Conductive materials in anaerobic digestion: From mechanism to application

[Display omitted] •Summarize the current understanding of the CMs enhancement on methanogenesis.•Biochar, AC and carbon cloth thermodynamically enhance methanogenesis.•MWCNT, biochar, and carbon cloth kinetically enhance methanogenesis significantly.•Adding CMs trigger DIET for efficient syntrophic...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 298; p. 122403
Main Authors Wu, Yu, Wang, Shu, Liang, Danhui, Li, Nan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Summarize the current understanding of the CMs enhancement on methanogenesis.•Biochar, AC and carbon cloth thermodynamically enhance methanogenesis.•MWCNT, biochar, and carbon cloth kinetically enhance methanogenesis significantly.•Adding CMs trigger DIET for efficient syntrophic metabolism.•CM supplemented can increase electron capture capability and accelerate reaction rate. Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive materials (CMs) have been applied in anaerobic digesters to improve the performance of anaerobic fermentation and methanogenesis, including carbon-based CMs and metal-based CMs. Generally, CMs facilitated the AD thermodynamically and kinetically because they triggered more efficient syntrophic metabolism to increase electron capture capability and accelerate reaction rate as well as enhance the performance of AD stages (hydrolysis-acidification, methanogenesis). Besides, adding CMs into anaerobic digester is benefit to dealing with the deteriorating AD, which induced from temperature variation, acidified working condition, higher H2 partial pressure, etc. However, few CMs exhibited inhibition on AD, including ferrihydrite, magnesium oxide, silver nanoparticles and carbon black. Inhibition comes from a series of complex factors, such as substrate competition, direct inhibition from Fe(III), Fe(III) reduction of methanogens, toxic effects to microorganisms and mass transfer limitation.
AbstractList Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive materials (CMs) have been applied in anaerobic digesters to improve the performance of anaerobic fermentation and methanogenesis, including carbon-based CMs and metal-based CMs. Generally, CMs facilitated the AD thermodynamically and kinetically because they triggered more efficient syntrophic metabolism to increase electron capture capability and accelerate reaction rate as well as enhance the performance of AD stages (hydrolysis-acidification, methanogenesis). Besides, adding CMs into anaerobic digester is benefit to dealing with the deteriorating AD, which induced from temperature variation, acidified working condition, higher H partial pressure, etc. However, few CMs exhibited inhibition on AD, including ferrihydrite, magnesium oxide, silver nanoparticles and carbon black. Inhibition comes from a series of complex factors, such as substrate competition, direct inhibition from Fe(III), Fe(III) reduction of methanogens, toxic effects to microorganisms and mass transfer limitation.
Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive materials (CMs) have been applied in anaerobic digesters to improve the performance of anaerobic fermentation and methanogenesis, including carbon-based CMs and metal-based CMs. Generally, CMs facilitated the AD thermodynamically and kinetically because they triggered more efficient syntrophic metabolism to increase electron capture capability and accelerate reaction rate as well as enhance the performance of AD stages (hydrolysis-acidification, methanogenesis). Besides, adding CMs into anaerobic digester is benefit to dealing with the deteriorating AD, which induced from temperature variation, acidified working condition, higher H2 partial pressure, etc. However, few CMs exhibited inhibition on AD, including ferrihydrite, magnesium oxide, silver nanoparticles and carbon black. Inhibition comes from a series of complex factors, such as substrate competition, direct inhibition from Fe(III), Fe(III) reduction of methanogens, toxic effects to microorganisms and mass transfer limitation.Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive materials (CMs) have been applied in anaerobic digesters to improve the performance of anaerobic fermentation and methanogenesis, including carbon-based CMs and metal-based CMs. Generally, CMs facilitated the AD thermodynamically and kinetically because they triggered more efficient syntrophic metabolism to increase electron capture capability and accelerate reaction rate as well as enhance the performance of AD stages (hydrolysis-acidification, methanogenesis). Besides, adding CMs into anaerobic digester is benefit to dealing with the deteriorating AD, which induced from temperature variation, acidified working condition, higher H2 partial pressure, etc. However, few CMs exhibited inhibition on AD, including ferrihydrite, magnesium oxide, silver nanoparticles and carbon black. Inhibition comes from a series of complex factors, such as substrate competition, direct inhibition from Fe(III), Fe(III) reduction of methanogens, toxic effects to microorganisms and mass transfer limitation.
Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive materials (CMs) have been applied in anaerobic digesters to improve the performance of anaerobic fermentation and methanogenesis, including carbon-based CMs and metal-based CMs. Generally, CMs facilitated the AD thermodynamically and kinetically because they triggered more efficient syntrophic metabolism to increase electron capture capability and accelerate reaction rate as well as enhance the performance of AD stages (hydrolysis-acidification, methanogenesis). Besides, adding CMs into anaerobic digester is benefit to dealing with the deteriorating AD, which induced from temperature variation, acidified working condition, higher H₂ partial pressure, etc. However, few CMs exhibited inhibition on AD, including ferrihydrite, magnesium oxide, silver nanoparticles and carbon black. Inhibition comes from a series of complex factors, such as substrate competition, direct inhibition from Fe(III), Fe(III) reduction of methanogens, toxic effects to microorganisms and mass transfer limitation.
[Display omitted] •Summarize the current understanding of the CMs enhancement on methanogenesis.•Biochar, AC and carbon cloth thermodynamically enhance methanogenesis.•MWCNT, biochar, and carbon cloth kinetically enhance methanogenesis significantly.•Adding CMs trigger DIET for efficient syntrophic metabolism.•CM supplemented can increase electron capture capability and accelerate reaction rate. Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive materials (CMs) have been applied in anaerobic digesters to improve the performance of anaerobic fermentation and methanogenesis, including carbon-based CMs and metal-based CMs. Generally, CMs facilitated the AD thermodynamically and kinetically because they triggered more efficient syntrophic metabolism to increase electron capture capability and accelerate reaction rate as well as enhance the performance of AD stages (hydrolysis-acidification, methanogenesis). Besides, adding CMs into anaerobic digester is benefit to dealing with the deteriorating AD, which induced from temperature variation, acidified working condition, higher H2 partial pressure, etc. However, few CMs exhibited inhibition on AD, including ferrihydrite, magnesium oxide, silver nanoparticles and carbon black. Inhibition comes from a series of complex factors, such as substrate competition, direct inhibition from Fe(III), Fe(III) reduction of methanogens, toxic effects to microorganisms and mass transfer limitation.
ArticleNumber 122403
Author Li, Nan
Wang, Shu
Wu, Yu
Liang, Danhui
Author_xml – sequence: 1
  givenname: Yu
  surname: Wu
  fullname: Wu, Yu
– sequence: 2
  givenname: Shu
  surname: Wang
  fullname: Wang, Shu
– sequence: 3
  givenname: Danhui
  surname: Liang
  fullname: Liang, Danhui
– sequence: 4
  givenname: Nan
  orcidid: 0000-0002-5852-2325
  surname: Li
  fullname: Li, Nan
  email: nli@tju.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31761622$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPCX6j2yGWDv3eNOIAiyocqcYGz5bUnMNGuHWynUv89Dmk5cMlpDvM8Y-t9r8hFTBEIuWF0zSjTb3brCVOu4H-tOWVmzTiXVDwjKzYOoudm0BdkRY2m_ai4vCRXpewopYIN_AW5bEMzzfmKfN2kGA6-4j10i6uQ0c2lw9i56CCnCX0X8CeUiim-7W5zWrqlPeoilqWrqXP7_YzeHdcvyfNtk-HV47wmP24_ft987u--ffqy-XDXe6mH2nvNlFbKTeANnxxIaXSgI9cmKMOFVn47BeGkkH4IwYzUDEp7pybNqBcgxTV5fbq7z-n3oX3NLlg8zLOLkA7FcinYqAdK1Xm0BWGUEVw09OYRPUwLBLvPuLj8YJ-iaoA-AT6nUjJs_yGM2mMndmefOrHHTuypkya--0_0WP8mVrPD-bz-_qRDy_QeIdviEaKHgBl8tSHhuRN_AIsNqyM
CitedBy_id crossref_primary_10_3390_atmos12081069
crossref_primary_10_1021_acs_energyfuels_0c03193
crossref_primary_10_1016_j_scitotenv_2021_146488
crossref_primary_10_1007_s12649_024_02440_4
crossref_primary_10_1016_j_jhazmat_2020_122830
crossref_primary_10_1016_j_watres_2022_119291
crossref_primary_10_1007_s11696_024_03495_2
crossref_primary_10_1016_j_biortech_2020_124118
crossref_primary_10_1016_j_biortech_2022_127635
crossref_primary_10_1016_j_chemosphere_2023_140175
crossref_primary_10_1111_gcbb_12947
crossref_primary_10_1016_j_fuel_2023_130517
crossref_primary_10_1016_j_biortech_2021_125847
crossref_primary_10_1016_j_scitotenv_2022_159840
crossref_primary_10_1039_D1RA06236K
crossref_primary_10_2166_wst_2024_121
crossref_primary_10_1016_j_copbio_2021_08_008
crossref_primary_10_3390_app10228184
crossref_primary_10_1016_j_chemosphere_2024_143058
crossref_primary_10_1016_j_jwpe_2022_103193
crossref_primary_10_1016_j_scitotenv_2022_155868
crossref_primary_10_1016_j_jclepro_2023_136294
crossref_primary_10_1016_j_jenvman_2024_122733
crossref_primary_10_1016_j_scitotenv_2024_172385
crossref_primary_10_1007_s00449_024_02974_w
crossref_primary_10_1016_j_biortech_2023_128979
crossref_primary_10_1080_09670262_2022_2103739
crossref_primary_10_1016_j_psep_2024_11_038
crossref_primary_10_1016_j_watres_2021_117440
crossref_primary_10_3390_fermentation9020183
crossref_primary_10_1088_1755_1315_621_1_012103
crossref_primary_10_1016_j_rser_2024_115095
crossref_primary_10_1039_D0EW00528B
crossref_primary_10_1016_j_jece_2024_113491
crossref_primary_10_1016_j_jhazmat_2020_124183
crossref_primary_10_1080_10962247_2020_1733133
crossref_primary_10_1002_aic_18305
crossref_primary_10_1016_j_envres_2022_114010
crossref_primary_10_1016_j_biortech_2023_129158
crossref_primary_10_1016_j_jclepro_2024_141478
crossref_primary_10_1016_j_scitotenv_2020_141809
crossref_primary_10_3390_catal11091094
crossref_primary_10_1016_j_watres_2024_122125
crossref_primary_10_1016_j_surfin_2023_103548
crossref_primary_10_1016_j_jenvman_2022_114540
crossref_primary_10_1016_j_jhazmat_2021_126615
crossref_primary_10_1016_j_cej_2024_158202
crossref_primary_10_3390_fermentation9050467
crossref_primary_10_1007_s13762_021_03664_w
crossref_primary_10_1016_j_cej_2022_137829
crossref_primary_10_1016_j_chemosphere_2021_132930
crossref_primary_10_1016_j_biortech_2024_131880
crossref_primary_10_1021_acs_iecr_1c03177
crossref_primary_10_3389_fceng_2022_974546
crossref_primary_10_3390_molecules27061895
crossref_primary_10_1016_j_biortech_2024_130315
crossref_primary_10_1016_j_rser_2022_112192
crossref_primary_10_1016_j_fuel_2023_127470
crossref_primary_10_1016_j_biortech_2021_126253
crossref_primary_10_1016_j_oneear_2023_02_011
crossref_primary_10_1002_tqem_21934
crossref_primary_10_1007_s42452_022_05222_6
crossref_primary_10_1016_j_scitotenv_2024_178340
crossref_primary_10_1016_j_scitotenv_2020_142724
crossref_primary_10_1016_j_biortech_2023_128908
crossref_primary_10_1021_acs_est_4c10638
crossref_primary_10_1016_j_chemosphere_2022_134049
crossref_primary_10_1016_j_resconrec_2021_105844
crossref_primary_10_1016_j_chemosphere_2021_130449
crossref_primary_10_3390_ijms22062932
crossref_primary_10_1016_j_rser_2024_114640
crossref_primary_10_1016_j_biortech_2022_128003
crossref_primary_10_1016_j_scitotenv_2022_154621
crossref_primary_10_1016_j_biortech_2024_130849
crossref_primary_10_1016_j_envpol_2023_121343
crossref_primary_10_1016_j_biortech_2020_122933
crossref_primary_10_1016_j_biortech_2021_125531
crossref_primary_10_1016_j_envres_2023_116770
crossref_primary_10_1016_j_biortech_2022_127832
crossref_primary_10_3390_pr8121614
crossref_primary_10_1016_j_jclepro_2021_129686
crossref_primary_10_1016_j_watres_2020_116663
crossref_primary_10_1016_j_jwpe_2024_105715
crossref_primary_10_1016_j_jenvman_2024_123883
crossref_primary_10_3390_app112110163
crossref_primary_10_1016_j_cej_2022_134977
crossref_primary_10_1016_j_apsusc_2021_151859
crossref_primary_10_1016_j_chemosphere_2024_143639
crossref_primary_10_1016_j_fuel_2022_123903
crossref_primary_10_1016_j_biortech_2022_128083
crossref_primary_10_1016_j_wasman_2021_01_032
crossref_primary_10_1016_j_biortech_2024_131663
crossref_primary_10_1016_j_renene_2021_02_087
crossref_primary_10_1016_j_watres_2024_122811
crossref_primary_10_3390_membranes11020100
crossref_primary_10_1007_s13762_025_06361_0
crossref_primary_10_1016_j_bcab_2023_102653
crossref_primary_10_1016_j_scitotenv_2022_153244
crossref_primary_10_1016_j_jclepro_2025_145028
crossref_primary_10_1016_j_jwpe_2024_105736
crossref_primary_10_1016_j_biortech_2022_128115
crossref_primary_10_1016_j_jclepro_2022_132507
crossref_primary_10_1016_j_electacta_2025_145993
crossref_primary_10_1021_acsomega_2c02934
crossref_primary_10_1016_j_scitotenv_2022_157592
crossref_primary_10_1016_j_biombioe_2021_106129
crossref_primary_10_20517_energymater_2023_62
crossref_primary_10_1016_j_jclepro_2022_134925
crossref_primary_10_1016_j_ijhydene_2022_04_287
crossref_primary_10_1016_j_cej_2024_155705
crossref_primary_10_1016_j_jclepro_2020_123567
crossref_primary_10_1016_j_jwpe_2024_105262
crossref_primary_10_3390_en16062523
crossref_primary_10_3390_fermentation9030262
crossref_primary_10_1016_j_biortech_2023_129473
crossref_primary_10_1002_jctb_7685
crossref_primary_10_1016_j_renene_2021_01_021
crossref_primary_10_1016_j_envres_2025_120810
crossref_primary_10_3390_bioengineering11030281
crossref_primary_10_1007_s12155_022_10500_7
crossref_primary_10_1038_s41598_024_55563_y
crossref_primary_10_1016_j_biortech_2020_123204
crossref_primary_10_1016_j_scitotenv_2023_166705
crossref_primary_10_1016_j_biortech_2020_123970
crossref_primary_10_1016_j_bej_2023_108840
crossref_primary_10_1039_D0RA09867A
crossref_primary_10_3390_app12094652
crossref_primary_10_1007_s10311_024_01766_8
crossref_primary_10_1016_j_jhazmat_2022_130628
crossref_primary_10_1016_j_envres_2024_119418
crossref_primary_10_1039_D0EW01093F
crossref_primary_10_3389_fenrg_2023_1141684
crossref_primary_10_1016_j_biortech_2023_129089
crossref_primary_10_1016_j_cej_2024_151456
crossref_primary_10_1016_j_biortech_2021_124793
crossref_primary_10_1016_j_cej_2022_139137
crossref_primary_10_1016_j_scitotenv_2021_148415
crossref_primary_10_3390_w14193129
crossref_primary_10_1016_j_chemosphere_2020_129389
crossref_primary_10_1021_acs_est_3c01986
crossref_primary_10_1016_j_jhazmat_2023_133121
crossref_primary_10_1007_s10532_022_09984_z
crossref_primary_10_1016_j_biortech_2020_124012
crossref_primary_10_1016_j_cej_2022_140369
crossref_primary_10_1016_j_biortech_2020_124494
crossref_primary_10_1016_j_biortech_2024_131051
crossref_primary_10_1016_j_psep_2024_05_139
crossref_primary_10_3390_w13040391
Cites_doi 10.1021/es800086f
10.1007/s11157-011-9236-9
10.1039/c2ee22459c
10.1016/j.biortech.2017.06.154
10.1016/j.watres.2014.11.042
10.1016/j.watres.2014.01.044
10.1016/j.watres.2015.12.029
10.1016/j.tibtech.2016.10.004
10.1016/j.biortech.2015.08.018
10.1016/j.watres.2017.03.050
10.1111/1462-2920.12576
10.1016/S0960-8524(01)00045-1
10.1016/j.cej.2016.11.149
10.1016/j.jhazmat.2016.02.069
10.3389/fmicb.2019.00388
10.1016/j.watres.2014.10.052
10.1007/s13762-018-2065-4
10.1016/j.biortech.2018.07.015
10.1039/c1ee02229f
10.1016/j.biortech.2016.10.058
10.1016/j.procbio.2012.07.032
10.1016/j.biortech.2017.05.017
10.1038/ncomms14873
10.1021/acs.est.8b01913
10.1128/AEM.68.5.2484-2494.2002
10.1007/s00253-017-8422-2
10.1128/AEM.00895-14
10.1016/j.biortech.2016.03.005
10.1016/j.chemosphere.2018.08.001
10.1016/j.gca.2018.02.009
10.1016/j.polymer.2017.05.073
10.1016/j.biortech.2014.09.071
10.1146/annurev-micro-092611-150104
10.1016/j.scitotenv.2018.06.271
10.1073/pnas.1117592109
10.1016/j.biortech.2015.05.007
10.1111/1462-2920.12485
10.1016/j.biortech.2017.08.063
10.1038/srep05019
10.1111/j.1365-2958.2007.05783.x
10.1016/j.jhazmat.2010.01.087
10.1021/acs.est.8b03022
10.1007/s00253-019-09946-1
10.1016/j.wasman.2017.07.025
10.1007/BF00244265
10.1016/j.biortech.2018.02.084
10.1007/s00203-002-0425-3
10.1038/nature15512
10.1039/C6RA02280D
10.1016/j.watres.2016.10.077
10.1016/j.biortech.2014.10.101
10.1016/j.biortech.2018.01.095
10.1007/s00253-017-8194-8
10.1016/j.biortech.2018.07.076
10.1016/j.biortech.2017.10.047
10.1016/j.cej.2017.09.160
10.1016/j.jhazmat.2015.03.039
10.1016/j.watres.2013.10.072
10.1021/acs.est.8b04121
10.3389/fmicb.2015.00121
10.1016/j.biortech.2016.04.106
10.1021/es800408u
10.1039/C3EE42189A
10.1016/j.biortech.2014.09.009
10.1128/AEM.00223-17
10.1016/j.biortech.2017.11.003
10.1016/j.biortech.2017.03.099
10.1016/j.jclepro.2016.06.144
10.1016/j.biortech.2016.06.010
10.1007/BF00406313
10.1128/AEM.00023-10
10.1016/j.ibiod.2016.09.023
10.1186/s13068-017-0994-7
10.1016/S0022-0728(79)80075-3
10.1016/j.watres.2004.05.004
10.1016/j.jct.2006.12.016
10.1007/s00253-015-6900-y
10.1128/MR.55.2.259-287.1991
10.1128/mBio.00159-11
10.1016/j.biortech.2017.03.054
10.1039/C5EE03085D
10.1038/srep25857
10.1128/AEM.03944-12
10.1016/j.biortech.2019.121546
10.1016/j.biortech.2018.09.012
10.1016/0960-8524(96)00033-8
10.1016/j.ibiod.2015.12.006
10.1016/j.biortech.2017.05.046
10.1016/j.biortech.2016.08.114
10.1016/j.watres.2003.12.019
10.1038/srep12732
10.1016/j.biortech.2017.04.021
10.1016/j.biortech.2018.06.053
10.1016/j.femsec.2004.03.017
10.1126/science.1196526
10.1038/nrmicro2166
10.1111/j.1462-2920.2011.02611.x
10.1016/j.biortech.2016.03.078
10.1038/ismej.2015.139
10.1111/j.1574-6941.2001.tb00768.x
10.1021/es500906d
10.1016/j.watres.2017.06.087
10.1038/nature03661
10.1038/ngeo870
10.1016/S0045-6535(99)00101-0
10.1128/.61.2.262-280.1997
10.3390/en11010107
10.1007/BF00336349
10.1021/es5016789
10.1007/BF00689344
10.1264/jsme2.ME10122
10.1016/j.biortech.2019.121373
10.1016/j.desal.2017.05.035
10.1007/s00128-004-0367-3
10.3389/fmicb.2015.00439
10.1016/j.biortech.2016.10.007
10.1016/j.jhazmat.2016.08.076
10.1016/j.biortech.2017.06.018
10.1146/annurev-micro-030117-020420
10.1016/j.watres.2013.09.012
10.1016/j.biortech.2017.08.023
10.2136/sssaj2007.0130
10.1016/j.biortech.2018.10.013
10.1016/j.watres.2018.06.061
10.1039/b816647a
10.1111/1462-2920.13774
10.1111/1574-6941.12274
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2019.122403
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 31761622
10_1016_j_biortech_2019_122403
S0960852419316335
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c467t-c615655abec92bae4496d08269d592365cfbd3a434c7dd9809756ca5b610c3e43
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Thu Jul 10 18:11:05 EDT 2025
Fri Jul 11 03:59:59 EDT 2025
Thu Apr 03 06:54:20 EDT 2025
Tue Jul 01 03:18:36 EDT 2025
Thu Apr 24 22:54:45 EDT 2025
Fri Feb 23 02:49:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Anaerobic digestion (AD)
Direct interspecies electron transfer (DIET)
Conductive materials (CMs)
Potential enhancement characteristics
Methanogenesis
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-c615655abec92bae4496d08269d592365cfbd3a434c7dd9809756ca5b610c3e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5852-2325
PMID 31761622
PQID 2317959323
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2431867005
proquest_miscellaneous_2317959323
pubmed_primary_31761622
crossref_primary_10_1016_j_biortech_2019_122403
crossref_citationtrail_10_1016_j_biortech_2019_122403
elsevier_sciencedirect_doi_10_1016_j_biortech_2019_122403
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
2020-Feb
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Achtnich, Bak, Conrad (b0005) 1995; 19
Baek, Jung, Kim, Lee (b0030) 2017; 241
Wang, Liu, Jin, Chen, Xu, Wang, Xing, Zhu (b0510) 2019; 272
Stams, Plugge (b0470) 2009; 7
Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (b0295) 2012; 12
Lovley (b0320) 2012; 66
Xu, He, Luo, Lü, He, Cui (b0550) 2015; 196
Smith, Nevin, Lovley (b0460) 2015; 6
Luo, Lü, Shao, He (b0340) 2015; 68
Hu, Sun, Ma, Qiu, Guo (b0185) 2017; 120
Sun, Levin, Guzman, Enders, Muller, Angenent, Lehmann (b0495) 2017; 8
Zhao, Zhang, Li, Dang, Zhu, Quan (b0640) 2017; 313
You, Zheng, Zang, Liu, Liu, Liu (b0600) 2018; 256
Kato, Watanabe (b0200) 2010; 25
Morita, Malvankar, Franks, Summers, Giloteaux, Rotaru, Rotaru, Lovley (b0365) 2011; 2
Suanon, Sun, Li, Cai, Zhang, Yan, Yu (b0485) 2017; 321
Klüpfel, Keiluweit, Kleber, Sander (b0220) 2014; 48
Kletzin, Heimerl, Flechsler, van Niftrik, Rachel, Klingl (b0215) 2015; 6
Zehnder, Mitchell (b0615) 1978; 2
Cheng, de Los Reyes, Call (b0110) 2018; 4
Ambuchi, Zhang, Shan, Liang, Zhang, Feng (b0010) 2017; 117
Yang, Guo, Hu (b0565) 2013; 47
Yuan, Ding, Zama, Liu, Hozzein, Zhu (b0605) 2018; 52
Li, Tong, Fang, Chu, Yu (b0275) 2015; 70
Chen, Wang, Xia, Jiang, Fu, Shen, Wang, Li (b0100) 2016; 311
Poirier, Madigou, Bouchez, Chapleur (b0390) 2017; 235
Schink (b0445) 1997; 61
Wang, Wang, Zhang, Hu, Zhang, Muñoz Sierra (b0535) 2016; 113
Lei, Sun, Dang, Chen, Zhao, Zhang, Holmes (b0260) 2016; 222
Yuan, Bolan, Prévoteau, Vithanage, Biswas, Ok, Wang (b0610) 2017; 246
Wu, Hickey, Jain, Zeikus (b0540) 1993; 159
Chen, Rotaru, Shrestha, Malvankar, Liu, Fan, Nevin, Lovley (b0095) 2015; 4
Reguera, McCarthy, Mehta, Nicoll, Tuominen, Lovley (b0410) 2005; 435
Lovley (b0405) 2011; 4
Lueders, Friedrich (b0335) 2002; 68
Cruz Viggi, Rossetti, Fazi, Paiano, Majone, Aulenta (b0120) 2014; 48
Wang, Han, Han, Li, Xu, Zhuang (b0515) 2018; 257
Zhuang, Zhu, Shan, Zhang, Fang, Shi (b0655) 2018; 270
Ren, Li, Li, An, Zhao, Ren (b0415) 2015; 178
Lovley (b0310) 1991; 55
Zhuang, Tang, Wang, Hu, Zhou (b0660) 2015; 293
Bertin, Berselli, Fava, Petrangeli-Papini, Marchetti (b0055) 2004; 38
Lin, Cheng, Zhang, Zhou, Cen, Murphy (b0290) 2017; 239
Zhou, Xu, Yang, Zhuang (b0650) 2014; 88
Ye, Hu, Ren, Zhou, Zhang, Zhou (b0580) 2018; 247
Leang, Qian, Mester, Lovley (b0245) 2010; 76
Peth, Horn, Beckmann, Donath, Fischer, Smucker (b0385) 2008; 72
Pan, Hong, Mbadinga, Wang, Liu, Yang, Gu, Mu (b0370) 2017; 101
De Vrieze, Gildemyn, Arends, Vanwonterghem, Verbeken, Boon, Verstraete, Tyson, Hennebel, Rabaey (b0140) 2014; 54
Li, Chang, Liu, Fu, Ding, Lu (b0265) 2015; 17
Lee, Park, Park (b0255) 2017; 68
Yang, Xu, Guo, Sun (b0560) 2012; 47
Li, An, Wang, Wang, Lu, Ren (b0280) 2017; 419
Baek, Kim, Kim, Lee (b0035) 2018; 11
Salvador, Martins, Melle-Franco, Serpa, Stams, Cavaleiro, Pereira, Alves (b0440) 2017; 19
Wang, Zhang, Dai, Chen, Dai (b0530) 2016; 6
Baek, Kim, Cho, Bae, Lee (b0025) 2015; 99
Qiao, Tian, Qi, Zhou (b0395) 2015; 5
Lee, Kim, Lee, Nelson, Yoon, Sedlak (b0250) 2008; 42
Liu, Rotaru, Shrestha, Malvankar, Nevin, Lovley (b0300) 2014; 17
Zhang, Ma, Ji, Li, Zhang, Zang (b0625) 2019; 287
Dang, Sun, Woodard, Wang, Nevin, Holmes (b0135) 2017; 238
Rotaru, A., Shrestha, P., Liu, F., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., P. Nevin, K., R. Lovley, D., 2014a. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science 7, 408-415.
Jing, Wan, Angelidaki, Zhang, Luo (b0190) 2017; 108
Ye, Hu, Cheng, Lin, Liu, Zhou, He (b0575) 2018; 143
Laviron (b0240) 1979; 101
Martins, Salvador, Pereira, Alves (b0355) 2018; 52
Bodegom, Scholten, Stams (b0070) 2004; 49
Barua, Zakaria, Dhar (b0045) 2018; 266
Kong, Wei, Xu, Liu, Li, Liu, Yu (b0230) 2016; 211
Roden, Kappler, Bauer, Jiang, Paul, Stoesser, Konishi, Xu (b0425) 2010; 3
Tian, Qiao, Li, Zhang, Zhou (b0500) 2017; 224
Park, Kang, Park, Park (b0375) 2018; 254
Wang, An, Wan, Du, Wang, Cheng, Li (b0525) 2018; 52
Chen, Rotaru, Liu, Philips, Woodard, Nevin, Lovley (b0090) 2014; 173
Kato, Hashimoto, Watanabe (b0205) 2012; 14
Yin, He, Liu, Wu (b0585) 2017; 101
Bird, Coleman, Newman (b0065) 2013; 79
An, Li, Wan, Zhou, Du, Li, Wang (b0015) 2017; 123
Li, Xiao, Zheng, Zhang, Luo, Tong, Xu, Tan, Liu, Wang, Liu (b0270) 2018; 643
Fagbohungbe, Herbert, Hurst, Li, Usmani, Semple (b0145) 2016; 216
Martinez-Gutierrez, Olive, Banuelos, Orrantia, Nino, Sanchez, Ruiz, Bach, Av-Gay (b0350) 2010; 6
Goyal, Seth, Handa (b0170) 1996; 56
Straub, Benz, Schink (b0480) 2001; 34
Dang, Holmes, Zhao, Woodard, Zhang, Sun, Wang, Nevin, Lovley (b0130) 2016; 220
Fu, Zhou, Wang, You, Lu, Yu, Zhou (b0160) 2019; 10
Zhao, Li, Yu, Zhang (b0645) 2018; 250
Lovley (b0315) 2011; 10
McGlynn, Chadwick, Kempes, Orphan (b0360) 2015; 526
Yin, Yang, Wang, Xing, Wu (b0595) 2018; 333
Shi, Squier, Zachara, Fredrickson (b0455) 2007; 65
Summers, Fogarty, Leang, Franks, Malvankar, Lovley (b0490) 2010; 330
Sharma, Mahajan, Goel (b9000) 2019; 16
Bryant, Wolin, Wolin, Wolfe (b0080) 1967; 59
Bueno-López, Rangel-Mendez, Alatriste-Mondragón, Pérez-Rodríguez, Hernández-Montoya, Cervantes (b0085) 2018; 211
Lü, Luo, Shao, He (b0330) 2016; 90
Xu, Wang, Yan, Wu, Zuo, Wang (b0545) 2016; 216
Zhao, Zhang, Holmes, Dang, Woodard, Nevin, Lovley (b0635) 2016; 209
Bodegom, Stams (b0075) 1999; 39
Gu, Yin, Liu, Du, Wu (b0175) 2019; 7
Holmes, D., Shrestha, P., Walker, D., Dang, Y., P. Nevin, K., L. Woodard, T., R. Lovley, D., 2017. Metatranscriptomic Evidence for Direct Interspecies Electron Transfer Between Geobacter and Methanothrix Species in Methanogenic Rice Paddy Soils. Appl. Environ. Microb. 83, 00223-17.
Qu, Ratering, Schnell (b0400) 2004; 72
Richter, Nevin, Jia, Lowy, Lovley, Tender (b0420) 2009; 2
Zhao, Zhang, Woodard, Nevin, Lovley (b0630) 2015; 191
Barua, Dhar (b0040) 2017; 244
Rotaru, Shrestha, Liu, Markovaite, Chen, Nevin, Lovley (b0435) 2014; 80
Storck, Virdis, Batstone (b0475) 2016; 10
Yan, Shen, Xiao, Chen, Sun, Kumar Tyagi, Zhou (b0555) 2017; 239
Tremblay, Angenent, Zhang (b0505) 2017; 35
Ko, Wang, Yuan, Lü, He, Xu (b0225) 2018; 266
Auffan, Achouak, Rose, Roncato, Chanéac, Waite, Masion, Woicik, Wiesner, Bottero (b0020) 2008; 42
Li, Zhang, Yang, Quan, Zhao (b0285) 2017; 234
Song, Kwon, Woo (b0465) 2004; 38
Freitas, Mendes, Coelho (b0155) 2007; 39
Fujinawa, Nagoya, Kouzuma, Watanabe (b0165) 2019; 103
Luongo, Zhang (b0345) 2010; 178
Peng, Zhang, Tan, Zhao, Zhao, Quan (b0380) 2018; 249
Yang, Guo, Shi, Wang, Wang, Dai (b0570) 2016; 6
Colunga, Rangel-Mendez, Celis, Cervantes (b0115) 2015; 175
Feng, Zhang, Quan, Chen (b0150) 2014; 52
Kato, Hashimoto, Watanabe (b0210) 2012; 109
Kaden, Galushko, Schink (b0195) 2002; 178
Lovley (b0325) 2017; 71
Liu, Gu, Yin, Wu (b0305) 2019; 288
Biebl, Pfennig (b0060) 1978; 117
Yin, Miao, Li, Wu (b0590) 2017; 119
Zhang, Zhao, Zhang, Wang, Fan, Zang (b0620) 2018; 266
Beckmann, Welte, Li, Oo, Kroeninger, Heo, Zhang, Ribeiro, Lee, Bhadbhade, Marjo, Seidel, Deppenmeier, Manefield (b0050) 2016; 9
Cruz Viggi, Simonetti, Palma, Pagliaccia, Braguglia, Fazi, Baronti, Navarra, Pettiti, Koch, Harnisch, Aulenta (b0125) 2017; 10
Cheng, Call (b0105) 2016; 18
Shen, Linville, Ignacio-de Leon, Schoene, Urgun-Demirtas (b0450) 2016; 135
Lalov, Krysteva, Phelouzat (b0235) 2001; 79
Ren (10.1016/j.biortech.2019.122403_b0415) 2015; 178
Xu (10.1016/j.biortech.2019.122403_b0550) 2015; 196
Wang (10.1016/j.biortech.2019.122403_b0525) 2018; 52
Ambuchi (10.1016/j.biortech.2019.122403_b0010) 2017; 117
McGlynn (10.1016/j.biortech.2019.122403_b0360) 2015; 526
Tremblay (10.1016/j.biortech.2019.122403_b0505) 2017; 35
Qu (10.1016/j.biortech.2019.122403_b0400) 2004; 72
Cruz Viggi (10.1016/j.biortech.2019.122403_b0125) 2017; 10
Luongo (10.1016/j.biortech.2019.122403_b0345) 2010; 178
Dang (10.1016/j.biortech.2019.122403_b0135) 2017; 238
Sharma (10.1016/j.biortech.2019.122403_b9000) 2019; 16
Lovley (10.1016/j.biortech.2019.122403_b0315) 2011; 10
Yin (10.1016/j.biortech.2019.122403_b0595) 2018; 333
Bird (10.1016/j.biortech.2019.122403_b0065) 2013; 79
Stams (10.1016/j.biortech.2019.122403_b0470) 2009; 7
Pan (10.1016/j.biortech.2019.122403_b0370) 2017; 101
Martins (10.1016/j.biortech.2019.122403_b0355) 2018; 52
Qiao (10.1016/j.biortech.2019.122403_b0395) 2015; 5
Feng (10.1016/j.biortech.2019.122403_b0150) 2014; 52
Li (10.1016/j.biortech.2019.122403_b0285) 2017; 234
Lalov (10.1016/j.biortech.2019.122403_b0235) 2001; 79
Baek (10.1016/j.biortech.2019.122403_b0035) 2018; 11
Yin (10.1016/j.biortech.2019.122403_b0590) 2017; 119
Suanon (10.1016/j.biortech.2019.122403_b0485) 2017; 321
Barua (10.1016/j.biortech.2019.122403_b0045) 2018; 266
Smith (10.1016/j.biortech.2019.122403_b0460) 2015; 6
Fujinawa (10.1016/j.biortech.2019.122403_b0165) 2019; 103
Wang (10.1016/j.biortech.2019.122403_b0510) 2019; 272
Lovley (10.1016/j.biortech.2019.122403_b0325) 2017; 71
Liu (10.1016/j.biortech.2019.122403_b0300) 2014; 17
Summers (10.1016/j.biortech.2019.122403_b0490) 2010; 330
Colunga (10.1016/j.biortech.2019.122403_b0115) 2015; 175
Klüpfel (10.1016/j.biortech.2019.122403_b0220) 2014; 48
Achtnich (10.1016/j.biortech.2019.122403_b0005) 1995; 19
Reguera (10.1016/j.biortech.2019.122403_b0410) 2005; 435
Ko (10.1016/j.biortech.2019.122403_b0225) 2018; 266
Kato (10.1016/j.biortech.2019.122403_b0205) 2012; 14
Li (10.1016/j.biortech.2019.122403_b0280) 2017; 419
Lovley (10.1016/j.biortech.2019.122403_b0310) 1991; 55
Martinez-Gutierrez (10.1016/j.biortech.2019.122403_b0350) 2010; 6
Peth (10.1016/j.biortech.2019.122403_b0385) 2008; 72
Zhang (10.1016/j.biortech.2019.122403_b0620) 2018; 266
Lü (10.1016/j.biortech.2019.122403_b0330) 2016; 90
Zhao (10.1016/j.biortech.2019.122403_b0635) 2016; 209
Yan (10.1016/j.biortech.2019.122403_b0555) 2017; 239
Schink (10.1016/j.biortech.2019.122403_b0445) 1997; 61
Jing (10.1016/j.biortech.2019.122403_b0190) 2017; 108
Cruz Viggi (10.1016/j.biortech.2019.122403_b0120) 2014; 48
Zhou (10.1016/j.biortech.2019.122403_b0650) 2014; 88
Salvador (10.1016/j.biortech.2019.122403_b0440) 2017; 19
Lin (10.1016/j.biortech.2019.122403_b0290) 2017; 239
Ye (10.1016/j.biortech.2019.122403_b0575) 2018; 143
10.1016/j.biortech.2019.122403_b0180
Peng (10.1016/j.biortech.2019.122403_b0380) 2018; 249
Rotaru (10.1016/j.biortech.2019.122403_b0435) 2014; 80
Bueno-López (10.1016/j.biortech.2019.122403_b0085) 2018; 211
Baek (10.1016/j.biortech.2019.122403_b0025) 2015; 99
Hu (10.1016/j.biortech.2019.122403_b0185) 2017; 120
Zehnder (10.1016/j.biortech.2019.122403_b0615) 1978; 2
Bodegom (10.1016/j.biortech.2019.122403_b0075) 1999; 39
Xu (10.1016/j.biortech.2019.122403_b0545) 2016; 216
Storck (10.1016/j.biortech.2019.122403_b0475) 2016; 10
Cheng (10.1016/j.biortech.2019.122403_b0105) 2016; 18
Fu (10.1016/j.biortech.2019.122403_b0160) 2019; 10
Kong (10.1016/j.biortech.2019.122403_b0230) 2016; 211
Fagbohungbe (10.1016/j.biortech.2019.122403_b0145) 2016; 216
Wu (10.1016/j.biortech.2019.122403_b0540) 1993; 159
Lovley (10.1016/j.biortech.2019.122403_b0405) 2011; 4
Richter (10.1016/j.biortech.2019.122403_b0420) 2009; 2
Barua (10.1016/j.biortech.2019.122403_b0040) 2017; 244
Chen (10.1016/j.biortech.2019.122403_b0095) 2015; 4
Li (10.1016/j.biortech.2019.122403_b0275) 2015; 70
Lueders (10.1016/j.biortech.2019.122403_b0335) 2002; 68
Lee (10.1016/j.biortech.2019.122403_b0250) 2008; 42
Zhao (10.1016/j.biortech.2019.122403_b0645) 2018; 250
Kletzin (10.1016/j.biortech.2019.122403_b0215) 2015; 6
Lee (10.1016/j.biortech.2019.122403_b0255) 2017; 68
Lovley (10.1016/j.biortech.2019.122403_b0320) 2012; 66
An (10.1016/j.biortech.2019.122403_b0015) 2017; 123
Auffan (10.1016/j.biortech.2019.122403_b0020) 2008; 42
Baek (10.1016/j.biortech.2019.122403_b0030) 2017; 241
Zhang (10.1016/j.biortech.2019.122403_b0625) 2019; 287
Poirier (10.1016/j.biortech.2019.122403_b0390) 2017; 235
Yang (10.1016/j.biortech.2019.122403_b0570) 2016; 6
Kato (10.1016/j.biortech.2019.122403_b0200) 2010; 25
Kato (10.1016/j.biortech.2019.122403_b0210) 2012; 109
Dang (10.1016/j.biortech.2019.122403_b0130) 2016; 220
Park (10.1016/j.biortech.2019.122403_b0375) 2018; 254
Li (10.1016/j.biortech.2019.122403_b0270) 2018; 643
Lei (10.1016/j.biortech.2019.122403_b0260) 2016; 222
Chen (10.1016/j.biortech.2019.122403_b0090) 2014; 173
Gu (10.1016/j.biortech.2019.122403_b0175) 2019; 7
Zhao (10.1016/j.biortech.2019.122403_b0640) 2017; 313
10.1016/j.biortech.2019.122403_b0430
Liu (10.1016/j.biortech.2019.122403_b0295) 2012; 12
Goyal (10.1016/j.biortech.2019.122403_b0170) 1996; 56
Ye (10.1016/j.biortech.2019.122403_b0580) 2018; 247
Zhuang (10.1016/j.biortech.2019.122403_b0655) 2018; 270
Leang (10.1016/j.biortech.2019.122403_b0245) 2010; 76
Bryant (10.1016/j.biortech.2019.122403_b0080) 1967; 59
Laviron (10.1016/j.biortech.2019.122403_b0240) 1979; 101
Luo (10.1016/j.biortech.2019.122403_b0340) 2015; 68
Roden (10.1016/j.biortech.2019.122403_b0425) 2010; 3
De Vrieze (10.1016/j.biortech.2019.122403_b0140) 2014; 54
Zhao (10.1016/j.biortech.2019.122403_b0630) 2015; 191
Li (10.1016/j.biortech.2019.122403_b0265) 2015; 17
Liu (10.1016/j.biortech.2019.122403_b0305) 2019; 288
Beckmann (10.1016/j.biortech.2019.122403_b0050) 2016; 9
Yang (10.1016/j.biortech.2019.122403_b0560) 2012; 47
Yuan (10.1016/j.biortech.2019.122403_b0610) 2017; 246
Sun (10.1016/j.biortech.2019.122403_b0495) 2017; 8
Morita (10.1016/j.biortech.2019.122403_b0365) 2011; 2
Yin (10.1016/j.biortech.2019.122403_b0585) 2017; 101
Wang (10.1016/j.biortech.2019.122403_b0535) 2016; 113
Tian (10.1016/j.biortech.2019.122403_b0500) 2017; 224
Shi (10.1016/j.biortech.2019.122403_b0455) 2007; 65
Zhuang (10.1016/j.biortech.2019.122403_b0660) 2015; 293
Song (10.1016/j.biortech.2019.122403_b0465) 2004; 38
You (10.1016/j.biortech.2019.122403_b0600) 2018; 256
Cheng (10.1016/j.biortech.2019.122403_b0110) 2018; 4
Yang (10.1016/j.biortech.2019.122403_b0565) 2013; 47
Bertin (10.1016/j.biortech.2019.122403_b0055) 2004; 38
Kaden (10.1016/j.biortech.2019.122403_b0195) 2002; 178
Bodegom (10.1016/j.biortech.2019.122403_b0070) 2004; 49
Shen (10.1016/j.biortech.2019.122403_b0450) 2016; 135
Wang (10.1016/j.biortech.2019.122403_b0530) 2016; 6
Straub (10.1016/j.biortech.2019.122403_b0480) 2001; 34
Yuan (10.1016/j.biortech.2019.122403_b0605) 2018; 52
Chen (10.1016/j.biortech.2019.122403_b0100) 2016; 311
Freitas (10.1016/j.biortech.2019.122403_b0155) 2007; 39
Wang (10.1016/j.biortech.2019.122403_b0515) 2018; 257
Biebl (10.1016/j.biortech.2019.122403_b0060) 1978; 117
References_xml – volume: 10
  start-page: 621
  year: 2016
  end-page: 631
  ident: b0475
  article-title: Modelling extracellular limitations for mediated versus direct interspecies electron transfer
  publication-title: The ISME journal.
– volume: 56
  start-page: 239
  year: 1996
  end-page: 244
  ident: b0170
  article-title: Diphasic fixed-film biomethanation of distillery spentwash
  publication-title: Bioresource Technol.
– volume: 55
  start-page: 259
  year: 1991
  end-page: 287
  ident: b0310
  article-title: Dissimilatory Fe(III) and Mn(IV) reduction
  publication-title: Microbiol. Rev.
– volume: 17
  start-page: 648
  year: 2014
  end-page: 655
  ident: b0300
  article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange
  publication-title: Environ. Microbiol.
– volume: 61
  start-page: 262
  year: 1997
  end-page: 280
  ident: b0445
  article-title: Energetics of syntrophic cooperation in methanogenic degradation
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 59
  start-page: 20
  year: 1967
  end-page: 31
  ident: b0080
  article-title: Methanobacillus omelianskii, a symbiotic association of two species of bacteria
  publication-title: Archiv. Mikrobiol.
– volume: 313
  start-page: 10
  year: 2017
  end-page: 18
  ident: b0640
  article-title: Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth
  publication-title: Chem. Eng. J.
– volume: 643
  start-page: 1024
  year: 2018
  end-page: 1030
  ident: b0270
  article-title: A new insight into the strategy for methane production affected by conductive carbon cloth in wetland soil: Beneficial to acetoclastic methanogenesis instead of CO2 reduction
  publication-title: Sci. Total Environ.
– volume: 178
  start-page: 356
  year: 2010
  end-page: 362
  ident: b0345
  article-title: Toxicity of carbon nanotubes to the activated sludge process
  publication-title: J. Hazard. Mater.
– volume: 80
  start-page: 4599
  year: 2014
  end-page: 4605
  ident: b0435
  article-title: Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri
  publication-title: Appl. Environ. Microb.
– volume: 211
  start-page: 709
  year: 2018
  end-page: 716
  ident: b0085
  article-title: Graphene oxide triggers mass transfer limitations on the methanogenic activity of an anaerobic consortium with a particulate substrate
  publication-title: Chemosphere
– volume: 48
  start-page: 7536
  year: 2014
  end-page: 7543
  ident: b0120
  article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation
  publication-title: Environ. Sci. Technol.
– volume: 119
  start-page: 104
  year: 2017
  end-page: 110
  ident: b0590
  article-title: Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon
  publication-title: Int. Biodeter. Biodegr.
– volume: 256
  start-page: 82
  year: 2018
  end-page: 96
  ident: b0600
  article-title: Stimulatory effect of magnetite on the syntrophic metabolism of Geobacter co-cultures: Influences of surface coating
  publication-title: Geochim. Cosmochim. Ac.
– volume: 4
  start-page: 1794
  year: 2018
  end-page: 1806
  ident: b0110
  article-title: Amending anaerobic bioreactors with pyrogenic carbonaceous materials: the influence of material properties on methane generation
  publication-title: Environ. Sci.: Water Res. Technol.
– volume: 101
  start-page: 7053
  year: 2017
  end-page: 7063
  ident: b0370
  article-title: Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir
  publication-title: Appl. Microbiol. Biot.
– volume: 79
  start-page: 83
  year: 2001
  end-page: 85
  ident: b0235
  article-title: Improvement of biogas production from vinasse via covalently immobilized methanogens
  publication-title: Bioresour Technol.
– volume: 321
  start-page: 47
  year: 2017
  end-page: 53
  ident: b0485
  article-title: Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation
  publication-title: J. Hazard. Mater.
– volume: 68
  start-page: 710
  year: 2015
  end-page: 718
  ident: b0340
  article-title: Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes
  publication-title: Water Res.
– volume: 52
  start-page: 10241
  year: 2018
  end-page: 10253
  ident: b0355
  article-title: Methane production and conductive materials: a critical review
  publication-title: Environ. Sci. Technol.
– volume: 135
  start-page: 1054
  year: 2016
  end-page: 1064
  ident: b0450
  article-title: Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar
  publication-title: J. Clean. Prod.
– volume: 196
  start-page: 606
  year: 2015
  end-page: 612
  ident: b0550
  article-title: Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester
  publication-title: Bioresource Technol.
– volume: 7
  start-page: 568
  year: 2009
  end-page: 577
  ident: b0470
  article-title: Electron transfer in syntrophic communities of anaerobic bacteria and archaea
  publication-title: Nat. Rev. Microbiol.
– volume: 159
  start-page: 57
  year: 1993
  end-page: 65
  ident: b0540
  article-title: Energetics and regulations of formate and hydrogen metabolism by Methanobacterium formicicum
  publication-title: Arch. Microbiol.
– volume: 220
  start-page: 516
  year: 2016
  end-page: 522
  ident: b0130
  article-title: Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials
  publication-title: Bioresource Technol.
– volume: 17
  start-page: 1533
  year: 2015
  end-page: 1547
  ident: b0265
  article-title: Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments
  publication-title: Environ. Microbiol.
– volume: 48
  start-page: 5601
  year: 2014
  end-page: 5611
  ident: b0220
  article-title: Redox properties of plant biomass-derived black carbon (Biochar)
  publication-title: Environ. Sci. Technol.
– reference: Rotaru, A., Shrestha, P., Liu, F., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., P. Nevin, K., R. Lovley, D., 2014a. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science 7, 408-415.
– volume: 19
  start-page: 2727
  year: 2017
  end-page: 2739
  ident: b0440
  article-title: Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture
  publication-title: Environ. Microbiol.
– volume: 54
  start-page: 211
  year: 2014
  end-page: 221
  ident: b0140
  article-title: Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion
  publication-title: Water Res.
– volume: 103
  start-page: 6385
  year: 2019
  end-page: 6392
  ident: b0165
  article-title: Conductive carbon nanoparticles inhibit methanogens and stabilize hydrogen production in microbial electrolysis cells
  publication-title: Appl. Microbiol. Biot.
– volume: 178
  start-page: 53
  year: 2002
  ident: b0195
  article-title: Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes
  publication-title: Arch Microbiol.
– volume: 419
  start-page: 20
  year: 2017
  end-page: 28
  ident: b0280
  article-title: Resin-enhanced rolling activated carbon electrode for efficient capacitive deionization
  publication-title: Desalination.
– volume: 12
  start-page: 8982
  year: 2012
  end-page: 8989
  ident: b0295
  article-title: Promoting direct interspecies electron transfer with activated carbon
  publication-title: Energ. Environ. Sci.
– volume: 9
  start-page: 644
  year: 2016
  end-page: 655
  ident: b0050
  article-title: Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation
  publication-title: Energ. Environ. Sci.
– volume: 108
  start-page: 212
  year: 2017
  end-page: 221
  ident: b0190
  article-title: iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite
  publication-title: Water Res.
– volume: 25
  start-page: 145
  year: 2010
  end-page: 151
  ident: b0200
  article-title: Ecological and evolutionary interactions in syntrophic methanogenic consortia
  publication-title: Microbes Environ.
– volume: 435
  start-page: 1098
  year: 2005
  end-page: 1101
  ident: b0410
  article-title: Extracellular electron transfer via microbial nanowires
  publication-title: Nature
– volume: 272
  start-page: 162
  year: 2019
  end-page: 170
  ident: b0510
  article-title: Responsiveness extracellular electron transfer (EET) enhancement of anaerobic digestion system during start-up and starvation recovery stages via magnetite addition
  publication-title: Bioresource Technol.
– volume: 113
  start-page: 126
  year: 2016
  end-page: 133
  ident: b0535
  article-title: Degradation kinetics of pentachlorophenol and changes in anaerobic microbial community with different dosing modes of co-substrate and zero-valent iron
  publication-title: Int. Biodeter. Biodegr.
– volume: 39
  start-page: 1027
  year: 2007
  end-page: 1037
  ident: b0155
  article-title: Thermodynamic study of fatty acids adsorption on different adsorbents
  publication-title: J. Chem. Thermodyn.
– volume: 70
  start-page: 1
  year: 2015
  end-page: 8
  ident: b0275
  article-title: Response of anaerobic granular sludge to single-wall carbon nanotube exposure
  publication-title: Water Res.
– volume: 72
  start-page: 1172
  year: 2004
  end-page: 1181
  ident: b0400
  article-title: Microbial Reduction of Weakly Crystalline Iron (III) Oxides and Suppression of Methanogenesis in Paddy Soil
  publication-title: B. Environ. Contam. Tox.
– volume: 249
  start-page: 666
  year: 2018
  end-page: 672
  ident: b0380
  article-title: Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion
  publication-title: Bioresource Technol.
– volume: 88
  start-page: 107
  year: 2014
  end-page: 120
  ident: b0650
  article-title: Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances
  publication-title: FEMS Microbiol. Ecol.
– volume: 76
  start-page: 4080
  year: 2010
  end-page: 4084
  ident: b0245
  article-title: Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens
  publication-title: Appl. Environ. Microb.
– volume: 10
  start-page: 101
  year: 2011
  end-page: 105
  ident: b0315
  article-title: Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy
  publication-title: Rev. Environ. Sci.Bio/Technol.
– volume: 90
  start-page: 34
  year: 2016
  end-page: 43
  ident: b0330
  article-title: Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina
  publication-title: Water Res.
– volume: 68
  start-page: 165
  year: 2017
  end-page: 172
  ident: b0255
  article-title: Effects of an applied voltage on direct interspecies electron transfer via conductive materials for methane production
  publication-title: Waste Manage.
– volume: 266
  start-page: 516
  year: 2018
  end-page: 523
  ident: b0225
  article-title: Effect of nickel-containing activated carbon on food waste anaerobic digestion
  publication-title: Bioresource Technol.
– volume: 10
  start-page: 388
  year: 2019
  ident: b0160
  article-title: NanoFe3O4 as Solid Electron Shuttles to Accelerate Acetotrophic Methanogenesis by Methanosarcina barkeri
  publication-title: Front. Microbiol.
– volume: 109
  start-page: 10042
  year: 2012
  end-page: 10046
  ident: b0210
  article-title: Microbial interspecies electron transfer via electric currents through conductive minerals
  publication-title: PNAS
– volume: 143
  start-page: 240
  year: 2018
  end-page: 249
  ident: b0575
  article-title: Response of enhanced sludge methanogenesis by red mud to temperature: Spectroscopic and electrochemical elucidation of endogenous redox mediators
  publication-title: Water Res.
– volume: 244
  start-page: 698
  year: 2017
  end-page: 707
  ident: b0040
  article-title: Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion
  publication-title: Bioresource Technol.
– volume: 101
  start-page: 3929
  year: 2017
  end-page: 3939
  ident: b0585
  article-title: Enhanced system performance by dosing ferroferric oxide during the anaerobic treatment of tryptone-based high-strength wastewater
  publication-title: Appl. Microbiol. Biot.
– volume: 330
  start-page: 1413
  year: 2010
  end-page: 1415
  ident: b0490
  article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
  publication-title: Science
– volume: 270
  start-page: 230
  year: 2018
  end-page: 235
  ident: b0655
  article-title: Potential enhancement of direct interspecies electron transfer for anaerobic degradation of coal gasification wastewater using up-flow anaerobic sludge blanket (UASB) with nitrogen doped sewage sludge carbon assisted
  publication-title: Bioresource Technol.
– volume: 6
  year: 2015
  ident: b0215
  article-title: Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis
  publication-title: Front. Microbiol.
– volume: 18
  start-page: 968
  year: 2016
  end-page: 980
  ident: b0105
  article-title: Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications
  publication-title: Environ. Sci.: Processes Impacts
– volume: 526
  start-page: 531
  year: 2015
  end-page: 535
  ident: b0360
  article-title: Single cell activity reveals direct electron transfer in methanotrophic consortia
  publication-title: Nature.
– volume: 5
  start-page: 12732
  year: 2015
  ident: b0395
  article-title: Methanogenesis from wastewater stimulated by addition of elemental manganese
  publication-title: Sci. Rep.
– volume: 2
  start-page: 349
  year: 1978
  end-page: 376
  ident: b0615
  article-title: Ecology of methane formation
  publication-title: Water Poll. Microbiol.
– volume: 2
  start-page: e00159
  year: 2011
  end-page: e211
  ident: b0365
  article-title: Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates
  publication-title: mBio
– volume: 293
  start-page: 37
  year: 2015
  end-page: 45
  ident: b0660
  article-title: Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation
  publication-title: J. Hazard. Mater.
– volume: 257
  start-page: 147
  year: 2018
  end-page: 156
  ident: b0515
  article-title: New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite
  publication-title: Bioresource Technol.
– volume: 14
  start-page: 1646
  year: 2012
  end-page: 1654
  ident: b0205
  article-title: Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals
  publication-title: Environ. Microbiol.
– volume: 101
  start-page: 19
  year: 1979
  end-page: 28
  ident: b0240
  article-title: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 38
  start-page: 3167
  year: 2004
  end-page: 3178
  ident: b0055
  article-title: Anaerobic digestion of olive mill wastewaters in biofilm reactors packed with granular activated carbon and “Manville” silica beads
  publication-title: Water Res.
– volume: 10
  start-page: 303
  year: 2017
  ident: b0125
  article-title: Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar
  publication-title: Biotechnol. Biofuels.
– volume: 239
  start-page: 336
  year: 2017
  end-page: 344
  ident: b0555
  article-title: The role of conductive materials in the start-up period of thermophilic anaerobic system
  publication-title: Bioresource Technol.
– volume: 42
  start-page: 6730
  year: 2008
  end-page: 6735
  ident: b0020
  article-title: Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli
  publication-title: Environ. Sci. Technol.
– volume: 66
  start-page: 391
  year: 2012
  end-page: 409
  ident: b0320
  article-title: Electromicrobiology
  publication-title: Annu. Rev. Microbiol.
– volume: 246
  start-page: 271
  year: 2017
  end-page: 281
  ident: b0610
  article-title: Applications of biochar in redox-mediated reactions
  publication-title: Bioresource Technol.
– volume: 52
  start-page: 12198
  year: 2018
  end-page: 12207
  ident: b0605
  article-title: Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate
  publication-title: Environ. Sci. Technol.
– volume: 68
  start-page: 2484
  year: 2002
  end-page: 2494
  ident: b0335
  article-title: Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil
  publication-title: Appl. Environ. Microb.
– volume: 4
  start-page: 4896
  year: 2011
  end-page: 4906
  ident: b0405
  article-title: Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination
  publication-title: Energy Environ. Sci.
– volume: 235
  start-page: 229
  year: 2017
  end-page: 239
  ident: b0390
  article-title: Improving anaerobic digestion with support media: Mitigation of ammonia inhibition and effect on microbial communities
  publication-title: Bioresource Technol.
– volume: 234
  start-page: 303
  year: 2017
  end-page: 309
  ident: b0285
  article-title: Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel
  publication-title: Bioresource Technol.
– volume: 117
  start-page: 9
  year: 1978
  end-page: 16
  ident: b0060
  article-title: Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria
  publication-title: Arch. Microbiol.
– volume: 35
  start-page: 360
  year: 2017
  end-page: 371
  ident: b0505
  article-title: Extracellular electron uptake: among autotrophs and mediated by surfaces
  publication-title: Trends Biotechnol.
– volume: 99
  start-page: 10355
  year: 2015
  end-page: 10366
  ident: b0025
  article-title: The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation
  publication-title: Appl. Microbiol. Biot.
– volume: 239
  start-page: 345
  year: 2017
  end-page: 352
  ident: b0290
  article-title: Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion
  publication-title: Bioresource Technol.
– volume: 6
  start-page: 25857
  year: 2016
  ident: b0530
  article-title: Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge
  publication-title: Sci. Rep.
– volume: 123
  start-page: 369
  year: 2017
  end-page: 377
  ident: b0015
  article-title: Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells
  publication-title: Water Res.
– volume: 2
  start-page: 506
  year: 2009
  end-page: 516
  ident: b0420
  article-title: Cyclic voltammetry of biofilms of wild type and mutant
  publication-title: Energ. Environ. Sci.
– volume: 266
  start-page: 259
  year: 2018
  end-page: 266
  ident: b0045
  article-title: Enhanced methanogenic co-degradation of propionate and butyrate by anaerobic microbiome enriched on conductive carbon fibers
  publication-title: Bioresource Technol.
– volume: 191
  start-page: 140
  year: 2015
  end-page: 145
  ident: b0630
  article-title: Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials
  publication-title: Bioresource Technol.
– volume: 6
  start-page: 25662
  year: 2016
  end-page: 25668
  ident: b0570
  article-title: Magnetite nanoparticles enable a rapid conversion of volatile fatty acids to methane
  publication-title: RSC Adv.
– volume: 42
  start-page: 4927
  year: 2008
  end-page: 4933
  ident: b0250
  article-title: Bactericidal effect of zero-valent iron nanoparticles on escherichia coli
  publication-title: Environ. Sci. Technol.
– volume: 224
  start-page: 41
  year: 2017
  end-page: 47
  ident: b0500
  article-title: Nano-graphene induced positive effects on methanogenesis in anaerobic digestion
  publication-title: Bioresource Technol.
– volume: 250
  start-page: 79
  year: 2018
  end-page: 85
  ident: b0645
  article-title: Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion
  publication-title: Bioresource Technol.
– volume: 39
  start-page: 167
  year: 1999
  end-page: 182
  ident: b0075
  article-title: Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils
  publication-title: Chemosphere.
– volume: 266
  start-page: 555
  year: 2018
  end-page: 567
  ident: b0620
  article-title: Recent achievements in enhancing anaerobic digestion with carbon- based functional materials
  publication-title: Bioresource Technol.
– volume: 4
  start-page: 5019
  year: 2015
  ident: b0095
  article-title: Promoting Interspecies Electron Transfer with Biochar
  publication-title: Sci. Rep.
– volume: 52
  start-page: 13863
  year: 2018
  end-page: 13870
  ident: b0525
  article-title: Phosphorus Competition in Bioinduced Vivianite Recovery from Wastewater
  publication-title: Environ. Sci. Technol.
– volume: 6
  year: 2015
  ident: b0460
  article-title: Syntrophic growth via quinone-mediated interspecies electron transfer
  publication-title: Front. Microbiol.
– volume: 34
  start-page: 181
  year: 2001
  end-page: 186
  ident: b0480
  article-title: Iron metabolism in anoxic environments at near neutral pH
  publication-title: FEMS Microbiol. Ecol.
– volume: 247
  start-page: 131
  year: 2018
  end-page: 137
  ident: b0580
  article-title: Red mud enhances methanogenesis with the simultaneous improvement of hydrolysis-acidification and electrical conductivity
  publication-title: Bioresource Technol.
– volume: 11
  start-page: 107
  year: 2018
  ident: b0035
  article-title: Role and potential of direct interspecies electron transfer in anaerobic digestion
  publication-title: Energies.
– volume: 178
  start-page: 119
  year: 2015
  end-page: 125
  ident: b0415
  article-title: Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water
  publication-title: Bioresource Technol.
– volume: 3
  start-page: 417
  year: 2010
  end-page: 421
  ident: b0425
  article-title: Extracellular electron transfer through microbial reduction of solid-phase humic substances
  publication-title: Nat. Geosci.
– volume: 216
  start-page: 142
  year: 2016
  end-page: 149
  ident: b0145
  article-title: Impact of biochar on the anaerobic digestion of citrus peel waste
  publication-title: Bioresource Technol.
– volume: 38
  start-page: 1653
  year: 2004
  end-page: 1662
  ident: b0465
  article-title: Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge
  publication-title: Water Res.
– volume: 254
  start-page: 300
  year: 2018
  end-page: 311
  ident: b0375
  article-title: Direct interspecies electron transfer via conductive materials: A perspective for anaerobic digestion applications
  publication-title: Bioresource Technol.
– volume: 117
  start-page: 87
  year: 2017
  end-page: 94
  ident: b0010
  article-title: Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment
  publication-title: Water Res.
– volume: 175
  start-page: 309
  year: 2015
  end-page: 314
  ident: b0115
  article-title: Graphene oxide as electron shuttle for increased redox conversion of contaminants under methanogenic and sulfate-reducing conditions
  publication-title: Bioresource Technol.
– volume: 120
  start-page: 236
  year: 2017
  end-page: 243
  ident: b0185
  article-title: Conductive polyaniline nanorods enhanced methane production from anaerobic wastewater treatment
  publication-title: Polymer.
– volume: 47
  start-page: 1707
  year: 2012
  end-page: 1714
  ident: b0560
  article-title: Bacterial extracellular electron transfer in bioelectrochemical systems
  publication-title: Process Biochem.
– volume: 241
  start-page: 830
  year: 2017
  end-page: 840
  ident: b0030
  article-title: A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent – Magnetic separation and recycling of magnetite
  publication-title: Bioresource Technol.
– volume: 6
  start-page: 681
  year: 2010
  end-page: 688
  ident: b0350
  article-title: Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology
  publication-title: Biol. Med.
– volume: 311
  start-page: 20
  year: 2016
  end-page: 29
  ident: b0100
  article-title: Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition
  publication-title: J. Hazard. Mater.
– volume: 216
  start-page: 677
  year: 2016
  end-page: 683
  ident: b0545
  article-title: Anaerobic granule-based biofilms formation reduces propionate accumulation under high H2 partial pressure using conductive carbon felt particles
  publication-title: Bioresource Technol.
– volume: 8
  start-page: 14873
  year: 2017
  ident: b0495
  article-title: Rapid electron transfer by the carbon matrix in natural pyrogenic carbon
  publication-title: Nat. Commun.
– volume: 65
  start-page: 12
  year: 2007
  end-page: 20
  ident: b0455
  article-title: Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes
  publication-title: Mol. Microbiol.
– volume: 173
  start-page: 82
  year: 2014
  end-page: 86
  ident: b0090
  article-title: Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures
  publication-title: Bioresource Technol.
– volume: 211
  start-page: 65
  year: 2016
  end-page: 71
  ident: b0230
  article-title: Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates
  publication-title: Bioresource Technol.
– volume: 71
  start-page: 643
  year: 2017
  end-page: 664
  ident: b0325
  article-title: Syntrophy goes electric: direct interspecies electron transfer
  publication-title: Annu. Rev. Microbiol.
– volume: 222
  start-page: 270
  year: 2016
  end-page: 276
  ident: b0260
  article-title: Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth
  publication-title: Bioresource Technol.
– volume: 19
  start-page: 65
  year: 1995
  end-page: 72
  ident: b0005
  article-title: Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil
  publication-title: Biol. Fert. Soils.
– reference: Holmes, D., Shrestha, P., Walker, D., Dang, Y., P. Nevin, K., L. Woodard, T., R. Lovley, D., 2017. Metatranscriptomic Evidence for Direct Interspecies Electron Transfer Between Geobacter and Methanothrix Species in Methanogenic Rice Paddy Soils. Appl. Environ. Microb. 83, 00223-17.
– volume: 52
  start-page: 242
  year: 2014
  end-page: 250
  ident: b0150
  article-title: Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron
  publication-title: Water Res.
– volume: 79
  start-page: 3619
  year: 2013
  ident: b0065
  article-title: Iron and copper act synergistically to delay anaerobic growth of bacteria
  publication-title: Appl. Environ. Microb.
– volume: 333
  start-page: 216
  year: 2018
  end-page: 225
  ident: b0595
  article-title: Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide
  publication-title: Chem. Eng. J.
– volume: 288
  year: 2019
  ident: b0305
  article-title: Inhibition mitigation and ecological mechanism of mesophilic methanogenesis triggered by supplement of ferroferric oxide in sulfate-containing systems
  publication-title: Bioresource Technol.
– volume: 47
  start-page: 6790
  year: 2013
  end-page: 6800
  ident: b0565
  article-title: Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion
  publication-title: Water Res.
– volume: 209
  start-page: 148
  year: 2016
  end-page: 156
  ident: b0635
  article-title: Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors
  publication-title: Bioresource Technol.
– volume: 238
  start-page: 30
  year: 2017
  end-page: 38
  ident: b0135
  article-title: Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials
  publication-title: Bioresource Technol.
– volume: 7
  year: 2019
  ident: b0175
  article-title: New insights into the effect of direct interspecies electron transfer on syntrophic methanogenesis through thermodynamic analysis
  publication-title: Bioresour. Technol. Rep.
– volume: 16
  start-page: 2133
  year: 2019
  end-page: 2142
  ident: b9000
  article-title: Insights into direct interspecies electron transfer mechanisms for acceleration of anaerobic digestion of wastes
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 287
  year: 2019
  ident: b0625
  article-title: Synergetic promotion of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with graphite felt in anaerobic digestion
  publication-title: Bioresource Technol.
– volume: 49
  start-page: 261
  year: 2004
  end-page: 268
  ident: b0070
  article-title: Direct inhibition of methanogenesis by ferric iron
  publication-title: FEMS Microbiol. Ecol.
– volume: 72
  start-page: 897
  year: 2008
  end-page: 907
  ident: b0385
  article-title: Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography
  publication-title: Soil Sci. Soc. Am. J.
– volume: 42
  start-page: 6730
  year: 2008
  ident: 10.1016/j.biortech.2019.122403_b0020
  article-title: Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800086f
– volume: 10
  start-page: 101
  year: 2011
  ident: 10.1016/j.biortech.2019.122403_b0315
  article-title: Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy
  publication-title: Rev. Environ. Sci.Bio/Technol.
  doi: 10.1007/s11157-011-9236-9
– volume: 2
  start-page: 349
  year: 1978
  ident: 10.1016/j.biortech.2019.122403_b0615
  article-title: Ecology of methane formation
  publication-title: Water Poll. Microbiol.
– volume: 12
  start-page: 8982
  year: 2012
  ident: 10.1016/j.biortech.2019.122403_b0295
  article-title: Promoting direct interspecies electron transfer with activated carbon
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/c2ee22459c
– volume: 246
  start-page: 271
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0610
  article-title: Applications of biochar in redox-mediated reactions
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.06.154
– volume: 70
  start-page: 1
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0275
  article-title: Response of anaerobic granular sludge to single-wall carbon nanotube exposure
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.11.042
– volume: 54
  start-page: 211
  year: 2014
  ident: 10.1016/j.biortech.2019.122403_b0140
  article-title: Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.01.044
– volume: 90
  start-page: 34
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0330
  article-title: Biochar alleviates combined stress of ammonium and acids by firstly enriching Methanosaeta and then Methanosarcina
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.12.029
– volume: 35
  start-page: 360
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0505
  article-title: Extracellular electron uptake: among autotrophs and mediated by surfaces
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2016.10.004
– volume: 196
  start-page: 606
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0550
  article-title: Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2015.08.018
– volume: 117
  start-page: 87
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0010
  article-title: Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.03.050
– volume: 17
  start-page: 1533
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0265
  article-title: Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12576
– volume: 79
  start-page: 83
  year: 2001
  ident: 10.1016/j.biortech.2019.122403_b0235
  article-title: Improvement of biogas production from vinasse via covalently immobilized methanogens
  publication-title: Bioresour Technol.
  doi: 10.1016/S0960-8524(01)00045-1
– volume: 313
  start-page: 10
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0640
  article-title: Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.11.149
– volume: 311
  start-page: 20
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0100
  article-title: Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.02.069
– volume: 10
  start-page: 388
  year: 2019
  ident: 10.1016/j.biortech.2019.122403_b0160
  article-title: NanoFe3O4 as Solid Electron Shuttles to Accelerate Acetotrophic Methanogenesis by Methanosarcina barkeri
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00388
– volume: 68
  start-page: 710
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0340
  article-title: Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.10.052
– volume: 16
  start-page: 2133
  year: 2019
  ident: 10.1016/j.biortech.2019.122403_b9000
  article-title: Insights into direct interspecies electron transfer mechanisms for acceleration of anaerobic digestion of wastes
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-018-2065-4
– volume: 266
  start-page: 516
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0225
  article-title: Effect of nickel-containing activated carbon on food waste anaerobic digestion
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2018.07.015
– volume: 4
  start-page: 4896
  year: 2011
  ident: 10.1016/j.biortech.2019.122403_b0405
  article-title: Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee02229f
– volume: 224
  start-page: 41
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0500
  article-title: Nano-graphene induced positive effects on methanogenesis in anaerobic digestion
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2016.10.058
– volume: 47
  start-page: 1707
  year: 2012
  ident: 10.1016/j.biortech.2019.122403_b0560
  article-title: Bacterial extracellular electron transfer in bioelectrochemical systems
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2012.07.032
– volume: 239
  start-page: 345
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0290
  article-title: Boosting biomethane yield and production rate with graphene: The potential of direct interspecies electron transfer in anaerobic digestion
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.05.017
– volume: 8
  start-page: 14873
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0495
  article-title: Rapid electron transfer by the carbon matrix in natural pyrogenic carbon
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14873
– volume: 52
  start-page: 10241
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0355
  article-title: Methane production and conductive materials: a critical review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01913
– volume: 68
  start-page: 2484
  year: 2002
  ident: 10.1016/j.biortech.2019.122403_b0335
  article-title: Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.68.5.2484-2494.2002
– volume: 101
  start-page: 7053
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0370
  article-title: Iron oxides alter methanogenic pathways of acetate in production water of high-temperature petroleum reservoir
  publication-title: Appl. Microbiol. Biot.
  doi: 10.1007/s00253-017-8422-2
– volume: 80
  start-page: 4599
  year: 2014
  ident: 10.1016/j.biortech.2019.122403_b0435
  article-title: Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.00895-14
– volume: 209
  start-page: 148
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0635
  article-title: Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2016.03.005
– volume: 211
  start-page: 709
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0085
  article-title: Graphene oxide triggers mass transfer limitations on the methanogenic activity of an anaerobic consortium with a particulate substrate
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.08.001
– volume: 256
  start-page: 82
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0600
  article-title: Stimulatory effect of magnetite on the syntrophic metabolism of Geobacter co-cultures: Influences of surface coating
  publication-title: Geochim. Cosmochim. Ac.
  doi: 10.1016/j.gca.2018.02.009
– volume: 120
  start-page: 236
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0185
  article-title: Conductive polyaniline nanorods enhanced methane production from anaerobic wastewater treatment
  publication-title: Polymer.
  doi: 10.1016/j.polymer.2017.05.073
– volume: 178
  start-page: 119
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0415
  article-title: Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2014.09.071
– volume: 66
  start-page: 391
  year: 2012
  ident: 10.1016/j.biortech.2019.122403_b0320
  article-title: Electromicrobiology
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-092611-150104
– volume: 643
  start-page: 1024
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0270
  article-title: A new insight into the strategy for methane production affected by conductive carbon cloth in wetland soil: Beneficial to acetoclastic methanogenesis instead of CO2 reduction
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.271
– volume: 7
  year: 2019
  ident: 10.1016/j.biortech.2019.122403_b0175
  article-title: New insights into the effect of direct interspecies electron transfer on syntrophic methanogenesis through thermodynamic analysis
  publication-title: Bioresour. Technol. Rep.
– volume: 109
  start-page: 10042
  year: 2012
  ident: 10.1016/j.biortech.2019.122403_b0210
  article-title: Microbial interspecies electron transfer via electric currents through conductive minerals
  publication-title: PNAS
  doi: 10.1073/pnas.1117592109
– volume: 191
  start-page: 140
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0630
  article-title: Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2015.05.007
– volume: 17
  start-page: 648
  year: 2014
  ident: 10.1016/j.biortech.2019.122403_b0300
  article-title: Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12485
– volume: 247
  start-page: 131
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0580
  article-title: Red mud enhances methanogenesis with the simultaneous improvement of hydrolysis-acidification and electrical conductivity
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.08.063
– volume: 4
  start-page: 5019
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0095
  article-title: Promoting Interspecies Electron Transfer with Biochar
  publication-title: Sci. Rep.
  doi: 10.1038/srep05019
– volume: 65
  start-page: 12
  year: 2007
  ident: 10.1016/j.biortech.2019.122403_b0455
  article-title: Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2007.05783.x
– volume: 178
  start-page: 356
  year: 2010
  ident: 10.1016/j.biortech.2019.122403_b0345
  article-title: Toxicity of carbon nanotubes to the activated sludge process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.01.087
– volume: 52
  start-page: 13863
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0525
  article-title: Phosphorus Competition in Bioinduced Vivianite Recovery from Wastewater
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b03022
– volume: 103
  start-page: 6385
  year: 2019
  ident: 10.1016/j.biortech.2019.122403_b0165
  article-title: Conductive carbon nanoparticles inhibit methanogens and stabilize hydrogen production in microbial electrolysis cells
  publication-title: Appl. Microbiol. Biot.
  doi: 10.1007/s00253-019-09946-1
– volume: 68
  start-page: 165
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0255
  article-title: Effects of an applied voltage on direct interspecies electron transfer via conductive materials for methane production
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2017.07.025
– volume: 159
  start-page: 57
  year: 1993
  ident: 10.1016/j.biortech.2019.122403_b0540
  article-title: Energetics and regulations of formate and hydrogen metabolism by Methanobacterium formicicum
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00244265
– volume: 257
  start-page: 147
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0515
  article-title: New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2018.02.084
– volume: 178
  start-page: 53
  year: 2002
  ident: 10.1016/j.biortech.2019.122403_b0195
  article-title: Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes
  publication-title: Arch Microbiol.
  doi: 10.1007/s00203-002-0425-3
– volume: 526
  start-page: 531
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0360
  article-title: Single cell activity reveals direct electron transfer in methanotrophic consortia
  publication-title: Nature.
  doi: 10.1038/nature15512
– volume: 6
  start-page: 25662
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0570
  article-title: Magnetite nanoparticles enable a rapid conversion of volatile fatty acids to methane
  publication-title: RSC Adv.
  doi: 10.1039/C6RA02280D
– volume: 108
  start-page: 212
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0190
  article-title: iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.10.077
– volume: 175
  start-page: 309
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0115
  article-title: Graphene oxide as electron shuttle for increased redox conversion of contaminants under methanogenic and sulfate-reducing conditions
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2014.10.101
– volume: 254
  start-page: 300
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0375
  article-title: Direct interspecies electron transfer via conductive materials: A perspective for anaerobic digestion applications
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2018.01.095
– volume: 101
  start-page: 3929
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0585
  article-title: Enhanced system performance by dosing ferroferric oxide during the anaerobic treatment of tryptone-based high-strength wastewater
  publication-title: Appl. Microbiol. Biot.
  doi: 10.1007/s00253-017-8194-8
– volume: 266
  start-page: 555
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0620
  article-title: Recent achievements in enhancing anaerobic digestion with carbon- based functional materials
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2018.07.076
– volume: 249
  start-page: 666
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0380
  article-title: Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.10.047
– volume: 333
  start-page: 216
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0595
  article-title: Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.160
– volume: 293
  start-page: 37
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0660
  article-title: Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.03.039
– volume: 52
  start-page: 242
  year: 2014
  ident: 10.1016/j.biortech.2019.122403_b0150
  article-title: Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.10.072
– volume: 52
  start-page: 12198
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0605
  article-title: Biochar modulates methanogenesis through electron syntrophy of microorganisms with ethanol as a substrate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b04121
– volume: 6
  start-page: 681
  year: 2010
  ident: 10.1016/j.biortech.2019.122403_b0350
  article-title: Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: Nanotechnology
  publication-title: Biol. Med.
– volume: 6
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0460
  article-title: Syntrophic growth via quinone-mediated interspecies electron transfer
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00121
– volume: 216
  start-page: 142
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0145
  article-title: Impact of biochar on the anaerobic digestion of citrus peel waste
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2016.04.106
– volume: 42
  start-page: 4927
  year: 2008
  ident: 10.1016/j.biortech.2019.122403_b0250
  article-title: Bactericidal effect of zero-valent iron nanoparticles on escherichia coli
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800408u
– ident: 10.1016/j.biortech.2019.122403_b0430
  doi: 10.1039/C3EE42189A
– volume: 173
  start-page: 82
  year: 2014
  ident: 10.1016/j.biortech.2019.122403_b0090
  article-title: Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2014.09.009
– ident: 10.1016/j.biortech.2019.122403_b0180
  doi: 10.1128/AEM.00223-17
– volume: 250
  start-page: 79
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0645
  article-title: Ferroferric oxide triggered possible direct interspecies electron transfer between Syntrophomonas and Methanosaeta to enhance waste activated sludge anaerobic digestion
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.11.003
– volume: 235
  start-page: 229
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0390
  article-title: Improving anaerobic digestion with support media: Mitigation of ammonia inhibition and effect on microbial communities
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.03.099
– volume: 135
  start-page: 1054
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0450
  article-title: Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.06.144
– volume: 216
  start-page: 677
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0545
  article-title: Anaerobic granule-based biofilms formation reduces propionate accumulation under high H2 partial pressure using conductive carbon felt particles
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2016.06.010
– volume: 59
  start-page: 20
  year: 1967
  ident: 10.1016/j.biortech.2019.122403_b0080
  article-title: Methanobacillus omelianskii, a symbiotic association of two species of bacteria
  publication-title: Archiv. Mikrobiol.
  doi: 10.1007/BF00406313
– volume: 76
  start-page: 4080
  year: 2010
  ident: 10.1016/j.biortech.2019.122403_b0245
  article-title: Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.00023-10
– volume: 119
  start-page: 104
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0590
  article-title: Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon
  publication-title: Int. Biodeter. Biodegr.
  doi: 10.1016/j.ibiod.2016.09.023
– volume: 10
  start-page: 303
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0125
  article-title: Enhancing methane production from food waste fermentate using biochar: the added value of electrochemical testing in pre-selecting the most effective type of biochar
  publication-title: Biotechnol. Biofuels.
  doi: 10.1186/s13068-017-0994-7
– volume: 101
  start-page: 19
  year: 1979
  ident: 10.1016/j.biortech.2019.122403_b0240
  article-title: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/S0022-0728(79)80075-3
– volume: 38
  start-page: 3167
  year: 2004
  ident: 10.1016/j.biortech.2019.122403_b0055
  article-title: Anaerobic digestion of olive mill wastewaters in biofilm reactors packed with granular activated carbon and “Manville” silica beads
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.05.004
– volume: 39
  start-page: 1027
  year: 2007
  ident: 10.1016/j.biortech.2019.122403_b0155
  article-title: Thermodynamic study of fatty acids adsorption on different adsorbents
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2006.12.016
– volume: 99
  start-page: 10355
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0025
  article-title: The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation
  publication-title: Appl. Microbiol. Biot.
  doi: 10.1007/s00253-015-6900-y
– volume: 55
  start-page: 259
  year: 1991
  ident: 10.1016/j.biortech.2019.122403_b0310
  article-title: Dissimilatory Fe(III) and Mn(IV) reduction
  publication-title: Microbiol. Rev.
  doi: 10.1128/MR.55.2.259-287.1991
– volume: 18
  start-page: 968
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0105
  article-title: Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications
  publication-title: Environ. Sci.: Processes Impacts
– volume: 2
  start-page: e00159
  year: 2011
  ident: 10.1016/j.biortech.2019.122403_b0365
  article-title: Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates
  publication-title: mBio
  doi: 10.1128/mBio.00159-11
– volume: 234
  start-page: 303
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0285
  article-title: Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.03.054
– volume: 9
  start-page: 644
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0050
  article-title: Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C5EE03085D
– volume: 6
  start-page: 25857
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0530
  article-title: Effects of metal nanoparticles on methane production from waste-activated sludge and microorganism community shift in anaerobic granular sludge
  publication-title: Sci. Rep.
  doi: 10.1038/srep25857
– volume: 79
  start-page: 3619
  year: 2013
  ident: 10.1016/j.biortech.2019.122403_b0065
  article-title: Iron and copper act synergistically to delay anaerobic growth of bacteria
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.03944-12
– volume: 288
  year: 2019
  ident: 10.1016/j.biortech.2019.122403_b0305
  article-title: Inhibition mitigation and ecological mechanism of mesophilic methanogenesis triggered by supplement of ferroferric oxide in sulfate-containing systems
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2019.121546
– volume: 270
  start-page: 230
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0655
  article-title: Potential enhancement of direct interspecies electron transfer for anaerobic degradation of coal gasification wastewater using up-flow anaerobic sludge blanket (UASB) with nitrogen doped sewage sludge carbon assisted
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2018.09.012
– volume: 56
  start-page: 239
  year: 1996
  ident: 10.1016/j.biortech.2019.122403_b0170
  article-title: Diphasic fixed-film biomethanation of distillery spentwash
  publication-title: Bioresource Technol.
  doi: 10.1016/0960-8524(96)00033-8
– volume: 113
  start-page: 126
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0535
  article-title: Degradation kinetics of pentachlorophenol and changes in anaerobic microbial community with different dosing modes of co-substrate and zero-valent iron
  publication-title: Int. Biodeter. Biodegr.
  doi: 10.1016/j.ibiod.2015.12.006
– volume: 239
  start-page: 336
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0555
  article-title: The role of conductive materials in the start-up period of thermophilic anaerobic system
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.05.046
– volume: 220
  start-page: 516
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0130
  article-title: Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2016.08.114
– volume: 38
  start-page: 1653
  year: 2004
  ident: 10.1016/j.biortech.2019.122403_b0465
  article-title: Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2003.12.019
– volume: 5
  start-page: 12732
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0395
  article-title: Methanogenesis from wastewater stimulated by addition of elemental manganese
  publication-title: Sci. Rep.
  doi: 10.1038/srep12732
– volume: 238
  start-page: 30
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0135
  article-title: Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.04.021
– volume: 266
  start-page: 259
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0045
  article-title: Enhanced methanogenic co-degradation of propionate and butyrate by anaerobic microbiome enriched on conductive carbon fibers
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2018.06.053
– volume: 49
  start-page: 261
  year: 2004
  ident: 10.1016/j.biortech.2019.122403_b0070
  article-title: Direct inhibition of methanogenesis by ferric iron
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1016/j.femsec.2004.03.017
– volume: 330
  start-page: 1413
  year: 2010
  ident: 10.1016/j.biortech.2019.122403_b0490
  article-title: Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
  publication-title: Science
  doi: 10.1126/science.1196526
– volume: 7
  start-page: 568
  year: 2009
  ident: 10.1016/j.biortech.2019.122403_b0470
  article-title: Electron transfer in syntrophic communities of anaerobic bacteria and archaea
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2166
– volume: 14
  start-page: 1646
  year: 2012
  ident: 10.1016/j.biortech.2019.122403_b0205
  article-title: Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2011.02611.x
– volume: 211
  start-page: 65
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0230
  article-title: Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2016.03.078
– volume: 10
  start-page: 621
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0475
  article-title: Modelling extracellular limitations for mediated versus direct interspecies electron transfer
  publication-title: The ISME journal.
  doi: 10.1038/ismej.2015.139
– volume: 34
  start-page: 181
  year: 2001
  ident: 10.1016/j.biortech.2019.122403_b0480
  article-title: Iron metabolism in anoxic environments at near neutral pH
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2001.tb00768.x
– volume: 48
  start-page: 5601
  year: 2014
  ident: 10.1016/j.biortech.2019.122403_b0220
  article-title: Redox properties of plant biomass-derived black carbon (Biochar)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500906d
– volume: 123
  start-page: 369
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0015
  article-title: Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.06.087
– volume: 435
  start-page: 1098
  year: 2005
  ident: 10.1016/j.biortech.2019.122403_b0410
  article-title: Extracellular electron transfer via microbial nanowires
  publication-title: Nature
  doi: 10.1038/nature03661
– volume: 3
  start-page: 417
  year: 2010
  ident: 10.1016/j.biortech.2019.122403_b0425
  article-title: Extracellular electron transfer through microbial reduction of solid-phase humic substances
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo870
– volume: 4
  start-page: 1794
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0110
  article-title: Amending anaerobic bioreactors with pyrogenic carbonaceous materials: the influence of material properties on methane generation
  publication-title: Environ. Sci.: Water Res. Technol.
– volume: 39
  start-page: 167
  year: 1999
  ident: 10.1016/j.biortech.2019.122403_b0075
  article-title: Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils
  publication-title: Chemosphere.
  doi: 10.1016/S0045-6535(99)00101-0
– volume: 61
  start-page: 262
  year: 1997
  ident: 10.1016/j.biortech.2019.122403_b0445
  article-title: Energetics of syntrophic cooperation in methanogenic degradation
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/.61.2.262-280.1997
– volume: 11
  start-page: 107
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0035
  article-title: Role and potential of direct interspecies electron transfer in anaerobic digestion
  publication-title: Energies.
  doi: 10.3390/en11010107
– volume: 19
  start-page: 65
  year: 1995
  ident: 10.1016/j.biortech.2019.122403_b0005
  article-title: Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil
  publication-title: Biol. Fert. Soils.
  doi: 10.1007/BF00336349
– volume: 48
  start-page: 7536
  year: 2014
  ident: 10.1016/j.biortech.2019.122403_b0120
  article-title: Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5016789
– volume: 117
  start-page: 9
  year: 1978
  ident: 10.1016/j.biortech.2019.122403_b0060
  article-title: Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00689344
– volume: 25
  start-page: 145
  year: 2010
  ident: 10.1016/j.biortech.2019.122403_b0200
  article-title: Ecological and evolutionary interactions in syntrophic methanogenic consortia
  publication-title: Microbes Environ.
  doi: 10.1264/jsme2.ME10122
– volume: 287
  year: 2019
  ident: 10.1016/j.biortech.2019.122403_b0625
  article-title: Synergetic promotion of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with graphite felt in anaerobic digestion
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2019.121373
– volume: 419
  start-page: 20
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0280
  article-title: Resin-enhanced rolling activated carbon electrode for efficient capacitive deionization
  publication-title: Desalination.
  doi: 10.1016/j.desal.2017.05.035
– volume: 72
  start-page: 1172
  year: 2004
  ident: 10.1016/j.biortech.2019.122403_b0400
  article-title: Microbial Reduction of Weakly Crystalline Iron (III) Oxides and Suppression of Methanogenesis in Paddy Soil
  publication-title: B. Environ. Contam. Tox.
  doi: 10.1007/s00128-004-0367-3
– volume: 6
  year: 2015
  ident: 10.1016/j.biortech.2019.122403_b0215
  article-title: Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00439
– volume: 222
  start-page: 270
  year: 2016
  ident: 10.1016/j.biortech.2019.122403_b0260
  article-title: Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2016.10.007
– volume: 321
  start-page: 47
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0485
  article-title: Application of nanoscale zero valent iron and iron powder during sludge anaerobic digestion: Impact on methane yield and pharmaceutical and personal care products degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.08.076
– volume: 241
  start-page: 830
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0030
  article-title: A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent – Magnetic separation and recycling of magnetite
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.06.018
– volume: 71
  start-page: 643
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0325
  article-title: Syntrophy goes electric: direct interspecies electron transfer
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-030117-020420
– volume: 47
  start-page: 6790
  year: 2013
  ident: 10.1016/j.biortech.2019.122403_b0565
  article-title: Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.09.012
– volume: 244
  start-page: 698
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0040
  article-title: Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.08.023
– volume: 72
  start-page: 897
  year: 2008
  ident: 10.1016/j.biortech.2019.122403_b0385
  article-title: Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2007.0130
– volume: 272
  start-page: 162
  year: 2019
  ident: 10.1016/j.biortech.2019.122403_b0510
  article-title: Responsiveness extracellular electron transfer (EET) enhancement of anaerobic digestion system during start-up and starvation recovery stages via magnetite addition
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2018.10.013
– volume: 143
  start-page: 240
  year: 2018
  ident: 10.1016/j.biortech.2019.122403_b0575
  article-title: Response of enhanced sludge methanogenesis by red mud to temperature: Spectroscopic and electrochemical elucidation of endogenous redox mediators
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.06.061
– volume: 2
  start-page: 506
  year: 2009
  ident: 10.1016/j.biortech.2019.122403_b0420
  article-title: Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/b816647a
– volume: 19
  start-page: 2727
  year: 2017
  ident: 10.1016/j.biortech.2019.122403_b0440
  article-title: Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13774
– volume: 88
  start-page: 107
  year: 2014
  ident: 10.1016/j.biortech.2019.122403_b0650
  article-title: Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12274
SSID ssj0003172
Score 2.643973
SecondaryResourceType review_article
Snippet [Display omitted] •Summarize the current understanding of the CMs enhancement on methanogenesis.•Biochar, AC and carbon cloth thermodynamically enhance...
Anaerobic digestion (AD) is an effective strategy combined advantages of maintaining the global carbon flux and efficient energy conversion. Various conductive...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122403
SubjectTerms anaerobic digesters
anaerobic digestion
Anaerobic digestion (AD)
Anaerobiosis
carbon
Conductive materials (CMs)
Direct interspecies electron transfer (DIET)
Electron Transport
energy conversion
fermentation
Ferric Compounds
ferrihydrite
hydrogen
iron
magnesium oxide
mass transfer
Metal Nanoparticles
Methane
methane production
Methanogenesis
methanogens
nanosilver
partial pressure
Potential enhancement characteristics
Silver
soot
temperature
toxicity
Title Conductive materials in anaerobic digestion: From mechanism to application
URI https://dx.doi.org/10.1016/j.biortech.2019.122403
https://www.ncbi.nlm.nih.gov/pubmed/31761622
https://www.proquest.com/docview/2317959323
https://www.proquest.com/docview/2431867005
Volume 298
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxtBDLYQHNoeEKUPAhRNpV43YWdnJjvcoogogMqlReI2mtdWi8guCuHKb8feB6SqWg697tqSZVv2N_IL4JsK1ksnYxK5UIkIx-PECi4SmWvndUGznPRQ_H6p5lfi_Fpeb8C0n4Whtsou9rcxvYnW3ZdRp83RXVmOfhD4ziVmIJ0hqMho0FyIMXn58PGlzQPzY1NJQOKEqNemhG-GrqSO1qYokeohFZn641l_Jqi_AdAmEc12YLtDkGzSCvkeNmK1C-8mv5bdFo24C2-m_Rk3_LO2cfADnE_rija8YoxjiFVb92NlxWxlI61k8iw0JSc01wmbLesFW0QaDi7vF2xVs7V690e4mp3-nM6T7pxC4jEarhKP4EVJadFqmjsbhdAqIAJQOkiEeUr6woXMikz4cQg6P0Y7KW-lQ4TlsyiyT7BZ1VXcA8ZRz0XKnQgqCpuH3MkiTZ2OonBe-nQAsteh8d2ucTp5cWv6prIb0-vekO5Nq_sBjJ757tptG69y6N5E5je_MZgSXuX92tvUoFGoUmKrWD_cGwS9dIM94_-iQeiV05CTHMDn1iGeZUZ2lSrO9_9DugN4y-lt33SIH8LmavkQvyAAWrmjxsOPYGtydjG_fAIhVAS9
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NDtMHTdK1vbacCubmpZUqzdgmBB-splLdCboJcHF4tdpOn_H-lHkGHYetjVFgGBJMhPIPkR4IsK1ksnYxK5UIkIp-PECi4SmWvndUGznPRQvFqo-Y04v5W3OzDtZ2GorbKL_W1Mb6J192XUaXN0X5aj7wS-c4kZSGcIKjL5DHaJnUoOYHdydjFfbAIypsimmIDnExLYGhS-O3ElNbU2dYlUn1Cdqd-f9WeO-hsGbXLRbB9ediCSTdp7voKdWB3Ai8mPVUekEQ9gb9pvcsM_W6SDr-F8WldE8ophjiFcbT2QlRWzlY3EyuRZaKpOaLGvbLaql2wZaT64fFiydc22St5v4Gb27Xo6T7qNConHgLhOPOIXJaVFw2nubBRCq4AgQOkgEekp6QsXMisy4cch6PwUTaW8lQ5Bls-iyN7CoKqr-B4YF2NVpNyJoKKwecidLNLU6SgK56VPhyB7HRrf0Y3T1oufpu8ruzO97g3p3rS6H8JoI3ffEm48KaF7E5nfXMdgVnhS9nNvU4NGoWKJrWL9-GAQ99Ia9oz_6wyir5zmnOQQ3rUOsbkziqtUcf7hP273Cfbm11eX5vJscfERnnN66jcN44cwWK8e4xHiobU77vz9FwnvB24
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductive+materials+in+anaerobic+digestion%3A+From+mechanism+to+application&rft.jtitle=Bioresource+technology&rft.au=Wu%2C+Yu&rft.au=Wang%2C+Shu&rft.au=Liang%2C+Danhui&rft.au=Li%2C+Nan&rft.date=2020-02-01&rft.issn=0960-8524&rft.volume=298&rft.spage=122403&rft_id=info:doi/10.1016%2Fj.biortech.2019.122403&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_biortech_2019_122403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon