2021 ident: b0080 article-title: Site-directed lysine modification of xylanase for oriented immobilization onto silicon dioxide nanoparticles publication-title: Bioresour. Technol. – volume: 314 start-page: 123685 year: 2020 ident: b0060 article-title: An integrated process to produce prebiotic xylooligosaccharides by autohydrolysis, nanofiltration and endo-xylanase from alkali-extracted xylan publication-title: Bioresour. Technol. – volume: 333 start-page: 125174 year: 2021 ident: b0105 article-title: A biorefinery approach for enzymatic complex production for the synthesis of xylooligosaccharides from sugarcane bagasse publication-title: Bioresour. Technol. – volume: 2 start-page: 105 year: 2017 ident: b0095 article-title: Enzyme technology for lignocellulosic biomass conversion and recycling to valuable paper and other products: challenges ahead publication-title: J. Mol. Biol. Technol. – volume: 323 start-page: 124611 year: 2021 ident: b0110 article-title: Immobilization of alpha-L-rhamnosidase on a magnetic metal-organic framework to effectively improve its reusability in the hydrolysis of rutin publication-title: Bioresour. Technol. – volume: 342 start-page: 125953 year: 2021 ident: b0005 article-title: Production of xylooligosaccharides, bioethanol, and lignin from structural components of barley straw pretreated with a steam explosion publication-title: Bioresour. Technol. – volume: 304 start-page: 119 year: 2018 end-page: 126 ident: b0030 article-title: Semi-crystalline Fe-BTC MOF material as an efficient support for enzyme immobilization publication-title: Catal. Today. – volume: 344 start-page: 126319 year: 2022 ident: b0035 article-title: Investigation into the effects of CbXyn10C and Xyn11A on xylooligosaccharide profiles produced from sugarcane bagasse and rice straw and their impact on probiotic growth publication-title: Bioresour. Technol. – volume: 342 start-page: 125979 year: 2021 ident: b0065 article-title: Two-step acetic acid/sodium acetate and xylanase hydrolysis for xylooligosaccharides production from corncob publication-title: Bioresour. Technol. – volume: 15 start-page: 998 year: 2010 end-page: 1005 ident: b0075 article-title: Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain, GESF-1 publication-title: Biotech. Bioprocess Eng. – volume: 5 start-page: 537 year: 2016 end-page: 547 ident: b0085 article-title: Synthesis of Cu-BTC, from Cu and benzene-1, 3, 5-tricarboxylic acid (H publication-title: Green Process. Synth. – volume: 342 start-page: 125953 year: 2021 ident: 10.1016/j.biortech.2022.127374_b0005 article-title: Production of xylooligosaccharides, bioethanol, and lignin from structural components of barley straw pretreated with a steam explosion publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125953 – volume: 344 start-page: 126319 year: 2022 ident: 10.1016/j.biortech.2022.127374_b0035 article-title: Investigation into the effects of CbXyn10C and Xyn11A on xylooligosaccharide profiles produced from sugarcane bagasse and rice straw and their impact on probiotic growth publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126319 – volume: 15 start-page: 998 issue: 6 year: 2010 ident: 10.1016/j.biortech.2022.127374_b0075 article-title: Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain, GESF-1 publication-title: Biotech. Bioprocess Eng. doi: 10.1007/s12257-010-0116-x – volume: 331 start-page: 125063 year: 2021 ident: 10.1016/j.biortech.2022.127374_b0080 article-title: Site-directed lysine modification of xylanase for oriented immobilization onto silicon dioxide nanoparticles publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125063 – volume: 266 start-page: 249 year: 2018 ident: 10.1016/j.biortech.2022.127374_b0090 article-title: Designing continuous flow reaction of xylan hydrolysis for xylooligosaccharides production in packed-bed reactors using xylanase immobilized on methacrylic polymer-based supports publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.06.070 – volume: 342 start-page: 125955 year: 2021 ident: 10.1016/j.biortech.2022.127374_b0100 article-title: Efficient production of xylooligosaccharides rich in xylobiose and xylotriose from poplar by hydrothermal pretreatment coupled with post-enzymatic hydrolysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125955 – volume: 333 start-page: 125174 year: 2021 ident: 10.1016/j.biortech.2022.127374_b0105 article-title: A biorefinery approach for enzymatic complex production for the synthesis of xylooligosaccharides from sugarcane bagasse publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125174 – volume: 2 start-page: 105 year: 2017 ident: 10.1016/j.biortech.2022.127374_b0095 article-title: Enzyme technology for lignocellulosic biomass conversion and recycling to valuable paper and other products: challenges ahead publication-title: J. Mol. Biol. Technol. – volume: 5 start-page: 537 issue: 6 year: 2016 ident: 10.1016/j.biortech.2022.127374_b0085 article-title: Synthesis of Cu-BTC, from Cu and benzene-1, 3, 5-tricarboxylic acid (H3BTC), by a green electrochemical method publication-title: Green Process. Synth. – volume: 323 start-page: 124611 year: 2021 ident: 10.1016/j.biortech.2022.127374_b0110 article-title: Immobilization of alpha-L-rhamnosidase on a magnetic metal-organic framework to effectively improve its reusability in the hydrolysis of rutin publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124611 – volume: 23 start-page: 257 issue: 3 year: 1992 ident: 10.1016/j.biortech.2022.127374_b0015 article-title: Interlaboratory testing of methods for assay of xylanase activity publication-title: J. Biotechnol. doi: 10.1016/0168-1656(92)90074-J – volume: 99 start-page: 5938 issue: 13 year: 2008 ident: 10.1016/j.biortech.2022.127374_b0070 article-title: Purification and characterization of xylanase from Aspergillus ficuum AF-98 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.10.051 – volume: 319 start-page: 124228 year: 2021 ident: 10.1016/j.biortech.2022.127374_b0010 article-title: Application of the immobilized enzyme on magnetic graphene oxide nano-carrier as a versatile bi-functional tool for efficient removal of dye from water publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.124228 – volume: 263 year: 2021 ident: 10.1016/j.biortech.2022.127374_b0020 article-title: Valorisation of walnut shell and pea pod as novel sources for the production of xylooligosaccharides publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2021.117932 – volume: 342 start-page: 125969 year: 2021 ident: 10.1016/j.biortech.2022.127374_b0025 article-title: In situ purification and enrichment of fructo-oligosaccharides by fermentative treatment with Bacillus coagulans and selective catalysis using immobilized fructosyltransferase publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125969 – volume: 193 start-page: 1350 year: 2021 ident: 10.1016/j.biortech.2022.127374_b0040 article-title: A multifaceted enzyme conspicuous in fruit juice clarification: An elaborate review on xylanase publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.10.194 – volume: 18 start-page: e00258 year: 2018 ident: 10.1016/j.biortech.2022.127374_b0045 article-title: Immobilization of catalase onto chitosan and chitosan–bentonite complex: A comparative study publication-title: Biotechnol. Rep. doi: 10.1016/j.btre.2018.e00258 – start-page: 126683 year: 2022 ident: 10.1016/j.biortech.2022.127374_b0050 – volume: 6 start-page: 293 issue: 2018 year: 2018 ident: 10.1016/j.biortech.2022.127374_b0055 article-title: Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA07294E – volume: 342 start-page: 125979 year: 2021 ident: 10.1016/j.biortech.2022.127374_b0065 article-title: Two-step acetic acid/sodium acetate and xylanase hydrolysis for xylooligosaccharides production from corncob publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125979 – volume: 257 start-page: 117979 year: 2021 ident: 10.1016/j.biortech.2022.127374_b0115 article-title: Highly selective gas transport channels in mixed matrix membranes fabricated by using water-stable Cu-BTC publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117979 – volume: 304 start-page: 119 year: 2018 ident: 10.1016/j.biortech.2022.127374_b0030 article-title: Semi-crystalline Fe-BTC MOF material as an efficient support for enzyme immobilization publication-title: Catal. Today. doi: 10.1016/j.cattod.2017.10.022 – volume: 314 start-page: 123685 year: 2020 ident: 10.1016/j.biortech.2022.127374_b0060 article-title: An integrated process to produce prebiotic xylooligosaccharides by autohydrolysis, nanofiltration and endo-xylanase from alkali-extracted xylan publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123685 |
SSID | ssj0003172 |
Score | 2.4972086 |
Snippet | [Display omitted]
•Xylanase (Xy) extracted from Bacillus pumilus bacterial strain was partially purified.•Production of Cu-BTC MOF was done at room... This study uses a cost effective and efficient method for production of higher DP (degree of polymerization) Xylooligosaccharides (XOS) from xylan extracted... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 127374 |
SubjectTerms | biotransformation coordination polymers copper cost effectiveness Hemicellulosic Immobilization Metal organic framework polymerization technology walnuts xylan Xylanase xylanases xylooligosaccharides Xylooligosaccharides (XOS) Xylopentose xylose Xylotetrose |
Title | Efficacious bioconversion of waste walnut shells to xylotetrose and xylopentose by free xylanase (Xy) and MOF immobilized xylanase (Xy-Cu-BTC) |
URI | https://dx.doi.org/10.1016/j.biortech.2022.127374 https://www.ncbi.nlm.nih.gov/pubmed/35623605 https://www.proquest.com/docview/2671276266 https://www.proquest.com/docview/2675571300 |
Volume | 357 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF4hOLQ9VJS-0gfaSj2UwyaxvY_sMbWI0lbQQ0HKbbUvoyDkRMFRgUN_Ar-ZGT8oHCiHXiztelYeecYzs55vZgn5LOzICaksE15axkPmGUxYphILAWpQXnAsTj44lNNj_n0mZhsk72phEFbZ2v7GptfWup0ZtG9zsJzPB78w-B4JcDH4u22YYREf5wq1vP_nL8wD_GOdSQBihtR3qoRP-26OiNY6KZGm_QRcueIPOaiHAtDaEU22yfM2gqTjhskXZCOWO-TZ-GTVdtGIO-RJ3h3jBnfudBx8Sa73sWWE9Yh8pcBXDTqv_5jRRUF_W5A5XM_KdUXPESJ6TqsFvYBNfRUrYDdSW4Z6vARnhWN3SYtVjDhnS_CI9Mvscq-mOvg5oXPQckTfXsVwj4Lla_b1KN97RY4n-0f5lLVHMjAPFrViQRcheqF8ljkESEktEz8qtPLYiZDrYeCY-ZXWFlyHYGOISiinxdC5VDiXvSab5aKMbwmNiZReY3_ApOAJduVJrVZ2CA8KqbW2R0QnB-PbfuV4bMaZ6YBpp6aTn0H5mUZ-PTK4XbdsOnY8ukJ3Yjb3dM-AW3l07adOLwwIFrMttowgQ5NKBSSwX5T_pBFCYUaxR940SnXLc4aRKWw23_0Hd-_JUxw1gMUPZLNareNHCKIqt1t_Jbtka_ztx_TwBt1THRM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZKORQOCMorPI3EgR6cZHf9iI9l1ShAUw6kUm6WX1ulqjZRuhGUAz-B38zMPkp7KD1wWcn2WDvamfWMPZ9nCHkv7MgJqSwTXlrGQ-YZdFimEgsOalBecLycPD2Sk2P-eS7mWyTv7sIgrLJd-5s1vV6t255B-zUHq8Vi8A2d75EAE4PHbcNM3yF3Ofy-WMag_-svzgMMZB1KAGqG5FeuCZ_23QIhrXVUIk37CdhyxW-yUDd5oLUlGj8kD1oXku43XD4iW7HcJff3T9ZtGo24S3byro4bjFxJOfiY_D7AnBHWI_SVAl816rw-MqPLgn63IHR4npWbip4jRvScVkv6A3b1VayA3UhtGer2CqwVtt0FLdYxYp8twSTSD_OLvZpq-nVMF6DmCL_9GcM1CpZv2MdZvveEHI8PZvmEtTUZmIcltWJBFyF6oXyWOURISS0TPyq08piKkOth4Bj6ldYWXIdgY4hKKKfF0LlUOJc9JdvlsozPCY2JlF5jgsCk4Amm5UmtVnYILwqptbZHRCcH49uE5Vg348x0yLRT08nPoPxMI78eGVzOWzUpO26doTsxm2vKZ8Cu3Dr3XacXBgSL4RZbRpChSaUCEtgwyn_SCKEwpNgjzxqluuQ5Q9cUdpsv_oO7t2RnMpsemsNPR19ekns40qAXX5Htar2Jr8Gjqtyb-o_5AyxvHqE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficacious+bioconversion+of+waste+walnut+shells+to+xylotetrose+and+xylopentose+by+free+xylanase+%28Xy%29+and+MOF+immobilized+xylanase+%28Xy-Cu-BTC%29&rft.jtitle=Bioresource+technology&rft.au=Kaushal%2C+Jyoti&rft.au=Arya%2C+Shailendra+Kumar&rft.au=Khatri%2C+Madhu&rft.au=Singh%2C+Gursharan&rft.date=2022-08-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=357&rft.spage=127374&rft_id=info:doi/10.1016%2Fj.biortech.2022.127374&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |