Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell

•Carbon-felt addition increased the methane production in anaerobic sludge digestion.•Hydrolysis and acidification process was enhanced in the MEC reactor.•A voltage on electrode further improved the performance of the anaerobic digestion.•DIET between VFA-oxidizing bacteria and methanogens was prom...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 200; pp. 235 - 244
Main Authors Zhao, Zisheng, Zhang, Yaobin, Quan, Xie, Zhao, Huimin
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Carbon-felt addition increased the methane production in anaerobic sludge digestion.•Hydrolysis and acidification process was enhanced in the MEC reactor.•A voltage on electrode further improved the performance of the anaerobic digestion.•DIET between VFA-oxidizing bacteria and methanogens was promoted in MEC reactor. Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent studies indicated that this electromethanogenesis only accounted for a little part of methane production during anaerobic sludge digestion. Instead, direct interspecies electron transfer (DIET) possibly plays an important role in methane production. In this study, anaerobic digestion of sludge were investigated in a single-chamber MEC reactor, a carbon-felt supplemented reactor and a common anaerobic reactor to evaluate the effects of DIET on the sludge digestion. The results showed that adding carbon felt into the reactor increased 12.9% of methane production and 17.2% of sludge reduction. Imposing a voltage on the carbon felt further improved the digestion. Current calculation showed that the cathodic reduction only contributed to 27.5% of increased methane production. Microbial analysis indicated that DIET played an important role in the anaerobic sludge digestion in the MEC.
AbstractList Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent studies indicated that this electromethanogenesis only accounted for a little part of methane production during anaerobic sludge digestion. Instead, direct interspecies electron transfer (DIET) possibly plays an important role in methane production. In this study, anaerobic digestion of sludge were investigated in a single-chamber MEC reactor, a carbon-felt supplemented reactor and a common anaerobic reactor to evaluate the effects of DIET on the sludge digestion. The results showed that adding carbon felt into the reactor increased 12.9% of methane production and 17.2% of sludge reduction. Imposing a voltage on the carbon felt further improved the digestion. Current calculation showed that the cathodic reduction only contributed to 27.5% of increased methane production. Microbial analysis indicated that DIET played an important role in the anaerobic sludge digestion in the MEC.
•Carbon-felt addition increased the methane production in anaerobic sludge digestion.•Hydrolysis and acidification process was enhanced in the MEC reactor.•A voltage on electrode further improved the performance of the anaerobic digestion.•DIET between VFA-oxidizing bacteria and methanogens was promoted in MEC reactor. Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent studies indicated that this electromethanogenesis only accounted for a little part of methane production during anaerobic sludge digestion. Instead, direct interspecies electron transfer (DIET) possibly plays an important role in methane production. In this study, anaerobic digestion of sludge were investigated in a single-chamber MEC reactor, a carbon-felt supplemented reactor and a common anaerobic reactor to evaluate the effects of DIET on the sludge digestion. The results showed that adding carbon felt into the reactor increased 12.9% of methane production and 17.2% of sludge reduction. Imposing a voltage on the carbon felt further improved the digestion. Current calculation showed that the cathodic reduction only contributed to 27.5% of increased methane production. Microbial analysis indicated that DIET played an important role in the anaerobic sludge digestion in the MEC.
Author Zhao, Huimin
Quan, Xie
Zhao, Zisheng
Zhang, Yaobin
Author_xml – sequence: 1
  givenname: Zisheng
  surname: Zhao
  fullname: Zhao, Zisheng
– sequence: 2
  givenname: Yaobin
  surname: Zhang
  fullname: Zhang, Yaobin
  email: zhangyb@dlut.edu.cn
– sequence: 3
  givenname: Xie
  surname: Quan
  fullname: Quan, Xie
– sequence: 4
  givenname: Huimin
  surname: Zhao
  fullname: Zhao, Huimin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26492177$$D View this record in MEDLINE/PubMed
BookMark eNqFUUtL9DAUDaLo-PgL0uW36ZikbdKCCz_EFwhudB3yuNUMmXZMWsF_7611XLgZCATueXDvOcdkv-s7IOSc0SWjTFyslsb3cQD7tuSUVThcUs72yILVssh5I8U-WdBG0LyueHlEjlNaUUoLJvkhOeKibDiTckE2Nx86jHrwfZfhcz6CHTLfDRDTBqyHlEHAUURwiLpLLUSEM91piL3xNkthdK-AyldIs02brb2dQB224vCZfMoshHBKDlodEpz9_Cfk5fbm-fo-f3y6e7j-_5jbUsghd7JixtUCRKErawCELY10lDoQYGijGTRWVxIKza0p2kqa1ki8DxAQThYn5N_su4n9-4irqbVP0wK6g35MitWFELykZbObKou6RHozuZ7_UEezBqc20a91_FTbQJEgZgIGkFKE9pfCqJqaUyu1bU5NzU1zbA6Fl3-E1g_fvWDsPuyWX81ywEw_PESVsLzOwtyocr3fZfEFyNC8Fw
CitedBy_id crossref_primary_10_1038_s41598_018_30745_7
crossref_primary_10_1016_j_biortech_2019_122443
crossref_primary_10_1016_j_renene_2017_06_043
crossref_primary_10_1016_j_biortech_2023_129136
crossref_primary_10_1021_acs_energyfuels_0c03193
crossref_primary_10_1016_j_biortech_2017_09_057
crossref_primary_10_1016_j_biortech_2018_03_039
crossref_primary_10_4491_KSEE_2022_44_1_13
crossref_primary_10_1016_j_bej_2021_108301
crossref_primary_10_1016_j_seppur_2024_130463
crossref_primary_10_1016_j_bej_2020_107575
crossref_primary_10_1016_j_jece_2022_107388
crossref_primary_10_1016_j_cej_2019_02_027
crossref_primary_10_1016_j_watres_2020_116225
crossref_primary_10_1016_j_watres_2022_118801
crossref_primary_10_1016_j_biortech_2018_11_021
crossref_primary_10_1016_j_scitotenv_2020_136602
crossref_primary_10_1007_s13399_024_05717_9
crossref_primary_10_1016_j_watres_2019_114955
crossref_primary_10_1021_acssuschemeng_3c05370
crossref_primary_10_3390_methane3020014
crossref_primary_10_1016_j_rser_2021_111069
crossref_primary_10_1016_j_biortech_2018_12_002
crossref_primary_10_1016_j_biortech_2018_07_052
crossref_primary_10_1016_j_watres_2016_09_044
crossref_primary_10_1016_j_biortech_2021_126309
crossref_primary_10_1016_j_watres_2020_116575
crossref_primary_10_1016_j_copbio_2018_01_016
crossref_primary_10_1016_j_watres_2020_116214
crossref_primary_10_2139_ssrn_3928317
crossref_primary_10_1016_j_cej_2018_07_136
crossref_primary_10_1016_j_jclepro_2018_04_244
crossref_primary_10_1016_j_biortech_2017_10_047
crossref_primary_10_3390_ijms18040874
crossref_primary_10_1016_j_biortech_2018_06_101
crossref_primary_10_1016_j_scitotenv_2024_177765
crossref_primary_10_1016_j_cej_2023_143864
crossref_primary_10_1016_j_biortech_2022_127533
crossref_primary_10_1016_j_biortech_2021_124980
crossref_primary_10_1016_j_biortech_2021_126641
crossref_primary_10_1016_j_biortech_2022_128466
crossref_primary_10_1016_j_watres_2022_119270
crossref_primary_10_1016_j_biortech_2018_02_091
crossref_primary_10_1016_j_biortech_2020_123764
crossref_primary_10_1016_j_renene_2021_07_046
crossref_primary_10_1016_j_biortech_2017_11_003
crossref_primary_10_1016_j_biortech_2020_124344
crossref_primary_10_3390_en11102577
crossref_primary_10_1016_j_jclepro_2022_131983
crossref_primary_10_1016_j_biortech_2016_05_013
crossref_primary_10_1016_j_biombioe_2020_105543
crossref_primary_10_1016_j_biortech_2018_02_003
crossref_primary_10_1016_j_biortech_2024_131242
crossref_primary_10_1016_j_psep_2020_08_010
crossref_primary_10_1016_j_jcis_2020_07_075
crossref_primary_10_1016_j_scitotenv_2019_135282
crossref_primary_10_1016_j_renene_2020_05_049
crossref_primary_10_1016_j_renene_2019_06_154
crossref_primary_10_1016_j_rser_2024_115264
crossref_primary_10_47836_pjst_32_3_08
crossref_primary_10_1016_j_energy_2024_133651
crossref_primary_10_1016_j_ijhydene_2017_05_228
crossref_primary_10_3390_su15075698
crossref_primary_10_1016_j_chemosphere_2018_03_163
crossref_primary_10_1016_j_renene_2021_07_052
crossref_primary_10_1016_j_scitotenv_2017_12_110
crossref_primary_10_1080_01904167_2020_1711944
crossref_primary_10_1016_j_rser_2021_111367
crossref_primary_10_1016_j_cej_2019_04_033
crossref_primary_10_5004_dwt_2017_20737
crossref_primary_10_1016_j_bej_2021_108219
crossref_primary_10_1016_j_renene_2020_01_052
crossref_primary_10_1016_j_cej_2021_131281
crossref_primary_10_1016_j_biortech_2020_123122
crossref_primary_10_1016_j_biortech_2020_124295
crossref_primary_10_1186_s13068_017_0994_7
crossref_primary_10_1016_j_scitotenv_2021_150126
crossref_primary_10_1016_j_watres_2019_114988
crossref_primary_10_1016_j_biortech_2021_126341
crossref_primary_10_1016_j_biteb_2022_101146
crossref_primary_10_1007_s40201_019_00349_y
crossref_primary_10_1016_j_scitotenv_2021_145752
crossref_primary_10_1186_s13068_020_01866_x
crossref_primary_10_3390_su15021443
crossref_primary_10_1016_j_biortech_2020_123901
crossref_primary_10_1016_j_biortech_2021_125656
crossref_primary_10_1016_j_ijhydene_2018_08_153
crossref_primary_10_3389_fbioe_2020_00010
crossref_primary_10_1016_j_scitotenv_2023_161721
crossref_primary_10_1021_acs_est_8b04121
crossref_primary_10_1016_j_scitotenv_2019_02_112
crossref_primary_10_1007_s11783_022_1519_6
crossref_primary_10_1016_j_crbiot_2024_100214
crossref_primary_10_1016_j_scitotenv_2020_143573
crossref_primary_10_1016_j_wasman_2017_07_025
crossref_primary_10_1021_acssuschemeng_3c04227
crossref_primary_10_1016_j_biortech_2017_02_024
crossref_primary_10_1016_j_scitotenv_2022_157745
crossref_primary_10_1039_D1CY02151F
crossref_primary_10_1016_j_biortech_2017_05_073
crossref_primary_10_1016_j_ijhydene_2017_06_142
crossref_primary_10_1016_j_renene_2023_119214
crossref_primary_10_1007_s11356_023_29335_6
crossref_primary_10_1016_j_scitotenv_2021_146694
crossref_primary_10_1016_j_biortech_2017_01_053
crossref_primary_10_1016_j_cej_2020_124510
crossref_primary_10_1016_j_chemosphere_2021_131886
crossref_primary_10_1016_j_renene_2025_122458
crossref_primary_10_1039_C6RA06868E
crossref_primary_10_1111_1751_7915_14373
crossref_primary_10_1016_j_watres_2016_10_018
crossref_primary_10_1007_s13399_020_00996_4
crossref_primary_10_3390_su14094982
crossref_primary_10_1016_j_chemosphere_2018_12_169
crossref_primary_10_1016_j_ijhydene_2022_04_287
crossref_primary_10_1016_j_scitotenv_2020_136997
crossref_primary_10_1016_j_jenvman_2018_05_074
crossref_primary_10_1002_adma_201707072
crossref_primary_10_1016_j_envres_2019_109045
crossref_primary_10_1016_j_jclepro_2017_02_156
crossref_primary_10_1016_j_ibiod_2016_09_023
crossref_primary_10_1016_j_biortech_2019_122422
crossref_primary_10_1016_j_eti_2020_101056
crossref_primary_10_1021_acssuschemeng_7b03637
crossref_primary_10_1016_j_biortech_2016_10_007
crossref_primary_10_1016_j_biortech_2021_126321
crossref_primary_10_1016_j_biortech_2023_129879
crossref_primary_10_1016_j_jclepro_2018_03_289
crossref_primary_10_1016_j_watres_2022_119071
crossref_primary_10_1016_j_biortech_2019_121738
crossref_primary_10_1016_j_biortech_2021_124932
crossref_primary_10_1016_j_biortech_2021_126559
crossref_primary_10_1016_j_ibiod_2022_105524
crossref_primary_10_1016_j_cej_2024_155411
crossref_primary_10_1016_j_watres_2018_07_028
crossref_primary_10_3390_fermentation9110932
crossref_primary_10_1016_j_biortech_2016_08_114
crossref_primary_10_3389_fmicb_2016_01316
crossref_primary_10_1016_j_biortech_2024_130872
crossref_primary_10_1016_j_jclepro_2023_137167
crossref_primary_10_1016_j_jes_2019_02_009
crossref_primary_10_1016_j_cej_2023_146648
crossref_primary_10_1007_s11356_016_7776_9
crossref_primary_10_1016_j_biortech_2016_06_112
crossref_primary_10_3390_en11082101
crossref_primary_10_1016_j_biortech_2015_12_048
crossref_primary_10_1016_j_biotechadv_2025_108521
crossref_primary_10_1016_j_cej_2023_144867
crossref_primary_10_1016_j_biortech_2021_125520
crossref_primary_10_1016_j_jwpe_2024_106123
crossref_primary_10_1016_j_biortech_2020_123556
crossref_primary_10_1016_j_ijhydene_2022_07_051
crossref_primary_10_1016_j_ijhydene_2022_01_075
crossref_primary_10_1016_j_envres_2020_109867
crossref_primary_10_3390_en15197042
crossref_primary_10_1016_j_jpowsour_2019_227306
crossref_primary_10_1016_j_cej_2017_09_160
crossref_primary_10_1080_10643389_2020_1813065
crossref_primary_10_1016_j_cej_2024_149530
crossref_primary_10_1016_j_watres_2019_03_075
crossref_primary_10_2139_ssrn_4125382
crossref_primary_10_1021_acs_est_3c10604
Cites_doi 10.1016/j.watres.2012.11.052
10.1039/b717196j
10.1016/B978-0-12-387661-4.00004-5
10.1039/C3EE42189A
10.1099/mic.0.064089-0
10.1016/j.cep.2006.02.005
10.1007/BF00164784
10.1016/j.biortech.2005.02.014
10.1021/es8001822
10.1038/srep11094
10.1016/j.biortech.2007.02.005
10.1021/es803531g
10.2166/wst.1997.0406
10.1016/S0043-1354(99)00361-9
10.1016/j.biortech.2015.05.007
10.1021/es5016789
10.1021/es801553z
10.1016/j.biortech.2010.07.100
10.1111/j.1462-2920.2010.02237.x
10.1021/es800482e
10.1016/j.watres.2014.05.044
10.1128/AEM.66.5.2248-2251.2000
10.1016/j.biortech.2011.09.078
10.1264/jsme2.ME11123
10.1016/j.watres.2011.11.073
10.1016/j.watres.2013.04.003
10.1007/s002530050481
10.1039/c1ee02229f
10.1039/c2ee22459c
10.1128/AEM.00895-14
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2015.10.021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 244
ExternalDocumentID 26492177
10_1016_j_biortech_2015_10_021
S0960852415014169
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c467t-d751bd86e63a5cbee6c4b7d00de6eb09a1e9ca57e3a2cb3f57bfb7031e1e96d73
IEDL.DBID .~1
ISSN 0960-8524
IngestDate Fri Jul 11 01:42:48 EDT 2025
Fri Jul 11 15:12:10 EDT 2025
Mon Jul 21 06:02:15 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Tue Jul 01 02:06:34 EDT 2025
Fri Feb 23 02:16:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Anaerobic sludge digestion
Conductive materials
Microbial electrolysis cells
Direct interspecies electron transfer
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-d751bd86e63a5cbee6c4b7d00de6eb09a1e9ca57e3a2cb3f57bfb7031e1e96d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26492177
PQID 1738483697
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1836624049
proquest_miscellaneous_1738483697
pubmed_primary_26492177
crossref_primary_10_1016_j_biortech_2015_10_021
crossref_citationtrail_10_1016_j_biortech_2015_10_021
elsevier_sciencedirect_doi_10_1016_j_biortech_2015_10_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2016
2016-01-00
2016-Jan
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Aklujkar, Coppi, Leang, Kim, Chavan, Perpetua, Holmes (b0005) 2013; 159
Bowman, Bren (b0020) 2008; 25
Rotaru, Shrestha, Liu, Shrestha, Shrestha, Embree, Zengler, Wardman, Nevin, Lovley (b9000) 2014; 7
Cheng, Xing, Call, Logan (b0035) 2009; 43
Jimenez, Vedrenne, Denis, Mottet, Déléris, Steyer, Cacho Rivero (b0065) 2013; 47
Lv, Schanbacher, Yu (b0100) 2010; 101
Lu, Xing, Liu, Ren (b0095) 2012; 46
Fan, Kan, Lay (b0045) 2006; 97
Li, Tong, Fang, Jian, Yu (b0070) 2014; 70c
Westerholm, Müller, Arthurson, Schnürer (b9010) 2009; 26
Call, Logan (b0025) 2008; 42
Liu, Amelia, Pravin, Nikhil, Kelly, Derek (b0075) 2012; 5
Zhao, Zhang, Wang, Quan (b0145) 2015; 5
Zhao, Yu (b0140) 2008; 99
Logan, Call, Cheng, Hamelers, Sleutels, Jeremiasse, Rozendal (b0080) 2008; 42
Chiu, Chang, Lin, Huang (b0040) 1997; 36
Nah, Kang, Hwang, Song (b0110) 2000; 34
Wang, Aziz, de Los Reyes (b0135) 2013; 47
APHA (b0010) 1998
Lovley (b0085) 2011; 4
Frolund, Griebe, Nielsen (b0060) 1995; 43
Carolina, Simona, Stefano, Paola, Mauro, Federico (b0030) 2014; 48
Lovley, Ueki, Zhang, Malvankar, Shrestha, Flanagan, Aklujkar, Butler, Giloteaux, Rotaru, Holmes, Franks, Orellana, Risso, Nevin (b0090) 2011; 59
Morgado, Dantas, Simões, Londer, Pokkuluri, Salgueiro (b0105) 2012; 33
Nevin, Lovley (b0115) 2000; 66
Bougrier, Albasi, Delgenès, Carrère (b0015) 2006; 45
Sleutels, Darus, Hamelers, Buisman (b0130) 2011; 102
Sieber, Sims, Han, Kim, Lykidis, Erin Lapidus, Lars, David, Robert, Michael (b0125) 2010; 12
Freguia, Rabaey, Yuan, Keller (b0055) 2008; 42
Zhao, Zhang, Woodard, Nevin, Lovley (b0150) 2015; 191
Fr, Griebe, Nielsen (b0050) 1995; 43
Rotaru, Shrestha, Liu, Markovaite, Chen, Nevin, Lovley (b0120) 2014; 80
Nevin (10.1016/j.biortech.2015.10.021_b0115) 2000; 66
Nah (10.1016/j.biortech.2015.10.021_b0110) 2000; 34
Lovley (10.1016/j.biortech.2015.10.021_b0085) 2011; 4
Chiu (10.1016/j.biortech.2015.10.021_b0040) 1997; 36
Call (10.1016/j.biortech.2015.10.021_b0025) 2008; 42
Zhao (10.1016/j.biortech.2015.10.021_b0145) 2015; 5
Frolund (10.1016/j.biortech.2015.10.021_b0060) 1995; 43
Rotaru (10.1016/j.biortech.2015.10.021_b9000) 2014; 7
Freguia (10.1016/j.biortech.2015.10.021_b0055) 2008; 42
Lu (10.1016/j.biortech.2015.10.021_b0095) 2012; 46
Wang (10.1016/j.biortech.2015.10.021_b0135) 2013; 47
Bowman (10.1016/j.biortech.2015.10.021_b0020) 2008; 25
Zhao (10.1016/j.biortech.2015.10.021_b0150) 2015; 191
Fan (10.1016/j.biortech.2015.10.021_b0045) 2006; 97
Cheng (10.1016/j.biortech.2015.10.021_b0035) 2009; 43
Morgado (10.1016/j.biortech.2015.10.021_b0105) 2012; 33
Li (10.1016/j.biortech.2015.10.021_b0070) 2014; 70c
Jimenez (10.1016/j.biortech.2015.10.021_b0065) 2013; 47
Zhao (10.1016/j.biortech.2015.10.021_b0140) 2008; 99
Liu (10.1016/j.biortech.2015.10.021_b0075) 2012; 5
Westerholm (10.1016/j.biortech.2015.10.021_b9010) 2009; 26
Sieber (10.1016/j.biortech.2015.10.021_b0125) 2010; 12
Lovley (10.1016/j.biortech.2015.10.021_b0090) 2011; 59
APHA (10.1016/j.biortech.2015.10.021_b0010) 1998
Logan (10.1016/j.biortech.2015.10.021_b0080) 2008; 42
Sleutels (10.1016/j.biortech.2015.10.021_b0130) 2011; 102
Lv (10.1016/j.biortech.2015.10.021_b0100) 2010; 101
Rotaru (10.1016/j.biortech.2015.10.021_b0120) 2014; 80
Aklujkar (10.1016/j.biortech.2015.10.021_b0005) 2013; 159
Bougrier (10.1016/j.biortech.2015.10.021_b0015) 2006; 45
Carolina (10.1016/j.biortech.2015.10.021_b0030) 2014; 48
Fr (10.1016/j.biortech.2015.10.021_b0050) 1995; 43
References_xml – volume: 34
  start-page: 2362
  year: 2000
  end-page: 2368
  ident: b0110
  article-title: Mechanical pretreatment of waste activated sludge for anaerobic digestion process
  publication-title: Water Res.
– volume: 36
  start-page: 155
  year: 1997
  end-page: 162
  ident: b0040
  article-title: Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion
  publication-title: Water Sci. Technol.
– volume: 43
  start-page: 755
  year: 1995
  end-page: 761
  ident: b0060
  article-title: Enzymatic activity in the activated-sludge floc matrix
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 48
  start-page: 7536
  year: 2014
  end-page: 7543
  ident: b0030
  article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation
  publication-title: Environ. Sci. Technol.
– volume: 42
  start-page: 7937
  year: 2008
  end-page: 7943
  ident: b0055
  article-title: Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 3953
  year: 2009
  end-page: 3958
  ident: b0035
  article-title: Direct biological conversion of electrical current into methane by electromethanogenesis
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 3835
  year: 2013
  end-page: 3844
  ident: b0135
  article-title: Determining the limits of anaerobic co-digestion of thickened waste activated sludge with grease interceptor waste
  publication-title: Water Res.
– volume: 99
  start-page: 1353
  year: 2008
  end-page: 1358
  ident: b0140
  article-title: Fermentative H
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 11172
  year: 2011
  end-page: 11176
  ident: b0130
  article-title: Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems
  publication-title: Bioresour. Technol.
– volume: 66
  start-page: 2248
  year: 2000
  ident: b0115
  article-title: Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by
  publication-title: Appl. Environ. Microbiol.
– volume: 43
  start-page: 755
  year: 1995
  end-page: 761
  ident: b0050
  article-title: Enzymatic activity in the activated-sludge floc matrix
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 70c
  start-page: 1
  year: 2014
  end-page: 8
  ident: b0070
  article-title: Response of anaerobic granular sludge to single-wall carbon nanotube exposure
  publication-title: Water Res.
– volume: 4
  start-page: 4896
  year: 2011
  ident: b0085
  article-title: Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination
  publication-title: Energy Environ. Sci.
– volume: 45
  start-page: 711
  year: 2006
  end-page: 718
  ident: b0015
  article-title: Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability
  publication-title: Chem. Eng. Process Process Intensif.
– volume: 5
  start-page: 8982
  year: 2012
  end-page: 8989
  ident: b0075
  article-title: Promoting direct interspecies electron transfer with activated carbon
  publication-title: Energy Environ. Sci.
– volume: 42
  start-page: 8630
  year: 2008
  end-page: 8640
  ident: b0080
  article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter
  publication-title: Environ. Sci. Technol.
– volume: 33
  start-page: 11
  year: 2012
  end-page: 22
  ident: b0105
  article-title: Role of met58 in the regulation of electron/proton transfer in trihaem cytochrome ppca from geobacter sulfurreducens
  publication-title: Biosci. Rep.
– volume: 7
  start-page: 408
  year: 2014
  ident: b9000
  article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
  publication-title: Energy Environ. Sci.
– volume: 97
  start-page: 84
  year: 2006
  end-page: 89
  ident: b0045
  article-title: Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 11094
  year: 2015
  ident: b0145
  article-title: Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion
  publication-title: Sci. Rep.
– volume: 101
  start-page: 9409
  year: 2010
  end-page: 9414
  ident: b0100
  article-title: Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes
  publication-title: Bioresour. Technol.
– volume: 42
  start-page: 3401
  year: 2008
  end-page: 3406
  ident: b0025
  article-title: Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane
  publication-title: Environ. Sci. Technol.
– volume: 80
  start-page: 4599
  year: 2014
  end-page: 4605
  ident: b0120
  article-title: Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri
  publication-title: Appl. Environ. Microbiol.
– year: 1998
  ident: b0010
  article-title: Standard Methods for the Examination of Water and Wastewater
– volume: 25
  start-page: 1118
  year: 2008
  end-page: 1130
  ident: b0020
  article-title: The chemistry and biochemistry of hemec: functional bases for covalent attachment
  publication-title: Nat. Prod. Rep.
– volume: 159
  start-page: 515
  year: 2013
  end-page: 535
  ident: b0005
  article-title: Proteins involved in electron transfer to Fe (III) and Mn (IV) oxides by
  publication-title: Microbiology
– volume: 59
  start-page: 1
  year: 2011
  end-page: 100
  ident: b0090
  article-title: Geobacter: the microbe electric’s physiology, ecology, and practical applications
  publication-title: Adv. Microb. Physiol.
– volume: 46
  start-page: 1015
  year: 2012
  end-page: 1026
  ident: b0095
  article-title: Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells
  publication-title: Water Res.
– volume: 47
  start-page: 1751
  year: 2013
  end-page: 1762
  ident: b0065
  article-title: A statistical comparison of protein and carbohydrate characterisation methodology applied on sewage sludge samples
  publication-title: Water Res.
– volume: 191
  start-page: 140
  year: 2015
  end-page: 145
  ident: b0150
  article-title: Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials
  publication-title: Bioresour. Technol.
– volume: 12
  start-page: 2289
  year: 2010
  end-page: 2301
  ident: b0125
  article-title: The genome of syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production
  publication-title: Environ. Microbiol.
– volume: 26
  start-page: 347
  year: 2009
  end-page: 353
  ident: b9010
  article-title: Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration
  publication-title: Microbes Environ.
– volume: 47
  start-page: 1751
  year: 2013
  ident: 10.1016/j.biortech.2015.10.021_b0065
  article-title: A statistical comparison of protein and carbohydrate characterisation methodology applied on sewage sludge samples
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.11.052
– volume: 25
  start-page: 1118
  issue: 6
  year: 2008
  ident: 10.1016/j.biortech.2015.10.021_b0020
  article-title: The chemistry and biochemistry of hemec: functional bases for covalent attachment
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/b717196j
– volume: 59
  start-page: 1
  year: 2011
  ident: 10.1016/j.biortech.2015.10.021_b0090
  article-title: Geobacter: the microbe electric’s physiology, ecology, and practical applications
  publication-title: Adv. Microb. Physiol.
  doi: 10.1016/B978-0-12-387661-4.00004-5
– volume: 7
  start-page: 408
  year: 2014
  ident: 10.1016/j.biortech.2015.10.021_b9000
  article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42189A
– volume: 159
  start-page: 515
  issue: 3
  year: 2013
  ident: 10.1016/j.biortech.2015.10.021_b0005
  article-title: Proteins involved in electron transfer to Fe (III) and Mn (IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens
  publication-title: Microbiology
  doi: 10.1099/mic.0.064089-0
– volume: 45
  start-page: 711
  year: 2006
  ident: 10.1016/j.biortech.2015.10.021_b0015
  article-title: Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability
  publication-title: Chem. Eng. Process Process Intensif.
  doi: 10.1016/j.cep.2006.02.005
– volume: 43
  start-page: 755
  year: 1995
  ident: 10.1016/j.biortech.2015.10.021_b0050
  article-title: Enzymatic activity in the activated-sludge floc matrix
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00164784
– volume: 97
  start-page: 84
  year: 2006
  ident: 10.1016/j.biortech.2015.10.021_b0045
  article-title: Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2005.02.014
– volume: 42
  start-page: 3401
  year: 2008
  ident: 10.1016/j.biortech.2015.10.021_b0025
  article-title: Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8001822
– volume: 5
  start-page: 11094
  year: 2015
  ident: 10.1016/j.biortech.2015.10.021_b0145
  article-title: Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion
  publication-title: Sci. Rep.
  doi: 10.1038/srep11094
– volume: 99
  start-page: 1353
  year: 2008
  ident: 10.1016/j.biortech.2015.10.021_b0140
  article-title: Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.02.005
– volume: 43
  start-page: 3953
  year: 2009
  ident: 10.1016/j.biortech.2015.10.021_b0035
  article-title: Direct biological conversion of electrical current into methane by electromethanogenesis
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803531g
– volume: 36
  start-page: 155
  issue: 8
  year: 1997
  ident: 10.1016/j.biortech.2015.10.021_b0040
  article-title: Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1997.0406
– volume: 34
  start-page: 2362
  year: 2000
  ident: 10.1016/j.biortech.2015.10.021_b0110
  article-title: Mechanical pretreatment of waste activated sludge for anaerobic digestion process
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(99)00361-9
– volume: 191
  start-page: 140
  year: 2015
  ident: 10.1016/j.biortech.2015.10.021_b0150
  article-title: Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.05.007
– volume: 48
  start-page: 7536
  issue: 13
  year: 2014
  ident: 10.1016/j.biortech.2015.10.021_b0030
  article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5016789
– volume: 42
  start-page: 8630
  year: 2008
  ident: 10.1016/j.biortech.2015.10.021_b0080
  article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801553z
– volume: 101
  start-page: 9409
  year: 2010
  ident: 10.1016/j.biortech.2015.10.021_b0100
  article-title: Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.07.100
– volume: 12
  start-page: 2289
  issue: 8
  year: 2010
  ident: 10.1016/j.biortech.2015.10.021_b0125
  article-title: The genome of syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2010.02237.x
– year: 1998
  ident: 10.1016/j.biortech.2015.10.021_b0010
– volume: 42
  start-page: 7937
  year: 2008
  ident: 10.1016/j.biortech.2015.10.021_b0055
  article-title: Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800482e
– volume: 70c
  start-page: 1
  year: 2014
  ident: 10.1016/j.biortech.2015.10.021_b0070
  article-title: Response of anaerobic granular sludge to single-wall carbon nanotube exposure
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.05.044
– volume: 66
  start-page: 2248
  year: 2000
  ident: 10.1016/j.biortech.2015.10.021_b0115
  article-title: Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.5.2248-2251.2000
– volume: 102
  start-page: 11172
  year: 2011
  ident: 10.1016/j.biortech.2015.10.021_b0130
  article-title: Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.09.078
– volume: 33
  start-page: 11
  issue: 1
  year: 2012
  ident: 10.1016/j.biortech.2015.10.021_b0105
  article-title: Role of met58 in the regulation of electron/proton transfer in trihaem cytochrome ppca from geobacter sulfurreducens
  publication-title: Biosci. Rep.
– volume: 26
  start-page: 347
  year: 2009
  ident: 10.1016/j.biortech.2015.10.021_b9010
  article-title: Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration
  publication-title: Microbes Environ.
  doi: 10.1264/jsme2.ME11123
– volume: 46
  start-page: 1015
  year: 2012
  ident: 10.1016/j.biortech.2015.10.021_b0095
  article-title: Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.11.073
– volume: 47
  start-page: 3835
  year: 2013
  ident: 10.1016/j.biortech.2015.10.021_b0135
  article-title: Determining the limits of anaerobic co-digestion of thickened waste activated sludge with grease interceptor waste
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.04.003
– volume: 43
  start-page: 755
  year: 1995
  ident: 10.1016/j.biortech.2015.10.021_b0060
  article-title: Enzymatic activity in the activated-sludge floc matrix
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530050481
– volume: 4
  start-page: 4896
  year: 2011
  ident: 10.1016/j.biortech.2015.10.021_b0085
  article-title: Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee02229f
– volume: 5
  start-page: 8982
  issue: 10
  year: 2012
  ident: 10.1016/j.biortech.2015.10.021_b0075
  article-title: Promoting direct interspecies electron transfer with activated carbon
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22459c
– volume: 80
  start-page: 4599
  year: 2014
  ident: 10.1016/j.biortech.2015.10.021_b0120
  article-title: Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00895-14
SSID ssj0003172
Score 2.5546362
Snippet •Carbon-felt addition increased the methane production in anaerobic sludge digestion.•Hydrolysis and acidification process was enhanced in the MEC reactor.•A...
Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 235
SubjectTerms anaerobic digestion
Anaerobic sludge digestion
Anaerobiosis
Bioreactors - microbiology
carbon
carbon dioxide
Conductive materials
digestion
Direct interspecies electron transfer
Electrodes
electrolysis
Electrolysis - instrumentation
electron transfer
Electrons
Methane - metabolism
methane production
Microbial electrolysis cells
Sewage - chemistry
Sewage - microbiology
sludge
Title Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell
URI https://dx.doi.org/10.1016/j.biortech.2015.10.021
https://www.ncbi.nlm.nih.gov/pubmed/26492177
https://www.proquest.com/docview/1738483697
https://www.proquest.com/docview/1836624049
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9swED0E6dBmKNq0TZ20BgtklW1J_BBHw0jgtmiWJkA2gZROgYNEMRx77W_vHUW57pBmKKBFOlKgeBTvkbx7B3CqvbeNJ-TmU08LFELkiVXeJtbZDDNpMqx5H_LHhZ5fyW_X6noPZn0sDLtVxrm_m9PDbB2fjGNvjpeLxfgng-9CsQViZ0XNQXxSGh7lo19_3DzIPoaTBCqccOmdKOHbkV-wR2s4lEjViL28svQpA_UUAA2G6PwNvI4IUky7Rr6FPWwP4WB6s4osGngIL2d9GjeS7DAOvoPl2ZbdW9DVfbxgzogQc0nLZtEnxhHrgGlxRWLhWofM2FSJx7tNfYOiDgdT4TWNuF8EOidqVawceE4EHwq8h6vzs8vZPIlJF5KK5sx1UhuV-rrQqHOnKo-oK-lNPZnUqNFPrEvRVk4ZzF1W-bxRxjeeSfCRBLo2-QfYbx9a_AjCNU4WLnOVKTSz2FiTSywQOe8VB_AOQPU9XVaRkZwTY9yVvevZbdlrqGQN8XPS0ADG23rLjpPj2Rq2V2T51-gqyXA8W_dLr_mSVMdd51p82DyWqckLWeTamn-UIbkm1CTtAI66YbNtM2FRSytCc_wfrTuBV3QXN4U-wf56tcHPBJPWfhj-gyG8mH79Pr_4DWiHFOo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NDtMGzdK91LA3Z1Ez8kWccgaJGubS5rgd4EyaaLFJ0bpMn_LynLQXfoehjgk2gasiiTnyzqI8BP5b1pPCE3n3paoBAiT4z0JjHOZJgVOsOa_0Oez9Xssvh1Ja92YNqfheG0yuj7O58evHVsGcXRHC0Xi9FvBt-l5AjEyYrKvIBdZqeSA9idnJzO5luHTCEybCbQ_QkrPDoofHPoF5zUGvYlUnnIiV5Z-lSMegqDhlh0_AZeRxApJl0_38IOtvvwanK9ikQauA97076SG0kekQ6-g-XRluBb0NW9v2DaiHDsklbOoq-NI9YB1uKKxMK1Dpm0qRL3t5v6GkUd9qbCYxrxZxEYnahXUTlQnQjeF3gPl8dHF9NZEusuJBW5zXVSa5n6ulSocicrj6iqwut6PK5RoR8bl6KpnNSYu6zyeSO1bzzz4CMJVK3zDzBo71r8BMI1rihd5ipdKiayMTovsETk0ld8hncIsh9pW0VScq6NcWv77LMb21vIsoW4nSw0hNFWb9nRcjyrYXpD2r8mmKXY8azuj97ylkzHQ-davNvc21TnZVHmyuh_3ENyRcCpMEP42E2bbZ8JjhpaFOqD_-jdd9ibXZyf2bOT-elneEmS-I_oCwzWqw1-JdS09t_iV_EAzzIXmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+on+direct+interspecies+electron+transfer+in+anaerobic+sludge+digestion+of+microbial+electrolysis+cell&rft.jtitle=Bioresource+technology&rft.au=Zhao%2C+Zisheng&rft.au=Zhang%2C+Yaobin&rft.au=Quan%2C+Xie&rft.au=Zhao%2C+Huimin&rft.date=2016-01-01&rft.eissn=1873-2976&rft.volume=200&rft.spage=235&rft.epage=244&rft_id=info:doi/10.1016%2Fj.biortech.2015.10.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon