Bioremediation of heavy metals using microalgae: Recent advances and mechanisms
•Bioremediation of five toxic heavy metals by microalgae were reviewed in-depth.•Feasibility and potential of value-added product accumulation were evaluated.•Discussion of advanced techniques and integration with other technologies.•Challenges and proposed strategies were summarized along with futu...
Saved in:
Published in | Bioresource technology Vol. 303; p. 122886 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Bioremediation of five toxic heavy metals by microalgae were reviewed in-depth.•Feasibility and potential of value-added product accumulation were evaluated.•Discussion of advanced techniques and integration with other technologies.•Challenges and proposed strategies were summarized along with future prospects.
Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts, posing threats to environmental ecology and human health. There is an emerging trend of employing microalgae in phycoremediation of heavy metals, due to several benefits including abundant availability, inexpensive, excellent metal removal efficiency and eco-friendly nature. This review presents the recent advances and mechanisms involved in bioremediation and biosorption of these toxic heavy metals utilizing microalgae. Tolerance and response of different microalgae strains to heavy metals and their bioaccumulation capability with value-added by-products formation as well as utilization of non-living biomass as biosorbents are discussed. Furthermore, challenges and future prospects in bioremediation of heavy metals by microalgae are also explored. This review aims to provide useful insights to help future development of efficient and commercially viable technology for microalgae-based heavy metal bioremediation. |
---|---|
AbstractList | Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts, posing threats to environmental ecology and human health. There is an emerging trend of employing microalgae in phycoremediation of heavy metals, due to several benefits including abundant availability, inexpensive, excellent metal removal efficiency and eco-friendly nature. This review presents the recent advances and mechanisms involved in bioremediation and biosorption of these toxic heavy metals utilizing microalgae. Tolerance and response of different microalgae strains to heavy metals and their bioaccumulation capability with value-added by-products formation as well as utilization of non-living biomass as biosorbents are discussed. Furthermore, challenges and future prospects in bioremediation of heavy metals by microalgae are also explored. This review aims to provide useful insights to help future development of efficient and commercially viable technology for microalgae-based heavy metal bioremediation.Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts, posing threats to environmental ecology and human health. There is an emerging trend of employing microalgae in phycoremediation of heavy metals, due to several benefits including abundant availability, inexpensive, excellent metal removal efficiency and eco-friendly nature. This review presents the recent advances and mechanisms involved in bioremediation and biosorption of these toxic heavy metals utilizing microalgae. Tolerance and response of different microalgae strains to heavy metals and their bioaccumulation capability with value-added by-products formation as well as utilization of non-living biomass as biosorbents are discussed. Furthermore, challenges and future prospects in bioremediation of heavy metals by microalgae are also explored. This review aims to provide useful insights to help future development of efficient and commercially viable technology for microalgae-based heavy metal bioremediation. Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts, posing threats to environmental ecology and human health. There is an emerging trend of employing microalgae in phycoremediation of heavy metals, due to several benefits including abundant availability, inexpensive, excellent metal removal efficiency and eco-friendly nature. This review presents the recent advances and mechanisms involved in bioremediation and biosorption of these toxic heavy metals utilizing microalgae. Tolerance and response of different microalgae strains to heavy metals and their bioaccumulation capability with value-added by-products formation as well as utilization of non-living biomass as biosorbents are discussed. Furthermore, challenges and future prospects in bioremediation of heavy metals by microalgae are also explored. This review aims to provide useful insights to help future development of efficient and commercially viable technology for microalgae-based heavy metal bioremediation. •Bioremediation of five toxic heavy metals by microalgae were reviewed in-depth.•Feasibility and potential of value-added product accumulation were evaluated.•Discussion of advanced techniques and integration with other technologies.•Challenges and proposed strategies were summarized along with future prospects. Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts, posing threats to environmental ecology and human health. There is an emerging trend of employing microalgae in phycoremediation of heavy metals, due to several benefits including abundant availability, inexpensive, excellent metal removal efficiency and eco-friendly nature. This review presents the recent advances and mechanisms involved in bioremediation and biosorption of these toxic heavy metals utilizing microalgae. Tolerance and response of different microalgae strains to heavy metals and their bioaccumulation capability with value-added by-products formation as well as utilization of non-living biomass as biosorbents are discussed. Furthermore, challenges and future prospects in bioremediation of heavy metals by microalgae are also explored. This review aims to provide useful insights to help future development of efficient and commercially viable technology for microalgae-based heavy metal bioremediation. |
ArticleNumber | 122886 |
Author | Leong, Yoong Kit Chang, Jo-Shu |
Author_xml | – sequence: 1 givenname: Yoong Kit surname: Leong fullname: Leong, Yoong Kit organization: Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan – sequence: 2 givenname: Jo-Shu surname: Chang fullname: Chang, Jo-Shu email: changjs@mail.ncku.edu.tw organization: Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32046940$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFqGzEURUVISRy3vxBm2c04GkmjkUoXbULSFgyB0q7Fs_QmlpnRpJJs8N9HieNNN14JxLlX4twrch6mgIRcN3TR0EbebBYrP8WMdr1glJVLxpSSZ2TWqI7XTHfynMyolrRWLROX5CqlDaWUNx27IJecUSG1oDPyeFtqcETnIfspVFNfrRF2-2rEDEOqtsmHp2r0Nk4wPAF-qX6jxZArcDsIFlMFwRXYriH4NKaP5ENfcvjp_ZyTvw_3f-5-1svHH7_uvi9rK2SXa6e1c1x02DtZPqNXoMBS0XPboe2cZiiVpKBdAXpoW3AgWy165ahd9VbxOfl86H2O078tpmxGnywOAwSctskwwTVXQgt5GuWtaCQXrCvo9Tu6XRUn5jn6EeLeHH0V4OsBKD5Sitgb6_ObuRzBD6ah5nUeszHHeczrPOYwT4nL_-LHF04Gvx2CWJzuPEaTrMfi3_mINhs3-VMVL6R2rrQ |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_118246 crossref_primary_10_1016_j_scitotenv_2021_150585 crossref_primary_10_1016_j_jenvman_2024_120723 crossref_primary_10_1007_s10098_020_01847_6 crossref_primary_10_1016_j_algal_2023_103060 crossref_primary_10_1016_j_jhazmat_2021_127609 crossref_primary_10_1016_j_envint_2024_108813 crossref_primary_10_1016_j_envpol_2023_122110 crossref_primary_10_3390_pr9101696 crossref_primary_10_1007_s13762_024_05690_w crossref_primary_10_1016_j_algal_2024_103465 crossref_primary_10_1016_j_scitotenv_2022_155192 crossref_primary_10_1007_s12011_024_04283_5 crossref_primary_10_1007_s13762_022_04502_3 crossref_primary_10_1016_j_envpol_2023_122349 crossref_primary_10_1016_j_scitotenv_2022_159566 crossref_primary_10_1007_s11356_021_13325_7 crossref_primary_10_1002_cbic_202300284 crossref_primary_10_1016_j_seppur_2024_127975 crossref_primary_10_1016_j_cej_2024_149222 crossref_primary_10_1016_j_envpol_2021_117443 crossref_primary_10_1016_j_jece_2022_108999 crossref_primary_10_3390_cells13131137 crossref_primary_10_1038_s41598_023_42453_y crossref_primary_10_1016_j_renene_2020_11_014 crossref_primary_10_1016_j_eti_2021_101826 crossref_primary_10_1016_j_jhazmat_2021_127719 crossref_primary_10_3390_molecules27217153 crossref_primary_10_1016_j_arabjc_2021_103231 crossref_primary_10_1007_s11356_023_29427_3 crossref_primary_10_3390_su16188174 crossref_primary_10_1016_j_colsurfb_2024_114168 crossref_primary_10_1007_s11157_022_09635_y crossref_primary_10_1007_s12011_022_03206_6 crossref_primary_10_1007_s12223_023_01068_6 crossref_primary_10_1002_slct_202003867 crossref_primary_10_1016_j_eehl_2022_11_005 crossref_primary_10_2174_1877946812666211217152703 crossref_primary_10_1080_21655979_2022_2061148 crossref_primary_10_1007_s10811_022_02797_w crossref_primary_10_1016_j_bcab_2021_102045 crossref_primary_10_1016_j_biortech_2021_126245 crossref_primary_10_1016_j_envpol_2024_123864 crossref_primary_10_1007_s11270_022_05636_3 crossref_primary_10_1016_j_algal_2021_102541 crossref_primary_10_1016_j_jes_2021_02_018 crossref_primary_10_1007_s13399_022_03214_5 crossref_primary_10_5004_dwt_2021_26626 crossref_primary_10_3390_biotech13030028 crossref_primary_10_3389_fbioe_2022_904046 crossref_primary_10_3389_fenvs_2021_778260 crossref_primary_10_1080_00318884_2024_2351207 crossref_primary_10_1016_j_chemosphere_2024_143359 crossref_primary_10_1016_j_envpol_2023_121399 crossref_primary_10_1016_j_dwt_2025_101123 crossref_primary_10_1016_j_ecoenv_2024_116702 crossref_primary_10_1007_s13399_023_04549_3 crossref_primary_10_1016_j_algal_2023_103157 crossref_primary_10_3390_microorganisms12051029 crossref_primary_10_1016_j_algal_2024_103579 crossref_primary_10_1016_j_algal_2024_103699 crossref_primary_10_1016_j_jhazmat_2023_132875 crossref_primary_10_1016_j_envres_2021_111630 crossref_primary_10_3390_ani14050754 crossref_primary_10_1007_s10311_023_01680_5 crossref_primary_10_1016_j_chemosphere_2022_135375 crossref_primary_10_1016_j_chemosphere_2022_137310 crossref_primary_10_3390_life14080940 crossref_primary_10_1016_j_cscee_2024_100801 crossref_primary_10_1177_1934578X241231699 crossref_primary_10_1016_j_biteb_2022_100979 crossref_primary_10_1016_j_envpol_2023_123001 crossref_primary_10_1016_j_sajce_2023_05_007 crossref_primary_10_1039_D3NR04740G crossref_primary_10_1016_j_algal_2024_103784 crossref_primary_10_1016_j_heliyon_2022_e08995 crossref_primary_10_1016_j_chemosphere_2023_138616 crossref_primary_10_1016_j_algal_2024_103547 crossref_primary_10_1007_s11270_024_07544_0 crossref_primary_10_1007_s11356_024_34390_8 crossref_primary_10_1007_s11356_023_25628_y crossref_primary_10_1016_j_chemosphere_2020_129172 crossref_primary_10_1016_j_chemosphere_2022_136153 crossref_primary_10_1007_s11356_021_14571_5 crossref_primary_10_1007_s42250_020_00221_9 crossref_primary_10_1080_21655979_2024_2314888 crossref_primary_10_1007_s11356_021_12396_w crossref_primary_10_32615_ps_2023_038 crossref_primary_10_1016_j_jhazmat_2021_125855 crossref_primary_10_1016_j_jhazmat_2021_127919 crossref_primary_10_1021_acsami_1c18435 crossref_primary_10_2139_ssrn_3995939 crossref_primary_10_2174_1389203724666221108114537 crossref_primary_10_1007_s12088_024_01332_4 crossref_primary_10_1021_acs_est_0c05278 crossref_primary_10_54097_hset_v73i_12862 crossref_primary_10_1016_j_chemosphere_2024_143133 crossref_primary_10_22207_JPAM_15_1_32 crossref_primary_10_1016_j_scitotenv_2022_157110 crossref_primary_10_1016_j_scitotenv_2022_159894 crossref_primary_10_1016_j_algal_2025_103934 crossref_primary_10_1016_j_aquatox_2023_106555 crossref_primary_10_1002_bbb_2635 crossref_primary_10_1016_j_scitotenv_2022_158689 crossref_primary_10_1016_j_jclepro_2023_140538 crossref_primary_10_1016_j_scitotenv_2021_151754 crossref_primary_10_1016_j_scitotenv_2024_174056 crossref_primary_10_1016_j_marpolbul_2021_112656 crossref_primary_10_1016_j_algal_2023_103367 crossref_primary_10_1016_j_algal_2024_103645 crossref_primary_10_1016_j_algal_2024_103766 crossref_primary_10_1016_j_biortech_2022_126759 crossref_primary_10_3390_plants12173147 crossref_primary_10_1016_j_envpol_2022_118837 crossref_primary_10_1016_j_cej_2021_128983 crossref_primary_10_1016_j_jhazmat_2022_129002 crossref_primary_10_3390_biomass2030008 crossref_primary_10_1002_clen_202100286 crossref_primary_10_1016_j_hazadv_2022_100102 crossref_primary_10_1016_j_scitotenv_2021_149464 crossref_primary_10_3390_chemengineering5020027 crossref_primary_10_1016_j_ecoenv_2021_113091 crossref_primary_10_1080_10408398_2021_1979931 crossref_primary_10_1016_j_eti_2020_101340 crossref_primary_10_1016_j_chemosphere_2021_130654 crossref_primary_10_1007_s11274_024_03974_4 crossref_primary_10_1016_j_algal_2024_103411 crossref_primary_10_1016_j_arabjc_2023_105085 crossref_primary_10_1016_j_jece_2024_112669 crossref_primary_10_1016_j_algal_2022_102762 crossref_primary_10_1007_s13762_024_06130_5 crossref_primary_10_1016_j_heliyon_2022_e08967 crossref_primary_10_1016_j_chemosphere_2023_138861 crossref_primary_10_1016_j_heliyon_2024_e35324 crossref_primary_10_1016_j_apgeochem_2020_104823 crossref_primary_10_1007_s10653_022_01330_9 crossref_primary_10_1007_s12668_020_00805_2 crossref_primary_10_1016_j_chemosphere_2021_131870 crossref_primary_10_3389_fmicb_2024_1496843 crossref_primary_10_1080_01496395_2022_2104733 crossref_primary_10_1186_s43141_022_00322_7 crossref_primary_10_3389_fmicb_2021_731723 crossref_primary_10_1016_j_ecoenv_2023_115144 crossref_primary_10_3389_fcimb_2022_867446 crossref_primary_10_1007_s13399_022_03370_8 crossref_primary_10_1016_j_scitotenv_2023_168712 crossref_primary_10_1016_j_stress_2024_100399 crossref_primary_10_1016_j_biteb_2021_100932 crossref_primary_10_1016_j_biortech_2021_126665 crossref_primary_10_1016_j_enconman_2022_116118 crossref_primary_10_1016_j_jwpe_2021_102404 crossref_primary_10_1016_j_jes_2023_04_003 crossref_primary_10_1007_s11356_022_23967_w crossref_primary_10_1016_j_jclepro_2022_132772 crossref_primary_10_1016_j_scitotenv_2024_176989 crossref_primary_10_1007_s11356_023_28432_w crossref_primary_10_1016_j_heliyon_2021_e07609 crossref_primary_10_3389_fenvs_2023_1131204 crossref_primary_10_1016_j_chemosphere_2023_139291 crossref_primary_10_1016_j_jwpe_2024_106506 crossref_primary_10_1007_s10646_024_02793_5 crossref_primary_10_1007_s44169_024_00072_2 crossref_primary_10_1016_j_biombioe_2025_107776 crossref_primary_10_1016_j_biortech_2021_125343 crossref_primary_10_1016_j_fuel_2022_126427 crossref_primary_10_3390_w15040621 crossref_primary_10_3390_w14223784 crossref_primary_10_1016_j_biortech_2023_130009 crossref_primary_10_1016_j_biteb_2023_101472 crossref_primary_10_1016_j_optlastec_2022_108246 crossref_primary_10_1016_j_bcab_2024_103299 crossref_primary_10_3390_agronomy13092228 crossref_primary_10_52363_2522_1892_2022_2_6 crossref_primary_10_3390_microorganisms10051041 crossref_primary_10_1111_1541_4337_13341 crossref_primary_10_1016_j_jece_2023_109943 crossref_primary_10_1016_j_chemosphere_2021_133180 crossref_primary_10_3390_su15065521 crossref_primary_10_1007_s10811_021_02668_w crossref_primary_10_1016_j_jhazmat_2022_130448 crossref_primary_10_1016_j_jhazmat_2022_129683 crossref_primary_10_1016_j_biteb_2022_101161 crossref_primary_10_2139_ssrn_4128734 crossref_primary_10_1016_j_scitotenv_2022_155444 crossref_primary_10_1016_j_biotechadv_2022_107946 crossref_primary_10_1016_j_aquaculture_2021_737045 crossref_primary_10_1021_acsami_1c15380 crossref_primary_10_1007_s10532_023_10026_5 crossref_primary_10_1016_j_chemosphere_2022_135538 crossref_primary_10_1016_j_psep_2024_08_009 crossref_primary_10_3390_microorganisms10122445 crossref_primary_10_3390_microbiolres16010018 crossref_primary_10_1007_s11368_022_03307_8 crossref_primary_10_1016_j_chemosphere_2023_139077 crossref_primary_10_1016_j_biteb_2024_101789 crossref_primary_10_1007_s13534_024_00350_x crossref_primary_10_1016_j_jwpe_2024_105207 crossref_primary_10_1016_j_scitotenv_2024_177740 crossref_primary_10_3390_w14244032 crossref_primary_10_1002_ldr_4989 crossref_primary_10_1016_j_scitotenv_2021_146205 crossref_primary_10_4491_eer_2021_631 crossref_primary_10_3390_foods13244055 crossref_primary_10_52363_2522_1892_2024_1_9 crossref_primary_10_1016_j_jwpe_2024_105201 crossref_primary_10_1016_j_biortech_2021_124678 crossref_primary_10_1016_j_clwas_2022_100026 crossref_primary_10_1016_j_tifs_2024_104537 crossref_primary_10_1016_j_chemosphere_2023_137921 crossref_primary_10_3390_microorganisms12061050 crossref_primary_10_1007_s13205_023_03807_5 crossref_primary_10_1016_j_jhazmat_2022_129785 crossref_primary_10_1007_s40726_021_00184_6 crossref_primary_10_1021_acs_chemrestox_1c00397 crossref_primary_10_3390_biology12050675 crossref_primary_10_1016_j_seppur_2022_120744 crossref_primary_10_1016_j_ces_2023_118778 crossref_primary_10_1016_j_coesh_2023_100469 crossref_primary_10_1016_j_watres_2023_120654 crossref_primary_10_1016_j_ccr_2024_216268 crossref_primary_10_1016_j_jhazmat_2024_136994 crossref_primary_10_1007_s10661_024_12620_3 crossref_primary_10_1016_j_biortech_2020_124394 crossref_primary_10_3389_fmicb_2024_1256814 crossref_primary_10_1016_j_jece_2020_104926 crossref_primary_10_1016_j_jenvman_2023_118223 crossref_primary_10_1016_j_chemosphere_2020_128346 crossref_primary_10_3390_polym13010131 crossref_primary_10_3390_w12061755 crossref_primary_10_3390_w16131759 crossref_primary_10_1016_j_hazadv_2022_100171 crossref_primary_10_3389_fenvs_2022_1035332 crossref_primary_10_1016_j_rser_2023_113773 crossref_primary_10_3390_su13147873 crossref_primary_10_1016_j_chemosphere_2023_141088 crossref_primary_10_1111_lam_13564 crossref_primary_10_1007_s43832_023_00041_1 crossref_primary_10_1016_j_biotechadv_2025_108519 crossref_primary_10_1016_j_jhazmat_2024_134244 crossref_primary_10_3390_phycology4010007 crossref_primary_10_1016_j_scitotenv_2021_151928 crossref_primary_10_1007_s00284_024_03832_4 crossref_primary_10_30550_j_lil_2015 crossref_primary_10_2139_ssrn_3944517 crossref_primary_10_1016_j_cej_2022_136814 crossref_primary_10_5004_dwt_2022_28375 crossref_primary_10_1016_j_jwpe_2023_104284 crossref_primary_10_3390_biology11081176 crossref_primary_10_3390_w16050718 crossref_primary_10_3390_plants13060829 crossref_primary_10_1016_j_molliq_2020_115062 crossref_primary_10_1016_j_jenvman_2021_112792 crossref_primary_10_1016_j_seppur_2021_119469 crossref_primary_10_3390_w16223305 crossref_primary_10_1007_s11356_022_25065_3 crossref_primary_10_1016_j_cis_2022_102798 crossref_primary_10_1016_j_procbio_2024_06_031 crossref_primary_10_1016_j_chemosphere_2022_135576 crossref_primary_10_1007_s11270_024_07646_9 crossref_primary_10_1016_j_bcab_2021_102106 crossref_primary_10_1016_j_aquatox_2023_106499 crossref_primary_10_2139_ssrn_3974034 crossref_primary_10_1007_s10811_024_03438_0 crossref_primary_10_1186_s13068_023_02394_0 crossref_primary_10_1016_j_envres_2021_111959 crossref_primary_10_1016_j_jenvman_2022_116220 crossref_primary_10_1016_j_dwt_2024_100523 crossref_primary_10_1016_j_chemosphere_2023_140334 crossref_primary_10_1016_j_bej_2024_109367 crossref_primary_10_1016_j_biortech_2022_128049 crossref_primary_10_47495_okufbed_1089874 crossref_primary_10_1016_j_jece_2022_108071 crossref_primary_10_1080_07388551_2023_2170862 crossref_primary_10_1016_j_chemosphere_2023_140448 crossref_primary_10_1016_j_jwpe_2021_102009 crossref_primary_10_1016_j_jhazmat_2022_128532 crossref_primary_10_3390_biotech12020029 crossref_primary_10_3389_fpls_2020_607651 crossref_primary_10_35118_apjmbb_2024_032_3_21 crossref_primary_10_37543_oceanides_v38i1_290 crossref_primary_10_1007_s11356_022_21307_6 crossref_primary_10_3390_nu13082855 crossref_primary_10_1080_20964129_2020_1859948 crossref_primary_10_1016_j_jhazmat_2021_127157 crossref_primary_10_1007_s11356_024_34461_w crossref_primary_10_1016_j_envpol_2024_124028 crossref_primary_10_1016_j_jwpe_2024_105498 crossref_primary_10_1016_j_biortech_2021_125736 crossref_primary_10_1016_j_chemosphere_2023_140798 crossref_primary_10_1007_s11274_023_03819_6 crossref_primary_10_1016_j_envres_2022_114948 crossref_primary_10_1016_j_hazadv_2024_100444 crossref_primary_10_1016_j_biteb_2024_101920 crossref_primary_10_1016_j_dwt_2024_100540 crossref_primary_10_1016_j_jhazmat_2021_126299 crossref_primary_10_1016_j_scp_2023_101281 crossref_primary_10_1016_j_cej_2021_131436 crossref_primary_10_3390_jmse10060837 crossref_primary_10_1007_s11270_023_06876_7 crossref_primary_10_1016_j_cej_2022_136294 crossref_primary_10_1016_j_jece_2023_111742 crossref_primary_10_3389_fmicb_2024_1383360 crossref_primary_10_1007_s11356_023_30190_8 crossref_primary_10_1016_j_ecoenv_2025_117706 crossref_primary_10_1016_j_envpol_2022_119688 crossref_primary_10_1016_j_nexus_2022_100116 crossref_primary_10_3390_su15065128 crossref_primary_10_1007_s13205_025_04248_y crossref_primary_10_1007_s40726_021_00185_5 crossref_primary_10_1016_j_chemosphere_2021_133102 crossref_primary_10_3390_su15076024 crossref_primary_10_1039_D1RA02366G crossref_primary_10_1016_j_jhazmat_2020_123431 crossref_primary_10_3390_microorganisms12040700 crossref_primary_10_1007_s11274_022_03362_w crossref_primary_10_48022_mbl_2008_08017 crossref_primary_10_1016_j_envres_2022_112860 crossref_primary_10_1016_j_jclepro_2021_128724 crossref_primary_10_1016_j_biortech_2021_124750 crossref_primary_10_1016_j_enmm_2024_100931 crossref_primary_10_1016_j_ica_2024_122068 crossref_primary_10_2166_aqua_2021_068 crossref_primary_10_1016_j_jiec_2024_04_014 crossref_primary_10_1016_j_cej_2020_125828 crossref_primary_10_1007_s10811_023_03072_2 crossref_primary_10_1016_j_fuel_2022_124623 crossref_primary_10_1016_j_jhazmat_2024_135885 crossref_primary_10_1016_j_chemosphere_2021_132369 crossref_primary_10_1002_jctb_6602 crossref_primary_10_1002_jobm_202100314 crossref_primary_10_3390_life14091053 crossref_primary_10_1002_rem_70011 crossref_primary_10_1016_j_ces_2023_118928 crossref_primary_10_1016_j_jhazmat_2020_123685 crossref_primary_10_1016_j_seppur_2021_119510 crossref_primary_10_1016_j_jhazmat_2021_126278 crossref_primary_10_1016_j_scitotenv_2024_170278 crossref_primary_10_2139_ssrn_3971398 crossref_primary_10_1016_j_matpr_2020_12_071 crossref_primary_10_1002_bbb_2187 crossref_primary_10_1016_j_mtbio_2024_101154 crossref_primary_10_1080_15226514_2021_1872484 crossref_primary_10_1016_j_rser_2020_110689 crossref_primary_10_1016_j_biortech_2021_124835 crossref_primary_10_1021_acs_analchem_4c04305 crossref_primary_10_1016_j_cej_2024_157855 crossref_primary_10_1016_j_jece_2021_105684 crossref_primary_10_1016_j_jhazmat_2024_135831 crossref_primary_10_1016_j_jece_2022_108156 crossref_primary_10_1080_10889868_2022_2040413 crossref_primary_10_1007_s11270_025_07821_6 crossref_primary_10_1155_2021_7694157 crossref_primary_10_1111_jam_15372 crossref_primary_10_1016_j_jenvman_2024_121182 crossref_primary_10_1016_j_envres_2023_117477 crossref_primary_10_1016_j_jhazmat_2022_128749 crossref_primary_10_12688_f1000research_53997_2 crossref_primary_10_3923_asb_2025_72_81 crossref_primary_10_1007_s11356_023_30556_y crossref_primary_10_1016_j_bej_2024_109454 crossref_primary_10_12688_f1000research_53997_1 crossref_primary_10_1007_s40974_023_00308_2 crossref_primary_10_1016_j_bej_2024_109336 crossref_primary_10_1111_plb_13160 crossref_primary_10_1007_s11356_020_10713_3 crossref_primary_10_1016_j_biortech_2022_128118 crossref_primary_10_1016_j_envres_2022_112844 crossref_primary_10_1016_j_jenvman_2020_111534 crossref_primary_10_1016_j_eti_2021_102040 crossref_primary_10_3390_biology13090712 crossref_primary_10_3389_fmicb_2022_1062703 crossref_primary_10_1016_j_sab_2022_106488 crossref_primary_10_1155_2022_8408462 crossref_primary_10_1016_j_cej_2023_147751 crossref_primary_10_1016_j_chemosphere_2021_133399 crossref_primary_10_1016_j_chemosphere_2024_143927 crossref_primary_10_1016_j_psep_2020_07_018 crossref_primary_10_3390_ijerph20021126 crossref_primary_10_1016_j_ijbiomac_2024_139182 crossref_primary_10_1002_jobm_202100363 crossref_primary_10_1007_s13530_021_00098_2 crossref_primary_10_1016_j_jksus_2022_102382 crossref_primary_10_32604_phyton_2022_020566 crossref_primary_10_1007_s11274_022_03484_1 crossref_primary_10_1016_j_cej_2022_137187 crossref_primary_10_1016_j_envpol_2022_119248 crossref_primary_10_1016_j_seppur_2022_120809 crossref_primary_10_1016_j_hazadv_2024_100492 crossref_primary_10_1016_j_eti_2022_102471 crossref_primary_10_59118_SDBZ7071 crossref_primary_10_1016_j_jenvman_2023_117888 crossref_primary_10_3390_w15223962 crossref_primary_10_1016_j_biortech_2023_129882 crossref_primary_10_1016_j_chemosphere_2020_128855 crossref_primary_10_1016_j_wse_2023_04_001 crossref_primary_10_1016_j_jenvman_2023_117641 crossref_primary_10_1016_j_jclepro_2021_126229 crossref_primary_10_1007_s11356_022_20024_4 crossref_primary_10_1016_j_chemosphere_2023_139391 crossref_primary_10_1007_s12223_022_01013_z crossref_primary_10_1016_j_biortech_2022_128257 crossref_primary_10_1080_21622515_2020_1869323 crossref_primary_10_1007_s10661_023_11247_0 crossref_primary_10_1016_j_nbt_2025_01_002 crossref_primary_10_3389_fenvs_2021_679917 crossref_primary_10_1007_s00289_024_05570_w crossref_primary_10_3390_ijerph20021106 crossref_primary_10_1016_j_jhazmat_2022_128932 crossref_primary_10_1080_01490451_2023_2293736 crossref_primary_10_1080_03067319_2022_2145196 crossref_primary_10_3390_cells13242047 crossref_primary_10_3390_ijerph182212226 crossref_primary_10_1016_j_jwpe_2023_103986 crossref_primary_10_1016_j_jenvman_2021_113193 crossref_primary_10_3390_bioengineering10101173 crossref_primary_10_1016_j_scp_2023_101346 crossref_primary_10_1016_j_chemosphere_2023_140968 crossref_primary_10_1016_j_indcrop_2022_115238 crossref_primary_10_1016_j_bej_2022_108541 crossref_primary_10_1002_jctb_7745 crossref_primary_10_2166_wst_2024_400 crossref_primary_10_3389_fbioe_2024_1379301 crossref_primary_10_4028_p_n9oeAe crossref_primary_10_3390_plants12051027 crossref_primary_10_1016_j_watres_2024_122974 crossref_primary_10_3389_fmars_2023_1070905 crossref_primary_10_1007_s11356_022_21869_5 crossref_primary_10_1016_j_marenvres_2023_105989 crossref_primary_10_3390_molecules30020347 crossref_primary_10_3389_fpls_2022_1022935 crossref_primary_10_3390_pr10091832 crossref_primary_10_1016_j_trac_2024_117938 crossref_primary_10_3390_su152416956 crossref_primary_10_1016_j_eti_2020_100876 crossref_primary_10_1016_j_jenvman_2024_121409 crossref_primary_10_1016_j_algal_2024_103635 crossref_primary_10_3390_environments10100174 crossref_primary_10_1016_j_eti_2024_103592 crossref_primary_10_3389_fbioe_2022_830200 crossref_primary_10_3390_ijms222312799 crossref_primary_10_1016_j_envpol_2020_116007 crossref_primary_10_13005_bbra_3273 crossref_primary_10_3390_app13010068 crossref_primary_10_2139_ssrn_4201195 crossref_primary_10_22207_JPAM_16_1_25 crossref_primary_10_1016_j_envpol_2022_120031 crossref_primary_10_1016_j_jwpe_2024_106271 crossref_primary_10_3389_fpls_2022_1076526 crossref_primary_10_1016_j_ecoenv_2023_115847 crossref_primary_10_1016_j_algal_2021_102267 crossref_primary_10_1080_15320383_2022_2028719 crossref_primary_10_1007_s11270_025_07846_x crossref_primary_10_1016_j_jhazmat_2023_131498 crossref_primary_10_1016_j_carbpol_2022_119881 crossref_primary_10_3390_molecules27051473 crossref_primary_10_1016_j_marenvres_2022_105805 crossref_primary_10_1007_s11356_023_31755_3 crossref_primary_10_1016_j_scitotenv_2022_161381 crossref_primary_10_1016_j_solidstatesciences_2024_107611 crossref_primary_10_1002_jctb_6563 crossref_primary_10_1016_j_jes_2024_03_048 crossref_primary_10_1016_j_jwpe_2025_107430 crossref_primary_10_1088_2977_3504_adb7e9 crossref_primary_10_1016_j_jhazmat_2024_133503 crossref_primary_10_1007_s11274_024_03930_2 crossref_primary_10_1016_j_jece_2024_113709 crossref_primary_10_1016_j_chemosphere_2021_132764 crossref_primary_10_1080_15226514_2024_2383657 crossref_primary_10_2139_ssrn_4074216 crossref_primary_10_3390_fermentation10030131 crossref_primary_10_1007_s11356_023_28658_8 crossref_primary_10_1007_s42108_024_00284_1 crossref_primary_10_1007_s13205_024_03977_w crossref_primary_10_1002_cnl2_122 crossref_primary_10_1039_D3RA00723E crossref_primary_10_1016_j_chemosphere_2022_134808 crossref_primary_10_51847_yaQC7KnNoY crossref_primary_10_1186_s40643_024_00775_3 crossref_primary_10_3390_ijerph19137717 crossref_primary_10_1007_s12155_021_10277_1 crossref_primary_10_3390_ijms25126717 crossref_primary_10_1016_j_algal_2024_103707 crossref_primary_10_1007_s42398_022_00220_1 crossref_primary_10_1007_s00203_022_02978_8 crossref_primary_10_1007_s11356_023_27597_8 crossref_primary_10_1016_j_enconman_2024_118981 crossref_primary_10_1016_j_eti_2023_103368 crossref_primary_10_1128_spectrum_02395_24 crossref_primary_10_1007_s00203_024_04052_x crossref_primary_10_1007_s00128_023_03792_8 crossref_primary_10_1016_j_biortech_2022_128515 crossref_primary_10_1007_s11356_021_15424_x crossref_primary_10_3390_su152416754 crossref_primary_10_1016_j_jece_2020_104460 crossref_primary_10_2139_ssrn_3982105 crossref_primary_10_3390_toxics10090525 crossref_primary_10_1016_j_rser_2021_111549 crossref_primary_10_51847_epj4iaN0xZ crossref_primary_10_1016_j_chemosphere_2022_133812 crossref_primary_10_1016_j_biortech_2023_128941 crossref_primary_10_1016_j_eti_2024_103632 crossref_primary_10_1016_j_envres_2021_112115 crossref_primary_10_1016_j_eti_2023_103122 crossref_primary_10_1016_j_dwt_2024_100505 crossref_primary_10_1007_s11356_023_27651_5 crossref_primary_10_3390_md21090462 crossref_primary_10_1016_j_envpol_2024_123951 crossref_primary_10_1016_j_biortech_2022_127444 crossref_primary_10_1016_j_jwpe_2022_103211 crossref_primary_10_1016_j_heliyon_2022_e10766 crossref_primary_10_3389_fmicb_2020_00808 crossref_primary_10_3390_resources11020015 crossref_primary_10_2139_ssrn_3957278 crossref_primary_10_3390_fermentation9100907 crossref_primary_10_1007_s11274_023_03815_w crossref_primary_10_3389_fmicb_2021_622600 |
Cites_doi | 10.1016/j.envpol.2019.112966 10.1080/19443994.2013.769695 10.1016/j.biortech.2010.08.107 10.1016/j.jece.2018.03.039 10.1016/j.jes.2016.10.002 10.1016/j.biortech.2007.07.039 10.1016/j.jenvman.2018.09.011 10.1016/j.aquatox.2014.10.012 10.1016/j.algal.2014.12.006 10.1016/j.biortech.2016.09.061 10.1016/j.chemosphere.2019.04.152 10.1016/j.jhazmat.2015.06.011 10.1007/s002030000193 10.1080/15226514.2015.1115960 10.1016/j.chemosphere.2013.08.021 10.1016/j.jclepro.2018.10.288 10.1016/j.jhazmat.2007.07.028 10.1016/j.jece.2019.103273 10.1016/j.biortech.2017.07.026 10.17140/TFMOJ-2-121 10.1016/j.minpro.2006.06.002 10.1002/ep.12071 10.1016/j.algal.2017.03.012 10.7717/peerj.5295 10.1016/j.biortech.2017.06.165 10.1016/j.ecoenv.2016.04.024 10.1080/19443994.2015.1064032 10.1007/s10534-005-2998-1 10.1016/j.jenvman.2010.11.011 10.1080/19443994.2014.932711 10.1007/s00253-005-0250-0 10.1007/s10661-013-3418-6 10.1016/j.biortech.2015.07.041 10.1016/j.jhazmat.2019.04.072 10.1016/j.aquatox.2016.11.004 10.1002/elsc.200420019 10.1016/j.enconman.2019.03.041 10.1016/j.biortech.2019.03.001 10.1016/j.chemosphere.2018.10.205 10.1007/s12298-017-0415-1 10.1016/j.watres.2013.02.034 10.1016/j.cej.2010.12.014 10.1080/15226510802363477 10.1016/j.biortech.2018.04.101 10.2166/wpt.2019.034 10.2166/wrd.2016.200 10.1016/j.aquatox.2008.02.006 10.1016/j.jhazmat.2015.02.012 10.1021/es950373d 10.1016/j.jtice.2016.08.017 10.1007/s001289900853 10.1016/j.gee.2016.08.002 10.3923/jbs.2006.695.700 10.1016/j.jhazmat.2008.10.020 10.1016/j.biortech.2018.12.056 10.1080/15226514.2016.1244170 10.1016/j.jhazmat.2016.07.031 10.3390/ma11040562 10.1007/s11356-017-0225-6 10.1016/j.cej.2013.07.013 10.1007/s10811-014-0499-8 10.1021/acsomega.8b01692 10.1016/j.biortech.2019.122064 10.1007/s00449-017-1827-6 10.1080/15226514.2010.525560 10.1016/j.biortech.2011.11.044 10.1016/j.biortech.2018.02.060 10.1016/j.biortech.2017.08.085 10.1177/0748233716654827 10.1016/j.algal.2017.03.002 10.12688/f1000research.13527.1 10.1016/j.aquatox.2012.12.004 10.1007/s11356-017-9758-y 10.1016/j.cbi.2015.06.013 10.1039/C5RA27264E 10.3390/ijms161023929 10.1016/j.jphotobiol.2019.111551 10.1016/j.jece.2016.11.031 10.1038/s41598-019-46551-8 10.13141/jve.vol9.no1.pp38-43 10.1897/04-580R.1 10.1016/j.biortech.2014.10.124 10.1080/09593330.2017.1400114 10.1007/s00203-006-0170-0 10.1016/j.biortech.2019.03.128 10.1007/s11356-015-5510-7 10.1016/j.ecoenv.2016.02.030 10.1016/j.biortech.2008.10.053 10.1007/s10661-019-7528-7 10.1016/j.cej.2009.10.015 10.1016/j.algal.2016.04.002 10.1016/j.chemosphere.2007.06.007 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2020.122886 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture Ecology |
EISSN | 1873-2976 |
ExternalDocumentID | 32046940 10_1016_j_biortech_2020_122886 S0960852420301553 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-d99dd347efd63209ba8ac04f3c7ec7d92e6860a9defdfa55ada6594f8d0cbfc83 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 00:12:43 EDT 2025 Tue Aug 05 11:20:10 EDT 2025 Wed Feb 19 02:31:20 EST 2025 Thu Apr 24 23:08:32 EDT 2025 Tue Jul 01 03:18:39 EDT 2025 Fri Feb 23 02:48:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microalgae Biosorption Bioremediation Heavy metals Mechanism |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-d99dd347efd63209ba8ac04f3c7ec7d92e6860a9defdfa55ada6594f8d0cbfc83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 32046940 |
PQID | 2354163427 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2439384946 proquest_miscellaneous_2354163427 pubmed_primary_32046940 crossref_citationtrail_10_1016_j_biortech_2020_122886 crossref_primary_10_1016_j_biortech_2020_122886 elsevier_sciencedirect_doi_10_1016_j_biortech_2020_122886 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 2020-May 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shen, Saky, Yang, Ho, Chen, Qin, Zhang, Wang, Lu (b0360) 2019; 228 Miazek, Iwanek, Remacle, Richel, Goffin (b0280) 2015; 16 Sun, Cheng, Yang, Li, Zhou, Cen (b0420) 2015; 194 Malakootian, Khodashenas Limoni, Malakootian (b0260) 2016; 10 Akhtar, Iqbal, Iqbal (b0015) 2004; 4 Valdez, Perengüez, Mátyás, Guevara (b0450) 2018; 7 Zheng, Guo, Li, Wu, Yin, Feng, Du, Ren, Chang (b0510) 2016; 6 Jena, Pradhan, Aishvarya, Nayak, Dash, Sukla, Panda, Mishra (b0215) 2015; 27 Mason, Reinfelder, Morel (b0270) 1996; 30 Balaji, Kalaivani, Sushma, Pillai, Shalini, Rajasekaran (b0055) 2016; 18 Dao, Le, Vo, Vo, Phan, Bui (b0100) 2018; 9 Mu, Jia, Liu, Pan, Fan (b0295) 2017; 24 Shokri Khoubestani, Mirghaffari, Farhadian (b0375) 2015; 34 Tuzen, Sarı, Mendil, Uluozlu, Soylak, Dogan (b0435) 2009; 165 Alam, Wan, Zhao, Chen, Chang, Bai (b0020) 2015; 289 Suganya, Saravanan, Senthil Kumar, Yashwanthraj, Sundar Rajan, Kayalvizhi (b0405) 2016; 7 Wongrod, Simon, van Hullebusch, Lens, Guibaud (b0475) 2019; 275 Hwang, Kwon, Yang, Kim, Hwang, Youe, Kim (b0195) 2018; 11 Balaji, Kalaivani, Shalini, Gopalakrishnan, Rashith Muhammad, Rajasekaran (b0050) 2016; 57 Devars, Avilés, Cervantes, Moreno-Sánchez (b0110) 2000; 174 Suvarapu, Baek (b0425) 2017; 33 Wang, Zhang, Lin, Ge (b0470) 2016; 318 Singh, Raghubanshi, Upadhyay, Rai (b0390) 2016; 130 Solisio, Al Arni, Converti (b0400) 2019; 40 Lee, Hsu, Yen (b0245) 2017; 40 Arora, Dubey, Sharma, Patel, Guleria, Pruthi, Kumar, Pruthi, Poluri (b0030) 2018; 3 Das, Chakraborty, Bhattacharjee, Chowdhury (b0105) 2016; 57 Saavedra, Muñoz, Taboada, Vega, Bolado (b0350) 2018; 263 Jácome-Pilco, Cristiani-Urbina, Flores-Cotera, Velasco-García, Ponce-Noyola, Cañizares-Villanueva (b0210) 2009; 100 Hedayatkhah, Cretoiu, Emtiazi, Stal, Bolhuis (b0170) 2018; 227 Baker, Wallschläger (b0045) 2016; 49 Huang, Wu, Chang (b0185) 2014; 186 Jaafari, Yaghmaeian (b0205) 2019; 217 Mangal, Phung, Nguyen, Gueguen (b0265) 2019; 6 Zhao, Song, Yu, Han, Li, Yu (b0505) 2019; 188 Gómez-Jacinto, García-Barrera, Gómez-Ariza, Garbayo-Nores, Vílchez-Lobato (b0160) 2015; 238 Park, Lim, Yun, Park (b0320) 2007; 70 Zhang, Yan, Zhang, Wang, Guo, Yan, Chen (b0500) 2019; 374 Abinandan, Subashchandrabose, Venkateswarlu, Perera, Megharaj (b0005) 2019; 281 Li, Zhang, Yang (b0255) 2019; 284 USEPA, 2016. National Primary Drinking Water Regulations. in: EPA 816-F-09-004, (Ed.) U.S.E.P. Agency, United State Environmental Protection Agency. United State. Travieso, Canizares, Borja, Benitez, Dominguez, Dupeyron, Valiente (b0430) 1999; 62 Levy, Stauber, Adams, Maher, Kirby, Jolley (b0250) 2005; 24 Cameron, Mata, Riquelme (b0080) 2018; 6 Chia, Lombardi, Melão, Parrish (b0090) 2013; 128–129 Husien, Labena, El-Belely, Mahmoud, Hamouda (b0190) 2019; 14 Gagrai, Das, Golder (b0145) 2013; 93 Doshi, Ray (b0120) 2009; 11 Daneshvar, Zarrinmehr, Kousha, Hashtjin, Saratale, Maiti, Vithanage, Bhatnagar (b0095) 2019; 293 Sulaymon, Mohammed, Al-Musawi (b0415) 2013; 51 Duruibe, Ogwuegbu, Egwuruhwu (b0125) 2007; 2 Nithya, Sathish, Pradeep, Kiran Baalaji (b0305) 2019; 7 Arora, Gulati, Patel, Pruthi, Poluri, Pruthi (b0035) 2017; 24 Fu, Wang (b0140) 2011; 92 Upadhyay, Mandotra, Kumar, Singh, Singh, Rai (b0440) 2016; 221 Sarı, Uluozlü, Tüzen (b0355) 2011; 167 Batsalova, Teneva, Belkinova, Stoyanov, Rusinova-Videva, Dzhambazov (b0060) 2017; 2 Wang, Huang, Xu, Wei, Miao, Ji, Yang (b0455) 2014; 157 Huang, Huo, Song, Li, Xia, Gaillard (b0180) 2019; 254 Zhu, Zhang, Tang, Zhu, Wu (b0515) 2018; 248 Gokhale, Jyoti, Lele (b0155) 2008; 99 Kelly, Budd, Lefebvre (b0235) 2007; 187 Yang, Cao, Xing, Yuan (b0480) 2015; 175 Finocchio, Lodi, Solisio, Converti (b0135) 2010; 156 Gan, Zhao, Yin, Chen, Wang, Liu, Liu (b0150) 2019; 197 Shen, Li, Zhu, Ho, Yuan, Chen, Xie (b0365) 2017; 244 Ibuot, Dean, McIntosh, Pittman (b0200) 2017; 24 Aharchaou, Rosabal, Liu, Battaglia, Vignati, Fortin (b0010) 2017; 182 Zhang, Zhao, Wan, Chen, Bai (b0495) 2016; 16 Wang, Zhang, Zheng, Ge (b0465) 2017; 24 Birungi, Chirwa (b0070) 2015; 299 Pagnanelli, Jbari, Trabucco, Martínez, Sánchez, Toro (b0310) 2013; 231 Karadjova, Slaveykova, Tsalev (b0225) 2008; 87 Priatni, Ratnaningrum, Warya, Audina (b0335) 2017; Sci Molazedah, Khanjani, Rahimi, Nasiri (b0285) 2015; 4 Rahman, Singh (b0340) 2019; 191 Singh, Bansal, Jha, Dey (b0395) 2012; 104 Bahar, Megharaj, Naidu (b0040) 2016; 23 Sulaymon, Mohammed, Al-Musawi (b0410) 2013; 3 Kwak, Kim, Lee, Yun, Kim, Park, Lee (b0240) 2015; 7 Peng, Deng, Gong, Li, Zhang (b0325) 2017; 243 Dirbaz, Roosta (b0115) 2018; 6 Fard, Mehrnia (b0130) 2017; 5 Rezaee, Ramavandi, Ganati, Ansari, Solimanian (b0345) 2006; 6 Mera, Torres, Abalde (b0275) 2016; 128 Yen, Chen, Hsu, Lee (b0485) 2017; 74 Bodin, Asp, Hultberg (b0075) 2017; 19 Bayramoğlu, Tuzun, Celik, Yilmaz, Arica (b0065) 2006; 81 Shen, Zhu, Li, Ho, Chen, Xie, Shi (b0370) 2018; 257 Wang, Li, Deng, Miao, Ji, Yang (b0460) 2013; 47 Nath, Tiwari, Rai, Sundaram (b0300) 2017; 23 Cherifi, Sbihi, Bertrand, Cherifi (b0085) 2016; 8 Zakhama, Dhaouadi, M’Henni (b0490) 2011; 102 Gupta, Rastogi (b0165) 2008; 152 Ardila, Godoy, Montenegro (b0025) 2017; 83 Morelli, Mascherpa, Scarano (b0290) 2005; 18 Pradhan, Sukla, Mishra, Devi (b0330) 2019; 209 Papry, Ishii, Mamun, Miah, Naito, Mashio, Maki, Hasegawa (b0315) 2019; 9 Jiang, Purchase, Jones, Garelick (b0220) 2011; 13 Sibi (b0385) 2016; 1 Kayalvizhi, Vijayaraghavan, Velan (b0230) 2015; 56 Huang, Chen, Hsieh, Lin, Chen, Chien (b0175) 2006; 72 Pagnanelli (10.1016/j.biortech.2020.122886_b0310) 2013; 231 Shen (10.1016/j.biortech.2020.122886_b0365) 2017; 244 Jaafari (10.1016/j.biortech.2020.122886_b0205) 2019; 217 Kwak (10.1016/j.biortech.2020.122886_b0240) 2015; 7 Saavedra (10.1016/j.biortech.2020.122886_b0350) 2018; 263 Wang (10.1016/j.biortech.2020.122886_b0470) 2016; 318 Gómez-Jacinto (10.1016/j.biortech.2020.122886_b0160) 2015; 238 Mu (10.1016/j.biortech.2020.122886_b0295) 2017; 24 Kayalvizhi (10.1016/j.biortech.2020.122886_b0230) 2015; 56 Sun (10.1016/j.biortech.2020.122886_b0420) 2015; 194 Birungi (10.1016/j.biortech.2020.122886_b0070) 2015; 299 Valdez (10.1016/j.biortech.2020.122886_b0450) 2018; 7 Zhang (10.1016/j.biortech.2020.122886_b0500) 2019; 374 Wang (10.1016/j.biortech.2020.122886_b0460) 2013; 47 Zhang (10.1016/j.biortech.2020.122886_b0495) 2016; 16 Husien (10.1016/j.biortech.2020.122886_b0190) 2019; 14 Gan (10.1016/j.biortech.2020.122886_b0150) 2019; 197 Sulaymon (10.1016/j.biortech.2020.122886_b0415) 2013; 51 Shokri Khoubestani (10.1016/j.biortech.2020.122886_b0375) 2015; 34 Papry (10.1016/j.biortech.2020.122886_b0315) 2019; 9 Morelli (10.1016/j.biortech.2020.122886_b0290) 2005; 18 10.1016/j.biortech.2020.122886_b0445 Arora (10.1016/j.biortech.2020.122886_b0035) 2017; 24 Sulaymon (10.1016/j.biortech.2020.122886_b0410) 2013; 3 Ardila (10.1016/j.biortech.2020.122886_b0025) 2017; 83 Pradhan (10.1016/j.biortech.2020.122886_b0330) 2019; 209 Devars (10.1016/j.biortech.2020.122886_b0110) 2000; 174 Jena (10.1016/j.biortech.2020.122886_b0215) 2015; 27 Sibi (10.1016/j.biortech.2020.122886_b0385) 2016; 1 Huang (10.1016/j.biortech.2020.122886_b0185) 2014; 186 Bahar (10.1016/j.biortech.2020.122886_b0040) 2016; 23 Wongrod (10.1016/j.biortech.2020.122886_b0475) 2019; 275 Nath (10.1016/j.biortech.2020.122886_b0300) 2017; 23 Li (10.1016/j.biortech.2020.122886_b0255) 2019; 284 Fard (10.1016/j.biortech.2020.122886_b0130) 2017; 5 Molazedah (10.1016/j.biortech.2020.122886_b0285) 2015; 4 Dao (10.1016/j.biortech.2020.122886_b0100) 2018; 9 Fu (10.1016/j.biortech.2020.122886_b0140) 2011; 92 Mera (10.1016/j.biortech.2020.122886_b0275) 2016; 128 Travieso (10.1016/j.biortech.2020.122886_b0430) 1999; 62 Alam (10.1016/j.biortech.2020.122886_b0020) 2015; 289 Cherifi (10.1016/j.biortech.2020.122886_b0085) 2016; 8 Park (10.1016/j.biortech.2020.122886_b0320) 2007; 70 Nithya (10.1016/j.biortech.2020.122886_b0305) 2019; 7 Zhu (10.1016/j.biortech.2020.122886_b0515) 2018; 248 Akhtar (10.1016/j.biortech.2020.122886_b0015) 2004; 4 Daneshvar (10.1016/j.biortech.2020.122886_b0095) 2019; 293 Wang (10.1016/j.biortech.2020.122886_b0455) 2014; 157 Mangal (10.1016/j.biortech.2020.122886_b0265) 2019; 6 Rahman (10.1016/j.biortech.2020.122886_b0340) 2019; 191 Das (10.1016/j.biortech.2020.122886_b0105) 2016; 57 Finocchio (10.1016/j.biortech.2020.122886_b0135) 2010; 156 Rezaee (10.1016/j.biortech.2020.122886_b0345) 2006; 6 Gagrai (10.1016/j.biortech.2020.122886_b0145) 2013; 93 Dirbaz (10.1016/j.biortech.2020.122886_b0115) 2018; 6 Sarı (10.1016/j.biortech.2020.122886_b0355) 2011; 167 Yen (10.1016/j.biortech.2020.122886_b0485) 2017; 74 Miazek (10.1016/j.biortech.2020.122886_b0280) 2015; 16 Solisio (10.1016/j.biortech.2020.122886_b0400) 2019; 40 Hedayatkhah (10.1016/j.biortech.2020.122886_b0170) 2018; 227 Huang (10.1016/j.biortech.2020.122886_b0180) 2019; 254 Zheng (10.1016/j.biortech.2020.122886_b0510) 2016; 6 Balaji (10.1016/j.biortech.2020.122886_b0050) 2016; 57 Karadjova (10.1016/j.biortech.2020.122886_b0225) 2008; 87 Zakhama (10.1016/j.biortech.2020.122886_b0490) 2011; 102 Cameron (10.1016/j.biortech.2020.122886_b0080) 2018; 6 Bayramoğlu (10.1016/j.biortech.2020.122886_b0065) 2006; 81 Singh (10.1016/j.biortech.2020.122886_b0395) 2012; 104 Duruibe (10.1016/j.biortech.2020.122886_b0125) 2007; 2 Hwang (10.1016/j.biortech.2020.122886_b0195) 2018; 11 Batsalova (10.1016/j.biortech.2020.122886_b0060) 2017; 2 Tuzen (10.1016/j.biortech.2020.122886_b0435) 2009; 165 Lee (10.1016/j.biortech.2020.122886_b0245) 2017; 40 Abinandan (10.1016/j.biortech.2020.122886_b0005) 2019; 281 Malakootian (10.1016/j.biortech.2020.122886_b0260) 2016; 10 Bodin (10.1016/j.biortech.2020.122886_b0075) 2017; 19 Zhao (10.1016/j.biortech.2020.122886_b0505) 2019; 188 Aharchaou (10.1016/j.biortech.2020.122886_b0010) 2017; 182 Gokhale (10.1016/j.biortech.2020.122886_b0155) 2008; 99 Priatni (10.1016/j.biortech.2020.122886_b0335) 2017; Sci Kelly (10.1016/j.biortech.2020.122886_b0235) 2007; 187 Shen (10.1016/j.biortech.2020.122886_b0360) 2019; 228 Chia (10.1016/j.biortech.2020.122886_b0090) 2013; 128–129 Baker (10.1016/j.biortech.2020.122886_b0045) 2016; 49 Jiang (10.1016/j.biortech.2020.122886_b0220) 2011; 13 Suganya (10.1016/j.biortech.2020.122886_b0405) 2016; 7 Balaji (10.1016/j.biortech.2020.122886_b0055) 2016; 18 Doshi (10.1016/j.biortech.2020.122886_b0120) 2009; 11 Shen (10.1016/j.biortech.2020.122886_b0370) 2018; 257 Mason (10.1016/j.biortech.2020.122886_b0270) 1996; 30 Suvarapu (10.1016/j.biortech.2020.122886_b0425) 2017; 33 Upadhyay (10.1016/j.biortech.2020.122886_b0440) 2016; 221 Gupta (10.1016/j.biortech.2020.122886_b0165) 2008; 152 Jácome-Pilco (10.1016/j.biortech.2020.122886_b0210) 2009; 100 Arora (10.1016/j.biortech.2020.122886_b0030) 2018; 3 Ibuot (10.1016/j.biortech.2020.122886_b0200) 2017; 24 Huang (10.1016/j.biortech.2020.122886_b0175) 2006; 72 Peng (10.1016/j.biortech.2020.122886_b0325) 2017; 243 Yang (10.1016/j.biortech.2020.122886_b0480) 2015; 175 Levy (10.1016/j.biortech.2020.122886_b0250) 2005; 24 Singh (10.1016/j.biortech.2020.122886_b0390) 2016; 130 Wang (10.1016/j.biortech.2020.122886_b0465) 2017; 24 |
References_xml | – volume: 182 start-page: 49 year: 2017 end-page: 57 ident: b0010 article-title: Bioaccumulation and subcellular partitioning of Cr(III) and Cr(VI) in the freshwater green alga Chlamydomonas reinhardtii publication-title: Aquat. Toxicol. – volume: 100 start-page: 2388 year: 2009 end-page: 2391 ident: b0210 article-title: Continuous Cr(VI) removal by Scenedesmus incrassatulus in an airlift photobioreactor publication-title: Bioresour. Technol. – volume: 263 start-page: 49 year: 2018 end-page: 57 ident: b0350 article-title: Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae publication-title: Bioresour. Technol. – volume: 23 start-page: 269 year: 2017 end-page: 280 ident: b0300 article-title: Microalgal consortia differentially modulate progressive adsorption of hexavalent chromium publication-title: Physiol. Mol. Biol. Plants – volume: 6 start-page: 20051 year: 2016 end-page: 20057 ident: b0510 article-title: Biosorption of cadmium by a lipid extraction residue of lipid-rich microalgae publication-title: RSC Adv. – volume: 3 start-page: 11847 year: 2018 end-page: 11856 ident: b0030 article-title: NMR-based metabolomic approach to elucidate the differential cellular responses during mitigation of arsenic(III, V) in a green microalga publication-title: ACS Omega – volume: 34 start-page: 949 year: 2015 end-page: 956 ident: b0375 article-title: Removal of three and hexavalent chromium from aqueous solutions using a microalgae biomass-derived biosorbent publication-title: Environ. Prog. Sustainable Energy – volume: 187 start-page: 45 year: 2007 end-page: 53 ident: b0235 article-title: Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae publication-title: Arch. Microbiol. – volume: 49 start-page: 169 year: 2016 end-page: 178 ident: b0045 article-title: The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella vulgaris publication-title: J. Environ. Sci. – volume: 24 start-page: 26375 year: 2017 end-page: 26386 ident: b0295 article-title: Response of the freshwater diatom Halamphora veneta (Kützing) Levkov to copper and mercury and its potential for bioassessment of heavy metal toxicity in aquatic habitats publication-title: Environ. Sci. Pollut. Res. – volume: 51 start-page: 4424 year: 2013 end-page: 4434 ident: b0415 article-title: Removal of lead, cadmium, copper, and arsenic ions using biosorption: equilibrium and kinetic studies publication-title: Desalin. Water Treat. – volume: 165 start-page: 566 year: 2009 end-page: 572 ident: b0435 article-title: Characterization of biosorption process of As(III) on green algae Ulothrix cylindricum publication-title: J. Hazard. Mater. – volume: 6 year: 2019 ident: b0265 article-title: Molecular characterization of mercury binding ligands released by freshwater algae grown at three photoperiods publication-title: Front. Environ. Sci. – volume: 6 start-page: 2302 year: 2018 end-page: 2309 ident: b0115 article-title: Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Parachlorella sp. publication-title: J. Environ. Chem. Eng. – volume: 16 year: 2015 ident: b0280 article-title: Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review publication-title: Int. J. Mol. Sci. – volume: 221 start-page: 430 year: 2016 end-page: 437 ident: b0440 article-title: Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp publication-title: Bioresour. Technol. – volume: 6 start-page: 695 year: 2006 end-page: 700 ident: b0345 article-title: Biosorption of mercury by biomass of filamentous algae Spirogyra species publication-title: J. Biol. Sci. – volume: 19 start-page: 500 year: 2017 end-page: 504 ident: b0075 article-title: Effects of biopellets composed of microalgae and fungi on cadmium present at environmentally relevant levels in water publication-title: Int. J. Phytorem. – volume: 23 start-page: 2663 year: 2016 end-page: 2668 ident: b0040 article-title: Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp publication-title: Environ. Sci. Pollut. Res. – volume: 74 start-page: 1 year: 2017 end-page: 6 ident: b0485 article-title: The use of autotrophic Chlorella vulgaris in chromium (VI) reduction under different reduction conditions publication-title: J. Taiwan Inst. Chem. Eng. – volume: 24 start-page: 2630 year: 2005 end-page: 2639 ident: b0250 article-title: Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum) publication-title: Environ. Toxicol. Chem. – volume: 7 year: 2019 ident: b0305 article-title: Algal biomass waste residues of Spirulina platensis for chromium adsorption and modeling studies publication-title: J. Environ. Chem. Eng. – volume: 238 start-page: 82 year: 2015 end-page: 90 ident: b0160 article-title: Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg–phytochelatins publication-title: Chem. Biol. Interact. – volume: 57 start-page: 4576 year: 2016 end-page: 4586 ident: b0105 article-title: Biosorption of lead ions (Pb2+) from simulated wastewater using residual biomass of microalgae publication-title: Desalin. Water Treat. – volume: 8 start-page: 884 year: 2016 end-page: 893 ident: b0085 article-title: The siliceous microalga Navicula subminuscula (Manguin) as a biomaterial for removing metals from tannery effluents: a laboratory study publication-title: J. Mater. Environ. Sci. – volume: 152 start-page: 407 year: 2008 end-page: 414 ident: b0165 article-title: Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies publication-title: J. Hazard. Mater. – volume: 27 start-page: 2251 year: 2015 end-page: 2260 ident: b0215 article-title: Biological sequestration and retention of cadmium as CdS nanoparticles by the microalga Scenedesmus-24 publication-title: J. Appl. Phycol. – volume: 18 start-page: 587 year: 2005 end-page: 593 ident: b0290 article-title: Biosynthesis of phytochelatins and arsenic accumulation in the marine microalga phaeodactylum tricornutum in response to arsenate exposure publication-title: Biometals – volume: 243 start-page: 628 year: 2017 end-page: 633 ident: b0325 article-title: Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae publication-title: Bioresour. Technol. – volume: 374 start-page: 420 year: 2019 end-page: 427 ident: b0500 article-title: A novel cadmium-containing wastewater treatment method: Bio-immobilization by microalgae cell and their mechanism publication-title: J. Hazard. Mater. – volume: 130 start-page: 224 year: 2016 end-page: 233 ident: b0390 article-title: Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India publication-title: Ecotoxicol. Environ. Saf. – volume: 57 start-page: 14518 year: 2016 end-page: 14529 ident: b0050 article-title: Sorption sites of microalgae possess metal binding ability towards Cr(VI) from tannery effluents—a kinetic and characterization study publication-title: Desalin. Water Treat. – volume: 10 start-page: 357 year: 2016 end-page: 366 ident: b0260 article-title: The efficiency of lead biosorption from industrial wastewater by micro-alga spirulina platensis publication-title: Int. J. Environ. Res. – volume: 11 start-page: 53 year: 2009 end-page: 64 ident: b0120 article-title: Live and dead spirulina SP. to remove arsenic (V) from wate publication-title: Int. J. Phytorem. – volume: 128–129 start-page: 171 year: 2013 end-page: 182 ident: b0090 article-title: Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations publication-title: Aquat. Toxicol. – volume: 257 start-page: 157 year: 2018 end-page: 163 ident: b0370 article-title: Enhancing cadmium bioremediation by a complex of water-hyacinth derived pellets immobilized with Chlorella sp publication-title: Bioresour. Technol. – volume: 5 start-page: 366 year: 2017 end-page: 372 ident: b0130 article-title: Investigation of mercury removal by micro-algae dynamic membrane bioreactor from simulated dental waste water publication-title: J. Environ. Chem. Eng. – volume: 24 start-page: 21213 year: 2017 end-page: 21221 ident: b0465 article-title: Bioaccumulation kinetics of arsenite and arsenate in Dunaliella salina under different phosphate regimes publication-title: Environ. Sci. Pollut. Res. – volume: 284 start-page: 231 year: 2019 end-page: 239 ident: b0255 article-title: Immobilizing unicellular microalga on pellet-forming filamentous fungus: Can this provide new insights into the remediation of arsenic from contaminated water? publication-title: Bioresour. Technol. – volume: 62 start-page: 144 year: 1999 end-page: 151 ident: b0430 article-title: Heavy metal removal by microalgae publication-title: Bull. Environ. Contam. Toxicol. – volume: 156 start-page: 264 year: 2010 end-page: 269 ident: b0135 article-title: Chromium (VI) removal by methylated biomass of Spirulina platensis: the effect of methylation process publication-title: Chem. Eng. J. – volume: 167 start-page: 155 year: 2011 end-page: 161 ident: b0355 article-title: Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass publication-title: Chem. Eng. J. – volume: 293 year: 2019 ident: b0095 article-title: Hexavalent chromium removal from water by microalgal-based materials: adsorption, desorption and recovery studies publication-title: Bioresour. Technol. – volume: 281 start-page: 469 year: 2019 end-page: 473 ident: b0005 article-title: Acid-tolerant microalgae can withstand higher concentrations of invasive cadmium and produce sustainable biomass and biodiesel at pH 3.5 publication-title: Bioresour. Technol. – volume: 254 year: 2019 ident: b0180 article-title: Immobilization of mercury using high-phosphate culture-modified microalgae publication-title: Environ. Pollut. – volume: 227 start-page: 313 year: 2018 end-page: 320 ident: b0170 article-title: Bioremediation of chromium contaminated water by diatoms with concomitant lipid accumulation for biofuel production publication-title: J. Environ. Manage. – volume: 1 start-page: 172 year: 2016 end-page: 177 ident: b0385 article-title: Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris publication-title: Green Energy Environ. – volume: 228 start-page: 536 year: 2019 end-page: 544 ident: b0360 article-title: The critical utilization of active heterotrophic microalgae for bioremoval of Cr(VI) in organics co-contaminated wastewater publication-title: Chemosphere – volume: 56 start-page: 194 year: 2015 end-page: 203 ident: b0230 article-title: Biosorption of Cr(VI) using a novel microalga Rhizoclonium hookeri: equilibrium, kinetics and thermodynamic studies publication-title: Desalin. Water Treat. – reference: USEPA, 2016. National Primary Drinking Water Regulations. in: EPA 816-F-09-004, (Ed.) U.S.E.P. Agency, United State Environmental Protection Agency. United State. – volume: 186 start-page: 805 year: 2014 end-page: 814 ident: b0185 article-title: Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir publication-title: Environ. Monit. Assess. – volume: 7 start-page: 92 year: 2015 end-page: 99 ident: b0240 article-title: Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for chromium (VI) removal publication-title: Algal Res. – volume: 47 start-page: 2497 year: 2013 end-page: 2506 ident: b0460 article-title: Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes publication-title: Water Res. – volume: 244 start-page: 1031 year: 2017 end-page: 1038 ident: b0365 article-title: Microalgal-biochar immobilized complex: a novel efficient biosorbent for cadmium removal from aqueous solution publication-title: Bioresour. Technol. – volume: 9 start-page: 10226 year: 2019 ident: b0315 article-title: Arsenic biotransformation potential of six marine diatom species: effect of temperature and salinity publication-title: Sci. Rep. – volume: 3 year: 2013 ident: b0410 article-title: Column biosorption of lead, cadmium, copper, and arsenic ions onto algae publication-title: J. Bioprocess. Biotechniq. – volume: 217 start-page: 447 year: 2019 end-page: 455 ident: b0205 article-title: Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM) publication-title: Chemosphere – volume: 194 start-page: 305 year: 2015 end-page: 311 ident: b0420 article-title: Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation publication-title: Bioresour. Technol. – volume: 16 start-page: 427 year: 2016 end-page: 433 ident: b0495 article-title: Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1 publication-title: Algal Res. – volume: 318 start-page: 443 year: 2016 end-page: 451 ident: b0470 article-title: A symbiotic bacterium differentially influences arsenate absorption and transformation in Dunaliella salina under different phosphate regimes publication-title: J. Hazard. Mater. – volume: 83 year: 2017 ident: b0025 article-title: Sorption capacity measurement of chlorella vulgaris and scenedesmus acutus to remove chromium from tannery waste water publication-title: IOP Conf. Series: Earth Environ. Sci. – volume: 81 start-page: 35 year: 2006 end-page: 43 ident: b0065 article-title: Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads publication-title: Int. J. Miner. Process. – volume: 9 start-page: 38 year: 2018 end-page: 43 ident: b0100 article-title: Growth and metal uptake capacity of microalgae under exposure to chromium publication-title: J. Vietnam. Environ. – volume: 70 start-page: 298 year: 2007 end-page: 305 ident: b0320 article-title: Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction publication-title: Chemosphere – volume: 4 start-page: 171 year: 2004 end-page: 178 ident: b0015 article-title: Enhancement of Lead(II) Biosorption by Microalgal Biomass Immobilized onto Loofa (Luffa cylindrica) Sponge publication-title: Eng. Life Sci. – volume: 275 start-page: 232 year: 2019 end-page: 238 ident: b0475 article-title: Assessing arsenic redox state evolution in solution and solid phase during As(III) sorption onto chemically-treated sewage sludge digestate biochars publication-title: Bioresour. Technol. – volume: 175 start-page: 537 year: 2015 end-page: 544 ident: b0480 article-title: Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341 publication-title: Bioresour. Technol. – volume: Sci start-page: 60 year: 2017 ident: b0335 article-title: Phycobiliproteins production and heavy metals reduction ability of Porphyridium sp. publication-title: IOP Conf. Series: Earth Environ. – volume: 188 start-page: 76 year: 2019 end-page: 85 ident: b0505 article-title: Influence of cadmium stress on the lipid production and cadmium bioresorption by Monoraphidium sp. QLY-1 publication-title: Energy Convers. Manage. – volume: 157 start-page: 167 year: 2014 end-page: 174 ident: b0455 article-title: Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii publication-title: Aquat. Toxicol. – volume: 191 start-page: 419 year: 2019 ident: b0340 article-title: The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview publication-title: Environ. Monit. Assess. – volume: 93 start-page: 1366 year: 2013 end-page: 1371 ident: b0145 article-title: Reduction of Cr(VI) into Cr(III) by Spirulina dead biomass in aqueous solution: kinetic studies publication-title: Chemosphere – volume: 7 year: 2018 ident: b0450 article-title: Analysis of removal of cadmium by action of immobilized Chlorella sp. micro-algae in alginate beads publication-title: F1000Research – volume: 72 start-page: 197 year: 2006 end-page: 205 ident: b0175 article-title: Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation publication-title: Appl. Microbiol. Biotechnol. – volume: 13 start-page: 834 year: 2011 end-page: 844 ident: b0220 article-title: Effects of arsenate (AS5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris publication-title: Int. J. Phytoremediat. – volume: 11 start-page: 562 year: 2018 ident: b0195 article-title: Chlamydomonas angulosa (Green Alga) and Nostoc commune (Blue-Green Alga) microalgae-cellulose composite aerogel beads: manufacture, physicochemical characterization, and Cd (II) adsorption publication-title: Materials (Basel, Switzerland) – volume: 18 start-page: 747 year: 2016 end-page: 753 ident: b0055 article-title: Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area—an application towards phycoremediation publication-title: Int. J. Phytorem. – volume: 2 start-page: 112 year: 2007 end-page: 118 ident: b0125 article-title: Heavy metal pollution and human biotoxic effect publication-title: Int. J. Phys. Sci. – volume: 231 start-page: 94 year: 2013 end-page: 102 ident: b0310 article-title: Biosorption-mediated reduction of Cr(VI) using heterotrophically-grown Chlorella vulgaris: active sites and ionic strength effect publication-title: Chem. Eng. J. – volume: 209 start-page: 617 year: 2019 end-page: 629 ident: b0330 article-title: Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp publication-title: J. Cleaner Prod. – volume: 248 start-page: 49 year: 2018 end-page: 55 ident: b0515 article-title: Arsenic removal by periphytic biofilm and its application combined with biochar publication-title: Bioresour. Technol. – volume: 197 year: 2019 ident: b0150 article-title: Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia closterium based on chlorophyll fluorescence technology publication-title: J. Photochem. Photobiol., B – volume: 299 start-page: 67 year: 2015 end-page: 77 ident: b0070 article-title: The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources publication-title: J. Hazard. Mater. – volume: 6 year: 2018 ident: b0080 article-title: The effect of heavy metals on the viability of Tetraselmis marina AC16-MESO and an evaluation of the potential use of this microalga in bioremediation publication-title: PeerJ – volume: 92 start-page: 407 year: 2011 end-page: 418 ident: b0140 article-title: Removal of heavy metal ions from wastewaters: a review publication-title: J. Environ. Manage. – volume: 174 start-page: 175 year: 2000 end-page: 180 ident: b0110 article-title: Mercury uptake and removal by Euglena gracilis publication-title: Arch. Microbiol. – volume: 24 start-page: 29 year: 2017 end-page: 39 ident: b0035 article-title: A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae publication-title: Algal Res. – volume: 7 start-page: 214 year: 2016 end-page: 227 ident: b0405 article-title: Sequestration of Pb(II) and Ni(II) ions from aqueous solution using microalga Rhizoclonium hookeri: adsorption thermodynamics, kinetics, and equilibrium studies publication-title: J. Water Reuse Desalin. – volume: 14 start-page: 515 year: 2019 end-page: 529 ident: b0190 article-title: Absorption of hexavalent chromium by green micro algae Chlorella sorokiniana: live planktonic cells publication-title: Water Pract. Technol. – volume: 24 start-page: 89 year: 2017 end-page: 96 ident: b0200 article-title: Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains publication-title: Algal Res. – volume: 30 start-page: 1835 year: 1996 end-page: 1845 ident: b0270 article-title: Uptake, toxicity, and trophic transfer of mercury in a coastal diatom publication-title: Environ. Sci. Technol. – volume: 289 start-page: 38 year: 2015 end-page: 45 ident: b0020 article-title: Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7 publication-title: J. Hazard. Mater. – volume: 2 start-page: 63 year: 2017 end-page: 73 ident: b0060 article-title: Assessment of cadmium, nickel and lead toxicity by using green algae scenedesmus incrassatulus and human cell lines: potential in vitro test-systems for monitoring of heavy metal pollution publication-title: Toxicol. Forens. Med. – volume: 87 start-page: 264 year: 2008 end-page: 271 ident: b0225 article-title: The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater publication-title: Aquat. Toxicol. – volume: 33 start-page: 79 year: 2017 end-page: 96 ident: b0425 article-title: Determination of heavy metals in the ambient atmosphere: a review publication-title: Toxicol. Ind. Health – volume: 102 start-page: 786 year: 2011 end-page: 796 ident: b0490 article-title: Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae publication-title: Bioresour. Technol. – volume: 128 start-page: 236 year: 2016 end-page: 245 ident: b0275 article-title: Influence of sulphate on the reduction of cadmium toxicity in the microalga Chlamydomonas moewusii publication-title: Ecotoxicol. Environ. Saf. – volume: 99 start-page: 3600 year: 2008 end-page: 3608 ident: b0155 article-title: Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass publication-title: Bioresour. Technol. – volume: 4 start-page: 114 year: 2015 end-page: 127 ident: b0285 article-title: Adsorption of lead by microalgae Chaetoceros sp. and Chlorella sp. from aqueous solution publication-title: J. Commun. Health Res. – volume: 40 start-page: 664 year: 2019 end-page: 672 ident: b0400 article-title: Adsorption of inorganic mercury from aqueous solutions onto dry biomass of Chlorella vulgaris: kinetic and isotherm study publication-title: Environ. Technol. – volume: 40 start-page: 1725 year: 2017 end-page: 1731 ident: b0245 article-title: The effects of hydraulic retention time (HRT) on chromium(VI) reduction using autotrophic cultivation of Chlorella vulgaris publication-title: Bioprocess Biosyst. Eng. – volume: 104 start-page: 257 year: 2012 end-page: 265 ident: b0395 article-title: An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater publication-title: Bioresour. Technol. – volume: 254 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0180 article-title: Immobilization of mercury using high-phosphate culture-modified microalgae publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.112966 – volume: 51 start-page: 4424 issue: 22–24 year: 2013 ident: 10.1016/j.biortech.2020.122886_b0415 article-title: Removal of lead, cadmium, copper, and arsenic ions using biosorption: equilibrium and kinetic studies publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2013.769695 – volume: 102 start-page: 786 issue: 2 year: 2011 ident: 10.1016/j.biortech.2020.122886_b0490 article-title: Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.08.107 – volume: 6 start-page: 2302 issue: 2 year: 2018 ident: 10.1016/j.biortech.2020.122886_b0115 article-title: Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Parachlorella sp. publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2018.03.039 – volume: 49 start-page: 169 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0045 article-title: The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella vulgaris publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2016.10.002 – volume: 99 start-page: 3600 issue: 9 year: 2008 ident: 10.1016/j.biortech.2020.122886_b0155 article-title: Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.07.039 – volume: 227 start-page: 313 year: 2018 ident: 10.1016/j.biortech.2020.122886_b0170 article-title: Bioremediation of chromium contaminated water by diatoms with concomitant lipid accumulation for biofuel production publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2018.09.011 – volume: 157 start-page: 167 year: 2014 ident: 10.1016/j.biortech.2020.122886_b0455 article-title: Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2014.10.012 – volume: 7 start-page: 92 year: 2015 ident: 10.1016/j.biortech.2020.122886_b0240 article-title: Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for chromium (VI) removal publication-title: Algal Res. doi: 10.1016/j.algal.2014.12.006 – volume: 221 start-page: 430 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0440 article-title: Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.09.061 – volume: 228 start-page: 536 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0360 article-title: The critical utilization of active heterotrophic microalgae for bioremoval of Cr(VI) in organics co-contaminated wastewater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.04.152 – volume: 299 start-page: 67 year: 2015 ident: 10.1016/j.biortech.2020.122886_b0070 article-title: The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.06.011 – volume: 174 start-page: 175 issue: 3 year: 2000 ident: 10.1016/j.biortech.2020.122886_b0110 article-title: Mercury uptake and removal by Euglena gracilis publication-title: Arch. Microbiol. doi: 10.1007/s002030000193 – volume: 83 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0025 article-title: Sorption capacity measurement of chlorella vulgaris and scenedesmus acutus to remove chromium from tannery waste water publication-title: IOP Conf. Series: Earth Environ. Sci. – volume: 18 start-page: 747 issue: 8 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0055 article-title: Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area—an application towards phycoremediation publication-title: Int. J. Phytorem. doi: 10.1080/15226514.2015.1115960 – volume: 93 start-page: 1366 issue: 7 year: 2013 ident: 10.1016/j.biortech.2020.122886_b0145 article-title: Reduction of Cr(VI) into Cr(III) by Spirulina dead biomass in aqueous solution: kinetic studies publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.08.021 – volume: 209 start-page: 617 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0330 article-title: Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.10.288 – volume: 152 start-page: 407 issue: 1 year: 2008 ident: 10.1016/j.biortech.2020.122886_b0165 article-title: Biosorption of lead from aqueous solutions by green algae Spirogyra species: kinetics and equilibrium studies publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.07.028 – volume: 7 issue: 5 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0305 article-title: Algal biomass waste residues of Spirulina platensis for chromium adsorption and modeling studies publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2019.103273 – volume: 248 start-page: 49 year: 2018 ident: 10.1016/j.biortech.2020.122886_b0515 article-title: Arsenic removal by periphytic biofilm and its application combined with biochar publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.026 – volume: 2 start-page: 63 issue: 2 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0060 article-title: Assessment of cadmium, nickel and lead toxicity by using green algae scenedesmus incrassatulus and human cell lines: potential in vitro test-systems for monitoring of heavy metal pollution publication-title: Toxicol. Forens. Med. doi: 10.17140/TFMOJ-2-121 – volume: 81 start-page: 35 issue: 1 year: 2006 ident: 10.1016/j.biortech.2020.122886_b0065 article-title: Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2006.06.002 – volume: 6 issue: 155 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0265 article-title: Molecular characterization of mercury binding ligands released by freshwater algae grown at three photoperiods publication-title: Front. Environ. Sci. – volume: 34 start-page: 949 issue: 4 year: 2015 ident: 10.1016/j.biortech.2020.122886_b0375 article-title: Removal of three and hexavalent chromium from aqueous solutions using a microalgae biomass-derived biosorbent publication-title: Environ. Prog. Sustainable Energy doi: 10.1002/ep.12071 – volume: 10 start-page: 357 issue: 3 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0260 article-title: The efficiency of lead biosorption from industrial wastewater by micro-alga spirulina platensis publication-title: Int. J. Environ. Res. – ident: 10.1016/j.biortech.2020.122886_b0445 – volume: 24 start-page: 29 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0035 article-title: A hybrid approach integrating arsenic detoxification with biodiesel production using oleaginous microalgae publication-title: Algal Res. doi: 10.1016/j.algal.2017.03.012 – volume: 6 year: 2018 ident: 10.1016/j.biortech.2020.122886_b0080 article-title: The effect of heavy metals on the viability of Tetraselmis marina AC16-MESO and an evaluation of the potential use of this microalga in bioremediation publication-title: PeerJ doi: 10.7717/peerj.5295 – volume: 243 start-page: 628 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0325 article-title: Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.165 – volume: 130 start-page: 224 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0390 article-title: Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2016.04.024 – volume: 57 start-page: 14518 issue: 31 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0050 article-title: Sorption sites of microalgae possess metal binding ability towards Cr(VI) from tannery effluents—a kinetic and characterization study publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2015.1064032 – volume: 18 start-page: 587 issue: 6 year: 2005 ident: 10.1016/j.biortech.2020.122886_b0290 article-title: Biosynthesis of phytochelatins and arsenic accumulation in the marine microalga phaeodactylum tricornutum in response to arsenate exposure publication-title: Biometals doi: 10.1007/s10534-005-2998-1 – volume: 92 start-page: 407 issue: 3 year: 2011 ident: 10.1016/j.biortech.2020.122886_b0140 article-title: Removal of heavy metal ions from wastewaters: a review publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2010.11.011 – volume: 56 start-page: 194 issue: 1 year: 2015 ident: 10.1016/j.biortech.2020.122886_b0230 article-title: Biosorption of Cr(VI) using a novel microalga Rhizoclonium hookeri: equilibrium, kinetics and thermodynamic studies publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2014.932711 – volume: 72 start-page: 197 issue: 1 year: 2006 ident: 10.1016/j.biortech.2020.122886_b0175 article-title: Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-005-0250-0 – volume: 186 start-page: 805 issue: 2 year: 2014 ident: 10.1016/j.biortech.2020.122886_b0185 article-title: Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-013-3418-6 – volume: 194 start-page: 305 year: 2015 ident: 10.1016/j.biortech.2020.122886_b0420 article-title: Microstructures and functional groups of Nannochloropsis sp. cells with arsenic adsorption and lipid accumulation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.07.041 – volume: 374 start-page: 420 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0500 article-title: A novel cadmium-containing wastewater treatment method: Bio-immobilization by microalgae cell and their mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.04.072 – volume: 182 start-page: 49 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0010 article-title: Bioaccumulation and subcellular partitioning of Cr(III) and Cr(VI) in the freshwater green alga Chlamydomonas reinhardtii publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2016.11.004 – volume: 4 start-page: 171 issue: 2 year: 2004 ident: 10.1016/j.biortech.2020.122886_b0015 article-title: Enhancement of Lead(II) Biosorption by Microalgal Biomass Immobilized onto Loofa (Luffa cylindrica) Sponge publication-title: Eng. Life Sci. doi: 10.1002/elsc.200420019 – volume: 188 start-page: 76 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0505 article-title: Influence of cadmium stress on the lipid production and cadmium bioresorption by Monoraphidium sp. QLY-1 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.03.041 – volume: 281 start-page: 469 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0005 article-title: Acid-tolerant microalgae can withstand higher concentrations of invasive cadmium and produce sustainable biomass and biodiesel at pH 3.5 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.03.001 – volume: 4 start-page: 114 issue: 2 year: 2015 ident: 10.1016/j.biortech.2020.122886_b0285 article-title: Adsorption of lead by microalgae Chaetoceros sp. and Chlorella sp. from aqueous solution publication-title: J. Commun. Health Res. – volume: 217 start-page: 447 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0205 article-title: Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.10.205 – volume: 23 start-page: 269 issue: 2 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0300 article-title: Microalgal consortia differentially modulate progressive adsorption of hexavalent chromium publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-017-0415-1 – volume: 47 start-page: 2497 issue: 7 year: 2013 ident: 10.1016/j.biortech.2020.122886_b0460 article-title: Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes publication-title: Water Res. doi: 10.1016/j.watres.2013.02.034 – volume: 167 start-page: 155 issue: 1 year: 2011 ident: 10.1016/j.biortech.2020.122886_b0355 article-title: Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.12.014 – volume: 11 start-page: 53 issue: 1 year: 2009 ident: 10.1016/j.biortech.2020.122886_b0120 article-title: Live and dead spirulina SP. to remove arsenic (V) from wate publication-title: Int. J. Phytorem. doi: 10.1080/15226510802363477 – volume: 263 start-page: 49 year: 2018 ident: 10.1016/j.biortech.2020.122886_b0350 article-title: Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.04.101 – volume: 14 start-page: 515 issue: 3 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0190 article-title: Absorption of hexavalent chromium by green micro algae Chlorella sorokiniana: live planktonic cells publication-title: Water Pract. Technol. doi: 10.2166/wpt.2019.034 – volume: 7 start-page: 214 issue: 2 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0405 article-title: Sequestration of Pb(II) and Ni(II) ions from aqueous solution using microalga Rhizoclonium hookeri: adsorption thermodynamics, kinetics, and equilibrium studies publication-title: J. Water Reuse Desalin. doi: 10.2166/wrd.2016.200 – volume: 87 start-page: 264 issue: 4 year: 2008 ident: 10.1016/j.biortech.2020.122886_b0225 article-title: The biouptake and toxicity of arsenic species on the green microalga Chlorella salina in seawater publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2008.02.006 – volume: 289 start-page: 38 year: 2015 ident: 10.1016/j.biortech.2020.122886_b0020 article-title: Enhanced removal of Zn2+ or Cd2+ by the flocculating Chlorella vulgaris JSC-7 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.02.012 – volume: 30 start-page: 1835 issue: 6 year: 1996 ident: 10.1016/j.biortech.2020.122886_b0270 article-title: Uptake, toxicity, and trophic transfer of mercury in a coastal diatom publication-title: Environ. Sci. Technol. doi: 10.1021/es950373d – volume: 74 start-page: 1 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0485 article-title: The use of autotrophic Chlorella vulgaris in chromium (VI) reduction under different reduction conditions publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2016.08.017 – volume: 62 start-page: 144 issue: 2 year: 1999 ident: 10.1016/j.biortech.2020.122886_b0430 article-title: Heavy metal removal by microalgae publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s001289900853 – volume: 1 start-page: 172 issue: 2 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0385 article-title: Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris publication-title: Green Energy Environ. doi: 10.1016/j.gee.2016.08.002 – volume: Sci start-page: 60 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0335 article-title: Phycobiliproteins production and heavy metals reduction ability of Porphyridium sp. publication-title: IOP Conf. Series: Earth Environ. – volume: 6 start-page: 695 issue: 4 year: 2006 ident: 10.1016/j.biortech.2020.122886_b0345 article-title: Biosorption of mercury by biomass of filamentous algae Spirogyra species publication-title: J. Biol. Sci. doi: 10.3923/jbs.2006.695.700 – volume: 165 start-page: 566 issue: 1 year: 2009 ident: 10.1016/j.biortech.2020.122886_b0435 article-title: Characterization of biosorption process of As(III) on green algae Ulothrix cylindricum publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.10.020 – volume: 275 start-page: 232 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0475 article-title: Assessing arsenic redox state evolution in solution and solid phase during As(III) sorption onto chemically-treated sewage sludge digestate biochars publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.12.056 – volume: 19 start-page: 500 issue: 5 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0075 article-title: Effects of biopellets composed of microalgae and fungi on cadmium present at environmentally relevant levels in water publication-title: Int. J. Phytorem. doi: 10.1080/15226514.2016.1244170 – volume: 318 start-page: 443 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0470 article-title: A symbiotic bacterium differentially influences arsenate absorption and transformation in Dunaliella salina under different phosphate regimes publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.07.031 – volume: 11 start-page: 562 issue: 4 year: 2018 ident: 10.1016/j.biortech.2020.122886_b0195 article-title: Chlamydomonas angulosa (Green Alga) and Nostoc commune (Blue-Green Alga) microalgae-cellulose composite aerogel beads: manufacture, physicochemical characterization, and Cd (II) adsorption publication-title: Materials (Basel, Switzerland) doi: 10.3390/ma11040562 – volume: 24 start-page: 26375 issue: 34 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0295 article-title: Response of the freshwater diatom Halamphora veneta (Kützing) Levkov to copper and mercury and its potential for bioassessment of heavy metal toxicity in aquatic habitats publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0225-6 – volume: 231 start-page: 94 year: 2013 ident: 10.1016/j.biortech.2020.122886_b0310 article-title: Biosorption-mediated reduction of Cr(VI) using heterotrophically-grown Chlorella vulgaris: active sites and ionic strength effect publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.07.013 – volume: 27 start-page: 2251 issue: 6 year: 2015 ident: 10.1016/j.biortech.2020.122886_b0215 article-title: Biological sequestration and retention of cadmium as CdS nanoparticles by the microalga Scenedesmus-24 publication-title: J. Appl. Phycol. doi: 10.1007/s10811-014-0499-8 – volume: 3 issue: 1 year: 2013 ident: 10.1016/j.biortech.2020.122886_b0410 article-title: Column biosorption of lead, cadmium, copper, and arsenic ions onto algae publication-title: J. Bioprocess. Biotechniq. – volume: 3 start-page: 11847 issue: 9 year: 2018 ident: 10.1016/j.biortech.2020.122886_b0030 article-title: NMR-based metabolomic approach to elucidate the differential cellular responses during mitigation of arsenic(III, V) in a green microalga publication-title: ACS Omega doi: 10.1021/acsomega.8b01692 – volume: 293 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0095 article-title: Hexavalent chromium removal from water by microalgal-based materials: adsorption, desorption and recovery studies publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122064 – volume: 40 start-page: 1725 issue: 12 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0245 article-title: The effects of hydraulic retention time (HRT) on chromium(VI) reduction using autotrophic cultivation of Chlorella vulgaris publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-017-1827-6 – volume: 2 start-page: 112 issue: 5 year: 2007 ident: 10.1016/j.biortech.2020.122886_b0125 article-title: Heavy metal pollution and human biotoxic effect publication-title: Int. J. Phys. Sci. – volume: 13 start-page: 834 issue: 8 year: 2011 ident: 10.1016/j.biortech.2020.122886_b0220 article-title: Effects of arsenate (AS5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2010.525560 – volume: 104 start-page: 257 year: 2012 ident: 10.1016/j.biortech.2020.122886_b0395 article-title: An integrated approach to remove Cr(VI) using immobilized Chlorella minutissima grown in nutrient rich sewage wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.11.044 – volume: 257 start-page: 157 year: 2018 ident: 10.1016/j.biortech.2020.122886_b0370 article-title: Enhancing cadmium bioremediation by a complex of water-hyacinth derived pellets immobilized with Chlorella sp publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.02.060 – volume: 244 start-page: 1031 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0365 article-title: Microalgal-biochar immobilized complex: a novel efficient biosorbent for cadmium removal from aqueous solution publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.08.085 – volume: 33 start-page: 79 issue: 1 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0425 article-title: Determination of heavy metals in the ambient atmosphere: a review publication-title: Toxicol. Ind. Health doi: 10.1177/0748233716654827 – volume: 24 start-page: 89 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0200 article-title: Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains publication-title: Algal Res. doi: 10.1016/j.algal.2017.03.002 – volume: 7 year: 2018 ident: 10.1016/j.biortech.2020.122886_b0450 article-title: Analysis of removal of cadmium by action of immobilized Chlorella sp. micro-algae in alginate beads publication-title: F1000Research doi: 10.12688/f1000research.13527.1 – volume: 128–129 start-page: 171 year: 2013 ident: 10.1016/j.biortech.2020.122886_b0090 article-title: Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2012.12.004 – volume: 24 start-page: 21213 issue: 26 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0465 article-title: Bioaccumulation kinetics of arsenite and arsenate in Dunaliella salina under different phosphate regimes publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9758-y – volume: 238 start-page: 82 year: 2015 ident: 10.1016/j.biortech.2020.122886_b0160 article-title: Elucidation of the defence mechanism in microalgae Chlorella sorokiniana under mercury exposure. Identification of Hg–phytochelatins publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2015.06.013 – volume: 6 start-page: 20051 issue: 24 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0510 article-title: Biosorption of cadmium by a lipid extraction residue of lipid-rich microalgae publication-title: RSC Adv. doi: 10.1039/C5RA27264E – volume: 16 issue: 10 year: 2015 ident: 10.1016/j.biortech.2020.122886_b0280 article-title: Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms161023929 – volume: 197 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0150 article-title: Optimal chlorophyll fluorescence parameter selection for rapid and sensitive detection of lead toxicity to marine microalgae Nitzschia closterium based on chlorophyll fluorescence technology publication-title: J. Photochem. Photobiol., B doi: 10.1016/j.jphotobiol.2019.111551 – volume: 5 start-page: 366 issue: 1 year: 2017 ident: 10.1016/j.biortech.2020.122886_b0130 article-title: Investigation of mercury removal by micro-algae dynamic membrane bioreactor from simulated dental waste water publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.11.031 – volume: 9 start-page: 10226 issue: 1 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0315 article-title: Arsenic biotransformation potential of six marine diatom species: effect of temperature and salinity publication-title: Sci. Rep. doi: 10.1038/s41598-019-46551-8 – volume: 9 start-page: 38 issue: 1 year: 2018 ident: 10.1016/j.biortech.2020.122886_b0100 article-title: Growth and metal uptake capacity of microalgae under exposure to chromium publication-title: J. Vietnam. Environ. doi: 10.13141/jve.vol9.no1.pp38-43 – volume: 24 start-page: 2630 issue: 10 year: 2005 ident: 10.1016/j.biortech.2020.122886_b0250 article-title: Toxicity, biotransformation, and mode of action of arsenic in two freshwater microalgae (Chlorella sp. and Monoraphidium arcuatum) publication-title: Environ. Toxicol. Chem. doi: 10.1897/04-580R.1 – volume: 175 start-page: 537 year: 2015 ident: 10.1016/j.biortech.2020.122886_b0480 article-title: Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.10.124 – volume: 57 start-page: 4576 issue: 10 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0105 article-title: Biosorption of lead ions (Pb2+) from simulated wastewater using residual biomass of microalgae publication-title: Desalin. Water Treat. – volume: 40 start-page: 664 issue: 5 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0400 article-title: Adsorption of inorganic mercury from aqueous solutions onto dry biomass of Chlorella vulgaris: kinetic and isotherm study publication-title: Environ. Technol. doi: 10.1080/09593330.2017.1400114 – volume: 187 start-page: 45 issue: 1 year: 2007 ident: 10.1016/j.biortech.2020.122886_b0235 article-title: Biotransformation of mercury in pH-stat cultures of eukaryotic freshwater algae publication-title: Arch. Microbiol. doi: 10.1007/s00203-006-0170-0 – volume: 284 start-page: 231 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0255 article-title: Immobilizing unicellular microalga on pellet-forming filamentous fungus: Can this provide new insights into the remediation of arsenic from contaminated water? publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.03.128 – volume: 23 start-page: 2663 issue: 3 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0040 article-title: Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5510-7 – volume: 128 start-page: 236 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0275 article-title: Influence of sulphate on the reduction of cadmium toxicity in the microalga Chlamydomonas moewusii publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2016.02.030 – volume: 100 start-page: 2388 issue: 8 year: 2009 ident: 10.1016/j.biortech.2020.122886_b0210 article-title: Continuous Cr(VI) removal by Scenedesmus incrassatulus in an airlift photobioreactor publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.10.053 – volume: 191 start-page: 419 issue: 7 year: 2019 ident: 10.1016/j.biortech.2020.122886_b0340 article-title: The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-019-7528-7 – volume: 156 start-page: 264 issue: 2 year: 2010 ident: 10.1016/j.biortech.2020.122886_b0135 article-title: Chromium (VI) removal by methylated biomass of Spirulina platensis: the effect of methylation process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.10.015 – volume: 16 start-page: 427 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0495 article-title: Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1 publication-title: Algal Res. doi: 10.1016/j.algal.2016.04.002 – volume: 70 start-page: 298 issue: 2 year: 2007 ident: 10.1016/j.biortech.2020.122886_b0320 article-title: Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.06.007 – volume: 8 start-page: 884 issue: 3 year: 2016 ident: 10.1016/j.biortech.2020.122886_b0085 article-title: The siliceous microalga Navicula subminuscula (Manguin) as a biomaterial for removing metals from tannery effluents: a laboratory study publication-title: J. Mater. Environ. Sci. |
SSID | ssj0003172 |
Score | 2.7143285 |
SecondaryResourceType | review_article |
Snippet | •Bioremediation of five toxic heavy metals by microalgae were reviewed in-depth.•Feasibility and potential of value-added product accumulation were... Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 122886 |
SubjectTerms | Arsenic bioaccumulation Biodegradation, Environmental biomass Bioremediation biosorbents Biosorption byproducts Cadmium carcinogenicity Chromium ecology Heavy metals human health Humans lead Mechanism mercury Metals, Heavy Microalgae value added |
Title | Bioremediation of heavy metals using microalgae: Recent advances and mechanisms |
URI | https://dx.doi.org/10.1016/j.biortech.2020.122886 https://www.ncbi.nlm.nih.gov/pubmed/32046940 https://www.proquest.com/docview/2354163427 https://www.proquest.com/docview/2439384946 |
Volume | 303 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZW9NByQIW2lEeRkXoNmzp2bHNbVl1tW0EPLRI3y7EnaFE3i8iCxKW_vTN5UCrxOPSYZByNZsYzn-Rvxox9BOG1ijpLABNfIlWhaUuFhIadYcGHEhQ1Ch-f5NNT-fVMnQ3YuO-FIVpll_vbnN5k6-7NsLPm8HI2G_4g8G0UlhhC9UrRxE8pNUX5we-_NA-sj81JAgonJH2vS_jioJgRo7U5lBA0aEEY6ql-uEA9BkCbQjR5zdY6BMlHrZLrbADVBlsdnV91UzRgg70c99e44Zd7EwffsO9HqAs07SLkEb4oOWbjm1s-B0ThNSca_DmfE0uPmjzgkCOuxLrEO65AzX0VUZj6hWf1vH7LTieff46nSXenQhIwJS6TaG2MmdRQxjwTqS288SGVZRY0BB2tgNzkqbcRBUqvlI8-V1aWJqahKIPJ3rGValHBe8Y1mjNGU1rEiJgGoDAiKpvrTyKHoHy2xVRvSBe6geN078Uv1zPLLlzvAEcOcK0Dttjwbt1lO3Lj2RW295P7J3gc1oVn1-73jnXoGTou8RUsrmsnMkVoVQr9hAziucxIK_E_m21U3OmM5pW5len2f2i3w17RU8uw3GUry6tr-IAoaFnsNWG-x16MvnybnvwB4XEHXQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7aFwQFBe5WkkrmGDY8c2t2VFtaXtcqCVerMc26m2YrNVs0Xi3zOTOKsiAT1wjWei0Yz9zSd5ZgzwLnKnZFBFFhH4MiErRUfKZzTsDBN-rKOkRuHjeTk7FV_O5NkWTIdeGCqrTNjfY3qH1unLOHlzfLlYjL8R-dYSUwyxeimLO7BN06nkCLYnB4ez-QaQMUV2lwkon5HCjUbhi_fVgopau3sJTrMWuKa26j_nqL9x0C4X7T-A-4lEsklv50PYis0u3JucX6VBGnEXdqbDS264cmPo4CP4-gltiV3HCAWFrWqGgPzjJ1tGJOIto0r4c7akQj3q84gfGVJLTE0slQu0zDUBhalleNEu28dwuv_5ZDrL0rMKmUdUXGfBmBAKoWIdyoLnpnLa-VzUhVfRq2B4LHWZOxNQoHZSuuBKaUStQ-6r2uviCYyaVROfAVPozhB0bZAmIhLESvMgTak-8DJ66Yo9kIMjrU8zx-npi-92KC67sEMALAXA9gHYg_FG77KfunGrhhniZH_bPxZTw626b4fAWowM3Zi4Jq6uW8sLSYRVcPUPGaR0hRZG4H-e9rtiYzO6V5RG5M__w7o3sDM7OT6yRwfzwxdwl1b6gsuXMFpfXcdXSIrW1eu06X8B3QAKDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioremediation+of+heavy+metals+using+microalgae%3A+Recent+advances+and+mechanisms&rft.jtitle=Bioresource+technology&rft.au=Leong%2C+Yoong+Kit&rft.au=Chang%2C+Jo-Shu&rft.date=2020-05-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=303&rft.spage=122886&rft_id=info:doi/10.1016%2Fj.biortech.2020.122886&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |