Bioremediation of heavy metals using microalgae: Recent advances and mechanisms

•Bioremediation of five toxic heavy metals by microalgae were reviewed in-depth.•Feasibility and potential of value-added product accumulation were evaluated.•Discussion of advanced techniques and integration with other technologies.•Challenges and proposed strategies were summarized along with futu...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 303; p. 122886
Main Authors Leong, Yoong Kit, Chang, Jo-Shu
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Bioremediation of five toxic heavy metals by microalgae were reviewed in-depth.•Feasibility and potential of value-added product accumulation were evaluated.•Discussion of advanced techniques and integration with other technologies.•Challenges and proposed strategies were summarized along with future prospects. Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts, posing threats to environmental ecology and human health. There is an emerging trend of employing microalgae in phycoremediation of heavy metals, due to several benefits including abundant availability, inexpensive, excellent metal removal efficiency and eco-friendly nature. This review presents the recent advances and mechanisms involved in bioremediation and biosorption of these toxic heavy metals utilizing microalgae. Tolerance and response of different microalgae strains to heavy metals and their bioaccumulation capability with value-added by-products formation as well as utilization of non-living biomass as biosorbents are discussed. Furthermore, challenges and future prospects in bioremediation of heavy metals by microalgae are also explored. This review aims to provide useful insights to help future development of efficient and commercially viable technology for microalgae-based heavy metal bioremediation.
AbstractList Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts, posing threats to environmental ecology and human health. There is an emerging trend of employing microalgae in phycoremediation of heavy metals, due to several benefits including abundant availability, inexpensive, excellent metal removal efficiency and eco-friendly nature. This review presents the recent advances and mechanisms involved in bioremediation and biosorption of these toxic heavy metals utilizing microalgae. Tolerance and response of different microalgae strains to heavy metals and their bioaccumulation capability with value-added by-products formation as well as utilization of non-living biomass as biosorbents are discussed. Furthermore, challenges and future prospects in bioremediation of heavy metals by microalgae are also explored. This review aims to provide useful insights to help future development of efficient and commercially viable technology for microalgae-based heavy metal bioremediation.Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts, posing threats to environmental ecology and human health. There is an emerging trend of employing microalgae in phycoremediation of heavy metals, due to several benefits including abundant availability, inexpensive, excellent metal removal efficiency and eco-friendly nature. This review presents the recent advances and mechanisms involved in bioremediation and biosorption of these toxic heavy metals utilizing microalgae. Tolerance and response of different microalgae strains to heavy metals and their bioaccumulation capability with value-added by-products formation as well as utilization of non-living biomass as biosorbents are discussed. Furthermore, challenges and future prospects in bioremediation of heavy metals by microalgae are also explored. This review aims to provide useful insights to help future development of efficient and commercially viable technology for microalgae-based heavy metal bioremediation.
Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts, posing threats to environmental ecology and human health. There is an emerging trend of employing microalgae in phycoremediation of heavy metals, due to several benefits including abundant availability, inexpensive, excellent metal removal efficiency and eco-friendly nature. This review presents the recent advances and mechanisms involved in bioremediation and biosorption of these toxic heavy metals utilizing microalgae. Tolerance and response of different microalgae strains to heavy metals and their bioaccumulation capability with value-added by-products formation as well as utilization of non-living biomass as biosorbents are discussed. Furthermore, challenges and future prospects in bioremediation of heavy metals by microalgae are also explored. This review aims to provide useful insights to help future development of efficient and commercially viable technology for microalgae-based heavy metal bioremediation.
•Bioremediation of five toxic heavy metals by microalgae were reviewed in-depth.•Feasibility and potential of value-added product accumulation were evaluated.•Discussion of advanced techniques and integration with other technologies.•Challenges and proposed strategies were summarized along with future prospects. Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts, posing threats to environmental ecology and human health. There is an emerging trend of employing microalgae in phycoremediation of heavy metals, due to several benefits including abundant availability, inexpensive, excellent metal removal efficiency and eco-friendly nature. This review presents the recent advances and mechanisms involved in bioremediation and biosorption of these toxic heavy metals utilizing microalgae. Tolerance and response of different microalgae strains to heavy metals and their bioaccumulation capability with value-added by-products formation as well as utilization of non-living biomass as biosorbents are discussed. Furthermore, challenges and future prospects in bioremediation of heavy metals by microalgae are also explored. This review aims to provide useful insights to help future development of efficient and commercially viable technology for microalgae-based heavy metal bioremediation.
ArticleNumber 122886
Author Leong, Yoong Kit
Chang, Jo-Shu
Author_xml – sequence: 1
  givenname: Yoong Kit
  surname: Leong
  fullname: Leong, Yoong Kit
  organization: Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan
– sequence: 2
  givenname: Jo-Shu
  surname: Chang
  fullname: Chang, Jo-Shu
  email: changjs@mail.ncku.edu.tw
  organization: Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32046940$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFqGzEURUVISRy3vxBm2c04GkmjkUoXbULSFgyB0q7Fs_QmlpnRpJJs8N9HieNNN14JxLlX4twrch6mgIRcN3TR0EbebBYrP8WMdr1glJVLxpSSZ2TWqI7XTHfynMyolrRWLROX5CqlDaWUNx27IJecUSG1oDPyeFtqcETnIfspVFNfrRF2-2rEDEOqtsmHp2r0Nk4wPAF-qX6jxZArcDsIFlMFwRXYriH4NKaP5ENfcvjp_ZyTvw_3f-5-1svHH7_uvi9rK2SXa6e1c1x02DtZPqNXoMBS0XPboe2cZiiVpKBdAXpoW3AgWy165ahd9VbxOfl86H2O078tpmxGnywOAwSctskwwTVXQgt5GuWtaCQXrCvo9Tu6XRUn5jn6EeLeHH0V4OsBKD5Sitgb6_ObuRzBD6ah5nUeszHHeczrPOYwT4nL_-LHF04Gvx2CWJzuPEaTrMfi3_mINhs3-VMVL6R2rrQ
CitedBy_id crossref_primary_10_1016_j_jenvman_2023_118246
crossref_primary_10_1016_j_scitotenv_2021_150585
crossref_primary_10_1016_j_jenvman_2024_120723
crossref_primary_10_1007_s10098_020_01847_6
crossref_primary_10_1016_j_algal_2023_103060
crossref_primary_10_1016_j_jhazmat_2021_127609
crossref_primary_10_1016_j_envint_2024_108813
crossref_primary_10_1016_j_envpol_2023_122110
crossref_primary_10_3390_pr9101696
crossref_primary_10_1007_s13762_024_05690_w
crossref_primary_10_1016_j_algal_2024_103465
crossref_primary_10_1016_j_scitotenv_2022_155192
crossref_primary_10_1007_s12011_024_04283_5
crossref_primary_10_1007_s13762_022_04502_3
crossref_primary_10_1016_j_envpol_2023_122349
crossref_primary_10_1016_j_scitotenv_2022_159566
crossref_primary_10_1007_s11356_021_13325_7
crossref_primary_10_1002_cbic_202300284
crossref_primary_10_1016_j_seppur_2024_127975
crossref_primary_10_1016_j_cej_2024_149222
crossref_primary_10_1016_j_envpol_2021_117443
crossref_primary_10_1016_j_jece_2022_108999
crossref_primary_10_3390_cells13131137
crossref_primary_10_1038_s41598_023_42453_y
crossref_primary_10_1016_j_renene_2020_11_014
crossref_primary_10_1016_j_eti_2021_101826
crossref_primary_10_1016_j_jhazmat_2021_127719
crossref_primary_10_3390_molecules27217153
crossref_primary_10_1016_j_arabjc_2021_103231
crossref_primary_10_1007_s11356_023_29427_3
crossref_primary_10_3390_su16188174
crossref_primary_10_1016_j_colsurfb_2024_114168
crossref_primary_10_1007_s11157_022_09635_y
crossref_primary_10_1007_s12011_022_03206_6
crossref_primary_10_1007_s12223_023_01068_6
crossref_primary_10_1002_slct_202003867
crossref_primary_10_1016_j_eehl_2022_11_005
crossref_primary_10_2174_1877946812666211217152703
crossref_primary_10_1080_21655979_2022_2061148
crossref_primary_10_1007_s10811_022_02797_w
crossref_primary_10_1016_j_bcab_2021_102045
crossref_primary_10_1016_j_biortech_2021_126245
crossref_primary_10_1016_j_envpol_2024_123864
crossref_primary_10_1007_s11270_022_05636_3
crossref_primary_10_1016_j_algal_2021_102541
crossref_primary_10_1016_j_jes_2021_02_018
crossref_primary_10_1007_s13399_022_03214_5
crossref_primary_10_5004_dwt_2021_26626
crossref_primary_10_3390_biotech13030028
crossref_primary_10_3389_fbioe_2022_904046
crossref_primary_10_3389_fenvs_2021_778260
crossref_primary_10_1080_00318884_2024_2351207
crossref_primary_10_1016_j_chemosphere_2024_143359
crossref_primary_10_1016_j_envpol_2023_121399
crossref_primary_10_1016_j_dwt_2025_101123
crossref_primary_10_1016_j_ecoenv_2024_116702
crossref_primary_10_1007_s13399_023_04549_3
crossref_primary_10_1016_j_algal_2023_103157
crossref_primary_10_3390_microorganisms12051029
crossref_primary_10_1016_j_algal_2024_103579
crossref_primary_10_1016_j_algal_2024_103699
crossref_primary_10_1016_j_jhazmat_2023_132875
crossref_primary_10_1016_j_envres_2021_111630
crossref_primary_10_3390_ani14050754
crossref_primary_10_1007_s10311_023_01680_5
crossref_primary_10_1016_j_chemosphere_2022_135375
crossref_primary_10_1016_j_chemosphere_2022_137310
crossref_primary_10_3390_life14080940
crossref_primary_10_1016_j_cscee_2024_100801
crossref_primary_10_1177_1934578X241231699
crossref_primary_10_1016_j_biteb_2022_100979
crossref_primary_10_1016_j_envpol_2023_123001
crossref_primary_10_1016_j_sajce_2023_05_007
crossref_primary_10_1039_D3NR04740G
crossref_primary_10_1016_j_algal_2024_103784
crossref_primary_10_1016_j_heliyon_2022_e08995
crossref_primary_10_1016_j_chemosphere_2023_138616
crossref_primary_10_1016_j_algal_2024_103547
crossref_primary_10_1007_s11270_024_07544_0
crossref_primary_10_1007_s11356_024_34390_8
crossref_primary_10_1007_s11356_023_25628_y
crossref_primary_10_1016_j_chemosphere_2020_129172
crossref_primary_10_1016_j_chemosphere_2022_136153
crossref_primary_10_1007_s11356_021_14571_5
crossref_primary_10_1007_s42250_020_00221_9
crossref_primary_10_1080_21655979_2024_2314888
crossref_primary_10_1007_s11356_021_12396_w
crossref_primary_10_32615_ps_2023_038
crossref_primary_10_1016_j_jhazmat_2021_125855
crossref_primary_10_1016_j_jhazmat_2021_127919
crossref_primary_10_1021_acsami_1c18435
crossref_primary_10_2139_ssrn_3995939
crossref_primary_10_2174_1389203724666221108114537
crossref_primary_10_1007_s12088_024_01332_4
crossref_primary_10_1021_acs_est_0c05278
crossref_primary_10_54097_hset_v73i_12862
crossref_primary_10_1016_j_chemosphere_2024_143133
crossref_primary_10_22207_JPAM_15_1_32
crossref_primary_10_1016_j_scitotenv_2022_157110
crossref_primary_10_1016_j_scitotenv_2022_159894
crossref_primary_10_1016_j_algal_2025_103934
crossref_primary_10_1016_j_aquatox_2023_106555
crossref_primary_10_1002_bbb_2635
crossref_primary_10_1016_j_scitotenv_2022_158689
crossref_primary_10_1016_j_jclepro_2023_140538
crossref_primary_10_1016_j_scitotenv_2021_151754
crossref_primary_10_1016_j_scitotenv_2024_174056
crossref_primary_10_1016_j_marpolbul_2021_112656
crossref_primary_10_1016_j_algal_2023_103367
crossref_primary_10_1016_j_algal_2024_103645
crossref_primary_10_1016_j_algal_2024_103766
crossref_primary_10_1016_j_biortech_2022_126759
crossref_primary_10_3390_plants12173147
crossref_primary_10_1016_j_envpol_2022_118837
crossref_primary_10_1016_j_cej_2021_128983
crossref_primary_10_1016_j_jhazmat_2022_129002
crossref_primary_10_3390_biomass2030008
crossref_primary_10_1002_clen_202100286
crossref_primary_10_1016_j_hazadv_2022_100102
crossref_primary_10_1016_j_scitotenv_2021_149464
crossref_primary_10_3390_chemengineering5020027
crossref_primary_10_1016_j_ecoenv_2021_113091
crossref_primary_10_1080_10408398_2021_1979931
crossref_primary_10_1016_j_eti_2020_101340
crossref_primary_10_1016_j_chemosphere_2021_130654
crossref_primary_10_1007_s11274_024_03974_4
crossref_primary_10_1016_j_algal_2024_103411
crossref_primary_10_1016_j_arabjc_2023_105085
crossref_primary_10_1016_j_jece_2024_112669
crossref_primary_10_1016_j_algal_2022_102762
crossref_primary_10_1007_s13762_024_06130_5
crossref_primary_10_1016_j_heliyon_2022_e08967
crossref_primary_10_1016_j_chemosphere_2023_138861
crossref_primary_10_1016_j_heliyon_2024_e35324
crossref_primary_10_1016_j_apgeochem_2020_104823
crossref_primary_10_1007_s10653_022_01330_9
crossref_primary_10_1007_s12668_020_00805_2
crossref_primary_10_1016_j_chemosphere_2021_131870
crossref_primary_10_3389_fmicb_2024_1496843
crossref_primary_10_1080_01496395_2022_2104733
crossref_primary_10_1186_s43141_022_00322_7
crossref_primary_10_3389_fmicb_2021_731723
crossref_primary_10_1016_j_ecoenv_2023_115144
crossref_primary_10_3389_fcimb_2022_867446
crossref_primary_10_1007_s13399_022_03370_8
crossref_primary_10_1016_j_scitotenv_2023_168712
crossref_primary_10_1016_j_stress_2024_100399
crossref_primary_10_1016_j_biteb_2021_100932
crossref_primary_10_1016_j_biortech_2021_126665
crossref_primary_10_1016_j_enconman_2022_116118
crossref_primary_10_1016_j_jwpe_2021_102404
crossref_primary_10_1016_j_jes_2023_04_003
crossref_primary_10_1007_s11356_022_23967_w
crossref_primary_10_1016_j_jclepro_2022_132772
crossref_primary_10_1016_j_scitotenv_2024_176989
crossref_primary_10_1007_s11356_023_28432_w
crossref_primary_10_1016_j_heliyon_2021_e07609
crossref_primary_10_3389_fenvs_2023_1131204
crossref_primary_10_1016_j_chemosphere_2023_139291
crossref_primary_10_1016_j_jwpe_2024_106506
crossref_primary_10_1007_s10646_024_02793_5
crossref_primary_10_1007_s44169_024_00072_2
crossref_primary_10_1016_j_biombioe_2025_107776
crossref_primary_10_1016_j_biortech_2021_125343
crossref_primary_10_1016_j_fuel_2022_126427
crossref_primary_10_3390_w15040621
crossref_primary_10_3390_w14223784
crossref_primary_10_1016_j_biortech_2023_130009
crossref_primary_10_1016_j_biteb_2023_101472
crossref_primary_10_1016_j_optlastec_2022_108246
crossref_primary_10_1016_j_bcab_2024_103299
crossref_primary_10_3390_agronomy13092228
crossref_primary_10_52363_2522_1892_2022_2_6
crossref_primary_10_3390_microorganisms10051041
crossref_primary_10_1111_1541_4337_13341
crossref_primary_10_1016_j_jece_2023_109943
crossref_primary_10_1016_j_chemosphere_2021_133180
crossref_primary_10_3390_su15065521
crossref_primary_10_1007_s10811_021_02668_w
crossref_primary_10_1016_j_jhazmat_2022_130448
crossref_primary_10_1016_j_jhazmat_2022_129683
crossref_primary_10_1016_j_biteb_2022_101161
crossref_primary_10_2139_ssrn_4128734
crossref_primary_10_1016_j_scitotenv_2022_155444
crossref_primary_10_1016_j_biotechadv_2022_107946
crossref_primary_10_1016_j_aquaculture_2021_737045
crossref_primary_10_1021_acsami_1c15380
crossref_primary_10_1007_s10532_023_10026_5
crossref_primary_10_1016_j_chemosphere_2022_135538
crossref_primary_10_1016_j_psep_2024_08_009
crossref_primary_10_3390_microorganisms10122445
crossref_primary_10_3390_microbiolres16010018
crossref_primary_10_1007_s11368_022_03307_8
crossref_primary_10_1016_j_chemosphere_2023_139077
crossref_primary_10_1016_j_biteb_2024_101789
crossref_primary_10_1007_s13534_024_00350_x
crossref_primary_10_1016_j_jwpe_2024_105207
crossref_primary_10_1016_j_scitotenv_2024_177740
crossref_primary_10_3390_w14244032
crossref_primary_10_1002_ldr_4989
crossref_primary_10_1016_j_scitotenv_2021_146205
crossref_primary_10_4491_eer_2021_631
crossref_primary_10_3390_foods13244055
crossref_primary_10_52363_2522_1892_2024_1_9
crossref_primary_10_1016_j_jwpe_2024_105201
crossref_primary_10_1016_j_biortech_2021_124678
crossref_primary_10_1016_j_clwas_2022_100026
crossref_primary_10_1016_j_tifs_2024_104537
crossref_primary_10_1016_j_chemosphere_2023_137921
crossref_primary_10_3390_microorganisms12061050
crossref_primary_10_1007_s13205_023_03807_5
crossref_primary_10_1016_j_jhazmat_2022_129785
crossref_primary_10_1007_s40726_021_00184_6
crossref_primary_10_1021_acs_chemrestox_1c00397
crossref_primary_10_3390_biology12050675
crossref_primary_10_1016_j_seppur_2022_120744
crossref_primary_10_1016_j_ces_2023_118778
crossref_primary_10_1016_j_coesh_2023_100469
crossref_primary_10_1016_j_watres_2023_120654
crossref_primary_10_1016_j_ccr_2024_216268
crossref_primary_10_1016_j_jhazmat_2024_136994
crossref_primary_10_1007_s10661_024_12620_3
crossref_primary_10_1016_j_biortech_2020_124394
crossref_primary_10_3389_fmicb_2024_1256814
crossref_primary_10_1016_j_jece_2020_104926
crossref_primary_10_1016_j_jenvman_2023_118223
crossref_primary_10_1016_j_chemosphere_2020_128346
crossref_primary_10_3390_polym13010131
crossref_primary_10_3390_w12061755
crossref_primary_10_3390_w16131759
crossref_primary_10_1016_j_hazadv_2022_100171
crossref_primary_10_3389_fenvs_2022_1035332
crossref_primary_10_1016_j_rser_2023_113773
crossref_primary_10_3390_su13147873
crossref_primary_10_1016_j_chemosphere_2023_141088
crossref_primary_10_1111_lam_13564
crossref_primary_10_1007_s43832_023_00041_1
crossref_primary_10_1016_j_biotechadv_2025_108519
crossref_primary_10_1016_j_jhazmat_2024_134244
crossref_primary_10_3390_phycology4010007
crossref_primary_10_1016_j_scitotenv_2021_151928
crossref_primary_10_1007_s00284_024_03832_4
crossref_primary_10_30550_j_lil_2015
crossref_primary_10_2139_ssrn_3944517
crossref_primary_10_1016_j_cej_2022_136814
crossref_primary_10_5004_dwt_2022_28375
crossref_primary_10_1016_j_jwpe_2023_104284
crossref_primary_10_3390_biology11081176
crossref_primary_10_3390_w16050718
crossref_primary_10_3390_plants13060829
crossref_primary_10_1016_j_molliq_2020_115062
crossref_primary_10_1016_j_jenvman_2021_112792
crossref_primary_10_1016_j_seppur_2021_119469
crossref_primary_10_3390_w16223305
crossref_primary_10_1007_s11356_022_25065_3
crossref_primary_10_1016_j_cis_2022_102798
crossref_primary_10_1016_j_procbio_2024_06_031
crossref_primary_10_1016_j_chemosphere_2022_135576
crossref_primary_10_1007_s11270_024_07646_9
crossref_primary_10_1016_j_bcab_2021_102106
crossref_primary_10_1016_j_aquatox_2023_106499
crossref_primary_10_2139_ssrn_3974034
crossref_primary_10_1007_s10811_024_03438_0
crossref_primary_10_1186_s13068_023_02394_0
crossref_primary_10_1016_j_envres_2021_111959
crossref_primary_10_1016_j_jenvman_2022_116220
crossref_primary_10_1016_j_dwt_2024_100523
crossref_primary_10_1016_j_chemosphere_2023_140334
crossref_primary_10_1016_j_bej_2024_109367
crossref_primary_10_1016_j_biortech_2022_128049
crossref_primary_10_47495_okufbed_1089874
crossref_primary_10_1016_j_jece_2022_108071
crossref_primary_10_1080_07388551_2023_2170862
crossref_primary_10_1016_j_chemosphere_2023_140448
crossref_primary_10_1016_j_jwpe_2021_102009
crossref_primary_10_1016_j_jhazmat_2022_128532
crossref_primary_10_3390_biotech12020029
crossref_primary_10_3389_fpls_2020_607651
crossref_primary_10_35118_apjmbb_2024_032_3_21
crossref_primary_10_37543_oceanides_v38i1_290
crossref_primary_10_1007_s11356_022_21307_6
crossref_primary_10_3390_nu13082855
crossref_primary_10_1080_20964129_2020_1859948
crossref_primary_10_1016_j_jhazmat_2021_127157
crossref_primary_10_1007_s11356_024_34461_w
crossref_primary_10_1016_j_envpol_2024_124028
crossref_primary_10_1016_j_jwpe_2024_105498
crossref_primary_10_1016_j_biortech_2021_125736
crossref_primary_10_1016_j_chemosphere_2023_140798
crossref_primary_10_1007_s11274_023_03819_6
crossref_primary_10_1016_j_envres_2022_114948
crossref_primary_10_1016_j_hazadv_2024_100444
crossref_primary_10_1016_j_biteb_2024_101920
crossref_primary_10_1016_j_dwt_2024_100540
crossref_primary_10_1016_j_jhazmat_2021_126299
crossref_primary_10_1016_j_scp_2023_101281
crossref_primary_10_1016_j_cej_2021_131436
crossref_primary_10_3390_jmse10060837
crossref_primary_10_1007_s11270_023_06876_7
crossref_primary_10_1016_j_cej_2022_136294
crossref_primary_10_1016_j_jece_2023_111742
crossref_primary_10_3389_fmicb_2024_1383360
crossref_primary_10_1007_s11356_023_30190_8
crossref_primary_10_1016_j_ecoenv_2025_117706
crossref_primary_10_1016_j_envpol_2022_119688
crossref_primary_10_1016_j_nexus_2022_100116
crossref_primary_10_3390_su15065128
crossref_primary_10_1007_s13205_025_04248_y
crossref_primary_10_1007_s40726_021_00185_5
crossref_primary_10_1016_j_chemosphere_2021_133102
crossref_primary_10_3390_su15076024
crossref_primary_10_1039_D1RA02366G
crossref_primary_10_1016_j_jhazmat_2020_123431
crossref_primary_10_3390_microorganisms12040700
crossref_primary_10_1007_s11274_022_03362_w
crossref_primary_10_48022_mbl_2008_08017
crossref_primary_10_1016_j_envres_2022_112860
crossref_primary_10_1016_j_jclepro_2021_128724
crossref_primary_10_1016_j_biortech_2021_124750
crossref_primary_10_1016_j_enmm_2024_100931
crossref_primary_10_1016_j_ica_2024_122068
crossref_primary_10_2166_aqua_2021_068
crossref_primary_10_1016_j_jiec_2024_04_014
crossref_primary_10_1016_j_cej_2020_125828
crossref_primary_10_1007_s10811_023_03072_2
crossref_primary_10_1016_j_fuel_2022_124623
crossref_primary_10_1016_j_jhazmat_2024_135885
crossref_primary_10_1016_j_chemosphere_2021_132369
crossref_primary_10_1002_jctb_6602
crossref_primary_10_1002_jobm_202100314
crossref_primary_10_3390_life14091053
crossref_primary_10_1002_rem_70011
crossref_primary_10_1016_j_ces_2023_118928
crossref_primary_10_1016_j_jhazmat_2020_123685
crossref_primary_10_1016_j_seppur_2021_119510
crossref_primary_10_1016_j_jhazmat_2021_126278
crossref_primary_10_1016_j_scitotenv_2024_170278
crossref_primary_10_2139_ssrn_3971398
crossref_primary_10_1016_j_matpr_2020_12_071
crossref_primary_10_1002_bbb_2187
crossref_primary_10_1016_j_mtbio_2024_101154
crossref_primary_10_1080_15226514_2021_1872484
crossref_primary_10_1016_j_rser_2020_110689
crossref_primary_10_1016_j_biortech_2021_124835
crossref_primary_10_1021_acs_analchem_4c04305
crossref_primary_10_1016_j_cej_2024_157855
crossref_primary_10_1016_j_jece_2021_105684
crossref_primary_10_1016_j_jhazmat_2024_135831
crossref_primary_10_1016_j_jece_2022_108156
crossref_primary_10_1080_10889868_2022_2040413
crossref_primary_10_1007_s11270_025_07821_6
crossref_primary_10_1155_2021_7694157
crossref_primary_10_1111_jam_15372
crossref_primary_10_1016_j_jenvman_2024_121182
crossref_primary_10_1016_j_envres_2023_117477
crossref_primary_10_1016_j_jhazmat_2022_128749
crossref_primary_10_12688_f1000research_53997_2
crossref_primary_10_3923_asb_2025_72_81
crossref_primary_10_1007_s11356_023_30556_y
crossref_primary_10_1016_j_bej_2024_109454
crossref_primary_10_12688_f1000research_53997_1
crossref_primary_10_1007_s40974_023_00308_2
crossref_primary_10_1016_j_bej_2024_109336
crossref_primary_10_1111_plb_13160
crossref_primary_10_1007_s11356_020_10713_3
crossref_primary_10_1016_j_biortech_2022_128118
crossref_primary_10_1016_j_envres_2022_112844
crossref_primary_10_1016_j_jenvman_2020_111534
crossref_primary_10_1016_j_eti_2021_102040
crossref_primary_10_3390_biology13090712
crossref_primary_10_3389_fmicb_2022_1062703
crossref_primary_10_1016_j_sab_2022_106488
crossref_primary_10_1155_2022_8408462
crossref_primary_10_1016_j_cej_2023_147751
crossref_primary_10_1016_j_chemosphere_2021_133399
crossref_primary_10_1016_j_chemosphere_2024_143927
crossref_primary_10_1016_j_psep_2020_07_018
crossref_primary_10_3390_ijerph20021126
crossref_primary_10_1016_j_ijbiomac_2024_139182
crossref_primary_10_1002_jobm_202100363
crossref_primary_10_1007_s13530_021_00098_2
crossref_primary_10_1016_j_jksus_2022_102382
crossref_primary_10_32604_phyton_2022_020566
crossref_primary_10_1007_s11274_022_03484_1
crossref_primary_10_1016_j_cej_2022_137187
crossref_primary_10_1016_j_envpol_2022_119248
crossref_primary_10_1016_j_seppur_2022_120809
crossref_primary_10_1016_j_hazadv_2024_100492
crossref_primary_10_1016_j_eti_2022_102471
crossref_primary_10_59118_SDBZ7071
crossref_primary_10_1016_j_jenvman_2023_117888
crossref_primary_10_3390_w15223962
crossref_primary_10_1016_j_biortech_2023_129882
crossref_primary_10_1016_j_chemosphere_2020_128855
crossref_primary_10_1016_j_wse_2023_04_001
crossref_primary_10_1016_j_jenvman_2023_117641
crossref_primary_10_1016_j_jclepro_2021_126229
crossref_primary_10_1007_s11356_022_20024_4
crossref_primary_10_1016_j_chemosphere_2023_139391
crossref_primary_10_1007_s12223_022_01013_z
crossref_primary_10_1016_j_biortech_2022_128257
crossref_primary_10_1080_21622515_2020_1869323
crossref_primary_10_1007_s10661_023_11247_0
crossref_primary_10_1016_j_nbt_2025_01_002
crossref_primary_10_3389_fenvs_2021_679917
crossref_primary_10_1007_s00289_024_05570_w
crossref_primary_10_3390_ijerph20021106
crossref_primary_10_1016_j_jhazmat_2022_128932
crossref_primary_10_1080_01490451_2023_2293736
crossref_primary_10_1080_03067319_2022_2145196
crossref_primary_10_3390_cells13242047
crossref_primary_10_3390_ijerph182212226
crossref_primary_10_1016_j_jwpe_2023_103986
crossref_primary_10_1016_j_jenvman_2021_113193
crossref_primary_10_3390_bioengineering10101173
crossref_primary_10_1016_j_scp_2023_101346
crossref_primary_10_1016_j_chemosphere_2023_140968
crossref_primary_10_1016_j_indcrop_2022_115238
crossref_primary_10_1016_j_bej_2022_108541
crossref_primary_10_1002_jctb_7745
crossref_primary_10_2166_wst_2024_400
crossref_primary_10_3389_fbioe_2024_1379301
crossref_primary_10_4028_p_n9oeAe
crossref_primary_10_3390_plants12051027
crossref_primary_10_1016_j_watres_2024_122974
crossref_primary_10_3389_fmars_2023_1070905
crossref_primary_10_1007_s11356_022_21869_5
crossref_primary_10_1016_j_marenvres_2023_105989
crossref_primary_10_3390_molecules30020347
crossref_primary_10_3389_fpls_2022_1022935
crossref_primary_10_3390_pr10091832
crossref_primary_10_1016_j_trac_2024_117938
crossref_primary_10_3390_su152416956
crossref_primary_10_1016_j_eti_2020_100876
crossref_primary_10_1016_j_jenvman_2024_121409
crossref_primary_10_1016_j_algal_2024_103635
crossref_primary_10_3390_environments10100174
crossref_primary_10_1016_j_eti_2024_103592
crossref_primary_10_3389_fbioe_2022_830200
crossref_primary_10_3390_ijms222312799
crossref_primary_10_1016_j_envpol_2020_116007
crossref_primary_10_13005_bbra_3273
crossref_primary_10_3390_app13010068
crossref_primary_10_2139_ssrn_4201195
crossref_primary_10_22207_JPAM_16_1_25
crossref_primary_10_1016_j_envpol_2022_120031
crossref_primary_10_1016_j_jwpe_2024_106271
crossref_primary_10_3389_fpls_2022_1076526
crossref_primary_10_1016_j_ecoenv_2023_115847
crossref_primary_10_1016_j_algal_2021_102267
crossref_primary_10_1080_15320383_2022_2028719
crossref_primary_10_1007_s11270_025_07846_x
crossref_primary_10_1016_j_jhazmat_2023_131498
crossref_primary_10_1016_j_carbpol_2022_119881
crossref_primary_10_3390_molecules27051473
crossref_primary_10_1016_j_marenvres_2022_105805
crossref_primary_10_1007_s11356_023_31755_3
crossref_primary_10_1016_j_scitotenv_2022_161381
crossref_primary_10_1016_j_solidstatesciences_2024_107611
crossref_primary_10_1002_jctb_6563
crossref_primary_10_1016_j_jes_2024_03_048
crossref_primary_10_1016_j_jwpe_2025_107430
crossref_primary_10_1088_2977_3504_adb7e9
crossref_primary_10_1016_j_jhazmat_2024_133503
crossref_primary_10_1007_s11274_024_03930_2
crossref_primary_10_1016_j_jece_2024_113709
crossref_primary_10_1016_j_chemosphere_2021_132764
crossref_primary_10_1080_15226514_2024_2383657
crossref_primary_10_2139_ssrn_4074216
crossref_primary_10_3390_fermentation10030131
crossref_primary_10_1007_s11356_023_28658_8
crossref_primary_10_1007_s42108_024_00284_1
crossref_primary_10_1007_s13205_024_03977_w
crossref_primary_10_1002_cnl2_122
crossref_primary_10_1039_D3RA00723E
crossref_primary_10_1016_j_chemosphere_2022_134808
crossref_primary_10_51847_yaQC7KnNoY
crossref_primary_10_1186_s40643_024_00775_3
crossref_primary_10_3390_ijerph19137717
crossref_primary_10_1007_s12155_021_10277_1
crossref_primary_10_3390_ijms25126717
crossref_primary_10_1016_j_algal_2024_103707
crossref_primary_10_1007_s42398_022_00220_1
crossref_primary_10_1007_s00203_022_02978_8
crossref_primary_10_1007_s11356_023_27597_8
crossref_primary_10_1016_j_enconman_2024_118981
crossref_primary_10_1016_j_eti_2023_103368
crossref_primary_10_1128_spectrum_02395_24
crossref_primary_10_1007_s00203_024_04052_x
crossref_primary_10_1007_s00128_023_03792_8
crossref_primary_10_1016_j_biortech_2022_128515
crossref_primary_10_1007_s11356_021_15424_x
crossref_primary_10_3390_su152416754
crossref_primary_10_1016_j_jece_2020_104460
crossref_primary_10_2139_ssrn_3982105
crossref_primary_10_3390_toxics10090525
crossref_primary_10_1016_j_rser_2021_111549
crossref_primary_10_51847_epj4iaN0xZ
crossref_primary_10_1016_j_chemosphere_2022_133812
crossref_primary_10_1016_j_biortech_2023_128941
crossref_primary_10_1016_j_eti_2024_103632
crossref_primary_10_1016_j_envres_2021_112115
crossref_primary_10_1016_j_eti_2023_103122
crossref_primary_10_1016_j_dwt_2024_100505
crossref_primary_10_1007_s11356_023_27651_5
crossref_primary_10_3390_md21090462
crossref_primary_10_1016_j_envpol_2024_123951
crossref_primary_10_1016_j_biortech_2022_127444
crossref_primary_10_1016_j_jwpe_2022_103211
crossref_primary_10_1016_j_heliyon_2022_e10766
crossref_primary_10_3389_fmicb_2020_00808
crossref_primary_10_3390_resources11020015
crossref_primary_10_2139_ssrn_3957278
crossref_primary_10_3390_fermentation9100907
crossref_primary_10_1007_s11274_023_03815_w
crossref_primary_10_3389_fmicb_2021_622600
Cites_doi 10.1016/j.envpol.2019.112966
10.1080/19443994.2013.769695
10.1016/j.biortech.2010.08.107
10.1016/j.jece.2018.03.039
10.1016/j.jes.2016.10.002
10.1016/j.biortech.2007.07.039
10.1016/j.jenvman.2018.09.011
10.1016/j.aquatox.2014.10.012
10.1016/j.algal.2014.12.006
10.1016/j.biortech.2016.09.061
10.1016/j.chemosphere.2019.04.152
10.1016/j.jhazmat.2015.06.011
10.1007/s002030000193
10.1080/15226514.2015.1115960
10.1016/j.chemosphere.2013.08.021
10.1016/j.jclepro.2018.10.288
10.1016/j.jhazmat.2007.07.028
10.1016/j.jece.2019.103273
10.1016/j.biortech.2017.07.026
10.17140/TFMOJ-2-121
10.1016/j.minpro.2006.06.002
10.1002/ep.12071
10.1016/j.algal.2017.03.012
10.7717/peerj.5295
10.1016/j.biortech.2017.06.165
10.1016/j.ecoenv.2016.04.024
10.1080/19443994.2015.1064032
10.1007/s10534-005-2998-1
10.1016/j.jenvman.2010.11.011
10.1080/19443994.2014.932711
10.1007/s00253-005-0250-0
10.1007/s10661-013-3418-6
10.1016/j.biortech.2015.07.041
10.1016/j.jhazmat.2019.04.072
10.1016/j.aquatox.2016.11.004
10.1002/elsc.200420019
10.1016/j.enconman.2019.03.041
10.1016/j.biortech.2019.03.001
10.1016/j.chemosphere.2018.10.205
10.1007/s12298-017-0415-1
10.1016/j.watres.2013.02.034
10.1016/j.cej.2010.12.014
10.1080/15226510802363477
10.1016/j.biortech.2018.04.101
10.2166/wpt.2019.034
10.2166/wrd.2016.200
10.1016/j.aquatox.2008.02.006
10.1016/j.jhazmat.2015.02.012
10.1021/es950373d
10.1016/j.jtice.2016.08.017
10.1007/s001289900853
10.1016/j.gee.2016.08.002
10.3923/jbs.2006.695.700
10.1016/j.jhazmat.2008.10.020
10.1016/j.biortech.2018.12.056
10.1080/15226514.2016.1244170
10.1016/j.jhazmat.2016.07.031
10.3390/ma11040562
10.1007/s11356-017-0225-6
10.1016/j.cej.2013.07.013
10.1007/s10811-014-0499-8
10.1021/acsomega.8b01692
10.1016/j.biortech.2019.122064
10.1007/s00449-017-1827-6
10.1080/15226514.2010.525560
10.1016/j.biortech.2011.11.044
10.1016/j.biortech.2018.02.060
10.1016/j.biortech.2017.08.085
10.1177/0748233716654827
10.1016/j.algal.2017.03.002
10.12688/f1000research.13527.1
10.1016/j.aquatox.2012.12.004
10.1007/s11356-017-9758-y
10.1016/j.cbi.2015.06.013
10.1039/C5RA27264E
10.3390/ijms161023929
10.1016/j.jphotobiol.2019.111551
10.1016/j.jece.2016.11.031
10.1038/s41598-019-46551-8
10.13141/jve.vol9.no1.pp38-43
10.1897/04-580R.1
10.1016/j.biortech.2014.10.124
10.1080/09593330.2017.1400114
10.1007/s00203-006-0170-0
10.1016/j.biortech.2019.03.128
10.1007/s11356-015-5510-7
10.1016/j.ecoenv.2016.02.030
10.1016/j.biortech.2008.10.053
10.1007/s10661-019-7528-7
10.1016/j.cej.2009.10.015
10.1016/j.algal.2016.04.002
10.1016/j.chemosphere.2007.06.007
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2020.122886
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
Ecology
EISSN 1873-2976
ExternalDocumentID 32046940
10_1016_j_biortech_2020_122886
S0960852420301553
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c467t-d99dd347efd63209ba8ac04f3c7ec7d92e6860a9defdfa55ada6594f8d0cbfc83
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 00:12:43 EDT 2025
Tue Aug 05 11:20:10 EDT 2025
Wed Feb 19 02:31:20 EST 2025
Thu Apr 24 23:08:32 EDT 2025
Tue Jul 01 03:18:39 EDT 2025
Fri Feb 23 02:48:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microalgae
Biosorption
Bioremediation
Heavy metals
Mechanism
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-d99dd347efd63209ba8ac04f3c7ec7d92e6860a9defdfa55ada6594f8d0cbfc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 32046940
PQID 2354163427
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2439384946
proquest_miscellaneous_2354163427
pubmed_primary_32046940
crossref_citationtrail_10_1016_j_biortech_2020_122886
crossref_primary_10_1016_j_biortech_2020_122886
elsevier_sciencedirect_doi_10_1016_j_biortech_2020_122886
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
2020-May
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shen, Saky, Yang, Ho, Chen, Qin, Zhang, Wang, Lu (b0360) 2019; 228
Miazek, Iwanek, Remacle, Richel, Goffin (b0280) 2015; 16
Sun, Cheng, Yang, Li, Zhou, Cen (b0420) 2015; 194
Malakootian, Khodashenas Limoni, Malakootian (b0260) 2016; 10
Akhtar, Iqbal, Iqbal (b0015) 2004; 4
Valdez, Perengüez, Mátyás, Guevara (b0450) 2018; 7
Zheng, Guo, Li, Wu, Yin, Feng, Du, Ren, Chang (b0510) 2016; 6
Jena, Pradhan, Aishvarya, Nayak, Dash, Sukla, Panda, Mishra (b0215) 2015; 27
Mason, Reinfelder, Morel (b0270) 1996; 30
Balaji, Kalaivani, Sushma, Pillai, Shalini, Rajasekaran (b0055) 2016; 18
Dao, Le, Vo, Vo, Phan, Bui (b0100) 2018; 9
Mu, Jia, Liu, Pan, Fan (b0295) 2017; 24
Shokri Khoubestani, Mirghaffari, Farhadian (b0375) 2015; 34
Tuzen, Sarı, Mendil, Uluozlu, Soylak, Dogan (b0435) 2009; 165
Alam, Wan, Zhao, Chen, Chang, Bai (b0020) 2015; 289
Suganya, Saravanan, Senthil Kumar, Yashwanthraj, Sundar Rajan, Kayalvizhi (b0405) 2016; 7
Wongrod, Simon, van Hullebusch, Lens, Guibaud (b0475) 2019; 275
Hwang, Kwon, Yang, Kim, Hwang, Youe, Kim (b0195) 2018; 11
Balaji, Kalaivani, Shalini, Gopalakrishnan, Rashith Muhammad, Rajasekaran (b0050) 2016; 57
Devars, Avilés, Cervantes, Moreno-Sánchez (b0110) 2000; 174
Suvarapu, Baek (b0425) 2017; 33
Wang, Zhang, Lin, Ge (b0470) 2016; 318
Singh, Raghubanshi, Upadhyay, Rai (b0390) 2016; 130
Solisio, Al Arni, Converti (b0400) 2019; 40
Lee, Hsu, Yen (b0245) 2017; 40
Arora, Dubey, Sharma, Patel, Guleria, Pruthi, Kumar, Pruthi, Poluri (b0030) 2018; 3
Das, Chakraborty, Bhattacharjee, Chowdhury (b0105) 2016; 57
Saavedra, Muñoz, Taboada, Vega, Bolado (b0350) 2018; 263
Jácome-Pilco, Cristiani-Urbina, Flores-Cotera, Velasco-García, Ponce-Noyola, Cañizares-Villanueva (b0210) 2009; 100
Hedayatkhah, Cretoiu, Emtiazi, Stal, Bolhuis (b0170) 2018; 227
Baker, Wallschläger (b0045) 2016; 49
Huang, Wu, Chang (b0185) 2014; 186
Jaafari, Yaghmaeian (b0205) 2019; 217
Mangal, Phung, Nguyen, Gueguen (b0265) 2019; 6
Zhao, Song, Yu, Han, Li, Yu (b0505) 2019; 188
Gómez-Jacinto, García-Barrera, Gómez-Ariza, Garbayo-Nores, Vílchez-Lobato (b0160) 2015; 238
Park, Lim, Yun, Park (b0320) 2007; 70
Zhang, Yan, Zhang, Wang, Guo, Yan, Chen (b0500) 2019; 374
Abinandan, Subashchandrabose, Venkateswarlu, Perera, Megharaj (b0005) 2019; 281
Li, Zhang, Yang (b0255) 2019; 284
USEPA, 2016. National Primary Drinking Water Regulations. in: EPA 816-F-09-004, (Ed.) U.S.E.P. Agency, United State Environmental Protection Agency. United State.
Travieso, Canizares, Borja, Benitez, Dominguez, Dupeyron, Valiente (b0430) 1999; 62
Levy, Stauber, Adams, Maher, Kirby, Jolley (b0250) 2005; 24
Cameron, Mata, Riquelme (b0080) 2018; 6
Chia, Lombardi, Melão, Parrish (b0090) 2013; 128–129
Husien, Labena, El-Belely, Mahmoud, Hamouda (b0190) 2019; 14
Gagrai, Das, Golder (b0145) 2013; 93
Doshi, Ray (b0120) 2009; 11
Daneshvar, Zarrinmehr, Kousha, Hashtjin, Saratale, Maiti, Vithanage, Bhatnagar (b0095) 2019; 293
Sulaymon, Mohammed, Al-Musawi (b0415) 2013; 51
Duruibe, Ogwuegbu, Egwuruhwu (b0125) 2007; 2
Nithya, Sathish, Pradeep, Kiran Baalaji (b0305) 2019; 7
Arora, Gulati, Patel, Pruthi, Poluri, Pruthi (b0035) 2017; 24
Fu, Wang (b0140) 2011; 92
Upadhyay, Mandotra, Kumar, Singh, Singh, Rai (b0440) 2016; 221
Sarı, Uluozlü, Tüzen (b0355) 2011; 167
Batsalova, Teneva, Belkinova, Stoyanov, Rusinova-Videva, Dzhambazov (b0060) 2017; 2
Wang, Huang, Xu, Wei, Miao, Ji, Yang (b0455) 2014; 157
Huang, Huo, Song, Li, Xia, Gaillard (b0180) 2019; 254
Zhu, Zhang, Tang, Zhu, Wu (b0515) 2018; 248
Gokhale, Jyoti, Lele (b0155) 2008; 99
Kelly, Budd, Lefebvre (b0235) 2007; 187
Yang, Cao, Xing, Yuan (b0480) 2015; 175
Finocchio, Lodi, Solisio, Converti (b0135) 2010; 156
Gan, Zhao, Yin, Chen, Wang, Liu, Liu (b0150) 2019; 197
Shen, Li, Zhu, Ho, Yuan, Chen, Xie (b0365) 2017; 244
Ibuot, Dean, McIntosh, Pittman (b0200) 2017; 24
Aharchaou, Rosabal, Liu, Battaglia, Vignati, Fortin (b0010) 2017; 182
Zhang, Zhao, Wan, Chen, Bai (b0495) 2016; 16
Wang, Zhang, Zheng, Ge (b0465) 2017; 24
Birungi, Chirwa (b0070) 2015; 299
Pagnanelli, Jbari, Trabucco, Martínez, Sánchez, Toro (b0310) 2013; 231
Karadjova, Slaveykova, Tsalev (b0225) 2008; 87
Priatni, Ratnaningrum, Warya, Audina (b0335) 2017; Sci
Molazedah, Khanjani, Rahimi, Nasiri (b0285) 2015; 4
Rahman, Singh (b0340) 2019; 191
Singh, Bansal, Jha, Dey (b0395) 2012; 104
Bahar, Megharaj, Naidu (b0040) 2016; 23
Sulaymon, Mohammed, Al-Musawi (b0410) 2013; 3
Kwak, Kim, Lee, Yun, Kim, Park, Lee (b0240) 2015; 7
Peng, Deng, Gong, Li, Zhang (b0325) 2017; 243
Dirbaz, Roosta (b0115) 2018; 6
Fard, Mehrnia (b0130) 2017; 5
Rezaee, Ramavandi, Ganati, Ansari, Solimanian (b0345) 2006; 6
Mera, Torres, Abalde (b0275) 2016; 128
Yen, Chen, Hsu, Lee (b0485) 2017; 74
Bodin, Asp, Hultberg (b0075) 2017; 19
Bayramoğlu, Tuzun, Celik, Yilmaz, Arica (b0065) 2006; 81
Shen, Zhu, Li, Ho, Chen, Xie, Shi (b0370) 2018; 257
Wang, Li, Deng, Miao, Ji, Yang (b0460) 2013; 47
Nath, Tiwari, Rai, Sundaram (b0300) 2017; 23
Cherifi, Sbihi, Bertrand, Cherifi (b0085) 2016; 8
Zakhama, Dhaouadi, M’Henni (b0490) 2011; 102
Gupta, Rastogi (b0165) 2008; 152
Ardila, Godoy, Montenegro (b0025) 2017; 83
Morelli, Mascherpa, Scarano (b0290) 2005; 18
Pradhan, Sukla, Mishra, Devi (b0330) 2019; 209
Papry, Ishii, Mamun, Miah, Naito, Mashio, Maki, Hasegawa (b0315) 2019; 9
Jiang, Purchase, Jones, Garelick (b0220) 2011; 13
Sibi (b0385) 2016; 1
Kayalvizhi, Vijayaraghavan, Velan (b0230) 2015; 56
Huang, Chen, Hsieh, Lin, Chen, Chien (b0175) 2006; 72
Pagnanelli (10.1016/j.biortech.2020.122886_b0310) 2013; 231
Shen (10.1016/j.biortech.2020.122886_b0365) 2017; 244
Jaafari (10.1016/j.biortech.2020.122886_b0205) 2019; 217
Kwak (10.1016/j.biortech.2020.122886_b0240) 2015; 7
Saavedra (10.1016/j.biortech.2020.122886_b0350) 2018; 263
Wang (10.1016/j.biortech.2020.122886_b0470) 2016; 318
Gómez-Jacinto (10.1016/j.biortech.2020.122886_b0160) 2015; 238
Mu (10.1016/j.biortech.2020.122886_b0295) 2017; 24
Kayalvizhi (10.1016/j.biortech.2020.122886_b0230) 2015; 56
Sun (10.1016/j.biortech.2020.122886_b0420) 2015; 194
Birungi (10.1016/j.biortech.2020.122886_b0070) 2015; 299
Valdez (10.1016/j.biortech.2020.122886_b0450) 2018; 7
Zhang (10.1016/j.biortech.2020.122886_b0500) 2019; 374
Wang (10.1016/j.biortech.2020.122886_b0460) 2013; 47
Zhang (10.1016/j.biortech.2020.122886_b0495) 2016; 16
Husien (10.1016/j.biortech.2020.122886_b0190) 2019; 14
Gan (10.1016/j.biortech.2020.122886_b0150) 2019; 197
Sulaymon (10.1016/j.biortech.2020.122886_b0415) 2013; 51
Shokri Khoubestani (10.1016/j.biortech.2020.122886_b0375) 2015; 34
Papry (10.1016/j.biortech.2020.122886_b0315) 2019; 9
Morelli (10.1016/j.biortech.2020.122886_b0290) 2005; 18
10.1016/j.biortech.2020.122886_b0445
Arora (10.1016/j.biortech.2020.122886_b0035) 2017; 24
Sulaymon (10.1016/j.biortech.2020.122886_b0410) 2013; 3
Ardila (10.1016/j.biortech.2020.122886_b0025) 2017; 83
Pradhan (10.1016/j.biortech.2020.122886_b0330) 2019; 209
Devars (10.1016/j.biortech.2020.122886_b0110) 2000; 174
Jena (10.1016/j.biortech.2020.122886_b0215) 2015; 27
Sibi (10.1016/j.biortech.2020.122886_b0385) 2016; 1
Huang (10.1016/j.biortech.2020.122886_b0185) 2014; 186
Bahar (10.1016/j.biortech.2020.122886_b0040) 2016; 23
Wongrod (10.1016/j.biortech.2020.122886_b0475) 2019; 275
Nath (10.1016/j.biortech.2020.122886_b0300) 2017; 23
Li (10.1016/j.biortech.2020.122886_b0255) 2019; 284
Fard (10.1016/j.biortech.2020.122886_b0130) 2017; 5
Molazedah (10.1016/j.biortech.2020.122886_b0285) 2015; 4
Dao (10.1016/j.biortech.2020.122886_b0100) 2018; 9
Fu (10.1016/j.biortech.2020.122886_b0140) 2011; 92
Mera (10.1016/j.biortech.2020.122886_b0275) 2016; 128
Travieso (10.1016/j.biortech.2020.122886_b0430) 1999; 62
Alam (10.1016/j.biortech.2020.122886_b0020) 2015; 289
Cherifi (10.1016/j.biortech.2020.122886_b0085) 2016; 8
Park (10.1016/j.biortech.2020.122886_b0320) 2007; 70
Nithya (10.1016/j.biortech.2020.122886_b0305) 2019; 7
Zhu (10.1016/j.biortech.2020.122886_b0515) 2018; 248
Akhtar (10.1016/j.biortech.2020.122886_b0015) 2004; 4
Daneshvar (10.1016/j.biortech.2020.122886_b0095) 2019; 293
Wang (10.1016/j.biortech.2020.122886_b0455) 2014; 157
Mangal (10.1016/j.biortech.2020.122886_b0265) 2019; 6
Rahman (10.1016/j.biortech.2020.122886_b0340) 2019; 191
Das (10.1016/j.biortech.2020.122886_b0105) 2016; 57
Finocchio (10.1016/j.biortech.2020.122886_b0135) 2010; 156
Rezaee (10.1016/j.biortech.2020.122886_b0345) 2006; 6
Gagrai (10.1016/j.biortech.2020.122886_b0145) 2013; 93
Dirbaz (10.1016/j.biortech.2020.122886_b0115) 2018; 6
Sarı (10.1016/j.biortech.2020.122886_b0355) 2011; 167
Yen (10.1016/j.biortech.2020.122886_b0485) 2017; 74
Miazek (10.1016/j.biortech.2020.122886_b0280) 2015; 16
Solisio (10.1016/j.biortech.2020.122886_b0400) 2019; 40
Hedayatkhah (10.1016/j.biortech.2020.122886_b0170) 2018; 227
Huang (10.1016/j.biortech.2020.122886_b0180) 2019; 254
Zheng (10.1016/j.biortech.2020.122886_b0510) 2016; 6
Balaji (10.1016/j.biortech.2020.122886_b0050) 2016; 57
Karadjova (10.1016/j.biortech.2020.122886_b0225) 2008; 87
Zakhama (10.1016/j.biortech.2020.122886_b0490) 2011; 102
Cameron (10.1016/j.biortech.2020.122886_b0080) 2018; 6
Bayramoğlu (10.1016/j.biortech.2020.122886_b0065) 2006; 81
Singh (10.1016/j.biortech.2020.122886_b0395) 2012; 104
Duruibe (10.1016/j.biortech.2020.122886_b0125) 2007; 2
Hwang (10.1016/j.biortech.2020.122886_b0195) 2018; 11
Batsalova (10.1016/j.biortech.2020.122886_b0060) 2017; 2
Tuzen (10.1016/j.biortech.2020.122886_b0435) 2009; 165
Lee (10.1016/j.biortech.2020.122886_b0245) 2017; 40
Abinandan (10.1016/j.biortech.2020.122886_b0005) 2019; 281
Malakootian (10.1016/j.biortech.2020.122886_b0260) 2016; 10
Bodin (10.1016/j.biortech.2020.122886_b0075) 2017; 19
Zhao (10.1016/j.biortech.2020.122886_b0505) 2019; 188
Aharchaou (10.1016/j.biortech.2020.122886_b0010) 2017; 182
Gokhale (10.1016/j.biortech.2020.122886_b0155) 2008; 99
Priatni (10.1016/j.biortech.2020.122886_b0335) 2017; Sci
Kelly (10.1016/j.biortech.2020.122886_b0235) 2007; 187
Shen (10.1016/j.biortech.2020.122886_b0360) 2019; 228
Chia (10.1016/j.biortech.2020.122886_b0090) 2013; 128–129
Baker (10.1016/j.biortech.2020.122886_b0045) 2016; 49
Jiang (10.1016/j.biortech.2020.122886_b0220) 2011; 13
Suganya (10.1016/j.biortech.2020.122886_b0405) 2016; 7
Balaji (10.1016/j.biortech.2020.122886_b0055) 2016; 18
Doshi (10.1016/j.biortech.2020.122886_b0120) 2009; 11
Shen (10.1016/j.biortech.2020.122886_b0370) 2018; 257
Mason (10.1016/j.biortech.2020.122886_b0270) 1996; 30
Suvarapu (10.1016/j.biortech.2020.122886_b0425) 2017; 33
Upadhyay (10.1016/j.biortech.2020.122886_b0440) 2016; 221
Gupta (10.1016/j.biortech.2020.122886_b0165) 2008; 152
Jácome-Pilco (10.1016/j.biortech.2020.122886_b0210) 2009; 100
Arora (10.1016/j.biortech.2020.122886_b0030) 2018; 3
Ibuot (10.1016/j.biortech.2020.122886_b0200) 2017; 24
Huang (10.1016/j.biortech.2020.122886_b0175) 2006; 72
Peng (10.1016/j.biortech.2020.122886_b0325) 2017; 243
Yang (10.1016/j.biortech.2020.122886_b0480) 2015; 175
Levy (10.1016/j.biortech.2020.122886_b0250) 2005; 24
Singh (10.1016/j.biortech.2020.122886_b0390) 2016; 130
Wang (10.1016/j.biortech.2020.122886_b0465) 2017; 24
References_xml – volume: 182
  start-page: 49
  year: 2017
  end-page: 57
  ident: b0010
  article-title: Bioaccumulation and subcellular partitioning of Cr(III) and Cr(VI) in the freshwater green alga Chlamydomonas reinhardtii
  publication-title: Aquat. Toxicol.
– volume: 100
  start-page: 2388
  year: 2009
  end-page: 2391
  ident: b0210
  article-title: Continuous Cr(VI) removal by Scenedesmus incrassatulus in an airlift photobioreactor
  publication-title: Bioresour. Technol.
– volume: 263
  start-page: 49
  year: 2018
  end-page: 57
  ident: b0350
  article-title: Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae
  publication-title: Bioresour. Technol.
– volume: 23
  start-page: 269
  year: 2017
  end-page: 280
  ident: b0300
  article-title: Microalgal consortia differentially modulate progressive adsorption of hexavalent chromium
  publication-title: Physiol. Mol. Biol. Plants
– volume: 6
  start-page: 20051
  year: 2016
  end-page: 20057
  ident: b0510
  article-title: Biosorption of cadmium by a lipid extraction residue of lipid-rich microalgae
  publication-title: RSC Adv.
– volume: 3
  start-page: 11847
  year: 2018
  end-page: 11856
  ident: b0030
  article-title: NMR-based metabolomic approach to elucidate the differential cellular responses during mitigation of arsenic(III, V) in a green microalga
  publication-title: ACS Omega
– volume: 34
  start-page: 949
  year: 2015
  end-page: 956
  ident: b0375
  article-title: Removal of three and hexavalent chromium from aqueous solutions using a microalgae biomass-derived biosorbent
  publication-title: Environ. Prog. Sustainable Energy
– volume: 187
  start-page: 45
  year: 2007
  end-page: 53
  ident: b0235
  article-title: Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae
  publication-title: Arch. Microbiol.
– volume: 49
  start-page: 169
  year: 2016
  end-page: 178
  ident: b0045
  article-title: The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella vulgaris
  publication-title: J. Environ. Sci.
– volume: 24
  start-page: 26375
  year: 2017
  end-page: 26386
  ident: b0295
  article-title: Response of the freshwater diatom Halamphora veneta (Kützing) Levkov to copper and mercury and its potential for bioassessment of heavy metal toxicity in aquatic habitats
  publication-title: Environ. Sci. Pollut. Res.
– volume: 51
  start-page: 4424
  year: 2013
  end-page: 4434
  ident: b0415
  article-title: Removal of lead, cadmium, copper, and arsenic ions using biosorption: equilibrium and kinetic studies
  publication-title: Desalin. Water Treat.
– volume: 165
  start-page: 566
  year: 2009
  end-page: 572
  ident: b0435
  article-title: Characterization of biosorption process of As(III) on green algae Ulothrix cylindricum
  publication-title: J. Hazard. Mater.
– volume: 6
  year: 2019
  ident: b0265
  article-title: Molecular characterization of mercury binding ligands released by freshwater algae grown at three photoperiods
  publication-title: Front. Environ. Sci.
– volume: 6
  start-page: 2302
  year: 2018
  end-page: 2309
  ident: b0115
  article-title: Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Parachlorella sp.
  publication-title: J. Environ. Chem. Eng.
– volume: 16
  year: 2015
  ident: b0280
  article-title: Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review
  publication-title: Int. J. Mol. Sci.
– volume: 221
  start-page: 430
  year: 2016
  end-page: 437
  ident: b0440
  article-title: Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp
  publication-title: Bioresour. Technol.
– volume: 6
  start-page: 695
  year: 2006
  end-page: 700
  ident: b0345
  article-title: Biosorption of mercury by biomass of filamentous algae Spirogyra species
  publication-title: J. Biol. Sci.
– volume: 19
  start-page: 500
  year: 2017
  end-page: 504
  ident: b0075
  article-title: Effects of biopellets composed of microalgae and fungi on cadmium present at environmentally relevant levels in water
  publication-title: Int. J. Phytorem.
– volume: 23
  start-page: 2663
  year: 2016
  end-page: 2668
  ident: b0040
  article-title: Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp
  publication-title: Environ. Sci. Pollut. Res.
– volume: 74
  start-page: 1
  year: 2017
  end-page: 6
  ident: b0485
  article-title: The use of autotrophic Chlorella vulgaris in chromium (VI) reduction under different reduction conditions
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 24
  start-page: 2630
  year: 2005
  end-page: 2639
  ident: b0250
  article-title: Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum)
  publication-title: Environ. Toxicol. Chem.
– volume: 7
  year: 2019
  ident: b0305
  article-title: Algal biomass waste residues of Spirulina platensis for chromium adsorption and modeling studies
  publication-title: J. Environ. Chem. Eng.
– volume: 238
  start-page: 82
  year: 2015
  end-page: 90
  ident: b0160
  article-title: Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg–phytochelatins
  publication-title: Chem. Biol. Interact.
– volume: 57
  start-page: 4576
  year: 2016
  end-page: 4586
  ident: b0105
  article-title: Biosorption of lead ions (Pb2+) from simulated wastewater using residual biomass of microalgae
  publication-title: Desalin. Water Treat.
– volume: 8
  start-page: 884
  year: 2016
  end-page: 893
  ident: b0085
  article-title: The siliceous microalga Navicula subminuscula (Manguin) as a biomaterial for removing metals from tannery effluents: a laboratory study
  publication-title: J. Mater. Environ. Sci.
– volume: 152
  start-page: 407
  year: 2008
  end-page: 414
  ident: b0165
  article-title: Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies
  publication-title: J. Hazard. Mater.
– volume: 27
  start-page: 2251
  year: 2015
  end-page: 2260
  ident: b0215
  article-title: Biological sequestration and retention of cadmium as CdS nanoparticles by the microalga Scenedesmus-24
  publication-title: J. Appl. Phycol.
– volume: 18
  start-page: 587
  year: 2005
  end-page: 593
  ident: b0290
  article-title: Biosynthesis of phytochelatins and arsenic accumulation in the marine microalga phaeodactylum tricornutum in response to arsenate exposure
  publication-title: Biometals
– volume: 243
  start-page: 628
  year: 2017
  end-page: 633
  ident: b0325
  article-title: Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae
  publication-title: Bioresour. Technol.
– volume: 374
  start-page: 420
  year: 2019
  end-page: 427
  ident: b0500
  article-title: A novel cadmium-containing wastewater treatment method: Bio-immobilization by microalgae cell and their mechanism
  publication-title: J. Hazard. Mater.
– volume: 130
  start-page: 224
  year: 2016
  end-page: 233
  ident: b0390
  article-title: Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 57
  start-page: 14518
  year: 2016
  end-page: 14529
  ident: b0050
  article-title: Sorption sites of microalgae possess metal binding ability towards Cr(VI) from tannery effluents—a kinetic and characterization study
  publication-title: Desalin. Water Treat.
– volume: 10
  start-page: 357
  year: 2016
  end-page: 366
  ident: b0260
  article-title: The efficiency of lead biosorption from industrial wastewater by micro-alga spirulina platensis
  publication-title: Int. J. Environ. Res.
– volume: 11
  start-page: 53
  year: 2009
  end-page: 64
  ident: b0120
  article-title: Live and dead spirulina SP. to remove arsenic (V) from wate
  publication-title: Int. J. Phytorem.
– volume: 128–129
  start-page: 171
  year: 2013
  end-page: 182
  ident: b0090
  article-title: Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations
  publication-title: Aquat. Toxicol.
– volume: 257
  start-page: 157
  year: 2018
  end-page: 163
  ident: b0370
  article-title: Enhancing cadmium bioremediation by a complex of water-hyacinth derived pellets immobilized with Chlorella sp
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 366
  year: 2017
  end-page: 372
  ident: b0130
  article-title: Investigation of mercury removal by micro-algae dynamic membrane bioreactor from simulated dental waste water
  publication-title: J. Environ. Chem. Eng.
– volume: 24
  start-page: 21213
  year: 2017
  end-page: 21221
  ident: b0465
  article-title: Bioaccumulation kinetics of arsenite and arsenate in Dunaliella salina under different phosphate regimes
  publication-title: Environ. Sci. Pollut. Res.
– volume: 284
  start-page: 231
  year: 2019
  end-page: 239
  ident: b0255
  article-title: Immobilizing unicellular microalga on pellet-forming filamentous fungus: Can this provide new insights into the remediation of arsenic from contaminated water?
  publication-title: Bioresour. Technol.
– volume: 62
  start-page: 144
  year: 1999
  end-page: 151
  ident: b0430
  article-title: Heavy metal removal by microalgae
  publication-title: Bull. Environ. Contam. Toxicol.
– volume: 156
  start-page: 264
  year: 2010
  end-page: 269
  ident: b0135
  article-title: Chromium (VI) removal by methylated biomass of Spirulina platensis: the effect of methylation process
  publication-title: Chem. Eng. J.
– volume: 167
  start-page: 155
  year: 2011
  end-page: 161
  ident: b0355
  article-title: Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass
  publication-title: Chem. Eng. J.
– volume: 293
  year: 2019
  ident: b0095
  article-title: Hexavalent chromium removal from water by microalgal-based materials: adsorption, desorption and recovery studies
  publication-title: Bioresour. Technol.
– volume: 281
  start-page: 469
  year: 2019
  end-page: 473
  ident: b0005
  article-title: Acid-tolerant microalgae can withstand higher concentrations of invasive cadmium and produce sustainable biomass and biodiesel at pH 3.5
  publication-title: Bioresour. Technol.
– volume: 254
  year: 2019
  ident: b0180
  article-title: Immobilization of mercury using high-phosphate culture-modified microalgae
  publication-title: Environ. Pollut.
– volume: 227
  start-page: 313
  year: 2018
  end-page: 320
  ident: b0170
  article-title: Bioremediation of chromium contaminated water by diatoms with concomitant lipid accumulation for biofuel production
  publication-title: J. Environ. Manage.
– volume: 1
  start-page: 172
  year: 2016
  end-page: 177
  ident: b0385
  article-title: Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris
  publication-title: Green Energy Environ.
– volume: 228
  start-page: 536
  year: 2019
  end-page: 544
  ident: b0360
  article-title: The critical utilization of active heterotrophic microalgae for bioremoval of Cr(VI) in organics co-contaminated wastewater
  publication-title: Chemosphere
– volume: 56
  start-page: 194
  year: 2015
  end-page: 203
  ident: b0230
  article-title: Biosorption of Cr(VI) using a novel microalga Rhizoclonium hookeri: equilibrium, kinetics and thermodynamic studies
  publication-title: Desalin. Water Treat.
– reference: USEPA, 2016. National Primary Drinking Water Regulations. in: EPA 816-F-09-004, (Ed.) U.S.E.P. Agency, United State Environmental Protection Agency. United State.
– volume: 186
  start-page: 805
  year: 2014
  end-page: 814
  ident: b0185
  article-title: Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir
  publication-title: Environ. Monit. Assess.
– volume: 7
  start-page: 92
  year: 2015
  end-page: 99
  ident: b0240
  article-title: Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for chromium (VI) removal
  publication-title: Algal Res.
– volume: 47
  start-page: 2497
  year: 2013
  end-page: 2506
  ident: b0460
  article-title: Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes
  publication-title: Water Res.
– volume: 244
  start-page: 1031
  year: 2017
  end-page: 1038
  ident: b0365
  article-title: Microalgal-biochar immobilized complex: a novel efficient biosorbent for cadmium removal from aqueous solution
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 10226
  year: 2019
  ident: b0315
  article-title: Arsenic biotransformation potential of six marine diatom species: effect of temperature and salinity
  publication-title: Sci. Rep.
– volume: 3
  year: 2013
  ident: b0410
  article-title: Column biosorption of lead, cadmium, copper, and arsenic ions onto algae
  publication-title: J. Bioprocess. Biotechniq.
– volume: 217
  start-page: 447
  year: 2019
  end-page: 455
  ident: b0205
  article-title: Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM)
  publication-title: Chemosphere
– volume: 194
  start-page: 305
  year: 2015
  end-page: 311
  ident: b0420
  article-title: Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation
  publication-title: Bioresour. Technol.
– volume: 16
  start-page: 427
  year: 2016
  end-page: 433
  ident: b0495
  article-title: Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1
  publication-title: Algal Res.
– volume: 318
  start-page: 443
  year: 2016
  end-page: 451
  ident: b0470
  article-title: A symbiotic bacterium differentially influences arsenate absorption and transformation in Dunaliella salina under different phosphate regimes
  publication-title: J. Hazard. Mater.
– volume: 83
  year: 2017
  ident: b0025
  article-title: Sorption capacity measurement of chlorella vulgaris and scenedesmus acutus to remove chromium from tannery waste water
  publication-title: IOP Conf. Series: Earth Environ. Sci.
– volume: 81
  start-page: 35
  year: 2006
  end-page: 43
  ident: b0065
  article-title: Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads
  publication-title: Int. J. Miner. Process.
– volume: 9
  start-page: 38
  year: 2018
  end-page: 43
  ident: b0100
  article-title: Growth and metal uptake capacity of microalgae under exposure to chromium
  publication-title: J. Vietnam. Environ.
– volume: 70
  start-page: 298
  year: 2007
  end-page: 305
  ident: b0320
  article-title: Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction
  publication-title: Chemosphere
– volume: 4
  start-page: 171
  year: 2004
  end-page: 178
  ident: b0015
  article-title: Enhancement of Lead(II) Biosorption by Microalgal Biomass Immobilized onto Loofa (Luffa cylindrica) Sponge
  publication-title: Eng. Life Sci.
– volume: 275
  start-page: 232
  year: 2019
  end-page: 238
  ident: b0475
  article-title: Assessing arsenic redox state evolution in solution and solid phase during As(III) sorption onto chemically-treated sewage sludge digestate biochars
  publication-title: Bioresour. Technol.
– volume: 175
  start-page: 537
  year: 2015
  end-page: 544
  ident: b0480
  article-title: Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341
  publication-title: Bioresour. Technol.
– volume: Sci
  start-page: 60
  year: 2017
  ident: b0335
  article-title: Phycobiliproteins production and heavy metals reduction ability of Porphyridium sp.
  publication-title: IOP Conf. Series: Earth Environ.
– volume: 188
  start-page: 76
  year: 2019
  end-page: 85
  ident: b0505
  article-title: Influence of cadmium stress on the lipid production and cadmium bioresorption by Monoraphidium sp. QLY-1
  publication-title: Energy Convers. Manage.
– volume: 157
  start-page: 167
  year: 2014
  end-page: 174
  ident: b0455
  article-title: Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii
  publication-title: Aquat. Toxicol.
– volume: 191
  start-page: 419
  year: 2019
  ident: b0340
  article-title: The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview
  publication-title: Environ. Monit. Assess.
– volume: 93
  start-page: 1366
  year: 2013
  end-page: 1371
  ident: b0145
  article-title: Reduction of Cr(VI) into Cr(III) by Spirulina dead biomass in aqueous solution: kinetic studies
  publication-title: Chemosphere
– volume: 7
  year: 2018
  ident: b0450
  article-title: Analysis of removal of cadmium by action of immobilized Chlorella sp. micro-algae in alginate beads
  publication-title: F1000Research
– volume: 72
  start-page: 197
  year: 2006
  end-page: 205
  ident: b0175
  article-title: Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 13
  start-page: 834
  year: 2011
  end-page: 844
  ident: b0220
  article-title: Effects of arsenate (AS5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris
  publication-title: Int. J. Phytoremediat.
– volume: 11
  start-page: 562
  year: 2018
  ident: b0195
  article-title: Chlamydomonas angulosa (Green Alga) and Nostoc commune (Blue-Green Alga) microalgae-cellulose composite aerogel beads: manufacture, physicochemical characterization, and Cd (II) adsorption
  publication-title: Materials (Basel, Switzerland)
– volume: 18
  start-page: 747
  year: 2016
  end-page: 753
  ident: b0055
  article-title: Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area—an application towards phycoremediation
  publication-title: Int. J. Phytorem.
– volume: 2
  start-page: 112
  year: 2007
  end-page: 118
  ident: b0125
  article-title: Heavy metal pollution and human biotoxic effect
  publication-title: Int. J. Phys. Sci.
– volume: 231
  start-page: 94
  year: 2013
  end-page: 102
  ident: b0310
  article-title: Biosorption-mediated reduction of Cr(VI) using heterotrophically-grown Chlorella vulgaris: active sites and ionic strength effect
  publication-title: Chem. Eng. J.
– volume: 209
  start-page: 617
  year: 2019
  end-page: 629
  ident: b0330
  article-title: Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp
  publication-title: J. Cleaner Prod.
– volume: 248
  start-page: 49
  year: 2018
  end-page: 55
  ident: b0515
  article-title: Arsenic removal by periphytic biofilm and its application combined with biochar
  publication-title: Bioresour. Technol.
– volume: 197
  year: 2019
  ident: b0150
  article-title: Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia closterium based on chlorophyll fluorescence technology
  publication-title: J. Photochem. Photobiol., B
– volume: 299
  start-page: 67
  year: 2015
  end-page: 77
  ident: b0070
  article-title: The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources
  publication-title: J. Hazard. Mater.
– volume: 6
  year: 2018
  ident: b0080
  article-title: The effect of heavy metals on the viability of Tetraselmis marina AC16-MESO and an evaluation of the potential use of this microalga in bioremediation
  publication-title: PeerJ
– volume: 92
  start-page: 407
  year: 2011
  end-page: 418
  ident: b0140
  article-title: Removal of heavy metal ions from wastewaters: a review
  publication-title: J. Environ. Manage.
– volume: 174
  start-page: 175
  year: 2000
  end-page: 180
  ident: b0110
  article-title: Mercury uptake and removal by Euglena gracilis
  publication-title: Arch. Microbiol.
– volume: 24
  start-page: 29
  year: 2017
  end-page: 39
  ident: b0035
  article-title: A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae
  publication-title: Algal Res.
– volume: 7
  start-page: 214
  year: 2016
  end-page: 227
  ident: b0405
  article-title: Sequestration of Pb(II) and Ni(II) ions from aqueous solution using microalga Rhizoclonium hookeri: adsorption thermodynamics, kinetics, and equilibrium studies
  publication-title: J. Water Reuse Desalin.
– volume: 14
  start-page: 515
  year: 2019
  end-page: 529
  ident: b0190
  article-title: Absorption of hexavalent chromium by green micro algae Chlorella sorokiniana: live planktonic cells
  publication-title: Water Pract. Technol.
– volume: 24
  start-page: 89
  year: 2017
  end-page: 96
  ident: b0200
  article-title: Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains
  publication-title: Algal Res.
– volume: 30
  start-page: 1835
  year: 1996
  end-page: 1845
  ident: b0270
  article-title: Uptake, toxicity, and trophic transfer of mercury in a coastal diatom
  publication-title: Environ. Sci. Technol.
– volume: 289
  start-page: 38
  year: 2015
  end-page: 45
  ident: b0020
  article-title: Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7
  publication-title: J. Hazard. Mater.
– volume: 2
  start-page: 63
  year: 2017
  end-page: 73
  ident: b0060
  article-title: Assessment of cadmium, nickel and lead toxicity by using green algae scenedesmus incrassatulus and human cell lines: potential in vitro test-systems for monitoring of heavy metal pollution
  publication-title: Toxicol. Forens. Med.
– volume: 87
  start-page: 264
  year: 2008
  end-page: 271
  ident: b0225
  article-title: The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater
  publication-title: Aquat. Toxicol.
– volume: 33
  start-page: 79
  year: 2017
  end-page: 96
  ident: b0425
  article-title: Determination of heavy metals in the ambient atmosphere: a review
  publication-title: Toxicol. Ind. Health
– volume: 102
  start-page: 786
  year: 2011
  end-page: 796
  ident: b0490
  article-title: Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae
  publication-title: Bioresour. Technol.
– volume: 128
  start-page: 236
  year: 2016
  end-page: 245
  ident: b0275
  article-title: Influence of sulphate on the reduction of cadmium toxicity in the microalga Chlamydomonas moewusii
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 99
  start-page: 3600
  year: 2008
  end-page: 3608
  ident: b0155
  article-title: Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass
  publication-title: Bioresour. Technol.
– volume: 4
  start-page: 114
  year: 2015
  end-page: 127
  ident: b0285
  article-title: Adsorption of lead by microalgae Chaetoceros sp. and Chlorella sp. from aqueous solution
  publication-title: J. Commun. Health Res.
– volume: 40
  start-page: 664
  year: 2019
  end-page: 672
  ident: b0400
  article-title: Adsorption of inorganic mercury from aqueous solutions onto dry biomass of Chlorella vulgaris: kinetic and isotherm study
  publication-title: Environ. Technol.
– volume: 40
  start-page: 1725
  year: 2017
  end-page: 1731
  ident: b0245
  article-title: The effects of hydraulic retention time (HRT) on chromium(VI) reduction using autotrophic cultivation of Chlorella vulgaris
  publication-title: Bioprocess Biosyst. Eng.
– volume: 104
  start-page: 257
  year: 2012
  end-page: 265
  ident: b0395
  article-title: An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater
  publication-title: Bioresour. Technol.
– volume: 254
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0180
  article-title: Immobilization of mercury using high-phosphate culture-modified microalgae
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.112966
– volume: 51
  start-page: 4424
  issue: 22–24
  year: 2013
  ident: 10.1016/j.biortech.2020.122886_b0415
  article-title: Removal of lead, cadmium, copper, and arsenic ions using biosorption: equilibrium and kinetic studies
  publication-title: Desalin. Water Treat.
  doi: 10.1080/19443994.2013.769695
– volume: 102
  start-page: 786
  issue: 2
  year: 2011
  ident: 10.1016/j.biortech.2020.122886_b0490
  article-title: Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.08.107
– volume: 6
  start-page: 2302
  issue: 2
  year: 2018
  ident: 10.1016/j.biortech.2020.122886_b0115
  article-title: Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Parachlorella sp.
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2018.03.039
– volume: 49
  start-page: 169
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0045
  article-title: The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella vulgaris
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2016.10.002
– volume: 99
  start-page: 3600
  issue: 9
  year: 2008
  ident: 10.1016/j.biortech.2020.122886_b0155
  article-title: Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.07.039
– volume: 227
  start-page: 313
  year: 2018
  ident: 10.1016/j.biortech.2020.122886_b0170
  article-title: Bioremediation of chromium contaminated water by diatoms with concomitant lipid accumulation for biofuel production
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2018.09.011
– volume: 157
  start-page: 167
  year: 2014
  ident: 10.1016/j.biortech.2020.122886_b0455
  article-title: Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2014.10.012
– volume: 7
  start-page: 92
  year: 2015
  ident: 10.1016/j.biortech.2020.122886_b0240
  article-title: Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for chromium (VI) removal
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2014.12.006
– volume: 221
  start-page: 430
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0440
  article-title: Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.09.061
– volume: 228
  start-page: 536
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0360
  article-title: The critical utilization of active heterotrophic microalgae for bioremoval of Cr(VI) in organics co-contaminated wastewater
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.04.152
– volume: 299
  start-page: 67
  year: 2015
  ident: 10.1016/j.biortech.2020.122886_b0070
  article-title: The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.06.011
– volume: 174
  start-page: 175
  issue: 3
  year: 2000
  ident: 10.1016/j.biortech.2020.122886_b0110
  article-title: Mercury uptake and removal by Euglena gracilis
  publication-title: Arch. Microbiol.
  doi: 10.1007/s002030000193
– volume: 83
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0025
  article-title: Sorption capacity measurement of chlorella vulgaris and scenedesmus acutus to remove chromium from tannery waste water
  publication-title: IOP Conf. Series: Earth Environ. Sci.
– volume: 18
  start-page: 747
  issue: 8
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0055
  article-title: Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area—an application towards phycoremediation
  publication-title: Int. J. Phytorem.
  doi: 10.1080/15226514.2015.1115960
– volume: 93
  start-page: 1366
  issue: 7
  year: 2013
  ident: 10.1016/j.biortech.2020.122886_b0145
  article-title: Reduction of Cr(VI) into Cr(III) by Spirulina dead biomass in aqueous solution: kinetic studies
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.08.021
– volume: 209
  start-page: 617
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0330
  article-title: Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.10.288
– volume: 152
  start-page: 407
  issue: 1
  year: 2008
  ident: 10.1016/j.biortech.2020.122886_b0165
  article-title: Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.07.028
– volume: 7
  issue: 5
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0305
  article-title: Algal biomass waste residues of Spirulina platensis for chromium adsorption and modeling studies
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2019.103273
– volume: 248
  start-page: 49
  year: 2018
  ident: 10.1016/j.biortech.2020.122886_b0515
  article-title: Arsenic removal by periphytic biofilm and its application combined with biochar
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.07.026
– volume: 2
  start-page: 63
  issue: 2
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0060
  article-title: Assessment of cadmium, nickel and lead toxicity by using green algae scenedesmus incrassatulus and human cell lines: potential in vitro test-systems for monitoring of heavy metal pollution
  publication-title: Toxicol. Forens. Med.
  doi: 10.17140/TFMOJ-2-121
– volume: 81
  start-page: 35
  issue: 1
  year: 2006
  ident: 10.1016/j.biortech.2020.122886_b0065
  article-title: Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2006.06.002
– volume: 6
  issue: 155
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0265
  article-title: Molecular characterization of mercury binding ligands released by freshwater algae grown at three photoperiods
  publication-title: Front. Environ. Sci.
– volume: 34
  start-page: 949
  issue: 4
  year: 2015
  ident: 10.1016/j.biortech.2020.122886_b0375
  article-title: Removal of three and hexavalent chromium from aqueous solutions using a microalgae biomass-derived biosorbent
  publication-title: Environ. Prog. Sustainable Energy
  doi: 10.1002/ep.12071
– volume: 10
  start-page: 357
  issue: 3
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0260
  article-title: The efficiency of lead biosorption from industrial wastewater by micro-alga spirulina platensis
  publication-title: Int. J. Environ. Res.
– ident: 10.1016/j.biortech.2020.122886_b0445
– volume: 24
  start-page: 29
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0035
  article-title: A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2017.03.012
– volume: 6
  year: 2018
  ident: 10.1016/j.biortech.2020.122886_b0080
  article-title: The effect of heavy metals on the viability of Tetraselmis marina AC16-MESO and an evaluation of the potential use of this microalga in bioremediation
  publication-title: PeerJ
  doi: 10.7717/peerj.5295
– volume: 243
  start-page: 628
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0325
  article-title: Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.06.165
– volume: 130
  start-page: 224
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0390
  article-title: Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2016.04.024
– volume: 57
  start-page: 14518
  issue: 31
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0050
  article-title: Sorption sites of microalgae possess metal binding ability towards Cr(VI) from tannery effluents—a kinetic and characterization study
  publication-title: Desalin. Water Treat.
  doi: 10.1080/19443994.2015.1064032
– volume: 18
  start-page: 587
  issue: 6
  year: 2005
  ident: 10.1016/j.biortech.2020.122886_b0290
  article-title: Biosynthesis of phytochelatins and arsenic accumulation in the marine microalga phaeodactylum tricornutum in response to arsenate exposure
  publication-title: Biometals
  doi: 10.1007/s10534-005-2998-1
– volume: 92
  start-page: 407
  issue: 3
  year: 2011
  ident: 10.1016/j.biortech.2020.122886_b0140
  article-title: Removal of heavy metal ions from wastewaters: a review
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2010.11.011
– volume: 56
  start-page: 194
  issue: 1
  year: 2015
  ident: 10.1016/j.biortech.2020.122886_b0230
  article-title: Biosorption of Cr(VI) using a novel microalga Rhizoclonium hookeri: equilibrium, kinetics and thermodynamic studies
  publication-title: Desalin. Water Treat.
  doi: 10.1080/19443994.2014.932711
– volume: 72
  start-page: 197
  issue: 1
  year: 2006
  ident: 10.1016/j.biortech.2020.122886_b0175
  article-title: Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-005-0250-0
– volume: 186
  start-page: 805
  issue: 2
  year: 2014
  ident: 10.1016/j.biortech.2020.122886_b0185
  article-title: Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-013-3418-6
– volume: 194
  start-page: 305
  year: 2015
  ident: 10.1016/j.biortech.2020.122886_b0420
  article-title: Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.07.041
– volume: 374
  start-page: 420
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0500
  article-title: A novel cadmium-containing wastewater treatment method: Bio-immobilization by microalgae cell and their mechanism
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.04.072
– volume: 182
  start-page: 49
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0010
  article-title: Bioaccumulation and subcellular partitioning of Cr(III) and Cr(VI) in the freshwater green alga Chlamydomonas reinhardtii
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2016.11.004
– volume: 4
  start-page: 171
  issue: 2
  year: 2004
  ident: 10.1016/j.biortech.2020.122886_b0015
  article-title: Enhancement of Lead(II) Biosorption by Microalgal Biomass Immobilized onto Loofa (Luffa cylindrica) Sponge
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.200420019
– volume: 188
  start-page: 76
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0505
  article-title: Influence of cadmium stress on the lipid production and cadmium bioresorption by Monoraphidium sp. QLY-1
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.03.041
– volume: 281
  start-page: 469
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0005
  article-title: Acid-tolerant microalgae can withstand higher concentrations of invasive cadmium and produce sustainable biomass and biodiesel at pH 3.5
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.03.001
– volume: 4
  start-page: 114
  issue: 2
  year: 2015
  ident: 10.1016/j.biortech.2020.122886_b0285
  article-title: Adsorption of lead by microalgae Chaetoceros sp. and Chlorella sp. from aqueous solution
  publication-title: J. Commun. Health Res.
– volume: 217
  start-page: 447
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0205
  article-title: Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.10.205
– volume: 23
  start-page: 269
  issue: 2
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0300
  article-title: Microalgal consortia differentially modulate progressive adsorption of hexavalent chromium
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-017-0415-1
– volume: 47
  start-page: 2497
  issue: 7
  year: 2013
  ident: 10.1016/j.biortech.2020.122886_b0460
  article-title: Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.02.034
– volume: 167
  start-page: 155
  issue: 1
  year: 2011
  ident: 10.1016/j.biortech.2020.122886_b0355
  article-title: Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.12.014
– volume: 11
  start-page: 53
  issue: 1
  year: 2009
  ident: 10.1016/j.biortech.2020.122886_b0120
  article-title: Live and dead spirulina SP. to remove arsenic (V) from wate
  publication-title: Int. J. Phytorem.
  doi: 10.1080/15226510802363477
– volume: 263
  start-page: 49
  year: 2018
  ident: 10.1016/j.biortech.2020.122886_b0350
  article-title: Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.04.101
– volume: 14
  start-page: 515
  issue: 3
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0190
  article-title: Absorption of hexavalent chromium by green micro algae Chlorella sorokiniana: live planktonic cells
  publication-title: Water Pract. Technol.
  doi: 10.2166/wpt.2019.034
– volume: 7
  start-page: 214
  issue: 2
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0405
  article-title: Sequestration of Pb(II) and Ni(II) ions from aqueous solution using microalga Rhizoclonium hookeri: adsorption thermodynamics, kinetics, and equilibrium studies
  publication-title: J. Water Reuse Desalin.
  doi: 10.2166/wrd.2016.200
– volume: 87
  start-page: 264
  issue: 4
  year: 2008
  ident: 10.1016/j.biortech.2020.122886_b0225
  article-title: The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2008.02.006
– volume: 289
  start-page: 38
  year: 2015
  ident: 10.1016/j.biortech.2020.122886_b0020
  article-title: Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.02.012
– volume: 30
  start-page: 1835
  issue: 6
  year: 1996
  ident: 10.1016/j.biortech.2020.122886_b0270
  article-title: Uptake, toxicity, and trophic transfer of mercury in a coastal diatom
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es950373d
– volume: 74
  start-page: 1
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0485
  article-title: The use of autotrophic Chlorella vulgaris in chromium (VI) reduction under different reduction conditions
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2016.08.017
– volume: 62
  start-page: 144
  issue: 2
  year: 1999
  ident: 10.1016/j.biortech.2020.122886_b0430
  article-title: Heavy metal removal by microalgae
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/s001289900853
– volume: 1
  start-page: 172
  issue: 2
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0385
  article-title: Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2016.08.002
– volume: Sci
  start-page: 60
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0335
  article-title: Phycobiliproteins production and heavy metals reduction ability of Porphyridium sp.
  publication-title: IOP Conf. Series: Earth Environ.
– volume: 6
  start-page: 695
  issue: 4
  year: 2006
  ident: 10.1016/j.biortech.2020.122886_b0345
  article-title: Biosorption of mercury by biomass of filamentous algae Spirogyra species
  publication-title: J. Biol. Sci.
  doi: 10.3923/jbs.2006.695.700
– volume: 165
  start-page: 566
  issue: 1
  year: 2009
  ident: 10.1016/j.biortech.2020.122886_b0435
  article-title: Characterization of biosorption process of As(III) on green algae Ulothrix cylindricum
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.10.020
– volume: 275
  start-page: 232
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0475
  article-title: Assessing arsenic redox state evolution in solution and solid phase during As(III) sorption onto chemically-treated sewage sludge digestate biochars
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.12.056
– volume: 19
  start-page: 500
  issue: 5
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0075
  article-title: Effects of biopellets composed of microalgae and fungi on cadmium present at environmentally relevant levels in water
  publication-title: Int. J. Phytorem.
  doi: 10.1080/15226514.2016.1244170
– volume: 318
  start-page: 443
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0470
  article-title: A symbiotic bacterium differentially influences arsenate absorption and transformation in Dunaliella salina under different phosphate regimes
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.07.031
– volume: 11
  start-page: 562
  issue: 4
  year: 2018
  ident: 10.1016/j.biortech.2020.122886_b0195
  article-title: Chlamydomonas angulosa (Green Alga) and Nostoc commune (Blue-Green Alga) microalgae-cellulose composite aerogel beads: manufacture, physicochemical characterization, and Cd (II) adsorption
  publication-title: Materials (Basel, Switzerland)
  doi: 10.3390/ma11040562
– volume: 24
  start-page: 26375
  issue: 34
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0295
  article-title: Response of the freshwater diatom Halamphora veneta (Kützing) Levkov to copper and mercury and its potential for bioassessment of heavy metal toxicity in aquatic habitats
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-0225-6
– volume: 231
  start-page: 94
  year: 2013
  ident: 10.1016/j.biortech.2020.122886_b0310
  article-title: Biosorption-mediated reduction of Cr(VI) using heterotrophically-grown Chlorella vulgaris: active sites and ionic strength effect
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.07.013
– volume: 27
  start-page: 2251
  issue: 6
  year: 2015
  ident: 10.1016/j.biortech.2020.122886_b0215
  article-title: Biological sequestration and retention of cadmium as CdS nanoparticles by the microalga Scenedesmus-24
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-014-0499-8
– volume: 3
  issue: 1
  year: 2013
  ident: 10.1016/j.biortech.2020.122886_b0410
  article-title: Column biosorption of lead, cadmium, copper, and arsenic ions onto algae
  publication-title: J. Bioprocess. Biotechniq.
– volume: 3
  start-page: 11847
  issue: 9
  year: 2018
  ident: 10.1016/j.biortech.2020.122886_b0030
  article-title: NMR-based metabolomic approach to elucidate the differential cellular responses during mitigation of arsenic(III, V) in a green microalga
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b01692
– volume: 293
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0095
  article-title: Hexavalent chromium removal from water by microalgal-based materials: adsorption, desorption and recovery studies
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122064
– volume: 40
  start-page: 1725
  issue: 12
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0245
  article-title: The effects of hydraulic retention time (HRT) on chromium(VI) reduction using autotrophic cultivation of Chlorella vulgaris
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-017-1827-6
– volume: 2
  start-page: 112
  issue: 5
  year: 2007
  ident: 10.1016/j.biortech.2020.122886_b0125
  article-title: Heavy metal pollution and human biotoxic effect
  publication-title: Int. J. Phys. Sci.
– volume: 13
  start-page: 834
  issue: 8
  year: 2011
  ident: 10.1016/j.biortech.2020.122886_b0220
  article-title: Effects of arsenate (AS5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226514.2010.525560
– volume: 104
  start-page: 257
  year: 2012
  ident: 10.1016/j.biortech.2020.122886_b0395
  article-title: An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.11.044
– volume: 257
  start-page: 157
  year: 2018
  ident: 10.1016/j.biortech.2020.122886_b0370
  article-title: Enhancing cadmium bioremediation by a complex of water-hyacinth derived pellets immobilized with Chlorella sp
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.02.060
– volume: 244
  start-page: 1031
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0365
  article-title: Microalgal-biochar immobilized complex: a novel efficient biosorbent for cadmium removal from aqueous solution
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.08.085
– volume: 33
  start-page: 79
  issue: 1
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0425
  article-title: Determination of heavy metals in the ambient atmosphere: a review
  publication-title: Toxicol. Ind. Health
  doi: 10.1177/0748233716654827
– volume: 24
  start-page: 89
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0200
  article-title: Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2017.03.002
– volume: 7
  year: 2018
  ident: 10.1016/j.biortech.2020.122886_b0450
  article-title: Analysis of removal of cadmium by action of immobilized Chlorella sp. micro-algae in alginate beads
  publication-title: F1000Research
  doi: 10.12688/f1000research.13527.1
– volume: 128–129
  start-page: 171
  year: 2013
  ident: 10.1016/j.biortech.2020.122886_b0090
  article-title: Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2012.12.004
– volume: 24
  start-page: 21213
  issue: 26
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0465
  article-title: Bioaccumulation kinetics of arsenite and arsenate in Dunaliella salina under different phosphate regimes
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-9758-y
– volume: 238
  start-page: 82
  year: 2015
  ident: 10.1016/j.biortech.2020.122886_b0160
  article-title: Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg–phytochelatins
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2015.06.013
– volume: 6
  start-page: 20051
  issue: 24
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0510
  article-title: Biosorption of cadmium by a lipid extraction residue of lipid-rich microalgae
  publication-title: RSC Adv.
  doi: 10.1039/C5RA27264E
– volume: 16
  issue: 10
  year: 2015
  ident: 10.1016/j.biortech.2020.122886_b0280
  article-title: Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms161023929
– volume: 197
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0150
  article-title: Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia closterium based on chlorophyll fluorescence technology
  publication-title: J. Photochem. Photobiol., B
  doi: 10.1016/j.jphotobiol.2019.111551
– volume: 5
  start-page: 366
  issue: 1
  year: 2017
  ident: 10.1016/j.biortech.2020.122886_b0130
  article-title: Investigation of mercury removal by micro-algae dynamic membrane bioreactor from simulated dental waste water
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2016.11.031
– volume: 9
  start-page: 10226
  issue: 1
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0315
  article-title: Arsenic biotransformation potential of six marine diatom species: effect of temperature and salinity
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-46551-8
– volume: 9
  start-page: 38
  issue: 1
  year: 2018
  ident: 10.1016/j.biortech.2020.122886_b0100
  article-title: Growth and metal uptake capacity of microalgae under exposure to chromium
  publication-title: J. Vietnam. Environ.
  doi: 10.13141/jve.vol9.no1.pp38-43
– volume: 24
  start-page: 2630
  issue: 10
  year: 2005
  ident: 10.1016/j.biortech.2020.122886_b0250
  article-title: Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum)
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1897/04-580R.1
– volume: 175
  start-page: 537
  year: 2015
  ident: 10.1016/j.biortech.2020.122886_b0480
  article-title: Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.10.124
– volume: 57
  start-page: 4576
  issue: 10
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0105
  article-title: Biosorption of lead ions (Pb2+) from simulated wastewater using residual biomass of microalgae
  publication-title: Desalin. Water Treat.
– volume: 40
  start-page: 664
  issue: 5
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0400
  article-title: Adsorption of inorganic mercury from aqueous solutions onto dry biomass of Chlorella vulgaris: kinetic and isotherm study
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2017.1400114
– volume: 187
  start-page: 45
  issue: 1
  year: 2007
  ident: 10.1016/j.biortech.2020.122886_b0235
  article-title: Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-006-0170-0
– volume: 284
  start-page: 231
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0255
  article-title: Immobilizing unicellular microalga on pellet-forming filamentous fungus: Can this provide new insights into the remediation of arsenic from contaminated water?
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.03.128
– volume: 23
  start-page: 2663
  issue: 3
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0040
  article-title: Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-5510-7
– volume: 128
  start-page: 236
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0275
  article-title: Influence of sulphate on the reduction of cadmium toxicity in the microalga Chlamydomonas moewusii
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2016.02.030
– volume: 100
  start-page: 2388
  issue: 8
  year: 2009
  ident: 10.1016/j.biortech.2020.122886_b0210
  article-title: Continuous Cr(VI) removal by Scenedesmus incrassatulus in an airlift photobioreactor
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.10.053
– volume: 191
  start-page: 419
  issue: 7
  year: 2019
  ident: 10.1016/j.biortech.2020.122886_b0340
  article-title: The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-019-7528-7
– volume: 156
  start-page: 264
  issue: 2
  year: 2010
  ident: 10.1016/j.biortech.2020.122886_b0135
  article-title: Chromium (VI) removal by methylated biomass of Spirulina platensis: the effect of methylation process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.10.015
– volume: 16
  start-page: 427
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0495
  article-title: Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2016.04.002
– volume: 70
  start-page: 298
  issue: 2
  year: 2007
  ident: 10.1016/j.biortech.2020.122886_b0320
  article-title: Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.06.007
– volume: 8
  start-page: 884
  issue: 3
  year: 2016
  ident: 10.1016/j.biortech.2020.122886_b0085
  article-title: The siliceous microalga Navicula subminuscula (Manguin) as a biomaterial for removing metals from tannery effluents: a laboratory study
  publication-title: J. Mater. Environ. Sci.
SSID ssj0003172
Score 2.7143285
SecondaryResourceType review_article
Snippet •Bioremediation of five toxic heavy metals by microalgae were reviewed in-depth.•Feasibility and potential of value-added product accumulation were...
Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122886
SubjectTerms Arsenic
bioaccumulation
Biodegradation, Environmental
biomass
Bioremediation
biosorbents
Biosorption
byproducts
Cadmium
carcinogenicity
Chromium
ecology
Heavy metals
human health
Humans
lead
Mechanism
mercury
Metals, Heavy
Microalgae
value added
Title Bioremediation of heavy metals using microalgae: Recent advances and mechanisms
URI https://dx.doi.org/10.1016/j.biortech.2020.122886
https://www.ncbi.nlm.nih.gov/pubmed/32046940
https://www.proquest.com/docview/2354163427
https://www.proquest.com/docview/2439384946
Volume 303
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZW9NByQIW2lEeRkXoNmzp2bHNbVl1tW0EPLRI3y7EnaFE3i8iCxKW_vTN5UCrxOPSYZByNZsYzn-Rvxox9BOG1ijpLABNfIlWhaUuFhIadYcGHEhQ1Ch-f5NNT-fVMnQ3YuO-FIVpll_vbnN5k6-7NsLPm8HI2G_4g8G0UlhhC9UrRxE8pNUX5we-_NA-sj81JAgonJH2vS_jioJgRo7U5lBA0aEEY6ql-uEA9BkCbQjR5zdY6BMlHrZLrbADVBlsdnV91UzRgg70c99e44Zd7EwffsO9HqAs07SLkEb4oOWbjm1s-B0ThNSca_DmfE0uPmjzgkCOuxLrEO65AzX0VUZj6hWf1vH7LTieff46nSXenQhIwJS6TaG2MmdRQxjwTqS288SGVZRY0BB2tgNzkqbcRBUqvlI8-V1aWJqahKIPJ3rGValHBe8Y1mjNGU1rEiJgGoDAiKpvrTyKHoHy2xVRvSBe6geN078Uv1zPLLlzvAEcOcK0Dttjwbt1lO3Lj2RW295P7J3gc1oVn1-73jnXoGTou8RUsrmsnMkVoVQr9hAziucxIK_E_m21U3OmM5pW5len2f2i3w17RU8uw3GUry6tr-IAoaFnsNWG-x16MvnybnvwB4XEHXQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aFwQFBe5WkkrmGDY8c2t2VFtaXtcqCVerMc26m2YrNVs0Xi3zOTOKsiAT1wjWei0Yz9zSd5ZgzwLnKnZFBFFhH4MiErRUfKZzTsDBN-rKOkRuHjeTk7FV_O5NkWTIdeGCqrTNjfY3qH1unLOHlzfLlYjL8R-dYSUwyxeimLO7BN06nkCLYnB4ez-QaQMUV2lwkon5HCjUbhi_fVgopau3sJTrMWuKa26j_nqL9x0C4X7T-A-4lEsklv50PYis0u3JucX6VBGnEXdqbDS264cmPo4CP4-gltiV3HCAWFrWqGgPzjJ1tGJOIto0r4c7akQj3q84gfGVJLTE0slQu0zDUBhalleNEu28dwuv_5ZDrL0rMKmUdUXGfBmBAKoWIdyoLnpnLa-VzUhVfRq2B4LHWZOxNQoHZSuuBKaUStQ-6r2uviCYyaVROfAVPozhB0bZAmIhLESvMgTak-8DJ66Yo9kIMjrU8zx-npi-92KC67sEMALAXA9gHYg_FG77KfunGrhhniZH_bPxZTw626b4fAWowM3Zi4Jq6uW8sLSYRVcPUPGaR0hRZG4H-e9rtiYzO6V5RG5M__w7o3sDM7OT6yRwfzwxdwl1b6gsuXMFpfXcdXSIrW1eu06X8B3QAKDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioremediation+of+heavy+metals+using+microalgae%3A+Recent+advances+and+mechanisms&rft.jtitle=Bioresource+technology&rft.au=Leong%2C+Yoong+Kit&rft.au=Chang%2C+Jo-Shu&rft.date=2020-05-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=303&rft.spage=122886&rft_id=info:doi/10.1016%2Fj.biortech.2020.122886&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon