Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell
•Carbon-felt addition increased the methane production in anaerobic sludge digestion.•Hydrolysis and acidification process was enhanced in the MEC reactor.•A voltage on electrode further improved the performance of the anaerobic digestion.•DIET between VFA-oxidizing bacteria and methanogens was prom...
Saved in:
Published in | Bioresource technology Vol. 200; pp. 235 - 244 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Carbon-felt addition increased the methane production in anaerobic sludge digestion.•Hydrolysis and acidification process was enhanced in the MEC reactor.•A voltage on electrode further improved the performance of the anaerobic digestion.•DIET between VFA-oxidizing bacteria and methanogens was promoted in MEC reactor.
Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent studies indicated that this electromethanogenesis only accounted for a little part of methane production during anaerobic sludge digestion. Instead, direct interspecies electron transfer (DIET) possibly plays an important role in methane production. In this study, anaerobic digestion of sludge were investigated in a single-chamber MEC reactor, a carbon-felt supplemented reactor and a common anaerobic reactor to evaluate the effects of DIET on the sludge digestion. The results showed that adding carbon felt into the reactor increased 12.9% of methane production and 17.2% of sludge reduction. Imposing a voltage on the carbon felt further improved the digestion. Current calculation showed that the cathodic reduction only contributed to 27.5% of increased methane production. Microbial analysis indicated that DIET played an important role in the anaerobic sludge digestion in the MEC. |
---|---|
AbstractList | Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent studies indicated that this electromethanogenesis only accounted for a little part of methane production during anaerobic sludge digestion. Instead, direct interspecies electron transfer (DIET) possibly plays an important role in methane production. In this study, anaerobic digestion of sludge were investigated in a single-chamber MEC reactor, a carbon-felt supplemented reactor and a common anaerobic reactor to evaluate the effects of DIET on the sludge digestion. The results showed that adding carbon felt into the reactor increased 12.9% of methane production and 17.2% of sludge reduction. Imposing a voltage on the carbon felt further improved the digestion. Current calculation showed that the cathodic reduction only contributed to 27.5% of increased methane production. Microbial analysis indicated that DIET played an important role in the anaerobic sludge digestion in the MEC. •Carbon-felt addition increased the methane production in anaerobic sludge digestion.•Hydrolysis and acidification process was enhanced in the MEC reactor.•A voltage on electrode further improved the performance of the anaerobic digestion.•DIET between VFA-oxidizing bacteria and methanogens was promoted in MEC reactor. Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent studies indicated that this electromethanogenesis only accounted for a little part of methane production during anaerobic sludge digestion. Instead, direct interspecies electron transfer (DIET) possibly plays an important role in methane production. In this study, anaerobic digestion of sludge were investigated in a single-chamber MEC reactor, a carbon-felt supplemented reactor and a common anaerobic reactor to evaluate the effects of DIET on the sludge digestion. The results showed that adding carbon felt into the reactor increased 12.9% of methane production and 17.2% of sludge reduction. Imposing a voltage on the carbon felt further improved the digestion. Current calculation showed that the cathodic reduction only contributed to 27.5% of increased methane production. Microbial analysis indicated that DIET played an important role in the anaerobic sludge digestion in the MEC. |
Author | Zhao, Huimin Quan, Xie Zhao, Zisheng Zhang, Yaobin |
Author_xml | – sequence: 1 givenname: Zisheng surname: Zhao fullname: Zhao, Zisheng – sequence: 2 givenname: Yaobin surname: Zhang fullname: Zhang, Yaobin email: zhangyb@dlut.edu.cn – sequence: 3 givenname: Xie surname: Quan fullname: Quan, Xie – sequence: 4 givenname: Huimin surname: Zhao fullname: Zhao, Huimin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26492177$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUUtL9DAUDaLo-PgL0uW36ZikbdKCCz_EFwhudB3yuNUMmXZMWsF_7611XLgZCATueXDvOcdkv-s7IOSc0SWjTFyslsb3cQD7tuSUVThcUs72yILVssh5I8U-WdBG0LyueHlEjlNaUUoLJvkhOeKibDiTckE2Nx86jHrwfZfhcz6CHTLfDRDTBqyHlEHAUURwiLpLLUSEM91piL3xNkthdK-AyldIs02brb2dQB224vCZfMoshHBKDlodEpz9_Cfk5fbm-fo-f3y6e7j-_5jbUsghd7JixtUCRKErawCELY10lDoQYGijGTRWVxIKza0p2kqa1ki8DxAQThYn5N_su4n9-4irqbVP0wK6g35MitWFELykZbObKou6RHozuZ7_UEezBqc20a91_FTbQJEgZgIGkFKE9pfCqJqaUyu1bU5NzU1zbA6Fl3-E1g_fvWDsPuyWX81ywEw_PESVsLzOwtyocr3fZfEFyNC8Fw |
CitedBy_id | crossref_primary_10_1038_s41598_018_30745_7 crossref_primary_10_1016_j_biortech_2019_122443 crossref_primary_10_1016_j_renene_2017_06_043 crossref_primary_10_1016_j_biortech_2023_129136 crossref_primary_10_1021_acs_energyfuels_0c03193 crossref_primary_10_1016_j_biortech_2017_09_057 crossref_primary_10_1016_j_biortech_2018_03_039 crossref_primary_10_4491_KSEE_2022_44_1_13 crossref_primary_10_1016_j_bej_2021_108301 crossref_primary_10_1016_j_seppur_2024_130463 crossref_primary_10_1016_j_bej_2020_107575 crossref_primary_10_1016_j_jece_2022_107388 crossref_primary_10_1016_j_cej_2019_02_027 crossref_primary_10_1016_j_watres_2020_116225 crossref_primary_10_1016_j_watres_2022_118801 crossref_primary_10_1016_j_biortech_2018_11_021 crossref_primary_10_1016_j_scitotenv_2020_136602 crossref_primary_10_1007_s13399_024_05717_9 crossref_primary_10_1016_j_watres_2019_114955 crossref_primary_10_1021_acssuschemeng_3c05370 crossref_primary_10_3390_methane3020014 crossref_primary_10_1016_j_rser_2021_111069 crossref_primary_10_1016_j_biortech_2018_12_002 crossref_primary_10_1016_j_biortech_2018_07_052 crossref_primary_10_1016_j_watres_2016_09_044 crossref_primary_10_1016_j_biortech_2021_126309 crossref_primary_10_1016_j_watres_2020_116575 crossref_primary_10_1016_j_copbio_2018_01_016 crossref_primary_10_1016_j_watres_2020_116214 crossref_primary_10_2139_ssrn_3928317 crossref_primary_10_1016_j_cej_2018_07_136 crossref_primary_10_1016_j_jclepro_2018_04_244 crossref_primary_10_1016_j_biortech_2017_10_047 crossref_primary_10_3390_ijms18040874 crossref_primary_10_1016_j_biortech_2018_06_101 crossref_primary_10_1016_j_scitotenv_2024_177765 crossref_primary_10_1016_j_cej_2023_143864 crossref_primary_10_1016_j_biortech_2022_127533 crossref_primary_10_1016_j_biortech_2021_124980 crossref_primary_10_1016_j_biortech_2021_126641 crossref_primary_10_1016_j_biortech_2022_128466 crossref_primary_10_1016_j_watres_2022_119270 crossref_primary_10_1016_j_biortech_2018_02_091 crossref_primary_10_1016_j_biortech_2020_123764 crossref_primary_10_1016_j_renene_2021_07_046 crossref_primary_10_1016_j_biortech_2017_11_003 crossref_primary_10_1016_j_biortech_2020_124344 crossref_primary_10_3390_en11102577 crossref_primary_10_1016_j_jclepro_2022_131983 crossref_primary_10_1016_j_biortech_2016_05_013 crossref_primary_10_1016_j_biombioe_2020_105543 crossref_primary_10_1016_j_biortech_2018_02_003 crossref_primary_10_1016_j_biortech_2024_131242 crossref_primary_10_1016_j_psep_2020_08_010 crossref_primary_10_1016_j_jcis_2020_07_075 crossref_primary_10_1016_j_scitotenv_2019_135282 crossref_primary_10_1016_j_renene_2020_05_049 crossref_primary_10_1016_j_renene_2019_06_154 crossref_primary_10_1016_j_rser_2024_115264 crossref_primary_10_47836_pjst_32_3_08 crossref_primary_10_1016_j_energy_2024_133651 crossref_primary_10_1016_j_ijhydene_2017_05_228 crossref_primary_10_3390_su15075698 crossref_primary_10_1016_j_chemosphere_2018_03_163 crossref_primary_10_1016_j_renene_2021_07_052 crossref_primary_10_1016_j_scitotenv_2017_12_110 crossref_primary_10_1080_01904167_2020_1711944 crossref_primary_10_1016_j_rser_2021_111367 crossref_primary_10_1016_j_cej_2019_04_033 crossref_primary_10_5004_dwt_2017_20737 crossref_primary_10_1016_j_bej_2021_108219 crossref_primary_10_1016_j_renene_2020_01_052 crossref_primary_10_1016_j_cej_2021_131281 crossref_primary_10_1016_j_biortech_2020_123122 crossref_primary_10_1016_j_biortech_2020_124295 crossref_primary_10_1186_s13068_017_0994_7 crossref_primary_10_1016_j_scitotenv_2021_150126 crossref_primary_10_1016_j_watres_2019_114988 crossref_primary_10_1016_j_biortech_2021_126341 crossref_primary_10_1016_j_biteb_2022_101146 crossref_primary_10_1007_s40201_019_00349_y crossref_primary_10_1016_j_scitotenv_2021_145752 crossref_primary_10_1186_s13068_020_01866_x crossref_primary_10_3390_su15021443 crossref_primary_10_1016_j_biortech_2020_123901 crossref_primary_10_1016_j_biortech_2021_125656 crossref_primary_10_1016_j_ijhydene_2018_08_153 crossref_primary_10_3389_fbioe_2020_00010 crossref_primary_10_1016_j_scitotenv_2023_161721 crossref_primary_10_1021_acs_est_8b04121 crossref_primary_10_1016_j_scitotenv_2019_02_112 crossref_primary_10_1007_s11783_022_1519_6 crossref_primary_10_1016_j_crbiot_2024_100214 crossref_primary_10_1016_j_scitotenv_2020_143573 crossref_primary_10_1016_j_wasman_2017_07_025 crossref_primary_10_1021_acssuschemeng_3c04227 crossref_primary_10_1016_j_biortech_2017_02_024 crossref_primary_10_1016_j_scitotenv_2022_157745 crossref_primary_10_1039_D1CY02151F crossref_primary_10_1016_j_biortech_2017_05_073 crossref_primary_10_1016_j_ijhydene_2017_06_142 crossref_primary_10_1016_j_renene_2023_119214 crossref_primary_10_1007_s11356_023_29335_6 crossref_primary_10_1016_j_scitotenv_2021_146694 crossref_primary_10_1016_j_biortech_2017_01_053 crossref_primary_10_1016_j_cej_2020_124510 crossref_primary_10_1016_j_chemosphere_2021_131886 crossref_primary_10_1016_j_renene_2025_122458 crossref_primary_10_1039_C6RA06868E crossref_primary_10_1111_1751_7915_14373 crossref_primary_10_1016_j_watres_2016_10_018 crossref_primary_10_1007_s13399_020_00996_4 crossref_primary_10_3390_su14094982 crossref_primary_10_1016_j_chemosphere_2018_12_169 crossref_primary_10_1016_j_ijhydene_2022_04_287 crossref_primary_10_1016_j_scitotenv_2020_136997 crossref_primary_10_1016_j_jenvman_2018_05_074 crossref_primary_10_1002_adma_201707072 crossref_primary_10_1016_j_envres_2019_109045 crossref_primary_10_1016_j_jclepro_2017_02_156 crossref_primary_10_1016_j_ibiod_2016_09_023 crossref_primary_10_1016_j_biortech_2019_122422 crossref_primary_10_1016_j_eti_2020_101056 crossref_primary_10_1021_acssuschemeng_7b03637 crossref_primary_10_1016_j_biortech_2016_10_007 crossref_primary_10_1016_j_biortech_2021_126321 crossref_primary_10_1016_j_biortech_2023_129879 crossref_primary_10_1016_j_jclepro_2018_03_289 crossref_primary_10_1016_j_watres_2022_119071 crossref_primary_10_1016_j_biortech_2019_121738 crossref_primary_10_1016_j_biortech_2021_124932 crossref_primary_10_1016_j_biortech_2021_126559 crossref_primary_10_1016_j_ibiod_2022_105524 crossref_primary_10_1016_j_cej_2024_155411 crossref_primary_10_1016_j_watres_2018_07_028 crossref_primary_10_3390_fermentation9110932 crossref_primary_10_1016_j_biortech_2016_08_114 crossref_primary_10_3389_fmicb_2016_01316 crossref_primary_10_1016_j_biortech_2024_130872 crossref_primary_10_1016_j_jclepro_2023_137167 crossref_primary_10_1016_j_jes_2019_02_009 crossref_primary_10_1016_j_cej_2023_146648 crossref_primary_10_1007_s11356_016_7776_9 crossref_primary_10_1016_j_biortech_2016_06_112 crossref_primary_10_3390_en11082101 crossref_primary_10_1016_j_biortech_2015_12_048 crossref_primary_10_1016_j_biotechadv_2025_108521 crossref_primary_10_1016_j_cej_2023_144867 crossref_primary_10_1016_j_biortech_2021_125520 crossref_primary_10_1016_j_jwpe_2024_106123 crossref_primary_10_1016_j_biortech_2020_123556 crossref_primary_10_1016_j_ijhydene_2022_07_051 crossref_primary_10_1016_j_ijhydene_2022_01_075 crossref_primary_10_1016_j_envres_2020_109867 crossref_primary_10_3390_en15197042 crossref_primary_10_1016_j_jpowsour_2019_227306 crossref_primary_10_1016_j_cej_2017_09_160 crossref_primary_10_1080_10643389_2020_1813065 crossref_primary_10_1016_j_cej_2024_149530 crossref_primary_10_1016_j_watres_2019_03_075 crossref_primary_10_2139_ssrn_4125382 crossref_primary_10_1021_acs_est_3c10604 |
Cites_doi | 10.1016/j.watres.2012.11.052 10.1039/b717196j 10.1016/B978-0-12-387661-4.00004-5 10.1039/C3EE42189A 10.1099/mic.0.064089-0 10.1016/j.cep.2006.02.005 10.1007/BF00164784 10.1016/j.biortech.2005.02.014 10.1021/es8001822 10.1038/srep11094 10.1016/j.biortech.2007.02.005 10.1021/es803531g 10.2166/wst.1997.0406 10.1016/S0043-1354(99)00361-9 10.1016/j.biortech.2015.05.007 10.1021/es5016789 10.1021/es801553z 10.1016/j.biortech.2010.07.100 10.1111/j.1462-2920.2010.02237.x 10.1021/es800482e 10.1016/j.watres.2014.05.044 10.1128/AEM.66.5.2248-2251.2000 10.1016/j.biortech.2011.09.078 10.1264/jsme2.ME11123 10.1016/j.watres.2011.11.073 10.1016/j.watres.2013.04.003 10.1007/s002530050481 10.1039/c1ee02229f 10.1039/c2ee22459c 10.1128/AEM.00895-14 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2015.10.021 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 244 |
ExternalDocumentID | 26492177 10_1016_j_biortech_2015_10_021 S0960852415014169 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-d751bd86e63a5cbee6c4b7d00de6eb09a1e9ca57e3a2cb3f57bfb7031e1e96d73 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 |
IngestDate | Fri Jul 11 01:42:48 EDT 2025 Fri Jul 11 15:12:10 EDT 2025 Mon Jul 21 06:02:15 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Tue Jul 01 02:06:34 EDT 2025 Fri Feb 23 02:16:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anaerobic sludge digestion Conductive materials Microbial electrolysis cells Direct interspecies electron transfer |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-d751bd86e63a5cbee6c4b7d00de6eb09a1e9ca57e3a2cb3f57bfb7031e1e96d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26492177 |
PQID | 1738483697 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1836624049 proquest_miscellaneous_1738483697 pubmed_primary_26492177 crossref_primary_10_1016_j_biortech_2015_10_021 crossref_citationtrail_10_1016_j_biortech_2015_10_021 elsevier_sciencedirect_doi_10_1016_j_biortech_2015_10_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2016 2016-01-00 2016-Jan 20160101 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Aklujkar, Coppi, Leang, Kim, Chavan, Perpetua, Holmes (b0005) 2013; 159 Bowman, Bren (b0020) 2008; 25 Rotaru, Shrestha, Liu, Shrestha, Shrestha, Embree, Zengler, Wardman, Nevin, Lovley (b9000) 2014; 7 Cheng, Xing, Call, Logan (b0035) 2009; 43 Jimenez, Vedrenne, Denis, Mottet, Déléris, Steyer, Cacho Rivero (b0065) 2013; 47 Lv, Schanbacher, Yu (b0100) 2010; 101 Lu, Xing, Liu, Ren (b0095) 2012; 46 Fan, Kan, Lay (b0045) 2006; 97 Li, Tong, Fang, Jian, Yu (b0070) 2014; 70c Westerholm, Müller, Arthurson, Schnürer (b9010) 2009; 26 Call, Logan (b0025) 2008; 42 Liu, Amelia, Pravin, Nikhil, Kelly, Derek (b0075) 2012; 5 Zhao, Zhang, Wang, Quan (b0145) 2015; 5 Zhao, Yu (b0140) 2008; 99 Logan, Call, Cheng, Hamelers, Sleutels, Jeremiasse, Rozendal (b0080) 2008; 42 Chiu, Chang, Lin, Huang (b0040) 1997; 36 Nah, Kang, Hwang, Song (b0110) 2000; 34 Wang, Aziz, de Los Reyes (b0135) 2013; 47 APHA (b0010) 1998 Lovley (b0085) 2011; 4 Frolund, Griebe, Nielsen (b0060) 1995; 43 Carolina, Simona, Stefano, Paola, Mauro, Federico (b0030) 2014; 48 Lovley, Ueki, Zhang, Malvankar, Shrestha, Flanagan, Aklujkar, Butler, Giloteaux, Rotaru, Holmes, Franks, Orellana, Risso, Nevin (b0090) 2011; 59 Morgado, Dantas, Simões, Londer, Pokkuluri, Salgueiro (b0105) 2012; 33 Nevin, Lovley (b0115) 2000; 66 Bougrier, Albasi, Delgenès, Carrère (b0015) 2006; 45 Sleutels, Darus, Hamelers, Buisman (b0130) 2011; 102 Sieber, Sims, Han, Kim, Lykidis, Erin Lapidus, Lars, David, Robert, Michael (b0125) 2010; 12 Freguia, Rabaey, Yuan, Keller (b0055) 2008; 42 Zhao, Zhang, Woodard, Nevin, Lovley (b0150) 2015; 191 Fr, Griebe, Nielsen (b0050) 1995; 43 Rotaru, Shrestha, Liu, Markovaite, Chen, Nevin, Lovley (b0120) 2014; 80 Nevin (10.1016/j.biortech.2015.10.021_b0115) 2000; 66 Nah (10.1016/j.biortech.2015.10.021_b0110) 2000; 34 Lovley (10.1016/j.biortech.2015.10.021_b0085) 2011; 4 Chiu (10.1016/j.biortech.2015.10.021_b0040) 1997; 36 Call (10.1016/j.biortech.2015.10.021_b0025) 2008; 42 Zhao (10.1016/j.biortech.2015.10.021_b0145) 2015; 5 Frolund (10.1016/j.biortech.2015.10.021_b0060) 1995; 43 Rotaru (10.1016/j.biortech.2015.10.021_b9000) 2014; 7 Freguia (10.1016/j.biortech.2015.10.021_b0055) 2008; 42 Lu (10.1016/j.biortech.2015.10.021_b0095) 2012; 46 Wang (10.1016/j.biortech.2015.10.021_b0135) 2013; 47 Bowman (10.1016/j.biortech.2015.10.021_b0020) 2008; 25 Zhao (10.1016/j.biortech.2015.10.021_b0150) 2015; 191 Fan (10.1016/j.biortech.2015.10.021_b0045) 2006; 97 Cheng (10.1016/j.biortech.2015.10.021_b0035) 2009; 43 Morgado (10.1016/j.biortech.2015.10.021_b0105) 2012; 33 Li (10.1016/j.biortech.2015.10.021_b0070) 2014; 70c Jimenez (10.1016/j.biortech.2015.10.021_b0065) 2013; 47 Zhao (10.1016/j.biortech.2015.10.021_b0140) 2008; 99 Liu (10.1016/j.biortech.2015.10.021_b0075) 2012; 5 Westerholm (10.1016/j.biortech.2015.10.021_b9010) 2009; 26 Sieber (10.1016/j.biortech.2015.10.021_b0125) 2010; 12 Lovley (10.1016/j.biortech.2015.10.021_b0090) 2011; 59 APHA (10.1016/j.biortech.2015.10.021_b0010) 1998 Logan (10.1016/j.biortech.2015.10.021_b0080) 2008; 42 Sleutels (10.1016/j.biortech.2015.10.021_b0130) 2011; 102 Lv (10.1016/j.biortech.2015.10.021_b0100) 2010; 101 Rotaru (10.1016/j.biortech.2015.10.021_b0120) 2014; 80 Aklujkar (10.1016/j.biortech.2015.10.021_b0005) 2013; 159 Bougrier (10.1016/j.biortech.2015.10.021_b0015) 2006; 45 Carolina (10.1016/j.biortech.2015.10.021_b0030) 2014; 48 Fr (10.1016/j.biortech.2015.10.021_b0050) 1995; 43 |
References_xml | – volume: 34 start-page: 2362 year: 2000 end-page: 2368 ident: b0110 article-title: Mechanical pretreatment of waste activated sludge for anaerobic digestion process publication-title: Water Res. – volume: 36 start-page: 155 year: 1997 end-page: 162 ident: b0040 article-title: Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion publication-title: Water Sci. Technol. – volume: 43 start-page: 755 year: 1995 end-page: 761 ident: b0060 article-title: Enzymatic activity in the activated-sludge floc matrix publication-title: Appl. Microbiol. Biotechnol. – volume: 48 start-page: 7536 year: 2014 end-page: 7543 ident: b0030 article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation publication-title: Environ. Sci. Technol. – volume: 42 start-page: 7937 year: 2008 end-page: 7943 ident: b0055 article-title: Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes publication-title: Environ. Sci. Technol. – volume: 43 start-page: 3953 year: 2009 end-page: 3958 ident: b0035 article-title: Direct biological conversion of electrical current into methane by electromethanogenesis publication-title: Environ. Sci. Technol. – volume: 47 start-page: 3835 year: 2013 end-page: 3844 ident: b0135 article-title: Determining the limits of anaerobic co-digestion of thickened waste activated sludge with grease interceptor waste publication-title: Water Res. – volume: 99 start-page: 1353 year: 2008 end-page: 1358 ident: b0140 article-title: Fermentative H publication-title: Bioresour. Technol. – volume: 102 start-page: 11172 year: 2011 end-page: 11176 ident: b0130 article-title: Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems publication-title: Bioresour. Technol. – volume: 66 start-page: 2248 year: 2000 ident: b0115 article-title: Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by publication-title: Appl. Environ. Microbiol. – volume: 43 start-page: 755 year: 1995 end-page: 761 ident: b0050 article-title: Enzymatic activity in the activated-sludge floc matrix publication-title: Appl. Microbiol. Biotechnol. – volume: 70c start-page: 1 year: 2014 end-page: 8 ident: b0070 article-title: Response of anaerobic granular sludge to single-wall carbon nanotube exposure publication-title: Water Res. – volume: 4 start-page: 4896 year: 2011 ident: b0085 article-title: Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination publication-title: Energy Environ. Sci. – volume: 45 start-page: 711 year: 2006 end-page: 718 ident: b0015 article-title: Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability publication-title: Chem. Eng. Process Process Intensif. – volume: 5 start-page: 8982 year: 2012 end-page: 8989 ident: b0075 article-title: Promoting direct interspecies electron transfer with activated carbon publication-title: Energy Environ. Sci. – volume: 42 start-page: 8630 year: 2008 end-page: 8640 ident: b0080 article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter publication-title: Environ. Sci. Technol. – volume: 33 start-page: 11 year: 2012 end-page: 22 ident: b0105 article-title: Role of met58 in the regulation of electron/proton transfer in trihaem cytochrome ppca from geobacter sulfurreducens publication-title: Biosci. Rep. – volume: 7 start-page: 408 year: 2014 ident: b9000 article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane publication-title: Energy Environ. Sci. – volume: 97 start-page: 84 year: 2006 end-page: 89 ident: b0045 article-title: Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR publication-title: Bioresour. Technol. – volume: 5 start-page: 11094 year: 2015 ident: b0145 article-title: Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion publication-title: Sci. Rep. – volume: 101 start-page: 9409 year: 2010 end-page: 9414 ident: b0100 article-title: Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes publication-title: Bioresour. Technol. – volume: 42 start-page: 3401 year: 2008 end-page: 3406 ident: b0025 article-title: Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane publication-title: Environ. Sci. Technol. – volume: 80 start-page: 4599 year: 2014 end-page: 4605 ident: b0120 article-title: Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri publication-title: Appl. Environ. Microbiol. – year: 1998 ident: b0010 article-title: Standard Methods for the Examination of Water and Wastewater – volume: 25 start-page: 1118 year: 2008 end-page: 1130 ident: b0020 article-title: The chemistry and biochemistry of hemec: functional bases for covalent attachment publication-title: Nat. Prod. Rep. – volume: 159 start-page: 515 year: 2013 end-page: 535 ident: b0005 article-title: Proteins involved in electron transfer to Fe (III) and Mn (IV) oxides by publication-title: Microbiology – volume: 59 start-page: 1 year: 2011 end-page: 100 ident: b0090 article-title: Geobacter: the microbe electric’s physiology, ecology, and practical applications publication-title: Adv. Microb. Physiol. – volume: 46 start-page: 1015 year: 2012 end-page: 1026 ident: b0095 article-title: Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells publication-title: Water Res. – volume: 47 start-page: 1751 year: 2013 end-page: 1762 ident: b0065 article-title: A statistical comparison of protein and carbohydrate characterisation methodology applied on sewage sludge samples publication-title: Water Res. – volume: 191 start-page: 140 year: 2015 end-page: 145 ident: b0150 article-title: Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials publication-title: Bioresour. Technol. – volume: 12 start-page: 2289 year: 2010 end-page: 2301 ident: b0125 article-title: The genome of syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production publication-title: Environ. Microbiol. – volume: 26 start-page: 347 year: 2009 end-page: 353 ident: b9010 article-title: Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration publication-title: Microbes Environ. – volume: 47 start-page: 1751 year: 2013 ident: 10.1016/j.biortech.2015.10.021_b0065 article-title: A statistical comparison of protein and carbohydrate characterisation methodology applied on sewage sludge samples publication-title: Water Res. doi: 10.1016/j.watres.2012.11.052 – volume: 25 start-page: 1118 issue: 6 year: 2008 ident: 10.1016/j.biortech.2015.10.021_b0020 article-title: The chemistry and biochemistry of hemec: functional bases for covalent attachment publication-title: Nat. Prod. Rep. doi: 10.1039/b717196j – volume: 59 start-page: 1 year: 2011 ident: 10.1016/j.biortech.2015.10.021_b0090 article-title: Geobacter: the microbe electric’s physiology, ecology, and practical applications publication-title: Adv. Microb. Physiol. doi: 10.1016/B978-0-12-387661-4.00004-5 – volume: 7 start-page: 408 year: 2014 ident: 10.1016/j.biortech.2015.10.021_b9000 article-title: A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42189A – volume: 159 start-page: 515 issue: 3 year: 2013 ident: 10.1016/j.biortech.2015.10.021_b0005 article-title: Proteins involved in electron transfer to Fe (III) and Mn (IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens publication-title: Microbiology doi: 10.1099/mic.0.064089-0 – volume: 45 start-page: 711 year: 2006 ident: 10.1016/j.biortech.2015.10.021_b0015 article-title: Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability publication-title: Chem. Eng. Process Process Intensif. doi: 10.1016/j.cep.2006.02.005 – volume: 43 start-page: 755 year: 1995 ident: 10.1016/j.biortech.2015.10.021_b0050 article-title: Enzymatic activity in the activated-sludge floc matrix publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00164784 – volume: 97 start-page: 84 year: 2006 ident: 10.1016/j.biortech.2015.10.021_b0045 article-title: Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2005.02.014 – volume: 42 start-page: 3401 year: 2008 ident: 10.1016/j.biortech.2015.10.021_b0025 article-title: Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane publication-title: Environ. Sci. Technol. doi: 10.1021/es8001822 – volume: 5 start-page: 11094 year: 2015 ident: 10.1016/j.biortech.2015.10.021_b0145 article-title: Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion publication-title: Sci. Rep. doi: 10.1038/srep11094 – volume: 99 start-page: 1353 year: 2008 ident: 10.1016/j.biortech.2015.10.021_b0140 article-title: Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.02.005 – volume: 43 start-page: 3953 year: 2009 ident: 10.1016/j.biortech.2015.10.021_b0035 article-title: Direct biological conversion of electrical current into methane by electromethanogenesis publication-title: Environ. Sci. Technol. doi: 10.1021/es803531g – volume: 36 start-page: 155 issue: 8 year: 1997 ident: 10.1016/j.biortech.2015.10.021_b0040 article-title: Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion publication-title: Water Sci. Technol. doi: 10.2166/wst.1997.0406 – volume: 34 start-page: 2362 year: 2000 ident: 10.1016/j.biortech.2015.10.021_b0110 article-title: Mechanical pretreatment of waste activated sludge for anaerobic digestion process publication-title: Water Res. doi: 10.1016/S0043-1354(99)00361-9 – volume: 191 start-page: 140 year: 2015 ident: 10.1016/j.biortech.2015.10.021_b0150 article-title: Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.007 – volume: 48 start-page: 7536 issue: 13 year: 2014 ident: 10.1016/j.biortech.2015.10.021_b0030 article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es5016789 – volume: 42 start-page: 8630 year: 2008 ident: 10.1016/j.biortech.2015.10.021_b0080 article-title: Microbial electrolysis cells for high yield hydrogen gas production from organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es801553z – volume: 101 start-page: 9409 year: 2010 ident: 10.1016/j.biortech.2015.10.021_b0100 article-title: Putting microbes to work in sequence: recent advances in temperature-phased anaerobic digestion processes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.07.100 – volume: 12 start-page: 2289 issue: 8 year: 2010 ident: 10.1016/j.biortech.2015.10.021_b0125 article-title: The genome of syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2010.02237.x – year: 1998 ident: 10.1016/j.biortech.2015.10.021_b0010 – volume: 42 start-page: 7937 year: 2008 ident: 10.1016/j.biortech.2015.10.021_b0055 article-title: Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes publication-title: Environ. Sci. Technol. doi: 10.1021/es800482e – volume: 70c start-page: 1 year: 2014 ident: 10.1016/j.biortech.2015.10.021_b0070 article-title: Response of anaerobic granular sludge to single-wall carbon nanotube exposure publication-title: Water Res. doi: 10.1016/j.watres.2014.05.044 – volume: 66 start-page: 2248 year: 2000 ident: 10.1016/j.biortech.2015.10.021_b0115 article-title: Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.5.2248-2251.2000 – volume: 102 start-page: 11172 year: 2011 ident: 10.1016/j.biortech.2015.10.021_b0130 article-title: Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.09.078 – volume: 33 start-page: 11 issue: 1 year: 2012 ident: 10.1016/j.biortech.2015.10.021_b0105 article-title: Role of met58 in the regulation of electron/proton transfer in trihaem cytochrome ppca from geobacter sulfurreducens publication-title: Biosci. Rep. – volume: 26 start-page: 347 year: 2009 ident: 10.1016/j.biortech.2015.10.021_b9010 article-title: Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration publication-title: Microbes Environ. doi: 10.1264/jsme2.ME11123 – volume: 46 start-page: 1015 year: 2012 ident: 10.1016/j.biortech.2015.10.021_b0095 article-title: Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells publication-title: Water Res. doi: 10.1016/j.watres.2011.11.073 – volume: 47 start-page: 3835 year: 2013 ident: 10.1016/j.biortech.2015.10.021_b0135 article-title: Determining the limits of anaerobic co-digestion of thickened waste activated sludge with grease interceptor waste publication-title: Water Res. doi: 10.1016/j.watres.2013.04.003 – volume: 43 start-page: 755 year: 1995 ident: 10.1016/j.biortech.2015.10.021_b0060 article-title: Enzymatic activity in the activated-sludge floc matrix publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530050481 – volume: 4 start-page: 4896 year: 2011 ident: 10.1016/j.biortech.2015.10.021_b0085 article-title: Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination publication-title: Energy Environ. Sci. doi: 10.1039/c1ee02229f – volume: 5 start-page: 8982 issue: 10 year: 2012 ident: 10.1016/j.biortech.2015.10.021_b0075 article-title: Promoting direct interspecies electron transfer with activated carbon publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22459c – volume: 80 start-page: 4599 year: 2014 ident: 10.1016/j.biortech.2015.10.021_b0120 article-title: Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00895-14 |
SSID | ssj0003172 |
Score | 2.5546362 |
Snippet | •Carbon-felt addition increased the methane production in anaerobic sludge digestion.•Hydrolysis and acidification process was enhanced in the MEC reactor.•A... Increase of methanogenesis in methane-producing microbial electrolysis cells (MECs) is frequently believed as a result of cathodic reduction of CO2. Recent... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 235 |
SubjectTerms | anaerobic digestion Anaerobic sludge digestion Anaerobiosis Bioreactors - microbiology carbon carbon dioxide Conductive materials digestion Direct interspecies electron transfer Electrodes electrolysis Electrolysis - instrumentation electron transfer Electrons Methane - metabolism methane production Microbial electrolysis cells Sewage - chemistry Sewage - microbiology sludge |
Title | Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell |
URI | https://dx.doi.org/10.1016/j.biortech.2015.10.021 https://www.ncbi.nlm.nih.gov/pubmed/26492177 https://www.proquest.com/docview/1738483697 https://www.proquest.com/docview/1836624049 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09b9swED0E6dBmKNq0TZ20BgtklW1J_BBHw0jgtmiWJkA2gZROgYNEMRx77W_vHUW57pBmKKBFOlKgeBTvkbx7B3CqvbeNJ-TmU08LFELkiVXeJtbZDDNpMqx5H_LHhZ5fyW_X6noPZn0sDLtVxrm_m9PDbB2fjGNvjpeLxfgng-9CsQViZ0XNQXxSGh7lo19_3DzIPoaTBCqccOmdKOHbkV-wR2s4lEjViL28svQpA_UUAA2G6PwNvI4IUky7Rr6FPWwP4WB6s4osGngIL2d9GjeS7DAOvoPl2ZbdW9DVfbxgzogQc0nLZtEnxhHrgGlxRWLhWofM2FSJx7tNfYOiDgdT4TWNuF8EOidqVawceE4EHwq8h6vzs8vZPIlJF5KK5sx1UhuV-rrQqHOnKo-oK-lNPZnUqNFPrEvRVk4ZzF1W-bxRxjeeSfCRBLo2-QfYbx9a_AjCNU4WLnOVKTSz2FiTSywQOe8VB_AOQPU9XVaRkZwTY9yVvevZbdlrqGQN8XPS0ADG23rLjpPj2Rq2V2T51-gqyXA8W_dLr_mSVMdd51p82DyWqckLWeTamn-UIbkm1CTtAI66YbNtM2FRSytCc_wfrTuBV3QXN4U-wf56tcHPBJPWfhj-gyG8mH79Pr_4DWiHFOo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NDtMGzdK91LA3Z1Ez8kWccgaJGubS5rgd4EyaaLFJ0bpMn_LynLQXfoehjgk2gasiiTnyzqI8BP5b1pPCE3n3paoBAiT4z0JjHOZJgVOsOa_0Oez9Xssvh1Ja92YNqfheG0yuj7O58evHVsGcXRHC0Xi9FvBt-l5AjEyYrKvIBdZqeSA9idnJzO5luHTCEybCbQ_QkrPDoofHPoF5zUGvYlUnnIiV5Z-lSMegqDhlh0_AZeRxApJl0_38IOtvvwanK9ikQauA97076SG0kekQ6-g-XRluBb0NW9v2DaiHDsklbOoq-NI9YB1uKKxMK1Dpm0qRL3t5v6GkUd9qbCYxrxZxEYnahXUTlQnQjeF3gPl8dHF9NZEusuJBW5zXVSa5n6ulSocicrj6iqwut6PK5RoR8bl6KpnNSYu6zyeSO1bzzz4CMJVK3zDzBo71r8BMI1rihd5ipdKiayMTovsETk0ld8hncIsh9pW0VScq6NcWv77LMb21vIsoW4nSw0hNFWb9nRcjyrYXpD2r8mmKXY8azuj97ylkzHQ-davNvc21TnZVHmyuh_3ENyRcCpMEP42E2bbZ8JjhpaFOqD_-jdd9ibXZyf2bOT-elneEmS-I_oCwzWqw1-JdS09t_iV_EAzzIXmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+on+direct+interspecies+electron+transfer+in+anaerobic+sludge+digestion+of+microbial+electrolysis+cell&rft.jtitle=Bioresource+technology&rft.au=Zhao%2C+Zisheng&rft.au=Zhang%2C+Yaobin&rft.au=Quan%2C+Xie&rft.au=Zhao%2C+Huimin&rft.date=2016-01-01&rft.eissn=1873-2976&rft.volume=200&rft.spage=235&rft.epage=244&rft_id=info:doi/10.1016%2Fj.biortech.2015.10.021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |