Conductive materials in anaerobic digestion: From mechanism to application
[Display omitted] •Summarize the current understanding of the CMs enhancement on methanogenesis.•Biochar, AC and carbon cloth thermodynamically enhance methanogenesis.•MWCNT, biochar, and carbon cloth kinetically enhance methanogenesis significantly.•Adding CMs trigger DIET for efficient syntrophic...
Saved in:
Published in | Bioresource technology Vol. 298; p. 122403 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Summarize the current understanding of the CMs enhancement on methanogenesis.•Biochar, AC and carbon cloth thermodynamically enhance methanogenesis.•MWCNT, biochar, and carbon cloth kinetically enhance methanogenesis significantly.•Adding CMs trigger DIET for efficient syntrophic metabolism.•CM supplemented can increase electron capture capability and accelerate reaction rate.
Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive materials (CMs) have been applied in anaerobic digesters to improve the performance of anaerobic fermentation and methanogenesis, including carbon-based CMs and metal-based CMs. Generally, CMs facilitated the AD thermodynamically and kinetically because they triggered more efficient syntrophic metabolism to increase electron capture capability and accelerate reaction rate as well as enhance the performance of AD stages (hydrolysis-acidification, methanogenesis). Besides, adding CMs into anaerobic digester is benefit to dealing with the deteriorating AD, which induced from temperature variation, acidified working condition, higher H2 partial pressure, etc. However, few CMs exhibited inhibition on AD, including ferrihydrite, magnesium oxide, silver nanoparticles and carbon black. Inhibition comes from a series of complex factors, such as substrate competition, direct inhibition from Fe(III), Fe(III) reduction of methanogens, toxic effects to microorganisms and mass transfer limitation. |
---|---|
AbstractList | Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive materials (CMs) have been applied in anaerobic digesters to improve the performance of anaerobic fermentation and methanogenesis, including carbon-based CMs and metal-based CMs. Generally, CMs facilitated the AD thermodynamically and kinetically because they triggered more efficient syntrophic metabolism to increase electron capture capability and accelerate reaction rate as well as enhance the performance of AD stages (hydrolysis-acidification, methanogenesis). Besides, adding CMs into anaerobic digester is benefit to dealing with the deteriorating AD, which induced from temperature variation, acidified working condition, higher H
partial pressure, etc. However, few CMs exhibited inhibition on AD, including ferrihydrite, magnesium oxide, silver nanoparticles and carbon black. Inhibition comes from a series of complex factors, such as substrate competition, direct inhibition from Fe(III), Fe(III) reduction of methanogens, toxic effects to microorganisms and mass transfer limitation. Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive materials (CMs) have been applied in anaerobic digesters to improve the performance of anaerobic fermentation and methanogenesis, including carbon-based CMs and metal-based CMs. Generally, CMs facilitated the AD thermodynamically and kinetically because they triggered more efficient syntrophic metabolism to increase electron capture capability and accelerate reaction rate as well as enhance the performance of AD stages (hydrolysis-acidification, methanogenesis). Besides, adding CMs into anaerobic digester is benefit to dealing with the deteriorating AD, which induced from temperature variation, acidified working condition, higher H2 partial pressure, etc. However, few CMs exhibited inhibition on AD, including ferrihydrite, magnesium oxide, silver nanoparticles and carbon black. Inhibition comes from a series of complex factors, such as substrate competition, direct inhibition from Fe(III), Fe(III) reduction of methanogens, toxic effects to microorganisms and mass transfer limitation.Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive materials (CMs) have been applied in anaerobic digesters to improve the performance of anaerobic fermentation and methanogenesis, including carbon-based CMs and metal-based CMs. Generally, CMs facilitated the AD thermodynamically and kinetically because they triggered more efficient syntrophic metabolism to increase electron capture capability and accelerate reaction rate as well as enhance the performance of AD stages (hydrolysis-acidification, methanogenesis). Besides, adding CMs into anaerobic digester is benefit to dealing with the deteriorating AD, which induced from temperature variation, acidified working condition, higher H2 partial pressure, etc. However, few CMs exhibited inhibition on AD, including ferrihydrite, magnesium oxide, silver nanoparticles and carbon black. Inhibition comes from a series of complex factors, such as substrate competition, direct inhibition from Fe(III), Fe(III) reduction of methanogens, toxic effects to microorganisms and mass transfer limitation. Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive materials (CMs) have been applied in anaerobic digesters to improve the performance of anaerobic fermentation and methanogenesis, including carbon-based CMs and metal-based CMs. Generally, CMs facilitated the AD thermodynamically and kinetically because they triggered more efficient syntrophic metabolism to increase electron capture capability and accelerate reaction rate as well as enhance the performance of AD stages (hydrolysis-acidification, methanogenesis). Besides, adding CMs into anaerobic digester is benefit to dealing with the deteriorating AD, which induced from temperature variation, acidified working condition, higher H₂ partial pressure, etc. However, few CMs exhibited inhibition on AD, including ferrihydrite, magnesium oxide, silver nanoparticles and carbon black. Inhibition comes from a series of complex factors, such as substrate competition, direct inhibition from Fe(III), Fe(III) reduction of methanogens, toxic effects to microorganisms and mass transfer limitation. [Display omitted] •Summarize the current understanding of the CMs enhancement on methanogenesis.•Biochar, AC and carbon cloth thermodynamically enhance methanogenesis.•MWCNT, biochar, and carbon cloth kinetically enhance methanogenesis significantly.•Adding CMs trigger DIET for efficient syntrophic metabolism.•CM supplemented can increase electron capture capability and accelerate reaction rate. Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive materials (CMs) have been applied in anaerobic digesters to improve the performance of anaerobic fermentation and methanogenesis, including carbon-based CMs and metal-based CMs. Generally, CMs facilitated the AD thermodynamically and kinetically because they triggered more efficient syntrophic metabolism to increase electron capture capability and accelerate reaction rate as well as enhance the performance of AD stages (hydrolysis-acidification, methanogenesis). Besides, adding CMs into anaerobic digester is benefit to dealing with the deteriorating AD, which induced from temperature variation, acidified working condition, higher H2 partial pressure, etc. However, few CMs exhibited inhibition on AD, including ferrihydrite, magnesium oxide, silver nanoparticles and carbon black. Inhibition comes from a series of complex factors, such as substrate competition, direct inhibition from Fe(III), Fe(III) reduction of methanogens, toxic effects to microorganisms and mass transfer limitation. |
ArticleNumber | 122403 |
Author | Li, Nan Wang, Shu Wu, Yu Liang, Danhui |
Author_xml | – sequence: 1 givenname: Yu surname: Wu fullname: Wu, Yu – sequence: 2 givenname: Shu surname: Wang fullname: Wang, Shu – sequence: 3 givenname: Danhui surname: Liang fullname: Liang, Danhui – sequence: 4 givenname: Nan orcidid: 0000-0002-5852-2325 surname: Li fullname: Li, Nan email: nli@tju.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31761622$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URNPCX6j2yGWDv3eNOIAiyocqcYGz5bUnMNGuHWynUv89Dmk5cMlpDvM8Y-t9r8hFTBEIuWF0zSjTb3brCVOu4H-tOWVmzTiXVDwjKzYOoudm0BdkRY2m_ai4vCRXpewopYIN_AW5bEMzzfmKfN2kGA6-4j10i6uQ0c2lw9i56CCnCX0X8CeUiim-7W5zWrqlPeoilqWrqXP7_YzeHdcvyfNtk-HV47wmP24_ft987u--ffqy-XDXe6mH2nvNlFbKTeANnxxIaXSgI9cmKMOFVn47BeGkkH4IwYzUDEp7pybNqBcgxTV5fbq7z-n3oX3NLlg8zLOLkA7FcinYqAdK1Xm0BWGUEVw09OYRPUwLBLvPuLj8YJ-iaoA-AT6nUjJs_yGM2mMndmefOrHHTuypkya--0_0WP8mVrPD-bz-_qRDy_QeIdviEaKHgBl8tSHhuRN_AIsNqyM |
CitedBy_id | crossref_primary_10_3390_atmos12081069 crossref_primary_10_1021_acs_energyfuels_0c03193 crossref_primary_10_1016_j_scitotenv_2021_146488 crossref_primary_10_1007_s12649_024_02440_4 crossref_primary_10_1016_j_jhazmat_2020_122830 crossref_primary_10_1016_j_watres_2022_119291 crossref_primary_10_1007_s11696_024_03495_2 crossref_primary_10_1016_j_biortech_2020_124118 crossref_primary_10_1016_j_biortech_2022_127635 crossref_primary_10_1016_j_chemosphere_2023_140175 crossref_primary_10_1111_gcbb_12947 crossref_primary_10_1016_j_fuel_2023_130517 crossref_primary_10_1016_j_biortech_2021_125847 crossref_primary_10_1016_j_scitotenv_2022_159840 crossref_primary_10_1039_D1RA06236K crossref_primary_10_2166_wst_2024_121 crossref_primary_10_1016_j_copbio_2021_08_008 crossref_primary_10_3390_app10228184 crossref_primary_10_1016_j_chemosphere_2024_143058 crossref_primary_10_1016_j_jwpe_2022_103193 crossref_primary_10_1016_j_scitotenv_2022_155868 crossref_primary_10_1016_j_jclepro_2023_136294 crossref_primary_10_1016_j_jenvman_2024_122733 crossref_primary_10_1016_j_scitotenv_2024_172385 crossref_primary_10_1007_s00449_024_02974_w crossref_primary_10_1016_j_biortech_2023_128979 crossref_primary_10_1080_09670262_2022_2103739 crossref_primary_10_1016_j_psep_2024_11_038 crossref_primary_10_1016_j_watres_2021_117440 crossref_primary_10_3390_fermentation9020183 crossref_primary_10_1088_1755_1315_621_1_012103 crossref_primary_10_1016_j_rser_2024_115095 crossref_primary_10_1039_D0EW00528B crossref_primary_10_1016_j_jece_2024_113491 crossref_primary_10_1016_j_jhazmat_2020_124183 crossref_primary_10_1080_10962247_2020_1733133 crossref_primary_10_1002_aic_18305 crossref_primary_10_1016_j_envres_2022_114010 crossref_primary_10_1016_j_biortech_2023_129158 crossref_primary_10_1016_j_jclepro_2024_141478 crossref_primary_10_1016_j_scitotenv_2020_141809 crossref_primary_10_3390_catal11091094 crossref_primary_10_1016_j_watres_2024_122125 crossref_primary_10_1016_j_surfin_2023_103548 crossref_primary_10_1016_j_jenvman_2022_114540 crossref_primary_10_1016_j_jhazmat_2021_126615 crossref_primary_10_1016_j_cej_2024_158202 crossref_primary_10_3390_fermentation9050467 crossref_primary_10_1007_s13762_021_03664_w crossref_primary_10_1016_j_cej_2022_137829 crossref_primary_10_1016_j_chemosphere_2021_132930 crossref_primary_10_1016_j_biortech_2024_131880 crossref_primary_10_1021_acs_iecr_1c03177 crossref_primary_10_3389_fceng_2022_974546 crossref_primary_10_3390_molecules27061895 crossref_primary_10_1016_j_biortech_2024_130315 crossref_primary_10_1016_j_rser_2022_112192 crossref_primary_10_1016_j_fuel_2023_127470 crossref_primary_10_1016_j_biortech_2021_126253 crossref_primary_10_1016_j_oneear_2023_02_011 crossref_primary_10_1002_tqem_21934 crossref_primary_10_1007_s42452_022_05222_6 crossref_primary_10_1016_j_scitotenv_2024_178340 crossref_primary_10_1016_j_scitotenv_2020_142724 crossref_primary_10_1016_j_biortech_2023_128908 crossref_primary_10_1021_acs_est_4c10638 crossref_primary_10_1016_j_chemosphere_2022_134049 crossref_primary_10_1016_j_resconrec_2021_105844 crossref_primary_10_1016_j_chemosphere_2021_130449 crossref_primary_10_3390_ijms22062932 crossref_primary_10_1016_j_rser_2024_114640 crossref_primary_10_1016_j_biortech_2022_128003 crossref_primary_10_1016_j_scitotenv_2022_154621 crossref_primary_10_1016_j_biortech_2024_130849 crossref_primary_10_1016_j_envpol_2023_121343 crossref_primary_10_1016_j_biortech_2020_122933 crossref_primary_10_1016_j_biortech_2021_125531 crossref_primary_10_1016_j_envres_2023_116770 crossref_primary_10_1016_j_biortech_2022_127832 crossref_primary_10_3390_pr8121614 crossref_primary_10_1016_j_jclepro_2021_129686 crossref_primary_10_1016_j_watres_2020_116663 crossref_primary_10_1016_j_jwpe_2024_105715 crossref_primary_10_1016_j_jenvman_2024_123883 crossref_primary_10_3390_app112110163 crossref_primary_10_1016_j_cej_2022_134977 crossref_primary_10_1016_j_apsusc_2021_151859 crossref_primary_10_1016_j_chemosphere_2024_143639 crossref_primary_10_1016_j_fuel_2022_123903 crossref_primary_10_1016_j_biortech_2022_128083 crossref_primary_10_1016_j_wasman_2021_01_032 crossref_primary_10_1016_j_biortech_2024_131663 crossref_primary_10_1016_j_renene_2021_02_087 crossref_primary_10_1016_j_watres_2024_122811 crossref_primary_10_3390_membranes11020100 crossref_primary_10_1007_s13762_025_06361_0 crossref_primary_10_1016_j_bcab_2023_102653 crossref_primary_10_1016_j_scitotenv_2022_153244 crossref_primary_10_1016_j_jclepro_2025_145028 crossref_primary_10_1016_j_jwpe_2024_105736 crossref_primary_10_1016_j_biortech_2022_128115 crossref_primary_10_1016_j_jclepro_2022_132507 crossref_primary_10_1016_j_electacta_2025_145993 crossref_primary_10_1021_acsomega_2c02934 crossref_primary_10_1016_j_scitotenv_2022_157592 crossref_primary_10_1016_j_biombioe_2021_106129 crossref_primary_10_20517_energymater_2023_62 crossref_primary_10_1016_j_jclepro_2022_134925 crossref_primary_10_1016_j_ijhydene_2022_04_287 crossref_primary_10_1016_j_cej_2024_155705 crossref_primary_10_1016_j_jclepro_2020_123567 crossref_primary_10_1016_j_jwpe_2024_105262 crossref_primary_10_3390_en16062523 crossref_primary_10_3390_fermentation9030262 crossref_primary_10_1016_j_biortech_2023_129473 crossref_primary_10_1002_jctb_7685 crossref_primary_10_1016_j_renene_2021_01_021 crossref_primary_10_1016_j_envres_2025_120810 crossref_primary_10_3390_bioengineering11030281 crossref_primary_10_1007_s12155_022_10500_7 crossref_primary_10_1038_s41598_024_55563_y crossref_primary_10_1016_j_biortech_2020_123204 crossref_primary_10_1016_j_scitotenv_2023_166705 crossref_primary_10_1016_j_biortech_2020_123970 crossref_primary_10_1016_j_bej_2023_108840 crossref_primary_10_1039_D0RA09867A crossref_primary_10_3390_app12094652 crossref_primary_10_1007_s10311_024_01766_8 crossref_primary_10_1016_j_jhazmat_2022_130628 crossref_primary_10_1016_j_envres_2024_119418 crossref_primary_10_1039_D0EW01093F crossref_primary_10_3389_fenrg_2023_1141684 crossref_primary_10_1016_j_biortech_2023_129089 crossref_primary_10_1016_j_cej_2024_151456 crossref_primary_10_1016_j_biortech_2021_124793 crossref_primary_10_1016_j_cej_2022_139137 crossref_primary_10_1016_j_scitotenv_2021_148415 crossref_primary_10_3390_w14193129 crossref_primary_10_1016_j_chemosphere_2020_129389 crossref_primary_10_1021_acs_est_3c01986 crossref_primary_10_1016_j_jhazmat_2023_133121 crossref_primary_10_1007_s10532_022_09984_z crossref_primary_10_1016_j_biortech_2020_124012 crossref_primary_10_1016_j_cej_2022_140369 crossref_primary_10_1016_j_biortech_2020_124494 crossref_primary_10_1016_j_biortech_2024_131051 crossref_primary_10_1016_j_psep_2024_05_139 crossref_primary_10_3390_w13040391 |
Cites_doi | 10.1021/es800086f 10.1007/s11157-011-9236-9 10.1039/c2ee22459c 10.1016/j.biortech.2017.06.154 10.1016/j.watres.2014.11.042 10.1016/j.watres.2014.01.044 10.1016/j.watres.2015.12.029 10.1016/j.tibtech.2016.10.004 10.1016/j.biortech.2015.08.018 10.1016/j.watres.2017.03.050 10.1111/1462-2920.12576 10.1016/S0960-8524(01)00045-1 10.1016/j.cej.2016.11.149 10.1016/j.jhazmat.2016.02.069 10.3389/fmicb.2019.00388 10.1016/j.watres.2014.10.052 10.1007/s13762-018-2065-4 10.1016/j.biortech.2018.07.015 10.1039/c1ee02229f 10.1016/j.biortech.2016.10.058 10.1016/j.procbio.2012.07.032 10.1016/j.biortech.2017.05.017 10.1038/ncomms14873 10.1021/acs.est.8b01913 10.1128/AEM.68.5.2484-2494.2002 10.1007/s00253-017-8422-2 10.1128/AEM.00895-14 10.1016/j.biortech.2016.03.005 10.1016/j.chemosphere.2018.08.001 10.1016/j.gca.2018.02.009 10.1016/j.polymer.2017.05.073 10.1016/j.biortech.2014.09.071 10.1146/annurev-micro-092611-150104 10.1016/j.scitotenv.2018.06.271 10.1073/pnas.1117592109 10.1016/j.biortech.2015.05.007 10.1111/1462-2920.12485 10.1016/j.biortech.2017.08.063 10.1038/srep05019 10.1111/j.1365-2958.2007.05783.x 10.1016/j.jhazmat.2010.01.087 10.1021/acs.est.8b03022 10.1007/s00253-019-09946-1 10.1016/j.wasman.2017.07.025 10.1007/BF00244265 10.1016/j.biortech.2018.02.084 10.1007/s00203-002-0425-3 10.1038/nature15512 10.1039/C6RA02280D 10.1016/j.watres.2016.10.077 10.1016/j.biortech.2014.10.101 10.1016/j.biortech.2018.01.095 10.1007/s00253-017-8194-8 10.1016/j.biortech.2018.07.076 10.1016/j.biortech.2017.10.047 10.1016/j.cej.2017.09.160 10.1016/j.jhazmat.2015.03.039 10.1016/j.watres.2013.10.072 10.1021/acs.est.8b04121 10.3389/fmicb.2015.00121 10.1016/j.biortech.2016.04.106 10.1021/es800408u 10.1039/C3EE42189A 10.1016/j.biortech.2014.09.009 10.1128/AEM.00223-17 10.1016/j.biortech.2017.11.003 10.1016/j.biortech.2017.03.099 10.1016/j.jclepro.2016.06.144 10.1016/j.biortech.2016.06.010 10.1007/BF00406313 10.1128/AEM.00023-10 10.1016/j.ibiod.2016.09.023 10.1186/s13068-017-0994-7 10.1016/S0022-0728(79)80075-3 10.1016/j.watres.2004.05.004 10.1016/j.jct.2006.12.016 10.1007/s00253-015-6900-y 10.1128/MR.55.2.259-287.1991 10.1128/mBio.00159-11 10.1016/j.biortech.2017.03.054 10.1039/C5EE03085D 10.1038/srep25857 10.1128/AEM.03944-12 10.1016/j.biortech.2019.121546 10.1016/j.biortech.2018.09.012 10.1016/0960-8524(96)00033-8 10.1016/j.ibiod.2015.12.006 10.1016/j.biortech.2017.05.046 10.1016/j.biortech.2016.08.114 10.1016/j.watres.2003.12.019 10.1038/srep12732 10.1016/j.biortech.2017.04.021 10.1016/j.biortech.2018.06.053 10.1016/j.femsec.2004.03.017 10.1126/science.1196526 10.1038/nrmicro2166 10.1111/j.1462-2920.2011.02611.x 10.1016/j.biortech.2016.03.078 10.1038/ismej.2015.139 10.1111/j.1574-6941.2001.tb00768.x 10.1021/es500906d 10.1016/j.watres.2017.06.087 10.1038/nature03661 10.1038/ngeo870 10.1016/S0045-6535(99)00101-0 10.1128/.61.2.262-280.1997 10.3390/en11010107 10.1007/BF00336349 10.1021/es5016789 10.1007/BF00689344 10.1264/jsme2.ME10122 10.1016/j.biortech.2019.121373 10.1016/j.desal.2017.05.035 10.1007/s00128-004-0367-3 10.3389/fmicb.2015.00439 10.1016/j.biortech.2016.10.007 10.1016/j.jhazmat.2016.08.076 10.1016/j.biortech.2017.06.018 10.1146/annurev-micro-030117-020420 10.1016/j.watres.2013.09.012 10.1016/j.biortech.2017.08.023 10.2136/sssaj2007.0130 10.1016/j.biortech.2018.10.013 10.1016/j.watres.2018.06.061 10.1039/b816647a 10.1111/1462-2920.13774 10.1111/1574-6941.12274 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2019.122403 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 31761622 10_1016_j_biortech_2019_122403 S0960852419316335 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-c615655abec92bae4496d08269d592365cfbd3a434c7dd9809756ca5b610c3e43 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Thu Jul 10 18:11:05 EDT 2025 Fri Jul 11 03:59:59 EDT 2025 Thu Apr 03 06:54:20 EDT 2025 Tue Jul 01 03:18:36 EDT 2025 Thu Apr 24 22:54:45 EDT 2025 Fri Feb 23 02:49:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anaerobic digestion (AD) Direct interspecies electron transfer (DIET) Conductive materials (CMs) Potential enhancement characteristics Methanogenesis |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-c615655abec92bae4496d08269d592365cfbd3a434c7dd9809756ca5b610c3e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5852-2325 |
PMID | 31761622 |
PQID | 2317959323 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2431867005 proquest_miscellaneous_2317959323 pubmed_primary_31761622 crossref_primary_10_1016_j_biortech_2019_122403 crossref_citationtrail_10_1016_j_biortech_2019_122403 elsevier_sciencedirect_doi_10_1016_j_biortech_2019_122403 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 2020-Feb 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Achtnich, Bak, Conrad (b0005) 1995; 19 Baek, Jung, Kim, Lee (b0030) 2017; 241 Wang, Liu, Jin, Chen, Xu, Wang, Xing, Zhu (b0510) 2019; 272 Stams, Plugge (b0470) 2009; 7 Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (b0295) 2012; 12 Lovley (b0320) 2012; 66 Xu, He, Luo, Lü, He, Cui (b0550) 2015; 196 Smith, Nevin, Lovley (b0460) 2015; 6 Luo, Lü, Shao, He (b0340) 2015; 68 Hu, Sun, Ma, Qiu, Guo (b0185) 2017; 120 Sun, Levin, Guzman, Enders, Muller, Angenent, Lehmann (b0495) 2017; 8 Zhao, Zhang, Li, Dang, Zhu, Quan (b0640) 2017; 313 You, Zheng, Zang, Liu, Liu, Liu (b0600) 2018; 256 Kato, Watanabe (b0200) 2010; 25 Morita, Malvankar, Franks, Summers, Giloteaux, Rotaru, Rotaru, Lovley (b0365) 2011; 2 Suanon, Sun, Li, Cai, Zhang, Yan, Yu (b0485) 2017; 321 Klüpfel, Keiluweit, Kleber, Sander (b0220) 2014; 48 Kletzin, Heimerl, Flechsler, van Niftrik, Rachel, Klingl (b0215) 2015; 6 Zehnder, Mitchell (b0615) 1978; 2 Cheng, de Los Reyes, Call (b0110) 2018; 4 Ambuchi, Zhang, Shan, Liang, Zhang, Feng (b0010) 2017; 117 Yang, Guo, Hu (b0565) 2013; 47 Yuan, Ding, Zama, Liu, Hozzein, Zhu (b0605) 2018; 52 Li, Tong, Fang, Chu, Yu (b0275) 2015; 70 Chen, Wang, Xia, Jiang, Fu, Shen, Wang, Li (b0100) 2016; 311 Poirier, Madigou, Bouchez, Chapleur (b0390) 2017; 235 Schink (b0445) 1997; 61 Wang, Wang, Zhang, Hu, Zhang, Muñoz Sierra (b0535) 2016; 113 Lei, Sun, Dang, Chen, Zhao, Zhang, Holmes (b0260) 2016; 222 Yuan, Bolan, Prévoteau, Vithanage, Biswas, Ok, Wang (b0610) 2017; 246 Wu, Hickey, Jain, Zeikus (b0540) 1993; 159 Chen, Rotaru, Shrestha, Malvankar, Liu, Fan, Nevin, Lovley (b0095) 2015; 4 Reguera, McCarthy, Mehta, Nicoll, Tuominen, Lovley (b0410) 2005; 435 Lovley (b0405) 2011; 4 Lueders, Friedrich (b0335) 2002; 68 Cruz Viggi, Rossetti, Fazi, Paiano, Majone, Aulenta (b0120) 2014; 48 Wang, Han, Han, Li, Xu, Zhuang (b0515) 2018; 257 Zhuang, Zhu, Shan, Zhang, Fang, Shi (b0655) 2018; 270 Ren, Li, Li, An, Zhao, Ren (b0415) 2015; 178 Lovley (b0310) 1991; 55 Zhuang, Tang, Wang, Hu, Zhou (b0660) 2015; 293 Bertin, Berselli, Fava, Petrangeli-Papini, Marchetti (b0055) 2004; 38 Lin, Cheng, Zhang, Zhou, Cen, Murphy (b0290) 2017; 239 Zhou, Xu, Yang, Zhuang (b0650) 2014; 88 Ye, Hu, Ren, Zhou, Zhang, Zhou (b0580) 2018; 247 Leang, Qian, Mester, Lovley (b0245) 2010; 76 Peth, Horn, Beckmann, Donath, Fischer, Smucker (b0385) 2008; 72 Pan, Hong, Mbadinga, Wang, Liu, Yang, Gu, Mu (b0370) 2017; 101 De Vrieze, Gildemyn, Arends, Vanwonterghem, Verbeken, Boon, Verstraete, Tyson, Hennebel, Rabaey (b0140) 2014; 54 Li, Chang, Liu, Fu, Ding, Lu (b0265) 2015; 17 Lee, Park, Park (b0255) 2017; 68 Yang, Xu, Guo, Sun (b0560) 2012; 47 Li, An, Wang, Wang, Lu, Ren (b0280) 2017; 419 Baek, Kim, Kim, Lee (b0035) 2018; 11 Salvador, Martins, Melle-Franco, Serpa, Stams, Cavaleiro, Pereira, Alves (b0440) 2017; 19 Wang, Zhang, Dai, Chen, Dai (b0530) 2016; 6 Baek, Kim, Cho, Bae, Lee (b0025) 2015; 99 Qiao, Tian, Qi, Zhou (b0395) 2015; 5 Lee, Kim, Lee, Nelson, Yoon, Sedlak (b0250) 2008; 42 Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (b0300) 2014; 17 Zhang, Ma, Ji, Li, Zhang, Zang (b0625) 2019; 287 Dang, Sun, Woodard, Wang, Nevin, Holmes (b0135) 2017; 238 Rotaru, A., Shrestha, P., Liu, F., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., P. Nevin, K., R. Lovley, D., 2014a. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science 7, 408-415. Jing, Wan, Angelidaki, Zhang, Luo (b0190) 2017; 108 Ye, Hu, Cheng, Lin, Liu, Zhou, He (b0575) 2018; 143 Laviron (b0240) 1979; 101 Martins, Salvador, Pereira, Alves (b0355) 2018; 52 Bodegom, Scholten, Stams (b0070) 2004; 49 Barua, Zakaria, Dhar (b0045) 2018; 266 Kong, Wei, Xu, Liu, Li, Liu, Yu (b0230) 2016; 211 Roden, Kappler, Bauer, Jiang, Paul, Stoesser, Konishi, Xu (b0425) 2010; 3 Tian, Qiao, Li, Zhang, Zhou (b0500) 2017; 224 Park, Kang, Park, Park (b0375) 2018; 254 Wang, An, Wan, Du, Wang, Cheng, Li (b0525) 2018; 52 Chen, Rotaru, Liu, Philips, Woodard, Nevin, Lovley (b0090) 2014; 173 Kato, Hashimoto, Watanabe (b0205) 2012; 14 Yin, He, Liu, Wu (b0585) 2017; 101 Bird, Coleman, Newman (b0065) 2013; 79 An, Li, Wan, Zhou, Du, Li, Wang (b0015) 2017; 123 Li, Xiao, Zheng, Zhang, Luo, Tong, Xu, Tan, Liu, Wang, Liu (b0270) 2018; 643 Fagbohungbe, Herbert, Hurst, Li, Usmani, Semple (b0145) 2016; 216 Martinez-Gutierrez, Olive, Banuelos, Orrantia, Nino, Sanchez, Ruiz, Bach, Av-Gay (b0350) 2010; 6 Goyal, Seth, Handa (b0170) 1996; 56 Straub, Benz, Schink (b0480) 2001; 34 Dang, Holmes, Zhao, Woodard, Zhang, Sun, Wang, Nevin, Lovley (b0130) 2016; 220 Fu, Zhou, Wang, You, Lu, Yu, Zhou (b0160) 2019; 10 Zhao, Li, Yu, Zhang (b0645) 2018; 250 Lovley (b0315) 2011; 10 McGlynn, Chadwick, Kempes, Orphan (b0360) 2015; 526 Yin, Yang, Wang, Xing, Wu (b0595) 2018; 333 Shi, Squier, Zachara, Fredrickson (b0455) 2007; 65 Summers, Fogarty, Leang, Franks, Malvankar, Lovley (b0490) 2010; 330 Sharma, Mahajan, Goel (b9000) 2019; 16 Bryant, Wolin, Wolin, Wolfe (b0080) 1967; 59 Bueno-López, Rangel-Mendez, Alatriste-Mondragón, Pérez-Rodríguez, Hernández-Montoya, Cervantes (b0085) 2018; 211 Lü, Luo, Shao, He (b0330) 2016; 90 Xu, Wang, Yan, Wu, Zuo, Wang (b0545) 2016; 216 Zhao, Zhang, Holmes, Dang, Woodard, Nevin, Lovley (b0635) 2016; 209 Bodegom, Stams (b0075) 1999; 39 Gu, Yin, Liu, Du, Wu (b0175) 2019; 7 Holmes, D., Shrestha, P., Walker, D., Dang, Y., P. Nevin, K., L. Woodard, T., R. Lovley, D., 2017. Metatranscriptomic Evidence for Direct Interspecies Electron Transfer Between Geobacter and Methanothrix Species in Methanogenic Rice Paddy Soils. Appl. Environ. Microb. 83, 00223-17. Qu, Ratering, Schnell (b0400) 2004; 72 Richter, Nevin, Jia, Lowy, Lovley, Tender (b0420) 2009; 2 Zhao, Zhang, Woodard, Nevin, Lovley (b0630) 2015; 191 Barua, Dhar (b0040) 2017; 244 Rotaru, Shrestha, Liu, Markovaite, Chen, Nevin, Lovley (b0435) 2014; 80 Storck, Virdis, Batstone (b0475) 2016; 10 Yan, Shen, Xiao, Chen, Sun, Kumar Tyagi, Zhou (b0555) 2017; 239 Tremblay, Angenent, Zhang (b0505) 2017; 35 Ko, Wang, Yuan, Lü, He, Xu (b0225) 2018; 266 Auffan, Achouak, Rose, Roncato, Chanéac, Waite, Masion, Woicik, Wiesner, Bottero (b0020) 2008; 42 Li, Zhang, Yang, Quan, Zhao (b0285) 2017; 234 Song, Kwon, Woo (b0465) 2004; 38 Freitas, Mendes, Coelho (b0155) 2007; 39 Fujinawa, Nagoya, Kouzuma, Watanabe (b0165) 2019; 103 Luongo, Zhang (b0345) 2010; 178 Peng, Zhang, Tan, Zhao, Zhao, Quan (b0380) 2018; 249 Yang, Guo, Shi, Wang, Wang, Dai (b0570) 2016; 6 Colunga, Rangel-Mendez, Celis, Cervantes (b0115) 2015; 175 Feng, Zhang, Quan, Chen (b0150) 2014; 52 Kato, Hashimoto, Watanabe (b0210) 2012; 109 Kaden, Galushko, Schink (b0195) 2002; 178 Lovley (b0325) 2017; 71 Liu, Gu, Yin, Wu (b0305) 2019; 288 Biebl, Pfennig (b0060) 1978; 117 Yin, Miao, Li, Wu (b0590) 2017; 119 Zhang, Zhao, Zhang, Wang, Fan, Zang (b0620) 2018; 266 Beckmann, Welte, Li, Oo, Kroeninger, Heo, Zhang, Ribeiro, Lee, Bhadbhade, Marjo, Seidel, Deppenmeier, Manefield (b0050) 2016; 9 Cruz Viggi, Simonetti, Palma, Pagliaccia, Braguglia, Fazi, Baronti, Navarra, Pettiti, Koch, Harnisch, Aulenta (b0125) 2017; 10 Cheng, Call (b0105) 2016; 18 Shen, Linville, Ignacio-de Leon, Schoene, Urgun-Demirtas (b0450) 2016; 135 Lalov, Krysteva, Phelouzat (b0235) 2001; 79 Ren (10.1016/j.biortech.2019.122403_b0415) 2015; 178 Xu (10.1016/j.biortech.2019.122403_b0550) 2015; 196 Wang (10.1016/j.biortech.2019.122403_b0525) 2018; 52 Ambuchi (10.1016/j.biortech.2019.122403_b0010) 2017; 117 McGlynn (10.1016/j.biortech.2019.122403_b0360) 2015; 526 Tremblay (10.1016/j.biortech.2019.122403_b0505) 2017; 35 Qu (10.1016/j.biortech.2019.122403_b0400) 2004; 72 Cruz Viggi (10.1016/j.biortech.2019.122403_b0125) 2017; 10 Luongo (10.1016/j.biortech.2019.122403_b0345) 2010; 178 Dang (10.1016/j.biortech.2019.122403_b0135) 2017; 238 Sharma (10.1016/j.biortech.2019.122403_b9000) 2019; 16 Lovley (10.1016/j.biortech.2019.122403_b0315) 2011; 10 Yin (10.1016/j.biortech.2019.122403_b0595) 2018; 333 Bird (10.1016/j.biortech.2019.122403_b0065) 2013; 79 Stams (10.1016/j.biortech.2019.122403_b0470) 2009; 7 Pan (10.1016/j.biortech.2019.122403_b0370) 2017; 101 Martins (10.1016/j.biortech.2019.122403_b0355) 2018; 52 Qiao (10.1016/j.biortech.2019.122403_b0395) 2015; 5 Feng (10.1016/j.biortech.2019.122403_b0150) 2014; 52 Li (10.1016/j.biortech.2019.122403_b0285) 2017; 234 Lalov (10.1016/j.biortech.2019.122403_b0235) 2001; 79 Baek (10.1016/j.biortech.2019.122403_b0035) 2018; 11 Yin (10.1016/j.biortech.2019.122403_b0590) 2017; 119 Suanon (10.1016/j.biortech.2019.122403_b0485) 2017; 321 Barua (10.1016/j.biortech.2019.122403_b0045) 2018; 266 Smith (10.1016/j.biortech.2019.122403_b0460) 2015; 6 Fujinawa (10.1016/j.biortech.2019.122403_b0165) 2019; 103 Wang (10.1016/j.biortech.2019.122403_b0510) 2019; 272 Lovley (10.1016/j.biortech.2019.122403_b0325) 2017; 71 Liu (10.1016/j.biortech.2019.122403_b0300) 2014; 17 Summers (10.1016/j.biortech.2019.122403_b0490) 2010; 330 Colunga (10.1016/j.biortech.2019.122403_b0115) 2015; 175 Klüpfel (10.1016/j.biortech.2019.122403_b0220) 2014; 48 Achtnich (10.1016/j.biortech.2019.122403_b0005) 1995; 19 Reguera (10.1016/j.biortech.2019.122403_b0410) 2005; 435 Ko (10.1016/j.biortech.2019.122403_b0225) 2018; 266 Kato (10.1016/j.biortech.2019.122403_b0205) 2012; 14 Li (10.1016/j.biortech.2019.122403_b0280) 2017; 419 Lovley (10.1016/j.biortech.2019.122403_b0310) 1991; 55 Martinez-Gutierrez (10.1016/j.biortech.2019.122403_b0350) 2010; 6 Peth (10.1016/j.biortech.2019.122403_b0385) 2008; 72 Zhang (10.1016/j.biortech.2019.122403_b0620) 2018; 266 Lü (10.1016/j.biortech.2019.122403_b0330) 2016; 90 Zhao (10.1016/j.biortech.2019.122403_b0635) 2016; 209 Yan (10.1016/j.biortech.2019.122403_b0555) 2017; 239 Schink (10.1016/j.biortech.2019.122403_b0445) 1997; 61 Jing (10.1016/j.biortech.2019.122403_b0190) 2017; 108 Cruz Viggi (10.1016/j.biortech.2019.122403_b0120) 2014; 48 Zhou (10.1016/j.biortech.2019.122403_b0650) 2014; 88 Salvador (10.1016/j.biortech.2019.122403_b0440) 2017; 19 Lin (10.1016/j.biortech.2019.122403_b0290) 2017; 239 Ye (10.1016/j.biortech.2019.122403_b0575) 2018; 143 10.1016/j.biortech.2019.122403_b0180 Peng (10.1016/j.biortech.2019.122403_b0380) 2018; 249 Rotaru (10.1016/j.biortech.2019.122403_b0435) 2014; 80 Bueno-López (10.1016/j.biortech.2019.122403_b0085) 2018; 211 Baek (10.1016/j.biortech.2019.122403_b0025) 2015; 99 Hu (10.1016/j.biortech.2019.122403_b0185) 2017; 120 Zehnder (10.1016/j.biortech.2019.122403_b0615) 1978; 2 Bodegom (10.1016/j.biortech.2019.122403_b0075) 1999; 39 Xu (10.1016/j.biortech.2019.122403_b0545) 2016; 216 Storck (10.1016/j.biortech.2019.122403_b0475) 2016; 10 Cheng (10.1016/j.biortech.2019.122403_b0105) 2016; 18 Fu (10.1016/j.biortech.2019.122403_b0160) 2019; 10 Kong (10.1016/j.biortech.2019.122403_b0230) 2016; 211 Fagbohungbe (10.1016/j.biortech.2019.122403_b0145) 2016; 216 Wu (10.1016/j.biortech.2019.122403_b0540) 1993; 159 Lovley (10.1016/j.biortech.2019.122403_b0405) 2011; 4 Richter (10.1016/j.biortech.2019.122403_b0420) 2009; 2 Barua (10.1016/j.biortech.2019.122403_b0040) 2017; 244 Chen (10.1016/j.biortech.2019.122403_b0095) 2015; 4 Li (10.1016/j.biortech.2019.122403_b0275) 2015; 70 Lueders (10.1016/j.biortech.2019.122403_b0335) 2002; 68 Lee (10.1016/j.biortech.2019.122403_b0250) 2008; 42 Zhao (10.1016/j.biortech.2019.122403_b0645) 2018; 250 Kletzin (10.1016/j.biortech.2019.122403_b0215) 2015; 6 Lee (10.1016/j.biortech.2019.122403_b0255) 2017; 68 Lovley (10.1016/j.biortech.2019.122403_b0320) 2012; 66 An (10.1016/j.biortech.2019.122403_b0015) 2017; 123 Auffan (10.1016/j.biortech.2019.122403_b0020) 2008; 42 Baek (10.1016/j.biortech.2019.122403_b0030) 2017; 241 Zhang (10.1016/j.biortech.2019.122403_b0625) 2019; 287 Poirier (10.1016/j.biortech.2019.122403_b0390) 2017; 235 Yang (10.1016/j.biortech.2019.122403_b0570) 2016; 6 Kato (10.1016/j.biortech.2019.122403_b0200) 2010; 25 Kato (10.1016/j.biortech.2019.122403_b0210) 2012; 109 Dang (10.1016/j.biortech.2019.122403_b0130) 2016; 220 Park (10.1016/j.biortech.2019.122403_b0375) 2018; 254 Li (10.1016/j.biortech.2019.122403_b0270) 2018; 643 Lei (10.1016/j.biortech.2019.122403_b0260) 2016; 222 Chen (10.1016/j.biortech.2019.122403_b0090) 2014; 173 Gu (10.1016/j.biortech.2019.122403_b0175) 2019; 7 Zhao (10.1016/j.biortech.2019.122403_b0640) 2017; 313 10.1016/j.biortech.2019.122403_b0430 Liu (10.1016/j.biortech.2019.122403_b0295) 2012; 12 Goyal (10.1016/j.biortech.2019.122403_b0170) 1996; 56 Ye (10.1016/j.biortech.2019.122403_b0580) 2018; 247 Zhuang (10.1016/j.biortech.2019.122403_b0655) 2018; 270 Leang (10.1016/j.biortech.2019.122403_b0245) 2010; 76 Bryant (10.1016/j.biortech.2019.122403_b0080) 1967; 59 Laviron (10.1016/j.biortech.2019.122403_b0240) 1979; 101 Luo (10.1016/j.biortech.2019.122403_b0340) 2015; 68 Roden (10.1016/j.biortech.2019.122403_b0425) 2010; 3 De Vrieze (10.1016/j.biortech.2019.122403_b0140) 2014; 54 Zhao (10.1016/j.biortech.2019.122403_b0630) 2015; 191 Li (10.1016/j.biortech.2019.122403_b0265) 2015; 17 Liu (10.1016/j.biortech.2019.122403_b0305) 2019; 288 Beckmann (10.1016/j.biortech.2019.122403_b0050) 2016; 9 Yang (10.1016/j.biortech.2019.122403_b0560) 2012; 47 Yuan (10.1016/j.biortech.2019.122403_b0610) 2017; 246 Sun (10.1016/j.biortech.2019.122403_b0495) 2017; 8 Morita (10.1016/j.biortech.2019.122403_b0365) 2011; 2 Yin (10.1016/j.biortech.2019.122403_b0585) 2017; 101 Wang (10.1016/j.biortech.2019.122403_b0535) 2016; 113 Tian (10.1016/j.biortech.2019.122403_b0500) 2017; 224 Shi (10.1016/j.biortech.2019.122403_b0455) 2007; 65 Zhuang (10.1016/j.biortech.2019.122403_b0660) 2015; 293 Song (10.1016/j.biortech.2019.122403_b0465) 2004; 38 You (10.1016/j.biortech.2019.122403_b0600) 2018; 256 Cheng (10.1016/j.biortech.2019.122403_b0110) 2018; 4 Yang (10.1016/j.biortech.2019.122403_b0565) 2013; 47 Bertin (10.1016/j.biortech.2019.122403_b0055) 2004; 38 Kaden (10.1016/j.biortech.2019.122403_b0195) 2002; 178 Bodegom (10.1016/j.biortech.2019.122403_b0070) 2004; 49 Shen (10.1016/j.biortech.2019.122403_b0450) 2016; 135 Wang (10.1016/j.biortech.2019.122403_b0530) 2016; 6 Straub (10.1016/j.biortech.2019.122403_b0480) 2001; 34 Yuan (10.1016/j.biortech.2019.122403_b0605) 2018; 52 Chen (10.1016/j.biortech.2019.122403_b0100) 2016; 311 Freitas (10.1016/j.biortech.2019.122403_b0155) 2007; 39 Wang (10.1016/j.biortech.2019.122403_b0515) 2018; 257 Biebl (10.1016/j.biortech.2019.122403_b0060) 1978; 117 |
References_xml | – volume: 10 start-page: 621 year: 2016 end-page: 631 ident: b0475 article-title: Modelling extracellular limitations for mediated versus direct interspecies electron transfer publication-title: The ISME journal. – volume: 56 start-page: 239 year: 1996 end-page: 244 ident: b0170 article-title: Diphasic fixed-film biomethanation of distillery spentwash publication-title: Bioresource Technol. – volume: 55 start-page: 259 year: 1991 end-page: 287 ident: b0310 article-title: Dissimilatory Fe(III) and Mn(IV) reduction publication-title: Microbiol. Rev. – volume: 17 start-page: 648 year: 2014 end-page: 655 ident: b0300 article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange publication-title: Environ. Microbiol. – volume: 61 start-page: 262 year: 1997 end-page: 280 ident: b0445 article-title: Energetics of syntrophic cooperation in methanogenic degradation publication-title: Microbiol. Mol. Biol. Rev. – volume: 59 start-page: 20 year: 1967 end-page: 31 ident: b0080 article-title: Methanobacillus omelianskii, a symbiotic association of two species of bacteria publication-title: Archiv. Mikrobiol. – volume: 313 start-page: 10 year: 2017 end-page: 18 ident: b0640 article-title: Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth publication-title: Chem. Eng. J. – volume: 643 start-page: 1024 year: 2018 end-page: 1030 ident: b0270 article-title: A new insight into the strategy for methane production affected by conductive carbon cloth in wetland soil: Beneficial to acetoclastic methanogenesis instead of CO2 reduction publication-title: Sci. Total Environ. – volume: 178 start-page: 356 year: 2010 end-page: 362 ident: b0345 article-title: Toxicity of carbon nanotubes to the activated sludge process publication-title: J. Hazard. Mater. – volume: 80 start-page: 4599 year: 2014 end-page: 4605 ident: b0435 article-title: Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri publication-title: Appl. Environ. Microb. – volume: 211 start-page: 709 year: 2018 end-page: 716 ident: b0085 article-title: Graphene oxide triggers mass transfer limitations on the methanogenic activity of an anaerobic consortium with a particulate substrate publication-title: Chemosphere – volume: 48 start-page: 7536 year: 2014 end-page: 7543 ident: b0120 article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation publication-title: Environ. Sci. Technol. – volume: 119 start-page: 104 year: 2017 end-page: 110 ident: b0590 article-title: Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon publication-title: Int. Biodeter. Biodegr. – volume: 256 start-page: 82 year: 2018 end-page: 96 ident: b0600 article-title: Stimulatory effect of magnetite on the syntrophic metabolism of Geobacter co-cultures: Influences of surface coating publication-title: Geochim. Cosmochim. Ac. – volume: 4 start-page: 1794 year: 2018 end-page: 1806 ident: b0110 article-title: Amending anaerobic bioreactors with pyrogenic carbonaceous materials: the influence of material properties on methane generation publication-title: Environ. Sci.: Water Res. Technol. – volume: 101 start-page: 7053 year: 2017 end-page: 7063 ident: b0370 article-title: Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir publication-title: Appl. Microbiol. Biot. – volume: 79 start-page: 83 year: 2001 end-page: 85 ident: b0235 article-title: Improvement of biogas production from vinasse via covalently immobilized methanogens publication-title: Bioresour Technol. – volume: 321 start-page: 47 year: 2017 end-page: 53 ident: b0485 article-title: Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation publication-title: J. Hazard. Mater. – volume: 68 start-page: 710 year: 2015 end-page: 718 ident: b0340 article-title: Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes publication-title: Water Res. – volume: 52 start-page: 10241 year: 2018 end-page: 10253 ident: b0355 article-title: Methane production and conductive materials: a critical review publication-title: Environ. Sci. Technol. – volume: 135 start-page: 1054 year: 2016 end-page: 1064 ident: b0450 article-title: Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar publication-title: J. Clean. Prod. – volume: 196 start-page: 606 year: 2015 end-page: 612 ident: b0550 article-title: Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester publication-title: Bioresource Technol. – volume: 7 start-page: 568 year: 2009 end-page: 577 ident: b0470 article-title: Electron transfer in syntrophic communities of anaerobic bacteria and archaea publication-title: Nat. Rev. Microbiol. – volume: 159 start-page: 57 year: 1993 end-page: 65 ident: b0540 article-title: Energetics and regulations of formate and hydrogen metabolism by Methanobacterium formicicum publication-title: Arch. Microbiol. – volume: 220 start-page: 516 year: 2016 end-page: 522 ident: b0130 article-title: Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials publication-title: Bioresource Technol. – volume: 17 start-page: 1533 year: 2015 end-page: 1547 ident: b0265 article-title: Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments publication-title: Environ. Microbiol. – volume: 48 start-page: 5601 year: 2014 end-page: 5611 ident: b0220 article-title: Redox properties of plant biomass-derived black carbon (Biochar) publication-title: Environ. Sci. Technol. – reference: Rotaru, A., Shrestha, P., Liu, F., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., P. Nevin, K., R. Lovley, D., 2014a. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science 7, 408-415. – volume: 19 start-page: 2727 year: 2017 end-page: 2739 ident: b0440 article-title: Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture publication-title: Environ. Microbiol. – volume: 54 start-page: 211 year: 2014 end-page: 221 ident: b0140 article-title: Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion publication-title: Water Res. – volume: 103 start-page: 6385 year: 2019 end-page: 6392 ident: b0165 article-title: Conductive carbon nanoparticles inhibit methanogens and stabilize hydrogen production in microbial electrolysis cells publication-title: Appl. Microbiol. Biot. – volume: 178 start-page: 53 year: 2002 ident: b0195 article-title: Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes publication-title: Arch Microbiol. – volume: 419 start-page: 20 year: 2017 end-page: 28 ident: b0280 article-title: Resin-enhanced rolling activated carbon electrode for efficient capacitive deionization publication-title: Desalination. – volume: 12 start-page: 8982 year: 2012 end-page: 8989 ident: b0295 article-title: Promoting direct interspecies electron transfer with activated carbon publication-title: Energ. Environ. Sci. – volume: 9 start-page: 644 year: 2016 end-page: 655 ident: b0050 article-title: Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation publication-title: Energ. Environ. Sci. – volume: 108 start-page: 212 year: 2017 end-page: 221 ident: b0190 article-title: iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite publication-title: Water Res. – volume: 25 start-page: 145 year: 2010 end-page: 151 ident: b0200 article-title: Ecological and evolutionary interactions in syntrophic methanogenic consortia publication-title: Microbes Environ. – volume: 435 start-page: 1098 year: 2005 end-page: 1101 ident: b0410 article-title: Extracellular electron transfer via microbial nanowires publication-title: Nature – volume: 272 start-page: 162 year: 2019 end-page: 170 ident: b0510 article-title: Responsiveness extracellular electron transfer (EET) enhancement of anaerobic digestion system during start-up and starvation recovery stages via magnetite addition publication-title: Bioresource Technol. – volume: 113 start-page: 126 year: 2016 end-page: 133 ident: b0535 article-title: Degradation kinetics of pentachlorophenol and changes in anaerobic microbial community with different dosing modes of co-substrate and zero-valent iron publication-title: Int. Biodeter. Biodegr. – volume: 39 start-page: 1027 year: 2007 end-page: 1037 ident: b0155 article-title: Thermodynamic study of fatty acids adsorption on different adsorbents publication-title: J. Chem. Thermodyn. – volume: 70 start-page: 1 year: 2015 end-page: 8 ident: b0275 article-title: Response of anaerobic granular sludge to single-wall carbon nanotube exposure publication-title: Water Res. – volume: 72 start-page: 1172 year: 2004 end-page: 1181 ident: b0400 article-title: Microbial Reduction of Weakly Crystalline Iron (III) Oxides and Suppression of Methanogenesis in Paddy Soil publication-title: B. Environ. Contam. Tox. – volume: 249 start-page: 666 year: 2018 end-page: 672 ident: b0380 article-title: Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion publication-title: Bioresource Technol. – volume: 88 start-page: 107 year: 2014 end-page: 120 ident: b0650 article-title: Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances publication-title: FEMS Microbiol. Ecol. – volume: 76 start-page: 4080 year: 2010 end-page: 4084 ident: b0245 article-title: Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens publication-title: Appl. Environ. Microb. – volume: 10 start-page: 101 year: 2011 end-page: 105 ident: b0315 article-title: Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy publication-title: Rev. Environ. Sci.Bio/Technol. – volume: 90 start-page: 34 year: 2016 end-page: 43 ident: b0330 article-title: Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina publication-title: Water Res. – volume: 68 start-page: 165 year: 2017 end-page: 172 ident: b0255 article-title: Effects of an applied voltage on direct interspecies electron transfer via conductive materials for methane production publication-title: Waste Manage. – volume: 266 start-page: 516 year: 2018 end-page: 523 ident: b0225 article-title: Effect of nickel-containing activated carbon on food waste anaerobic digestion publication-title: Bioresource Technol. – volume: 10 start-page: 388 year: 2019 ident: b0160 article-title: NanoFe3O4 as Solid Electron Shuttles to Accelerate Acetotrophic Methanogenesis by Methanosarcina barkeri publication-title: Front. Microbiol. – volume: 109 start-page: 10042 year: 2012 end-page: 10046 ident: b0210 article-title: Microbial interspecies electron transfer via electric currents through conductive minerals publication-title: PNAS – volume: 143 start-page: 240 year: 2018 end-page: 249 ident: b0575 article-title: Response of enhanced sludge methanogenesis by red mud to temperature: Spectroscopic and electrochemical elucidation of endogenous redox mediators publication-title: Water Res. – volume: 244 start-page: 698 year: 2017 end-page: 707 ident: b0040 article-title: Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion publication-title: Bioresource Technol. – volume: 101 start-page: 3929 year: 2017 end-page: 3939 ident: b0585 article-title: Enhanced system performance by dosing ferroferric oxide during the anaerobic treatment of tryptone-based high-strength wastewater publication-title: Appl. Microbiol. Biot. – volume: 330 start-page: 1413 year: 2010 end-page: 1415 ident: b0490 article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria publication-title: Science – volume: 270 start-page: 230 year: 2018 end-page: 235 ident: b0655 article-title: Potential enhancement of direct interspecies electron transfer for anaerobic degradation of coal gasification wastewater using up-flow anaerobic sludge blanket (UASB) with nitrogen doped sewage sludge carbon assisted publication-title: Bioresource Technol. – volume: 6 year: 2015 ident: b0215 article-title: Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis publication-title: Front. Microbiol. – volume: 18 start-page: 968 year: 2016 end-page: 980 ident: b0105 article-title: Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications publication-title: Environ. Sci.: Processes Impacts – volume: 526 start-page: 531 year: 2015 end-page: 535 ident: b0360 article-title: Single cell activity reveals direct electron transfer in methanotrophic consortia publication-title: Nature. – volume: 5 start-page: 12732 year: 2015 ident: b0395 article-title: Methanogenesis from wastewater stimulated by addition of elemental manganese publication-title: Sci. Rep. – volume: 2 start-page: 349 year: 1978 end-page: 376 ident: b0615 article-title: Ecology of methane formation publication-title: Water Poll. Microbiol. – volume: 2 start-page: e00159 year: 2011 end-page: e211 ident: b0365 article-title: Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates publication-title: mBio – volume: 293 start-page: 37 year: 2015 end-page: 45 ident: b0660 article-title: Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation publication-title: J. Hazard. Mater. – volume: 257 start-page: 147 year: 2018 end-page: 156 ident: b0515 article-title: New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite publication-title: Bioresource Technol. – volume: 14 start-page: 1646 year: 2012 end-page: 1654 ident: b0205 article-title: Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals publication-title: Environ. Microbiol. – volume: 101 start-page: 19 year: 1979 end-page: 28 ident: b0240 article-title: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 38 start-page: 3167 year: 2004 end-page: 3178 ident: b0055 article-title: Anaerobic digestion of olive mill wastewaters in biofilm reactors packed with granular activated carbon and “Manville” silica beads publication-title: Water Res. – volume: 10 start-page: 303 year: 2017 ident: b0125 article-title: Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar publication-title: Biotechnol. Biofuels. – volume: 239 start-page: 336 year: 2017 end-page: 344 ident: b0555 article-title: The role of conductive materials in the start-up period of thermophilic anaerobic system publication-title: Bioresource Technol. – volume: 42 start-page: 6730 year: 2008 end-page: 6735 ident: b0020 article-title: Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli publication-title: Environ. Sci. Technol. – volume: 66 start-page: 391 year: 2012 end-page: 409 ident: b0320 article-title: Electromicrobiology publication-title: Annu. Rev. Microbiol. – volume: 246 start-page: 271 year: 2017 end-page: 281 ident: b0610 article-title: Applications of biochar in redox-mediated reactions publication-title: Bioresource Technol. – volume: 52 start-page: 12198 year: 2018 end-page: 12207 ident: b0605 article-title: Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate publication-title: Environ. Sci. Technol. – volume: 68 start-page: 2484 year: 2002 end-page: 2494 ident: b0335 article-title: Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil publication-title: Appl. Environ. Microb. – volume: 4 start-page: 4896 year: 2011 end-page: 4906 ident: b0405 article-title: Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination publication-title: Energy Environ. Sci. – volume: 235 start-page: 229 year: 2017 end-page: 239 ident: b0390 article-title: Improving anaerobic digestion with support media: Mitigation of ammonia inhibition and effect on microbial communities publication-title: Bioresource Technol. – volume: 234 start-page: 303 year: 2017 end-page: 309 ident: b0285 article-title: Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel publication-title: Bioresource Technol. – volume: 117 start-page: 9 year: 1978 end-page: 16 ident: b0060 article-title: Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria publication-title: Arch. Microbiol. – volume: 35 start-page: 360 year: 2017 end-page: 371 ident: b0505 article-title: Extracellular electron uptake: among autotrophs and mediated by surfaces publication-title: Trends Biotechnol. – volume: 99 start-page: 10355 year: 2015 end-page: 10366 ident: b0025 article-title: The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation publication-title: Appl. Microbiol. Biot. – volume: 239 start-page: 345 year: 2017 end-page: 352 ident: b0290 article-title: Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion publication-title: Bioresource Technol. – volume: 6 start-page: 25857 year: 2016 ident: b0530 article-title: Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge publication-title: Sci. Rep. – volume: 123 start-page: 369 year: 2017 end-page: 377 ident: b0015 article-title: Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells publication-title: Water Res. – volume: 2 start-page: 506 year: 2009 end-page: 516 ident: b0420 article-title: Cyclic voltammetry of biofilms of wild type and mutant publication-title: Energ. Environ. Sci. – volume: 266 start-page: 259 year: 2018 end-page: 266 ident: b0045 article-title: Enhanced methanogenic co-degradation of propionate and butyrate by anaerobic microbiome enriched on conductive carbon fibers publication-title: Bioresource Technol. – volume: 191 start-page: 140 year: 2015 end-page: 145 ident: b0630 article-title: Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials publication-title: Bioresource Technol. – volume: 6 start-page: 25662 year: 2016 end-page: 25668 ident: b0570 article-title: Magnetite nanoparticles enable a rapid conversion of volatile fatty acids to methane publication-title: RSC Adv. – volume: 42 start-page: 4927 year: 2008 end-page: 4933 ident: b0250 article-title: Bactericidal effect of zero-valent iron nanoparticles on escherichia coli publication-title: Environ. Sci. Technol. – volume: 224 start-page: 41 year: 2017 end-page: 47 ident: b0500 article-title: Nano-graphene induced positive effects on methanogenesis in anaerobic digestion publication-title: Bioresource Technol. – volume: 250 start-page: 79 year: 2018 end-page: 85 ident: b0645 article-title: Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion publication-title: Bioresource Technol. – volume: 39 start-page: 167 year: 1999 end-page: 182 ident: b0075 article-title: Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils publication-title: Chemosphere. – volume: 266 start-page: 555 year: 2018 end-page: 567 ident: b0620 article-title: Recent achievements in enhancing anaerobic digestion with carbon- based functional materials publication-title: Bioresource Technol. – volume: 4 start-page: 5019 year: 2015 ident: b0095 article-title: Promoting Interspecies Electron Transfer with Biochar publication-title: Sci. Rep. – volume: 52 start-page: 13863 year: 2018 end-page: 13870 ident: b0525 article-title: Phosphorus Competition in Bioinduced Vivianite Recovery from Wastewater publication-title: Environ. Sci. Technol. – volume: 6 year: 2015 ident: b0460 article-title: Syntrophic growth via quinone-mediated interspecies electron transfer publication-title: Front. Microbiol. – volume: 34 start-page: 181 year: 2001 end-page: 186 ident: b0480 article-title: Iron metabolism in anoxic environments at near neutral pH publication-title: FEMS Microbiol. Ecol. – volume: 247 start-page: 131 year: 2018 end-page: 137 ident: b0580 article-title: Red mud enhances methanogenesis with the simultaneous improvement of hydrolysis-acidification and electrical conductivity publication-title: Bioresource Technol. – volume: 11 start-page: 107 year: 2018 ident: b0035 article-title: Role and potential of direct interspecies electron transfer in anaerobic digestion publication-title: Energies. – volume: 178 start-page: 119 year: 2015 end-page: 125 ident: b0415 article-title: Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water publication-title: Bioresource Technol. – volume: 3 start-page: 417 year: 2010 end-page: 421 ident: b0425 article-title: Extracellular electron transfer through microbial reduction of solid-phase humic substances publication-title: Nat. Geosci. – volume: 216 start-page: 142 year: 2016 end-page: 149 ident: b0145 article-title: Impact of biochar on the anaerobic digestion of citrus peel waste publication-title: Bioresource Technol. – volume: 38 start-page: 1653 year: 2004 end-page: 1662 ident: b0465 article-title: Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge publication-title: Water Res. – volume: 254 start-page: 300 year: 2018 end-page: 311 ident: b0375 article-title: Direct interspecies electron transfer via conductive materials: A perspective for anaerobic digestion applications publication-title: Bioresource Technol. – volume: 117 start-page: 87 year: 2017 end-page: 94 ident: b0010 article-title: Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment publication-title: Water Res. – volume: 175 start-page: 309 year: 2015 end-page: 314 ident: b0115 article-title: Graphene oxide as electron shuttle for increased redox conversion of contaminants under methanogenic and sulfate-reducing conditions publication-title: Bioresource Technol. – volume: 120 start-page: 236 year: 2017 end-page: 243 ident: b0185 article-title: Conductive polyaniline nanorods enhanced methane production from anaerobic wastewater treatment publication-title: Polymer. – volume: 47 start-page: 1707 year: 2012 end-page: 1714 ident: b0560 article-title: Bacterial extracellular electron transfer in bioelectrochemical systems publication-title: Process Biochem. – volume: 241 start-page: 830 year: 2017 end-page: 840 ident: b0030 article-title: A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent – Magnetic separation and recycling of magnetite publication-title: Bioresource Technol. – volume: 6 start-page: 681 year: 2010 end-page: 688 ident: b0350 article-title: Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology publication-title: Biol. Med. – volume: 311 start-page: 20 year: 2016 end-page: 29 ident: b0100 article-title: Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition publication-title: J. Hazard. Mater. – volume: 216 start-page: 677 year: 2016 end-page: 683 ident: b0545 article-title: Anaerobic granule-based biofilms formation reduces propionate accumulation under high H2 partial pressure using conductive carbon felt particles publication-title: Bioresource Technol. – volume: 8 start-page: 14873 year: 2017 ident: b0495 article-title: Rapid electron transfer by the carbon matrix in natural pyrogenic carbon publication-title: Nat. Commun. – volume: 65 start-page: 12 year: 2007 end-page: 20 ident: b0455 article-title: Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes publication-title: Mol. Microbiol. – volume: 173 start-page: 82 year: 2014 end-page: 86 ident: b0090 article-title: Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures publication-title: Bioresource Technol. – volume: 211 start-page: 65 year: 2016 end-page: 71 ident: b0230 article-title: Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates publication-title: Bioresource Technol. – volume: 71 start-page: 643 year: 2017 end-page: 664 ident: b0325 article-title: Syntrophy goes electric: direct interspecies electron transfer publication-title: Annu. Rev. Microbiol. – volume: 222 start-page: 270 year: 2016 end-page: 276 ident: b0260 article-title: Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth publication-title: Bioresource Technol. – volume: 19 start-page: 65 year: 1995 end-page: 72 ident: b0005 article-title: Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil publication-title: Biol. Fert. Soils. – reference: Holmes, D., Shrestha, P., Walker, D., Dang, Y., P. Nevin, K., L. Woodard, T., R. Lovley, D., 2017. Metatranscriptomic Evidence for Direct Interspecies Electron Transfer Between Geobacter and Methanothrix Species in Methanogenic Rice Paddy Soils. Appl. Environ. Microb. 83, 00223-17. – volume: 52 start-page: 242 year: 2014 end-page: 250 ident: b0150 article-title: Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron publication-title: Water Res. – volume: 79 start-page: 3619 year: 2013 ident: b0065 article-title: Iron and copper act synergistically to delay anaerobic growth of bacteria publication-title: Appl. Environ. Microb. – volume: 333 start-page: 216 year: 2018 end-page: 225 ident: b0595 article-title: Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide publication-title: Chem. Eng. J. – volume: 288 year: 2019 ident: b0305 article-title: Inhibition mitigation and ecological mechanism of mesophilic methanogenesis triggered by supplement of ferroferric oxide in sulfate-containing systems publication-title: Bioresource Technol. – volume: 47 start-page: 6790 year: 2013 end-page: 6800 ident: b0565 article-title: Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion publication-title: Water Res. – volume: 209 start-page: 148 year: 2016 end-page: 156 ident: b0635 article-title: Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors publication-title: Bioresource Technol. – volume: 238 start-page: 30 year: 2017 end-page: 38 ident: b0135 article-title: Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials publication-title: Bioresource Technol. – volume: 7 year: 2019 ident: b0175 article-title: New insights into the effect of direct interspecies electron transfer on syntrophic methanogenesis through thermodynamic analysis publication-title: Bioresour. Technol. Rep. – volume: 16 start-page: 2133 year: 2019 end-page: 2142 ident: b9000 article-title: Insights into direct interspecies electron transfer mechanisms for acceleration of anaerobic digestion of wastes publication-title: Int. J. Environ. Sci. Technol. – volume: 287 year: 2019 ident: b0625 article-title: Synergetic promotion of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with graphite felt in anaerobic digestion publication-title: Bioresource Technol. – volume: 49 start-page: 261 year: 2004 end-page: 268 ident: b0070 article-title: Direct inhibition of methanogenesis by ferric iron publication-title: FEMS Microbiol. Ecol. – volume: 72 start-page: 897 year: 2008 end-page: 907 ident: b0385 article-title: Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography publication-title: Soil Sci. Soc. Am. J. – volume: 42 start-page: 6730 year: 2008 ident: 10.1016/j.biortech.2019.122403_b0020 article-title: Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli publication-title: Environ. Sci. Technol. doi: 10.1021/es800086f – volume: 10 start-page: 101 year: 2011 ident: 10.1016/j.biortech.2019.122403_b0315 article-title: Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy publication-title: Rev. Environ. Sci.Bio/Technol. doi: 10.1007/s11157-011-9236-9 – volume: 2 start-page: 349 year: 1978 ident: 10.1016/j.biortech.2019.122403_b0615 article-title: Ecology of methane formation publication-title: Water Poll. Microbiol. – volume: 12 start-page: 8982 year: 2012 ident: 10.1016/j.biortech.2019.122403_b0295 article-title: Promoting direct interspecies electron transfer with activated carbon publication-title: Energ. Environ. Sci. doi: 10.1039/c2ee22459c – volume: 246 start-page: 271 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0610 article-title: Applications of biochar in redox-mediated reactions publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.06.154 – volume: 70 start-page: 1 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0275 article-title: Response of anaerobic granular sludge to single-wall carbon nanotube exposure publication-title: Water Res. doi: 10.1016/j.watres.2014.11.042 – volume: 54 start-page: 211 year: 2014 ident: 10.1016/j.biortech.2019.122403_b0140 article-title: Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion publication-title: Water Res. doi: 10.1016/j.watres.2014.01.044 – volume: 90 start-page: 34 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0330 article-title: Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina publication-title: Water Res. doi: 10.1016/j.watres.2015.12.029 – volume: 35 start-page: 360 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0505 article-title: Extracellular electron uptake: among autotrophs and mediated by surfaces publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2016.10.004 – volume: 196 start-page: 606 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0550 article-title: Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2015.08.018 – volume: 117 start-page: 87 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0010 article-title: Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment publication-title: Water Res. doi: 10.1016/j.watres.2017.03.050 – volume: 17 start-page: 1533 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0265 article-title: Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12576 – volume: 79 start-page: 83 year: 2001 ident: 10.1016/j.biortech.2019.122403_b0235 article-title: Improvement of biogas production from vinasse via covalently immobilized methanogens publication-title: Bioresour Technol. doi: 10.1016/S0960-8524(01)00045-1 – volume: 313 start-page: 10 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0640 article-title: Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.149 – volume: 311 start-page: 20 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0100 article-title: Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.02.069 – volume: 10 start-page: 388 year: 2019 ident: 10.1016/j.biortech.2019.122403_b0160 article-title: NanoFe3O4 as Solid Electron Shuttles to Accelerate Acetotrophic Methanogenesis by Methanosarcina barkeri publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00388 – volume: 68 start-page: 710 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0340 article-title: Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes publication-title: Water Res. doi: 10.1016/j.watres.2014.10.052 – volume: 16 start-page: 2133 year: 2019 ident: 10.1016/j.biortech.2019.122403_b9000 article-title: Insights into direct interspecies electron transfer mechanisms for acceleration of anaerobic digestion of wastes publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-018-2065-4 – volume: 266 start-page: 516 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0225 article-title: Effect of nickel-containing activated carbon on food waste anaerobic digestion publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2018.07.015 – volume: 4 start-page: 4896 year: 2011 ident: 10.1016/j.biortech.2019.122403_b0405 article-title: Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination publication-title: Energy Environ. Sci. doi: 10.1039/c1ee02229f – volume: 224 start-page: 41 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0500 article-title: Nano-graphene induced positive effects on methanogenesis in anaerobic digestion publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2016.10.058 – volume: 47 start-page: 1707 year: 2012 ident: 10.1016/j.biortech.2019.122403_b0560 article-title: Bacterial extracellular electron transfer in bioelectrochemical systems publication-title: Process Biochem. doi: 10.1016/j.procbio.2012.07.032 – volume: 239 start-page: 345 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0290 article-title: Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.05.017 – volume: 8 start-page: 14873 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0495 article-title: Rapid electron transfer by the carbon matrix in natural pyrogenic carbon publication-title: Nat. Commun. doi: 10.1038/ncomms14873 – volume: 52 start-page: 10241 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0355 article-title: Methane production and conductive materials: a critical review publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01913 – volume: 68 start-page: 2484 year: 2002 ident: 10.1016/j.biortech.2019.122403_b0335 article-title: Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.68.5.2484-2494.2002 – volume: 101 start-page: 7053 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0370 article-title: Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir publication-title: Appl. Microbiol. Biot. doi: 10.1007/s00253-017-8422-2 – volume: 80 start-page: 4599 year: 2014 ident: 10.1016/j.biortech.2019.122403_b0435 article-title: Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.00895-14 – volume: 209 start-page: 148 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0635 article-title: Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2016.03.005 – volume: 211 start-page: 709 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0085 article-title: Graphene oxide triggers mass transfer limitations on the methanogenic activity of an anaerobic consortium with a particulate substrate publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.001 – volume: 256 start-page: 82 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0600 article-title: Stimulatory effect of magnetite on the syntrophic metabolism of Geobacter co-cultures: Influences of surface coating publication-title: Geochim. Cosmochim. Ac. doi: 10.1016/j.gca.2018.02.009 – volume: 120 start-page: 236 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0185 article-title: Conductive polyaniline nanorods enhanced methane production from anaerobic wastewater treatment publication-title: Polymer. doi: 10.1016/j.polymer.2017.05.073 – volume: 178 start-page: 119 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0415 article-title: Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2014.09.071 – volume: 66 start-page: 391 year: 2012 ident: 10.1016/j.biortech.2019.122403_b0320 article-title: Electromicrobiology publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-092611-150104 – volume: 643 start-page: 1024 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0270 article-title: A new insight into the strategy for methane production affected by conductive carbon cloth in wetland soil: Beneficial to acetoclastic methanogenesis instead of CO2 reduction publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.271 – volume: 7 year: 2019 ident: 10.1016/j.biortech.2019.122403_b0175 article-title: New insights into the effect of direct interspecies electron transfer on syntrophic methanogenesis through thermodynamic analysis publication-title: Bioresour. Technol. Rep. – volume: 109 start-page: 10042 year: 2012 ident: 10.1016/j.biortech.2019.122403_b0210 article-title: Microbial interspecies electron transfer via electric currents through conductive minerals publication-title: PNAS doi: 10.1073/pnas.1117592109 – volume: 191 start-page: 140 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0630 article-title: Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2015.05.007 – volume: 17 start-page: 648 year: 2014 ident: 10.1016/j.biortech.2019.122403_b0300 article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12485 – volume: 247 start-page: 131 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0580 article-title: Red mud enhances methanogenesis with the simultaneous improvement of hydrolysis-acidification and electrical conductivity publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.08.063 – volume: 4 start-page: 5019 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0095 article-title: Promoting Interspecies Electron Transfer with Biochar publication-title: Sci. Rep. doi: 10.1038/srep05019 – volume: 65 start-page: 12 year: 2007 ident: 10.1016/j.biortech.2019.122403_b0455 article-title: Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05783.x – volume: 178 start-page: 356 year: 2010 ident: 10.1016/j.biortech.2019.122403_b0345 article-title: Toxicity of carbon nanotubes to the activated sludge process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.01.087 – volume: 52 start-page: 13863 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0525 article-title: Phosphorus Competition in Bioinduced Vivianite Recovery from Wastewater publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03022 – volume: 103 start-page: 6385 year: 2019 ident: 10.1016/j.biortech.2019.122403_b0165 article-title: Conductive carbon nanoparticles inhibit methanogens and stabilize hydrogen production in microbial electrolysis cells publication-title: Appl. Microbiol. Biot. doi: 10.1007/s00253-019-09946-1 – volume: 68 start-page: 165 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0255 article-title: Effects of an applied voltage on direct interspecies electron transfer via conductive materials for methane production publication-title: Waste Manage. doi: 10.1016/j.wasman.2017.07.025 – volume: 159 start-page: 57 year: 1993 ident: 10.1016/j.biortech.2019.122403_b0540 article-title: Energetics and regulations of formate and hydrogen metabolism by Methanobacterium formicicum publication-title: Arch. Microbiol. doi: 10.1007/BF00244265 – volume: 257 start-page: 147 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0515 article-title: New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2018.02.084 – volume: 178 start-page: 53 year: 2002 ident: 10.1016/j.biortech.2019.122403_b0195 article-title: Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes publication-title: Arch Microbiol. doi: 10.1007/s00203-002-0425-3 – volume: 526 start-page: 531 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0360 article-title: Single cell activity reveals direct electron transfer in methanotrophic consortia publication-title: Nature. doi: 10.1038/nature15512 – volume: 6 start-page: 25662 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0570 article-title: Magnetite nanoparticles enable a rapid conversion of volatile fatty acids to methane publication-title: RSC Adv. doi: 10.1039/C6RA02280D – volume: 108 start-page: 212 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0190 article-title: iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite publication-title: Water Res. doi: 10.1016/j.watres.2016.10.077 – volume: 175 start-page: 309 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0115 article-title: Graphene oxide as electron shuttle for increased redox conversion of contaminants under methanogenic and sulfate-reducing conditions publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2014.10.101 – volume: 254 start-page: 300 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0375 article-title: Direct interspecies electron transfer via conductive materials: A perspective for anaerobic digestion applications publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2018.01.095 – volume: 101 start-page: 3929 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0585 article-title: Enhanced system performance by dosing ferroferric oxide during the anaerobic treatment of tryptone-based high-strength wastewater publication-title: Appl. Microbiol. Biot. doi: 10.1007/s00253-017-8194-8 – volume: 266 start-page: 555 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0620 article-title: Recent achievements in enhancing anaerobic digestion with carbon- based functional materials publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2018.07.076 – volume: 249 start-page: 666 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0380 article-title: Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.10.047 – volume: 333 start-page: 216 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0595 article-title: Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.160 – volume: 293 start-page: 37 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0660 article-title: Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.03.039 – volume: 52 start-page: 242 year: 2014 ident: 10.1016/j.biortech.2019.122403_b0150 article-title: Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron publication-title: Water Res. doi: 10.1016/j.watres.2013.10.072 – volume: 52 start-page: 12198 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0605 article-title: Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b04121 – volume: 6 start-page: 681 year: 2010 ident: 10.1016/j.biortech.2019.122403_b0350 article-title: Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology publication-title: Biol. Med. – volume: 6 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0460 article-title: Syntrophic growth via quinone-mediated interspecies electron transfer publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00121 – volume: 216 start-page: 142 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0145 article-title: Impact of biochar on the anaerobic digestion of citrus peel waste publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2016.04.106 – volume: 42 start-page: 4927 year: 2008 ident: 10.1016/j.biortech.2019.122403_b0250 article-title: Bactericidal effect of zero-valent iron nanoparticles on escherichia coli publication-title: Environ. Sci. Technol. doi: 10.1021/es800408u – ident: 10.1016/j.biortech.2019.122403_b0430 doi: 10.1039/C3EE42189A – volume: 173 start-page: 82 year: 2014 ident: 10.1016/j.biortech.2019.122403_b0090 article-title: Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2014.09.009 – ident: 10.1016/j.biortech.2019.122403_b0180 doi: 10.1128/AEM.00223-17 – volume: 250 start-page: 79 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0645 article-title: Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.11.003 – volume: 235 start-page: 229 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0390 article-title: Improving anaerobic digestion with support media: Mitigation of ammonia inhibition and effect on microbial communities publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.03.099 – volume: 135 start-page: 1054 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0450 article-title: Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.06.144 – volume: 216 start-page: 677 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0545 article-title: Anaerobic granule-based biofilms formation reduces propionate accumulation under high H2 partial pressure using conductive carbon felt particles publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2016.06.010 – volume: 59 start-page: 20 year: 1967 ident: 10.1016/j.biortech.2019.122403_b0080 article-title: Methanobacillus omelianskii, a symbiotic association of two species of bacteria publication-title: Archiv. Mikrobiol. doi: 10.1007/BF00406313 – volume: 76 start-page: 4080 year: 2010 ident: 10.1016/j.biortech.2019.122403_b0245 article-title: Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.00023-10 – volume: 119 start-page: 104 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0590 article-title: Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon publication-title: Int. Biodeter. Biodegr. doi: 10.1016/j.ibiod.2016.09.023 – volume: 10 start-page: 303 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0125 article-title: Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar publication-title: Biotechnol. Biofuels. doi: 10.1186/s13068-017-0994-7 – volume: 101 start-page: 19 year: 1979 ident: 10.1016/j.biortech.2019.122403_b0240 article-title: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/S0022-0728(79)80075-3 – volume: 38 start-page: 3167 year: 2004 ident: 10.1016/j.biortech.2019.122403_b0055 article-title: Anaerobic digestion of olive mill wastewaters in biofilm reactors packed with granular activated carbon and “Manville” silica beads publication-title: Water Res. doi: 10.1016/j.watres.2004.05.004 – volume: 39 start-page: 1027 year: 2007 ident: 10.1016/j.biortech.2019.122403_b0155 article-title: Thermodynamic study of fatty acids adsorption on different adsorbents publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2006.12.016 – volume: 99 start-page: 10355 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0025 article-title: The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation publication-title: Appl. Microbiol. Biot. doi: 10.1007/s00253-015-6900-y – volume: 55 start-page: 259 year: 1991 ident: 10.1016/j.biortech.2019.122403_b0310 article-title: Dissimilatory Fe(III) and Mn(IV) reduction publication-title: Microbiol. Rev. doi: 10.1128/MR.55.2.259-287.1991 – volume: 18 start-page: 968 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0105 article-title: Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications publication-title: Environ. Sci.: Processes Impacts – volume: 2 start-page: e00159 year: 2011 ident: 10.1016/j.biortech.2019.122403_b0365 article-title: Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates publication-title: mBio doi: 10.1128/mBio.00159-11 – volume: 234 start-page: 303 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0285 article-title: Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.03.054 – volume: 9 start-page: 644 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0050 article-title: Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation publication-title: Energ. Environ. Sci. doi: 10.1039/C5EE03085D – volume: 6 start-page: 25857 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0530 article-title: Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge publication-title: Sci. Rep. doi: 10.1038/srep25857 – volume: 79 start-page: 3619 year: 2013 ident: 10.1016/j.biortech.2019.122403_b0065 article-title: Iron and copper act synergistically to delay anaerobic growth of bacteria publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.03944-12 – volume: 288 year: 2019 ident: 10.1016/j.biortech.2019.122403_b0305 article-title: Inhibition mitigation and ecological mechanism of mesophilic methanogenesis triggered by supplement of ferroferric oxide in sulfate-containing systems publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2019.121546 – volume: 270 start-page: 230 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0655 article-title: Potential enhancement of direct interspecies electron transfer for anaerobic degradation of coal gasification wastewater using up-flow anaerobic sludge blanket (UASB) with nitrogen doped sewage sludge carbon assisted publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2018.09.012 – volume: 56 start-page: 239 year: 1996 ident: 10.1016/j.biortech.2019.122403_b0170 article-title: Diphasic fixed-film biomethanation of distillery spentwash publication-title: Bioresource Technol. doi: 10.1016/0960-8524(96)00033-8 – volume: 113 start-page: 126 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0535 article-title: Degradation kinetics of pentachlorophenol and changes in anaerobic microbial community with different dosing modes of co-substrate and zero-valent iron publication-title: Int. Biodeter. Biodegr. doi: 10.1016/j.ibiod.2015.12.006 – volume: 239 start-page: 336 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0555 article-title: The role of conductive materials in the start-up period of thermophilic anaerobic system publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.05.046 – volume: 220 start-page: 516 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0130 article-title: Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2016.08.114 – volume: 38 start-page: 1653 year: 2004 ident: 10.1016/j.biortech.2019.122403_b0465 article-title: Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge publication-title: Water Res. doi: 10.1016/j.watres.2003.12.019 – volume: 5 start-page: 12732 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0395 article-title: Methanogenesis from wastewater stimulated by addition of elemental manganese publication-title: Sci. Rep. doi: 10.1038/srep12732 – volume: 238 start-page: 30 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0135 article-title: Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.04.021 – volume: 266 start-page: 259 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0045 article-title: Enhanced methanogenic co-degradation of propionate and butyrate by anaerobic microbiome enriched on conductive carbon fibers publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2018.06.053 – volume: 49 start-page: 261 year: 2004 ident: 10.1016/j.biortech.2019.122403_b0070 article-title: Direct inhibition of methanogenesis by ferric iron publication-title: FEMS Microbiol. Ecol. doi: 10.1016/j.femsec.2004.03.017 – volume: 330 start-page: 1413 year: 2010 ident: 10.1016/j.biortech.2019.122403_b0490 article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria publication-title: Science doi: 10.1126/science.1196526 – volume: 7 start-page: 568 year: 2009 ident: 10.1016/j.biortech.2019.122403_b0470 article-title: Electron transfer in syntrophic communities of anaerobic bacteria and archaea publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2166 – volume: 14 start-page: 1646 year: 2012 ident: 10.1016/j.biortech.2019.122403_b0205 article-title: Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2011.02611.x – volume: 211 start-page: 65 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0230 article-title: Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2016.03.078 – volume: 10 start-page: 621 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0475 article-title: Modelling extracellular limitations for mediated versus direct interspecies electron transfer publication-title: The ISME journal. doi: 10.1038/ismej.2015.139 – volume: 34 start-page: 181 year: 2001 ident: 10.1016/j.biortech.2019.122403_b0480 article-title: Iron metabolism in anoxic environments at near neutral pH publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2001.tb00768.x – volume: 48 start-page: 5601 year: 2014 ident: 10.1016/j.biortech.2019.122403_b0220 article-title: Redox properties of plant biomass-derived black carbon (Biochar) publication-title: Environ. Sci. Technol. doi: 10.1021/es500906d – volume: 123 start-page: 369 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0015 article-title: Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells publication-title: Water Res. doi: 10.1016/j.watres.2017.06.087 – volume: 435 start-page: 1098 year: 2005 ident: 10.1016/j.biortech.2019.122403_b0410 article-title: Extracellular electron transfer via microbial nanowires publication-title: Nature doi: 10.1038/nature03661 – volume: 3 start-page: 417 year: 2010 ident: 10.1016/j.biortech.2019.122403_b0425 article-title: Extracellular electron transfer through microbial reduction of solid-phase humic substances publication-title: Nat. Geosci. doi: 10.1038/ngeo870 – volume: 4 start-page: 1794 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0110 article-title: Amending anaerobic bioreactors with pyrogenic carbonaceous materials: the influence of material properties on methane generation publication-title: Environ. Sci.: Water Res. Technol. – volume: 39 start-page: 167 year: 1999 ident: 10.1016/j.biortech.2019.122403_b0075 article-title: Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils publication-title: Chemosphere. doi: 10.1016/S0045-6535(99)00101-0 – volume: 61 start-page: 262 year: 1997 ident: 10.1016/j.biortech.2019.122403_b0445 article-title: Energetics of syntrophic cooperation in methanogenic degradation publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/.61.2.262-280.1997 – volume: 11 start-page: 107 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0035 article-title: Role and potential of direct interspecies electron transfer in anaerobic digestion publication-title: Energies. doi: 10.3390/en11010107 – volume: 19 start-page: 65 year: 1995 ident: 10.1016/j.biortech.2019.122403_b0005 article-title: Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil publication-title: Biol. Fert. Soils. doi: 10.1007/BF00336349 – volume: 48 start-page: 7536 year: 2014 ident: 10.1016/j.biortech.2019.122403_b0120 article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es5016789 – volume: 117 start-page: 9 year: 1978 ident: 10.1016/j.biortech.2019.122403_b0060 article-title: Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria publication-title: Arch. Microbiol. doi: 10.1007/BF00689344 – volume: 25 start-page: 145 year: 2010 ident: 10.1016/j.biortech.2019.122403_b0200 article-title: Ecological and evolutionary interactions in syntrophic methanogenic consortia publication-title: Microbes Environ. doi: 10.1264/jsme2.ME10122 – volume: 287 year: 2019 ident: 10.1016/j.biortech.2019.122403_b0625 article-title: Synergetic promotion of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with graphite felt in anaerobic digestion publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2019.121373 – volume: 419 start-page: 20 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0280 article-title: Resin-enhanced rolling activated carbon electrode for efficient capacitive deionization publication-title: Desalination. doi: 10.1016/j.desal.2017.05.035 – volume: 72 start-page: 1172 year: 2004 ident: 10.1016/j.biortech.2019.122403_b0400 article-title: Microbial Reduction of Weakly Crystalline Iron (III) Oxides and Suppression of Methanogenesis in Paddy Soil publication-title: B. Environ. Contam. Tox. doi: 10.1007/s00128-004-0367-3 – volume: 6 year: 2015 ident: 10.1016/j.biortech.2019.122403_b0215 article-title: Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00439 – volume: 222 start-page: 270 year: 2016 ident: 10.1016/j.biortech.2019.122403_b0260 article-title: Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2016.10.007 – volume: 321 start-page: 47 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0485 article-title: Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.08.076 – volume: 241 start-page: 830 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0030 article-title: A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent – Magnetic separation and recycling of magnetite publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.06.018 – volume: 71 start-page: 643 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0325 article-title: Syntrophy goes electric: direct interspecies electron transfer publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-030117-020420 – volume: 47 start-page: 6790 year: 2013 ident: 10.1016/j.biortech.2019.122403_b0565 article-title: Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion publication-title: Water Res. doi: 10.1016/j.watres.2013.09.012 – volume: 244 start-page: 698 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0040 article-title: Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.08.023 – volume: 72 start-page: 897 year: 2008 ident: 10.1016/j.biortech.2019.122403_b0385 article-title: Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2007.0130 – volume: 272 start-page: 162 year: 2019 ident: 10.1016/j.biortech.2019.122403_b0510 article-title: Responsiveness extracellular electron transfer (EET) enhancement of anaerobic digestion system during start-up and starvation recovery stages via magnetite addition publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2018.10.013 – volume: 143 start-page: 240 year: 2018 ident: 10.1016/j.biortech.2019.122403_b0575 article-title: Response of enhanced sludge methanogenesis by red mud to temperature: Spectroscopic and electrochemical elucidation of endogenous redox mediators publication-title: Water Res. doi: 10.1016/j.watres.2018.06.061 – volume: 2 start-page: 506 year: 2009 ident: 10.1016/j.biortech.2019.122403_b0420 article-title: Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer publication-title: Energ. Environ. Sci. doi: 10.1039/b816647a – volume: 19 start-page: 2727 year: 2017 ident: 10.1016/j.biortech.2019.122403_b0440 article-title: Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13774 – volume: 88 start-page: 107 year: 2014 ident: 10.1016/j.biortech.2019.122403_b0650 article-title: Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12274 |
SSID | ssj0003172 |
Score | 2.643973 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Summarize the current understanding of the CMs enhancement on methanogenesis.•Biochar, AC and carbon cloth thermodynamically enhance... Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 122403 |
SubjectTerms | anaerobic digesters anaerobic digestion Anaerobic digestion (AD) Anaerobiosis carbon Conductive materials (CMs) Direct interspecies electron transfer (DIET) Electron Transport energy conversion fermentation Ferric Compounds ferrihydrite hydrogen iron magnesium oxide mass transfer Metal Nanoparticles Methane methane production Methanogenesis methanogens nanosilver partial pressure Potential enhancement characteristics Silver soot temperature toxicity |
Title | Conductive materials in anaerobic digestion: From mechanism to application |
URI | https://dx.doi.org/10.1016/j.biortech.2019.122403 https://www.ncbi.nlm.nih.gov/pubmed/31761622 https://www.proquest.com/docview/2317959323 https://www.proquest.com/docview/2431867005 |
Volume | 298 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxtBDLYQHNoeEKUPAhRNpV43YWdnJjvcoogogMqlReI2mtdWi8guCuHKb8feB6SqWg697tqSZVv2N_IL4JsK1ksnYxK5UIkIx-PECi4SmWvndUGznPRQ_H6p5lfi_Fpeb8C0n4Whtsou9rcxvYnW3ZdRp83RXVmOfhD4ziVmIJ0hqMho0FyIMXn58PGlzQPzY1NJQOKEqNemhG-GrqSO1qYokeohFZn641l_Jqi_AdAmEc12YLtDkGzSCvkeNmK1C-8mv5bdFo24C2-m_Rk3_LO2cfADnE_rija8YoxjiFVb92NlxWxlI61k8iw0JSc01wmbLesFW0QaDi7vF2xVs7V690e4mp3-nM6T7pxC4jEarhKP4EVJadFqmjsbhdAqIAJQOkiEeUr6woXMikz4cQg6P0Y7KW-lQ4TlsyiyT7BZ1VXcA8ZRz0XKnQgqCpuH3MkiTZ2OonBe-nQAsteh8d2ucTp5cWv6prIb0-vekO5Nq_sBjJ757tptG69y6N5E5je_MZgSXuX92tvUoFGoUmKrWD_cGwS9dIM94_-iQeiV05CTHMDn1iGeZUZ2lSrO9_9DugN4y-lt33SIH8LmavkQvyAAWrmjxsOPYGtydjG_fAIhVAS9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NDtMHTdK1vbacCubmpZUqzdgmBB-splLdCboJcHF4tdpOn_H-lHkGHYetjVFgGBJMhPIPkR4IsK1ksnYxK5UIkIp-PECi4SmWvndUGznPRQvFqo-Y04v5W3OzDtZ2GorbKL_W1Mb6J192XUaXN0X5aj7wS-c4kZSGcIKjL5DHaJnUoOYHdydjFfbAIypsimmIDnExLYGhS-O3ElNbU2dYlUn1Cdqd-f9WeO-hsGbXLRbB9ediCSTdp7voKdWB3Ai8mPVUekEQ9gb9pvcsM_W6SDr-F8WldE8ophjiFcbT2QlRWzlY3EyuRZaKpOaLGvbLaql2wZaT64fFiydc22St5v4Gb27Xo6T7qNConHgLhOPOIXJaVFw2nubBRCq4AgQOkgEekp6QsXMisy4cch6PwUTaW8lQ5Bls-iyN7CoKqr-B4YF2NVpNyJoKKwecidLNLU6SgK56VPhyB7HRrf0Y3T1oufpu8ruzO97g3p3rS6H8JoI3ffEm48KaF7E5nfXMdgVnhS9nNvU4NGoWKJrWL9-GAQ99Ia9oz_6wyir5zmnOQQ3rUOsbkziqtUcf7hP273Cfbm11eX5vJscfERnnN66jcN44cwWK8e4xHiobU77vz9FwnvB24 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductive+materials+in+anaerobic+digestion%3A+From+mechanism+to+application&rft.jtitle=Bioresource+technology&rft.au=Wu%2C+Yu&rft.au=Wang%2C+Shu&rft.au=Liang%2C+Danhui&rft.au=Li%2C+Nan&rft.date=2020-02-01&rft.issn=0960-8524&rft.volume=298&rft.spage=122403&rft_id=info:doi/10.1016%2Fj.biortech.2019.122403&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2019_122403 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |