Comparison between support vector machine and deep learning, machine-learning technologies for detecting epiretinal membrane using 3D-OCT
Purpose In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM). Methods In total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (1...
Saved in:
Published in | International Ophthalmology Vol. 39; no. 8; pp. 1871 - 1877 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Science and Business Media LLC
01.08.2019
Springer Netherlands Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0165-5701 1573-2630 1573-2630 |
DOI | 10.1007/s10792-018-1016-x |
Cover
Loading…
Abstract | Purpose
In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM).
Methods
In total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated.
Results
The DL model’s sensitivity was 97.6% [95% confidence interval (CI), 87.7–99.9%] and specificity was 98.0% (95% CI, 89.7–99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993–0.994). In contrast, the SVM model’s sensitivity was 97.6% (95% CI, 87.7–99.9%), specificity was 94.2% (95% CI, 84.0–98.7%), and AUC was 0.988 (95% CI, 0.987–0.988).
Conclusion
DL model is better than SVM model in detecting ERM by using 3D-OCT images. |
---|---|
AbstractList | In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM).PURPOSEIn this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM).In total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated.METHODSIn total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated.The DL model's sensitivity was 97.6% [95% confidence interval (CI), 87.7-99.9%] and specificity was 98.0% (95% CI, 89.7-99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993-0.994). In contrast, the SVM model's sensitivity was 97.6% (95% CI, 87.7-99.9%), specificity was 94.2% (95% CI, 84.0-98.7%), and AUC was 0.988 (95% CI, 0.987-0.988).RESULTSThe DL model's sensitivity was 97.6% [95% confidence interval (CI), 87.7-99.9%] and specificity was 98.0% (95% CI, 89.7-99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993-0.994). In contrast, the SVM model's sensitivity was 97.6% (95% CI, 87.7-99.9%), specificity was 94.2% (95% CI, 84.0-98.7%), and AUC was 0.988 (95% CI, 0.987-0.988).DL model is better than SVM model in detecting ERM by using 3D-OCT images.CONCLUSIONDL model is better than SVM model in detecting ERM by using 3D-OCT images. Purpose In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM). Methods In total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated. Results The DL model’s sensitivity was 97.6% [95% confidence interval (CI), 87.7–99.9%] and specificity was 98.0% (95% CI, 89.7–99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993–0.994). In contrast, the SVM model’s sensitivity was 97.6% (95% CI, 87.7–99.9%), specificity was 94.2% (95% CI, 84.0–98.7%), and AUC was 0.988 (95% CI, 0.987–0.988). Conclusion DL model is better than SVM model in detecting ERM by using 3D-OCT images. In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM). In total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated. The DL model's sensitivity was 97.6% [95% confidence interval (CI), 87.7-99.9%] and specificity was 98.0% (95% CI, 89.7-99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993-0.994). In contrast, the SVM model's sensitivity was 97.6% (95% CI, 87.7-99.9%), specificity was 94.2% (95% CI, 84.0-98.7%), and AUC was 0.988 (95% CI, 0.987-0.988). DL model is better than SVM model in detecting ERM by using 3D-OCT images. PurposeIn this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM).MethodsIn total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated.ResultsThe DL model’s sensitivity was 97.6% [95% confidence interval (CI), 87.7–99.9%] and specificity was 98.0% (95% CI, 89.7–99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993–0.994). In contrast, the SVM model’s sensitivity was 97.6% (95% CI, 87.7–99.9%), specificity was 94.2% (95% CI, 84.0–98.7%), and AUC was 0.988 (95% CI, 0.987–0.988).ConclusionDL model is better than SVM model in detecting ERM by using 3D-OCT images. |
Author | Daisuke Nagasato Hitoshi Tabuchi Shoji Morita Hiroki Enno Tomoaki Sonobe Hideharu Ohsugi Naohumi Ishitobi Hiroki Masumoto |
Author_xml | – sequence: 1 givenname: Tomoaki orcidid: 0000-0001-9366-6394 surname: Sonobe fullname: Sonobe, Tomoaki email: t.sonobe@tsukazaki-eye.net organization: Department of Ophthalmology, Tsukazaki Hospital – sequence: 2 givenname: Hitoshi surname: Tabuchi fullname: Tabuchi, Hitoshi organization: Department of Ophthalmology, Tsukazaki Hospital – sequence: 3 givenname: Hideharu surname: Ohsugi fullname: Ohsugi, Hideharu organization: Department of Ophthalmology, Tsukazaki Hospital – sequence: 4 givenname: Hiroki surname: Masumoto fullname: Masumoto, Hiroki organization: Department of Ophthalmology, Tsukazaki Hospital – sequence: 5 givenname: Naohumi surname: Ishitobi fullname: Ishitobi, Naohumi organization: Department of Ophthalmology, Tsukazaki Hospital – sequence: 6 givenname: Shoji surname: Morita fullname: Morita, Shoji organization: Research Group of Intelligent Cybernetics and Computer Science Graduate School of Engineering, University of Hyogo – sequence: 7 givenname: Hiroki surname: Enno fullname: Enno, Hiroki organization: Rist Inc – sequence: 8 givenname: Daisuke surname: Nagasato fullname: Nagasato, Daisuke organization: Department of Ophthalmology, Tsukazaki Hospital |
BackLink | https://cir.nii.ac.jp/crid/1873961343027154944$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/30218173$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1TAQhi1URE8LD8AGWYIFCwy-JHa8RIerVKmbso4cZ3LqKrGD7UB5BN4ah_SA1EU3tjXz_XPxf4ZOfPCA0HNG3zJK1bvEqNKcUNYQRpkkt4_QjtVKEC4FPUG7EqtJrSg7RWcp3VBKtdLyCToVlLOGKbFDv_dhmk10KXjcQf4J4HFa5jnEjH-AzSHiydhr5wEb3-MeYMYjmOidP7w5psgxgjPYax_GcHCQ8FDEPZRQXlMwuwjlZUY8wdRFU0ouac2ID-Ryf_UUPR7MmODZ3X2Ovn36eLX_Qi4uP3_dv78gtpIqk67XfOCi6UH1jRUalKi6xsq-13ZgTEHVGWmYFFIPTNSaK6uVaIRRRhtuuDhHr7e6cwzfF0i5nVyyMI5loLCkljNa01qKqi7oy3voTVhi2eAvJXQjuZCFenFHLd0EfTtHN5n4qz1-cgHYBtgYUoow_EMYbVcj283IthjZrka2t0Wj7mmsyya74HM0bnxQyTdlKl38AeL_oR8SvdpE3rnSaT1Zo4SWTFRlD8XqSleV-AN0Ir1e |
CitedBy_id | crossref_primary_10_3390_photonics10030275 crossref_primary_10_1159_000525929 crossref_primary_10_3390_jcm12020400 crossref_primary_10_1038_s41433_023_02765_9 crossref_primary_10_1109_ACCESS_2021_3082638 crossref_primary_10_1038_s41598_020_65405_2 crossref_primary_10_1097_ICO_0000000000002279 crossref_primary_10_1007_s10792_022_02520_1 crossref_primary_10_1109_ACCESS_2021_3095655 crossref_primary_10_1177_20552076221090042 crossref_primary_10_1007_s11069_021_05001_3 crossref_primary_10_1080_08164622_2021_2022961 crossref_primary_10_1145_3568168 crossref_primary_10_1111_ceo_13914 crossref_primary_10_1007_s00417_021_05475_8 crossref_primary_10_1007_s00417_021_05078_3 crossref_primary_10_1088_1742_6596_1968_1_012016 crossref_primary_10_1186_s12911_024_02431_4 crossref_primary_10_1097_APO_0000000000000576 crossref_primary_10_3389_fnins_2022_838157 crossref_primary_10_4103_tjo_TJO_D_22_00178 crossref_primary_10_1016_j_heliyon_2024_e33461 crossref_primary_10_1155_2019_7820971 crossref_primary_10_1016_j_xops_2024_100689 crossref_primary_10_1038_s41598_021_88172_0 crossref_primary_10_1016_j_compmedimag_2022_102068 crossref_primary_10_4103_2211_5056_356685 crossref_primary_10_1038_s41598_021_98510_x crossref_primary_10_1371_journal_pone_0227240 crossref_primary_10_1007_s00417_021_05427_2 crossref_primary_10_1038_s41598_020_76513_4 crossref_primary_10_1016_j_tsep_2024_102999 |
Cites_doi | 10.1109/TBME.2014.2372011 10.1016/S0161-6420(89)32811-9 10.3390/molecules22122086 10.1002/sim.2993 10.1038/srep38897 10.1016/j.ajo.2011.08.042 10.1007/s00417-012-2120-7 10.1016/j.ajo.2008.11.018 10.1016/S0161-6420(97)30190-0 10.1016/S0893-6080(98)00116-6 10.1016/j.ajo.2008.12.021 10.1159/000360462 10.1126/science.1957169 10.1186/s12938-017-0352-9 10.1038/srep26286 10.1001/jama.2016.17216 10.1167/iovs.12-9493 10.1016/j.ophtha.2017.02.008 10.1038/s41598-017-09891-x 10.1038/nature14539 10.1007/s00417-002-0613-5 10.1016/j.ajo.2008.01.014 10.1117/1.JBO.19.7.071412 10.1016/j.ophtha.2016.05.029 10.1097/IAE.0000000000000602 10.1109/CVPR.2009.5206848 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2018 International Ophthalmology is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer Nature B.V. 2018 – notice: International Ophthalmology is a copyright of Springer, (2018). All Rights Reserved. |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T7 7TK 7U9 7X7 7XB 88E 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA BENPR C1K CCPQU FR3 FYUFA GHDGH H94 K9. M0S M1P M7N P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s10792-018-1016-x |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Environmental Sciences and Pollution Management ProQuest One Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1573-2630 |
EndPage | 1877 |
ExternalDocumentID | 30218173 10_1007_s10792_018_1016_x |
Genre | Journal Article Comparative Study |
GroupedDBID | --- -~C .86 .VR 06C 06D 0R~ 0VY 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40E 5GY 5VS 67Z 6NX 7X7 88E 8AO 8FI 8FJ 8FW 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACSTC ACZOJ ADBBV ADHHG ADHIR ADIMF ADJJI ADKNI ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN B-. BA0 BDATZ BENPR BGNMA BPHCQ BSONS BVXVI CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LLZTM M1P M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9S PF0 PHGZM PHGZT PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I ROL RPX RRX RSV RYH S16 S27 S37 S3B SAP SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~EX -53 -5E -5G -BR -EM AAAVM ADINQ GQ6 Z7U Z82 Z87 Z8O Z8V Z91 -Y2 .GJ 1SB 2.D 28- 2P1 2VQ 3O- 53G 5QI AANXM AARHV AAYTO AAYXX ABQSL ABULA ACUDM ADHKG ADKPE AEBTG AEFIE AFEXP AGGDS AGQPQ AJBLW BBWZM CAG CITATION COF EN4 GRRUI HZ~ IHE KOW N2Q NDZJH O9- OVD R4E RHV RNI RZC RZE RZK S1Z S26 S28 SCLPG SDE T16 TEORI ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7QL 7T7 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c467t-bd92f238de7d8c39e734b8c6dd9cf117e4ba6a16369f135927c97383a7a9a2a23 |
IEDL.DBID | U2A |
ISSN | 0165-5701 1573-2630 |
IngestDate | Fri Sep 05 05:24:45 EDT 2025 Sat Jul 26 02:31:30 EDT 2025 Mon Jul 21 06:02:18 EDT 2025 Tue Jul 01 03:22:25 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 Fri Feb 21 02:40:54 EST 2025 Thu Jun 26 23:33:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Deep learning Support vector machine Epiretinal membrane Optical coherence tomography |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-bd92f238de7d8c39e734b8c6dd9cf117e4ba6a16369f135927c97383a7a9a2a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0001-9366-6394 |
PMID | 30218173 |
PQID | 2103986236 |
PQPubID | 37279 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2105056345 proquest_journals_2103986236 pubmed_primary_30218173 crossref_primary_10_1007_s10792_018_1016_x crossref_citationtrail_10_1007_s10792_018_1016_x springer_journals_10_1007_s10792_018_1016_x nii_cinii_1873961343027154944 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Netherlands |
PublicationSubtitle | The International Journal of Clinical Ophthalmology and Visual Sciences |
PublicationTitle | International Ophthalmology |
PublicationTitleAbbrev | Int Ophthalmol |
PublicationTitleAlternate | Int Ophthalmol |
PublicationYear | 2019 |
Publisher | Springer Science and Business Media LLC Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Science and Business Media LLC – name: Springer Netherlands – name: Springer Nature B.V |
References | Inoue, Kadonosono (CR5) 2014; 54 Pinaya, Gadelha, Doyle, Noto, Zugman, Cordeiro, Jackowski, Bressan, Sato (CR18) 2016; 6 Liu, Liu, Cai, Che, Pujol, Kikinis, Feng, Fulham (CR15) 2015; 62 LeCun, Bengio, Hinton (CR14) 2015; 521 CR19 Gomes, Corcostegui, Fine, Chang (CR3) 2009; 147 Gargeya, Leng (CR20) 2017; 124 Lingyun, Mingquan, Changrong (CR13) 2017; 22 Kim, Kang, Kong, Ha (CR9) 2013; 251 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (CR25) 2011; 12 Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros, Kim, Raman, Nelson, Mega, Webster (CR17) 2016; 316 Nesterov (CR24) 1983; 269 Kim, Chhablani, Chan, Cheng, Kozak, Hartmann, Freeman (CR32) 2012; 153 Schisterman, Faraggi, Reiser, Hu (CR26) 2008; 27 Mitchell, Smith, Chey, Wang, Chang (CR6) 1997; 104 Bouwens, Meurs (CR7) 2003; 241 CR29 CR27 Ohsugi, Tabuchi, Enno, Ishitobi (CR30) 2017; 7 Alsaih, Lemaitre, Rastgoo (CR28) 2017; 16 Kinoshita, Imaizumi, Okushiba, Miyamoto, Ogino, Mitamura (CR8) 2012; 53 CR21 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR22) 2014; 15 Qian (CR23) 1999; 12 Okamoto, Okamoto, Hiraoka, Oshika (CR2) 2009; 147 Asaoka, Murata, Iwase, Araie (CR31) 2016; 123 Okamoto, Sugiura, Okamoto, Hiraoka, Oshika (CR1) 2015; 35 Smiddy, Maguire, Green, Michels, de la Cruz, Enger, Jaeger, Rice (CR4) 1989; 96 Litjens, Sánchez, Timofeeva, Hermsen, Nagtegaal, Kovacs, de Hulsbergen-van, Bult, van Ginneken, van der Laak (CR16) 2016; 6 Drexler, Liu, Kumar, Kamali, Unterhuber, Leitgeb (CR11) 2014; 19 Legarreta, Gregori, Knighton, Punjabi, Lalwani, Puliafito (CR12) 2008; 145 Huang, Swanson, Lin, Schuman, Stinson, Chang, Hee, Flotte, Gregory, Puliafito, Fujimoto (CR10) 1991; 254 N Srivastava (1016_CR22) 2014; 15 JS Kim (1016_CR32) 2012; 153 W Drexler (1016_CR11) 2014; 19 V Gulshan (1016_CR17) 2016; 316 JH Kim (1016_CR9) 2013; 251 R Gargeya (1016_CR20) 2017; 124 G Litjens (1016_CR16) 2016; 6 D Huang (1016_CR10) 1991; 254 WH Pinaya (1016_CR18) 2016; 6 JE Legarreta (1016_CR12) 2008; 145 1016_CR19 F Okamoto (1016_CR2) 2009; 147 G Lingyun (1016_CR13) 2017; 22 F Okamoto (1016_CR1) 2015; 35 P Mitchell (1016_CR6) 1997; 104 N Qian (1016_CR23) 1999; 12 LN Gomes (1016_CR3) 2009; 147 WE Smiddy (1016_CR4) 1989; 96 1016_CR21 K Alsaih (1016_CR28) 2017; 16 1016_CR27 S Liu (1016_CR15) 2015; 62 Y LeCun (1016_CR14) 2015; 521 1016_CR29 T Kinoshita (1016_CR8) 2012; 53 H Ohsugi (1016_CR30) 2017; 7 M Inoue (1016_CR5) 2014; 54 R Asaoka (1016_CR31) 2016; 123 F Pedregosa (1016_CR25) 2011; 12 MD Bouwens (1016_CR7) 2003; 241 EF Schisterman (1016_CR26) 2008; 27 Y Nesterov (1016_CR24) 1983; 269 |
References_xml | – volume: 62 start-page: 1132 year: 2015 end-page: 1140 ident: CR15 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2372011 – volume: 96 start-page: 811 issue: 6 year: 1989 end-page: 821 ident: CR4 article-title: Idiopathic epiretinal membranes. Ultra-structural characteristics and clinicopathologic correlation publication-title: Ophthalmology doi: 10.1016/S0161-6420(89)32811-9 – volume: 22 start-page: pii: E2086 issue: 12 year: 2017 ident: CR13 article-title: Cancer classification based on support vector machine optimized by particle swarm optimization and artificial bee colony publication-title: Molecules doi: 10.3390/molecules22122086 – volume: 27 start-page: 297 issue: 2 year: 2008 end-page: 315 ident: CR26 article-title: Youden Index and the optimal threshold for markers with mass at zero publication-title: Stat Med doi: 10.1002/sim.2993 – volume: 269 start-page: 543 year: 1983 end-page: 547 ident: CR24 article-title: A method for unconstrained convex minimization problem with the rate of convergence O (1/k^ 2) publication-title: Doklady AN USSR – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 ident: CR22 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: JMLR – volume: 6 start-page: 38897 year: 2016 ident: CR18 article-title: Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia publication-title: Sci Rep doi: 10.1038/srep38897 – volume: 153 start-page: 692 issue: 4 year: 2012 end-page: 697 ident: CR32 article-title: Retinal adherence and fibrillary surface changes correlate with surgical difficulty of epiretinal membrane removal publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2011.08.042 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR25 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res – volume: 251 start-page: 1055 issue: 4 year: 2013 end-page: 1064 ident: CR9 article-title: Assessment of retinal layers and visual rehabilitation after epiretinal membrane removal publication-title: Graefes Arch Clin Exp Ophthalmol doi: 10.1007/s00417-012-2120-7 – ident: CR29 – volume: 147 start-page: 869 issue: 5 year: 2009 end-page: 874 ident: CR2 article-title: Effect of vitrectomy for epiretinal membrane on visual function and vision-related quality of life publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2008.11.018 – volume: 104 start-page: 1033 issue: 6 year: 1997 end-page: 1040 ident: CR6 article-title: Prevalence and association of epiretinal membranes. The Blue Mountains eye study, Australia publication-title: Ophthalmology doi: 10.1016/S0161-6420(97)30190-0 – ident: CR27 – volume: 12 start-page: 145 issue: 1 year: 1999 end-page: 151 ident: CR23 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw doi: 10.1016/S0893-6080(98)00116-6 – ident: CR21 – volume: 147 start-page: 865 issue: 5 year: 2009 end-page: 868 ident: CR3 article-title: Subfoveal pigment changes in patients with longstanding epiretinal membranes publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2008.12.021 – volume: 54 start-page: 159 year: 2014 end-page: 163 ident: CR5 article-title: Macular diseases: epiretinal membrane publication-title: Dev Ophthalmol doi: 10.1159/000360462 – ident: CR19 – volume: 254 start-page: 1178 issue: 5035 year: 1991 end-page: 1181 ident: CR10 article-title: Optical coherence tomography publication-title: Science doi: 10.1126/science.1957169 – volume: 16 start-page: 68 year: 2017 ident: CR28 article-title: Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT image publication-title: BioMed Eng Online doi: 10.1186/s12938-017-0352-9 – volume: 6 start-page: 26286 year: 2016 ident: CR16 article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis publication-title: Sci Rep doi: 10.1038/srep26286 – volume: 316 start-page: 2402 year: 2016 end-page: 2410 ident: CR17 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 53 start-page: 3592 issue: 7 year: 2012 end-page: 3597 ident: CR8 article-title: Time course of changes in metamorphopsia, visual acuity, and OCT parameters after successful epiretinal membrane surgery publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.12-9493 – volume: 124 start-page: 962 issue: 7 year: 2017 end-page: 969 ident: CR20 article-title: Automated identification of diabetic retinopathy using deep learning publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.02.008 – volume: 7 start-page: 9425 issue: 1 year: 2017 ident: CR30 article-title: Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment publication-title: Sci Rep doi: 10.1038/s41598-017-09891-x – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR14 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 241 start-page: 89 issue: 2 year: 2003 end-page: 93 ident: CR7 article-title: Sine Amsler Charts: a new method for the follow-up of metamorphopsia in patients undergoing macular pucker surgery publication-title: Grafes Arch Clin Exp Ophthalmol doi: 10.1007/s00417-002-0613-5 – volume: 145 start-page: 1023 issue: 6 year: 2008 end-page: 1030 ident: CR12 article-title: Three-dimensional spectral-domain optical coherence tomography images of the retina in the presence of epiretinal membranes publication-title: Am J Ophthamol doi: 10.1016/j.ajo.2008.01.014 – volume: 19 start-page: 071412 issue: 7 year: 2014 ident: CR11 article-title: Optical coherence tomography today: speed, contrast, and multimodality publication-title: J Biomed Opt doi: 10.1117/1.JBO.19.7.071412 – volume: 123 start-page: 1974 issue: 9 year: 2016 end-page: 1980 ident: CR31 article-title: Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier publication-title: Ophthalmology doi: 10.1016/j.ophtha.2016.05.029 – volume: 35 start-page: 1 issue: 10 year: 2015 end-page: 8 ident: CR1 article-title: Inner nuclear layer thickness as a prognostic factor for metamorphopsia after epiretinal membrane surgery publication-title: Retina doi: 10.1097/IAE.0000000000000602 – volume: 62 start-page: 1132 year: 2015 ident: 1016_CR15 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2372011 – volume: 316 start-page: 2402 year: 2016 ident: 1016_CR17 publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 521 start-page: 436 year: 2015 ident: 1016_CR14 publication-title: Nature doi: 10.1038/nature14539 – volume: 147 start-page: 865 issue: 5 year: 2009 ident: 1016_CR3 publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2008.12.021 – volume: 145 start-page: 1023 issue: 6 year: 2008 ident: 1016_CR12 publication-title: Am J Ophthamol doi: 10.1016/j.ajo.2008.01.014 – volume: 6 start-page: 38897 year: 2016 ident: 1016_CR18 publication-title: Sci Rep doi: 10.1038/srep38897 – volume: 19 start-page: 071412 issue: 7 year: 2014 ident: 1016_CR11 publication-title: J Biomed Opt doi: 10.1117/1.JBO.19.7.071412 – volume: 6 start-page: 26286 year: 2016 ident: 1016_CR16 publication-title: Sci Rep doi: 10.1038/srep26286 – volume: 12 start-page: 2825 year: 2011 ident: 1016_CR25 publication-title: J Mach Learn Res – volume: 22 start-page: pii: E2086 issue: 12 year: 2017 ident: 1016_CR13 publication-title: Molecules doi: 10.3390/molecules22122086 – volume: 241 start-page: 89 issue: 2 year: 2003 ident: 1016_CR7 publication-title: Grafes Arch Clin Exp Ophthalmol doi: 10.1007/s00417-002-0613-5 – volume: 7 start-page: 9425 issue: 1 year: 2017 ident: 1016_CR30 publication-title: Sci Rep doi: 10.1038/s41598-017-09891-x – volume: 12 start-page: 145 issue: 1 year: 1999 ident: 1016_CR23 publication-title: Neural Netw doi: 10.1016/S0893-6080(98)00116-6 – volume: 53 start-page: 3592 issue: 7 year: 2012 ident: 1016_CR8 publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.12-9493 – volume: 147 start-page: 869 issue: 5 year: 2009 ident: 1016_CR2 publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2008.11.018 – volume: 269 start-page: 543 year: 1983 ident: 1016_CR24 publication-title: Doklady AN USSR – volume: 104 start-page: 1033 issue: 6 year: 1997 ident: 1016_CR6 publication-title: Ophthalmology doi: 10.1016/S0161-6420(97)30190-0 – volume: 123 start-page: 1974 issue: 9 year: 2016 ident: 1016_CR31 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2016.05.029 – volume: 153 start-page: 692 issue: 4 year: 2012 ident: 1016_CR32 publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2011.08.042 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 1016_CR22 publication-title: JMLR – volume: 16 start-page: 68 year: 2017 ident: 1016_CR28 publication-title: BioMed Eng Online doi: 10.1186/s12938-017-0352-9 – volume: 254 start-page: 1178 issue: 5035 year: 1991 ident: 1016_CR10 publication-title: Science doi: 10.1126/science.1957169 – ident: 1016_CR19 – volume: 35 start-page: 1 issue: 10 year: 2015 ident: 1016_CR1 publication-title: Retina doi: 10.1097/IAE.0000000000000602 – volume: 124 start-page: 962 issue: 7 year: 2017 ident: 1016_CR20 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.02.008 – ident: 1016_CR21 – volume: 27 start-page: 297 issue: 2 year: 2008 ident: 1016_CR26 publication-title: Stat Med doi: 10.1002/sim.2993 – volume: 251 start-page: 1055 issue: 4 year: 2013 ident: 1016_CR9 publication-title: Graefes Arch Clin Exp Ophthalmol doi: 10.1007/s00417-012-2120-7 – ident: 1016_CR29 – volume: 54 start-page: 159 year: 2014 ident: 1016_CR5 publication-title: Dev Ophthalmol doi: 10.1159/000360462 – volume: 96 start-page: 811 issue: 6 year: 1989 ident: 1016_CR4 publication-title: Ophthalmology doi: 10.1016/S0161-6420(89)32811-9 – ident: 1016_CR27 doi: 10.1109/CVPR.2009.5206848 |
SSID | ssj0009796 ssib005392831 |
Score | 2.3459692 |
Snippet | Purpose
In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography... In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT)... PurposeIn this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography... |
SourceID | proquest pubmed crossref springer nii |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1871 |
SubjectTerms | Aged Artificial neural networks Confidence intervals Deep Learning Early Diagnosis Epiretinal Membrane Epiretinal Membrane - diagnosis Female Humans Image detection Imaging, Three-Dimensional Imaging, Three-Dimensional - methods Machine Learning Male Medical imaging Medicine Medicine & Public Health Membranes Neural networks Ophthalmology Optical Coherence Tomography Original Paper Retina Retina - diagnostic imaging Sensitivity analysis Support Vector Machine Support vector machines Three dimensional imaging Three dimensional models Tomography Tomography, Optical Coherence Tomography, Optical Coherence - methods Training Visual Acuity |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RrYS4IN4EWmQkToBFHCd2fKpgaVUhURBqpd4iO3aqldhsYHer_oX-684kzq4Q0EsO8UOWZzz-5uEZgDdWeJ0VHpWcMrM8V1JyY5zi1kpnUumU8X2U74k6Psu_nBfn0eC2jGGVo0zsBbVf1GQj_5CRzxLht1QH3S9OVaPIuxpLaOzALorgspjA7qfDk-8_tml3dV-hi97s8EKnYvRrDo_nNEVeCkpvKhS_-uNm2mlns3-Bzr8cpv09dPQA7kcAyT4OFH8Id0L7CO5-jS7yx3A93VQWZDEIiy3XHcFsdtmb6Nm8D6AMzLae-RA6FktHXLwfm_j4h61G0ztq1AwBLg4gtwM1hW5GTyBpNfMwR60bp6Qw-gsmP_Nv09MncHZ0eDo95rHeAq9RXK648yZr8Ar3QfuyliZombuyVt6buhFCh9xZZRHAKdMIWZhM10ajhmu1NTazmXwKk3bRhufA0kZYrYpgEB3koXYl0t27ukyV14VofALpuNdVHZORU02Mn9U2jTKRp0LyDFFoVwm83Qzphkwct3XeRwLi1PQVpZYGYUtOPlpKSZfnCeyNpK3ioV1WWxZL4PWmGY8b-VBwDxfrvg9hRpkXCTwbWGKzGtnjJS0TeDfyyHby_y71xe1LeQn3EKOZIeZwDyar3-uwjzho5V5FZr8BN7IBvA priority: 102 providerName: ProQuest |
Title | Comparison between support vector machine and deep learning, machine-learning technologies for detecting epiretinal membrane using 3D-OCT |
URI | https://cir.nii.ac.jp/crid/1873961343027154944 https://link.springer.com/article/10.1007/s10792-018-1016-x https://www.ncbi.nlm.nih.gov/pubmed/30218173 https://www.proquest.com/docview/2103986236 https://www.proquest.com/docview/2105056345 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB-8OxBfxG9X70oEn9TAZrObbB7b2nooVpEr1Kclu8keBbtXbCv-C_7XzuxuWsVT8GUDmw9CJh-_yfwyA_DcCqeTzKGSkyeWp0pKbkypuLWyNLEslXEty3emzufp20W26N9xbwLbPZgk2536l8dumpiSgtyRCsUROJ5kqLoTj2-eDA-ednUblIue6fBMxyKYMq9r4rfD6KhZLq_DmX_YSNujZ3oHbveYkQ07Id-FG765Bzff91bx-_BjvA8myHreFdvs1oSs2bf2Vp6tWs6kZ7ZxzHm_Zn20iMtXIYuHP2wbbttRiWaIabECWRooy6-X9OqRerPyK1S0sUlizl8y-Zp_GF88gPl0cjE-532IBV7hDrnlpTNJjae289rllTRey7TMK-WcqWohtE9LqyxiNmVqITOT6MpoVGqttsYmNpEP4bi5avxjYHEtrFaZNwgIUl-VOYralVUeK6czUbsI4jDWRdX7H6cwGF-Kg-dkEk-B4umIZ98jeLGvsu6cb_yr8BkKEJumr8i1NIhUUjLLkhe6NI3gNIi26NfppkjIEo5KnVQRPNtn4wojswmO4dWuLUMwUaZZBI-6KbHvjWwhkpYRvAxz5ND4X7v65L9KP4VbiNJMxzo8hePt150_QyS0LQdwpBd6ACfD6Wg0o_TN53cTTEeT2cdPg3Zd_ATDpQLy |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVoJeEG8CLRgJLoBFHCd2fEAItq22tF0Q2kq9BSd2qpW62YXdhfIT-DP8Rmby2BUCeuslh_ghKzMef5NvPAPw1Aqno8Shk5NGlsdKSm5Mrri1MjehzJVxdZTvQPWP4_cnycka_OruwlBYZWcTa0PtJgX9I38VEWeJ8FuqN9MvnKpGEbvaldBo1OLA__iOLtvs9f4OyvdZFO3tDnt93lYV4AUahTnPnYlKPKic1y4tpPFaxnlaKOdMUQqhfZxbZRGmKFMKmZhIF0ajH2e1NTaylOgATf4GwgyDu2jj3e7g46dVml9dVwSjO0I80aHoeNTmsp6mSE9B6VSF4ud_nIRXqtHoXyD3L4K2Pvf2bsD1FrCyt42G3YQ1X92Cq0ctJX8bfvaWlQxZG_TFZospwXr2raYE2LgO2PTMVo4576esLVVx-rJr4t0bNu9-9aMHzxBQ4wCiOajJT0d05ZJWM_Zj9PJxSgrbP2Vyh3_oDe_A8aVI4i6sV5PK3wcWlsJqlXiDaCT2RZ6inrm8SEPldCJKF0DYfeusaJOfUw2Os2yVtpnEk6F4mqi38wCeL4dMm8wfF3XeRgHi1PQUqZYGYVJMnDClwIvjALY60WatkZhlK5UO4MmyGbc3cTb4DSeLug9hVBknAdxrVGK5GlnjMy0DeNHpyGry_y71wcVLeQzX-sOjw-xwf3DwEDYRH5om3nEL1udfF34bMdg8f9QqPoPPl73XfgPqiT6t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbwJtGAkuABW4zix4wNCsNtVS2GpUCv1FpzYqVZidwO7C-Un8Jf4dczksSsE9NZLDvFDVmY8_ibfeAbgiRVOR4lDJyeNLI-VlNyYXHFrZW5CmSvj6ijfkdo_id-eJqcb8Ku7C0NhlZ1NrA21mxX0j3w3Is4S4bdUu2UbFnE0GL6qvnCqIEVMa1dOo1GRQ__jO7pv85cHA5T10yga7h3393lbYYAXaCAWPHcmKvHQcl67tJDGaxnnaaGcM0UphPZxbpVFyKJMKWRiIl0YjT6d1dbYyFLSAzT_mxpPxbQHm2_2Rkcf1yl_dV0djO4L8USHouNUm4t7mqI-BaVWFYqf_3EqXpmOx_8CvH-RtfUZOLwO11rwyl432nYDNvz0Jmy9b-n5W_Czv6pqyNoAMDZfVgTx2beaHmCTOnjTMzt1zHlfsbZsxdmLrol3b9ii--2P3jxDcI0DiPKgJl-N6folrWbiJ-jx45QUwn_G5IB_6B_fhpNLkcQd6E1nU38PWFgKq1XiDSKT2Bd5ijrn8iINldOJKF0AYfets6JNhE71OD5n6xTOJJ4MxdNEwJ0H8Gw1pGqygFzUeQcFiFPTU6RaGoRMMfHDlA4vjgPY7kSbtQZjnq3VO4DHq2bc6sTf4DecLes-hFdlnARwt1GJ1WpkjdW0DOB5pyPryf-71PsXL-URbOEey94djA4fwFWEiqYJfdyG3uLr0u8gHFvkD1u9Z_Dpsrfab9hNQtk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+support+vector+machine+and+deep+learning%2C+machine-learning+technologies+for+detecting+epiretinal+membrane+using+3D-OCT&rft.jtitle=International+Ophthalmology&rft.au=Tomoaki+Sonobe&rft.au=Hitoshi+Tabuchi&rft.au=Hideharu+Ohsugi&rft.au=Hiroki+Masumoto&rft.date=2019-08-01&rft.pub=Springer+Science+and+Business+Media+LLC&rft.issn=0165-5701&rft.eissn=1573-2630&rft.volume=39&rft.spage=1871&rft.epage=1877&rft_id=info:doi/10.1007%2Fs10792-018-1016-x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-5701&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-5701&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-5701&client=summon |