Comparison between support vector machine and deep learning, machine-learning technologies for detecting epiretinal membrane using 3D-OCT

Purpose In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM). Methods In total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (1...

Full description

Saved in:
Bibliographic Details
Published inInternational Ophthalmology Vol. 39; no. 8; pp. 1871 - 1877
Main Authors Sonobe, Tomoaki, Tabuchi, Hitoshi, Ohsugi, Hideharu, Masumoto, Hiroki, Ishitobi, Naohumi, Morita, Shoji, Enno, Hiroki, Nagasato, Daisuke
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Science and Business Media LLC 01.08.2019
Springer Netherlands
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0165-5701
1573-2630
1573-2630
DOI10.1007/s10792-018-1016-x

Cover

Loading…
Abstract Purpose In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM). Methods In total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated. Results The DL model’s sensitivity was 97.6% [95% confidence interval (CI), 87.7–99.9%] and specificity was 98.0% (95% CI, 89.7–99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993–0.994). In contrast, the SVM model’s sensitivity was 97.6% (95% CI, 87.7–99.9%), specificity was 94.2% (95% CI, 84.0–98.7%), and AUC was 0.988 (95% CI, 0.987–0.988). Conclusion DL model is better than SVM model in detecting ERM by using 3D-OCT images.
AbstractList In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM).PURPOSEIn this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM).In total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated.METHODSIn total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated.The DL model's sensitivity was 97.6% [95% confidence interval (CI), 87.7-99.9%] and specificity was 98.0% (95% CI, 89.7-99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993-0.994). In contrast, the SVM model's sensitivity was 97.6% (95% CI, 87.7-99.9%), specificity was 94.2% (95% CI, 84.0-98.7%), and AUC was 0.988 (95% CI, 0.987-0.988).RESULTSThe DL model's sensitivity was 97.6% [95% confidence interval (CI), 87.7-99.9%] and specificity was 98.0% (95% CI, 89.7-99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993-0.994). In contrast, the SVM model's sensitivity was 97.6% (95% CI, 87.7-99.9%), specificity was 94.2% (95% CI, 84.0-98.7%), and AUC was 0.988 (95% CI, 0.987-0.988).DL model is better than SVM model in detecting ERM by using 3D-OCT images.CONCLUSIONDL model is better than SVM model in detecting ERM by using 3D-OCT images.
Purpose In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM). Methods In total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated. Results The DL model’s sensitivity was 97.6% [95% confidence interval (CI), 87.7–99.9%] and specificity was 98.0% (95% CI, 89.7–99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993–0.994). In contrast, the SVM model’s sensitivity was 97.6% (95% CI, 87.7–99.9%), specificity was 94.2% (95% CI, 84.0–98.7%), and AUC was 0.988 (95% CI, 0.987–0.988). Conclusion DL model is better than SVM model in detecting ERM by using 3D-OCT images.
In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM). In total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated. The DL model's sensitivity was 97.6% [95% confidence interval (CI), 87.7-99.9%] and specificity was 98.0% (95% CI, 89.7-99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993-0.994). In contrast, the SVM model's sensitivity was 97.6% (95% CI, 87.7-99.9%), specificity was 94.2% (95% CI, 84.0-98.7%), and AUC was 0.988 (95% CI, 0.987-0.988). DL model is better than SVM model in detecting ERM by using 3D-OCT images.
PurposeIn this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM).MethodsIn total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated.ResultsThe DL model’s sensitivity was 97.6% [95% confidence interval (CI), 87.7–99.9%] and specificity was 98.0% (95% CI, 89.7–99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993–0.994). In contrast, the SVM model’s sensitivity was 97.6% (95% CI, 87.7–99.9%), specificity was 94.2% (95% CI, 84.0–98.7%), and AUC was 0.988 (95% CI, 0.987–0.988).ConclusionDL model is better than SVM model in detecting ERM by using 3D-OCT images.
Author Daisuke Nagasato
Hitoshi Tabuchi
Shoji Morita
Hiroki Enno
Tomoaki Sonobe
Hideharu Ohsugi
Naohumi Ishitobi
Hiroki Masumoto
Author_xml – sequence: 1
  givenname: Tomoaki
  orcidid: 0000-0001-9366-6394
  surname: Sonobe
  fullname: Sonobe, Tomoaki
  email: t.sonobe@tsukazaki-eye.net
  organization: Department of Ophthalmology, Tsukazaki Hospital
– sequence: 2
  givenname: Hitoshi
  surname: Tabuchi
  fullname: Tabuchi, Hitoshi
  organization: Department of Ophthalmology, Tsukazaki Hospital
– sequence: 3
  givenname: Hideharu
  surname: Ohsugi
  fullname: Ohsugi, Hideharu
  organization: Department of Ophthalmology, Tsukazaki Hospital
– sequence: 4
  givenname: Hiroki
  surname: Masumoto
  fullname: Masumoto, Hiroki
  organization: Department of Ophthalmology, Tsukazaki Hospital
– sequence: 5
  givenname: Naohumi
  surname: Ishitobi
  fullname: Ishitobi, Naohumi
  organization: Department of Ophthalmology, Tsukazaki Hospital
– sequence: 6
  givenname: Shoji
  surname: Morita
  fullname: Morita, Shoji
  organization: Research Group of Intelligent Cybernetics and Computer Science Graduate School of Engineering, University of Hyogo
– sequence: 7
  givenname: Hiroki
  surname: Enno
  fullname: Enno, Hiroki
  organization: Rist Inc
– sequence: 8
  givenname: Daisuke
  surname: Nagasato
  fullname: Nagasato, Daisuke
  organization: Department of Ophthalmology, Tsukazaki Hospital
BackLink https://cir.nii.ac.jp/crid/1873961343027154944$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/30218173$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1TAQhi1URE8LD8AGWYIFCwy-JHa8RIerVKmbso4cZ3LqKrGD7UB5BN4ah_SA1EU3tjXz_XPxf4ZOfPCA0HNG3zJK1bvEqNKcUNYQRpkkt4_QjtVKEC4FPUG7EqtJrSg7RWcp3VBKtdLyCToVlLOGKbFDv_dhmk10KXjcQf4J4HFa5jnEjH-AzSHiydhr5wEb3-MeYMYjmOidP7w5psgxgjPYax_GcHCQ8FDEPZRQXlMwuwjlZUY8wdRFU0ouac2ID-Ryf_UUPR7MmODZ3X2Ovn36eLX_Qi4uP3_dv78gtpIqk67XfOCi6UH1jRUalKi6xsq-13ZgTEHVGWmYFFIPTNSaK6uVaIRRRhtuuDhHr7e6cwzfF0i5nVyyMI5loLCkljNa01qKqi7oy3voTVhi2eAvJXQjuZCFenFHLd0EfTtHN5n4qz1-cgHYBtgYUoow_EMYbVcj283IthjZrka2t0Wj7mmsyya74HM0bnxQyTdlKl38AeL_oR8SvdpE3rnSaT1Zo4SWTFRlD8XqSleV-AN0Ir1e
CitedBy_id crossref_primary_10_3390_photonics10030275
crossref_primary_10_1159_000525929
crossref_primary_10_3390_jcm12020400
crossref_primary_10_1038_s41433_023_02765_9
crossref_primary_10_1109_ACCESS_2021_3082638
crossref_primary_10_1038_s41598_020_65405_2
crossref_primary_10_1097_ICO_0000000000002279
crossref_primary_10_1007_s10792_022_02520_1
crossref_primary_10_1109_ACCESS_2021_3095655
crossref_primary_10_1177_20552076221090042
crossref_primary_10_1007_s11069_021_05001_3
crossref_primary_10_1080_08164622_2021_2022961
crossref_primary_10_1145_3568168
crossref_primary_10_1111_ceo_13914
crossref_primary_10_1007_s00417_021_05475_8
crossref_primary_10_1007_s00417_021_05078_3
crossref_primary_10_1088_1742_6596_1968_1_012016
crossref_primary_10_1186_s12911_024_02431_4
crossref_primary_10_1097_APO_0000000000000576
crossref_primary_10_3389_fnins_2022_838157
crossref_primary_10_4103_tjo_TJO_D_22_00178
crossref_primary_10_1016_j_heliyon_2024_e33461
crossref_primary_10_1155_2019_7820971
crossref_primary_10_1016_j_xops_2024_100689
crossref_primary_10_1038_s41598_021_88172_0
crossref_primary_10_1016_j_compmedimag_2022_102068
crossref_primary_10_4103_2211_5056_356685
crossref_primary_10_1038_s41598_021_98510_x
crossref_primary_10_1371_journal_pone_0227240
crossref_primary_10_1007_s00417_021_05427_2
crossref_primary_10_1038_s41598_020_76513_4
crossref_primary_10_1016_j_tsep_2024_102999
Cites_doi 10.1109/TBME.2014.2372011
10.1016/S0161-6420(89)32811-9
10.3390/molecules22122086
10.1002/sim.2993
10.1038/srep38897
10.1016/j.ajo.2011.08.042
10.1007/s00417-012-2120-7
10.1016/j.ajo.2008.11.018
10.1016/S0161-6420(97)30190-0
10.1016/S0893-6080(98)00116-6
10.1016/j.ajo.2008.12.021
10.1159/000360462
10.1126/science.1957169
10.1186/s12938-017-0352-9
10.1038/srep26286
10.1001/jama.2016.17216
10.1167/iovs.12-9493
10.1016/j.ophtha.2017.02.008
10.1038/s41598-017-09891-x
10.1038/nature14539
10.1007/s00417-002-0613-5
10.1016/j.ajo.2008.01.014
10.1117/1.JBO.19.7.071412
10.1016/j.ophtha.2016.05.029
10.1097/IAE.0000000000000602
10.1109/CVPR.2009.5206848
ContentType Journal Article
Copyright Springer Nature B.V. 2018
International Ophthalmology is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Nature B.V. 2018
– notice: International Ophthalmology is a copyright of Springer, (2018). All Rights Reserved.
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T7
7TK
7U9
7X7
7XB
88E
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
C1K
CCPQU
FR3
FYUFA
GHDGH
H94
K9.
M0S
M1P
M7N
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s10792-018-1016-x
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1573-2630
EndPage 1877
ExternalDocumentID 30218173
10_1007_s10792_018_1016_x
Genre Journal Article
Comparative Study
GroupedDBID ---
-~C
.86
.VR
06C
06D
0R~
0VY
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40E
5GY
5VS
67Z
6NX
7X7
88E
8AO
8FI
8FJ
8FW
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADJJI
ADKNI
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LLZTM
M1P
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9S
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
ROL
RPX
RRX
RSV
RYH
S16
S27
S37
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~EX
-53
-5E
-5G
-BR
-EM
AAAVM
ADINQ
GQ6
Z7U
Z82
Z87
Z8O
Z8V
Z91
-Y2
.GJ
1SB
2.D
28-
2P1
2VQ
3O-
53G
5QI
AANXM
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ACUDM
ADHKG
ADKPE
AEBTG
AEFIE
AFEXP
AGGDS
AGQPQ
AJBLW
BBWZM
CAG
CITATION
COF
EN4
GRRUI
HZ~
IHE
KOW
N2Q
NDZJH
O9-
OVD
R4E
RHV
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
SDE
T16
TEORI
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7QL
7T7
7TK
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c467t-bd92f238de7d8c39e734b8c6dd9cf117e4ba6a16369f135927c97383a7a9a2a23
IEDL.DBID U2A
ISSN 0165-5701
1573-2630
IngestDate Fri Sep 05 05:24:45 EDT 2025
Sat Jul 26 02:31:30 EDT 2025
Mon Jul 21 06:02:18 EDT 2025
Tue Jul 01 03:22:25 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
Fri Feb 21 02:40:54 EST 2025
Thu Jun 26 23:33:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Deep learning
Support vector machine
Epiretinal membrane
Optical coherence tomography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-bd92f238de7d8c39e734b8c6dd9cf117e4ba6a16369f135927c97383a7a9a2a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0001-9366-6394
PMID 30218173
PQID 2103986236
PQPubID 37279
PageCount 7
ParticipantIDs proquest_miscellaneous_2105056345
proquest_journals_2103986236
pubmed_primary_30218173
crossref_primary_10_1007_s10792_018_1016_x
crossref_citationtrail_10_1007_s10792_018_1016_x
springer_journals_10_1007_s10792_018_1016_x
nii_cinii_1873961343027154944
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationSubtitle The International Journal of Clinical Ophthalmology and Visual Sciences
PublicationTitle International Ophthalmology
PublicationTitleAbbrev Int Ophthalmol
PublicationTitleAlternate Int Ophthalmol
PublicationYear 2019
Publisher Springer Science and Business Media LLC
Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Science and Business Media LLC
– name: Springer Netherlands
– name: Springer Nature B.V
References Inoue, Kadonosono (CR5) 2014; 54
Pinaya, Gadelha, Doyle, Noto, Zugman, Cordeiro, Jackowski, Bressan, Sato (CR18) 2016; 6
Liu, Liu, Cai, Che, Pujol, Kikinis, Feng, Fulham (CR15) 2015; 62
LeCun, Bengio, Hinton (CR14) 2015; 521
CR19
Gomes, Corcostegui, Fine, Chang (CR3) 2009; 147
Gargeya, Leng (CR20) 2017; 124
Lingyun, Mingquan, Changrong (CR13) 2017; 22
Kim, Kang, Kong, Ha (CR9) 2013; 251
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (CR25) 2011; 12
Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros, Kim, Raman, Nelson, Mega, Webster (CR17) 2016; 316
Nesterov (CR24) 1983; 269
Kim, Chhablani, Chan, Cheng, Kozak, Hartmann, Freeman (CR32) 2012; 153
Schisterman, Faraggi, Reiser, Hu (CR26) 2008; 27
Mitchell, Smith, Chey, Wang, Chang (CR6) 1997; 104
Bouwens, Meurs (CR7) 2003; 241
CR29
CR27
Ohsugi, Tabuchi, Enno, Ishitobi (CR30) 2017; 7
Alsaih, Lemaitre, Rastgoo (CR28) 2017; 16
Kinoshita, Imaizumi, Okushiba, Miyamoto, Ogino, Mitamura (CR8) 2012; 53
CR21
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR22) 2014; 15
Qian (CR23) 1999; 12
Okamoto, Okamoto, Hiraoka, Oshika (CR2) 2009; 147
Asaoka, Murata, Iwase, Araie (CR31) 2016; 123
Okamoto, Sugiura, Okamoto, Hiraoka, Oshika (CR1) 2015; 35
Smiddy, Maguire, Green, Michels, de la Cruz, Enger, Jaeger, Rice (CR4) 1989; 96
Litjens, Sánchez, Timofeeva, Hermsen, Nagtegaal, Kovacs, de Hulsbergen-van, Bult, van Ginneken, van der Laak (CR16) 2016; 6
Drexler, Liu, Kumar, Kamali, Unterhuber, Leitgeb (CR11) 2014; 19
Legarreta, Gregori, Knighton, Punjabi, Lalwani, Puliafito (CR12) 2008; 145
Huang, Swanson, Lin, Schuman, Stinson, Chang, Hee, Flotte, Gregory, Puliafito, Fujimoto (CR10) 1991; 254
N Srivastava (1016_CR22) 2014; 15
JS Kim (1016_CR32) 2012; 153
W Drexler (1016_CR11) 2014; 19
V Gulshan (1016_CR17) 2016; 316
JH Kim (1016_CR9) 2013; 251
R Gargeya (1016_CR20) 2017; 124
G Litjens (1016_CR16) 2016; 6
D Huang (1016_CR10) 1991; 254
WH Pinaya (1016_CR18) 2016; 6
JE Legarreta (1016_CR12) 2008; 145
1016_CR19
F Okamoto (1016_CR2) 2009; 147
G Lingyun (1016_CR13) 2017; 22
F Okamoto (1016_CR1) 2015; 35
P Mitchell (1016_CR6) 1997; 104
N Qian (1016_CR23) 1999; 12
LN Gomes (1016_CR3) 2009; 147
WE Smiddy (1016_CR4) 1989; 96
1016_CR21
K Alsaih (1016_CR28) 2017; 16
1016_CR27
S Liu (1016_CR15) 2015; 62
Y LeCun (1016_CR14) 2015; 521
1016_CR29
T Kinoshita (1016_CR8) 2012; 53
H Ohsugi (1016_CR30) 2017; 7
M Inoue (1016_CR5) 2014; 54
R Asaoka (1016_CR31) 2016; 123
F Pedregosa (1016_CR25) 2011; 12
MD Bouwens (1016_CR7) 2003; 241
EF Schisterman (1016_CR26) 2008; 27
Y Nesterov (1016_CR24) 1983; 269
References_xml – volume: 62
  start-page: 1132
  year: 2015
  end-page: 1140
  ident: CR15
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2372011
– volume: 96
  start-page: 811
  issue: 6
  year: 1989
  end-page: 821
  ident: CR4
  article-title: Idiopathic epiretinal membranes. Ultra-structural characteristics and clinicopathologic correlation
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(89)32811-9
– volume: 22
  start-page: pii: E2086
  issue: 12
  year: 2017
  ident: CR13
  article-title: Cancer classification based on support vector machine optimized by particle swarm optimization and artificial bee colony
  publication-title: Molecules
  doi: 10.3390/molecules22122086
– volume: 27
  start-page: 297
  issue: 2
  year: 2008
  end-page: 315
  ident: CR26
  article-title: Youden Index and the optimal threshold for markers with mass at zero
  publication-title: Stat Med
  doi: 10.1002/sim.2993
– volume: 269
  start-page: 543
  year: 1983
  end-page: 547
  ident: CR24
  article-title: A method for unconstrained convex minimization problem with the rate of convergence O (1/k^ 2)
  publication-title: Doklady AN USSR
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  ident: CR22
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: JMLR
– volume: 6
  start-page: 38897
  year: 2016
  ident: CR18
  article-title: Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia
  publication-title: Sci Rep
  doi: 10.1038/srep38897
– volume: 153
  start-page: 692
  issue: 4
  year: 2012
  end-page: 697
  ident: CR32
  article-title: Retinal adherence and fibrillary surface changes correlate with surgical difficulty of epiretinal membrane removal
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2011.08.042
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR25
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– volume: 251
  start-page: 1055
  issue: 4
  year: 2013
  end-page: 1064
  ident: CR9
  article-title: Assessment of retinal layers and visual rehabilitation after epiretinal membrane removal
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-012-2120-7
– ident: CR29
– volume: 147
  start-page: 869
  issue: 5
  year: 2009
  end-page: 874
  ident: CR2
  article-title: Effect of vitrectomy for epiretinal membrane on visual function and vision-related quality of life
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2008.11.018
– volume: 104
  start-page: 1033
  issue: 6
  year: 1997
  end-page: 1040
  ident: CR6
  article-title: Prevalence and association of epiretinal membranes. The Blue Mountains eye study, Australia
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(97)30190-0
– ident: CR27
– volume: 12
  start-page: 145
  issue: 1
  year: 1999
  end-page: 151
  ident: CR23
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(98)00116-6
– ident: CR21
– volume: 147
  start-page: 865
  issue: 5
  year: 2009
  end-page: 868
  ident: CR3
  article-title: Subfoveal pigment changes in patients with longstanding epiretinal membranes
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2008.12.021
– volume: 54
  start-page: 159
  year: 2014
  end-page: 163
  ident: CR5
  article-title: Macular diseases: epiretinal membrane
  publication-title: Dev Ophthalmol
  doi: 10.1159/000360462
– ident: CR19
– volume: 254
  start-page: 1178
  issue: 5035
  year: 1991
  end-page: 1181
  ident: CR10
  article-title: Optical coherence tomography
  publication-title: Science
  doi: 10.1126/science.1957169
– volume: 16
  start-page: 68
  year: 2017
  ident: CR28
  article-title: Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT image
  publication-title: BioMed Eng Online
  doi: 10.1186/s12938-017-0352-9
– volume: 6
  start-page: 26286
  year: 2016
  ident: CR16
  article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
  publication-title: Sci Rep
  doi: 10.1038/srep26286
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: CR17
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 53
  start-page: 3592
  issue: 7
  year: 2012
  end-page: 3597
  ident: CR8
  article-title: Time course of changes in metamorphopsia, visual acuity, and OCT parameters after successful epiretinal membrane surgery
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.12-9493
– volume: 124
  start-page: 962
  issue: 7
  year: 2017
  end-page: 969
  ident: CR20
  article-title: Automated identification of diabetic retinopathy using deep learning
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.02.008
– volume: 7
  start-page: 9425
  issue: 1
  year: 2017
  ident: CR30
  article-title: Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-09891-x
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR14
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 241
  start-page: 89
  issue: 2
  year: 2003
  end-page: 93
  ident: CR7
  article-title: Sine Amsler Charts: a new method for the follow-up of metamorphopsia in patients undergoing macular pucker surgery
  publication-title: Grafes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-002-0613-5
– volume: 145
  start-page: 1023
  issue: 6
  year: 2008
  end-page: 1030
  ident: CR12
  article-title: Three-dimensional spectral-domain optical coherence tomography images of the retina in the presence of epiretinal membranes
  publication-title: Am J Ophthamol
  doi: 10.1016/j.ajo.2008.01.014
– volume: 19
  start-page: 071412
  issue: 7
  year: 2014
  ident: CR11
  article-title: Optical coherence tomography today: speed, contrast, and multimodality
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.19.7.071412
– volume: 123
  start-page: 1974
  issue: 9
  year: 2016
  end-page: 1980
  ident: CR31
  article-title: Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.05.029
– volume: 35
  start-page: 1
  issue: 10
  year: 2015
  end-page: 8
  ident: CR1
  article-title: Inner nuclear layer thickness as a prognostic factor for metamorphopsia after epiretinal membrane surgery
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000602
– volume: 62
  start-page: 1132
  year: 2015
  ident: 1016_CR15
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2372011
– volume: 316
  start-page: 2402
  year: 2016
  ident: 1016_CR17
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 521
  start-page: 436
  year: 2015
  ident: 1016_CR14
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 147
  start-page: 865
  issue: 5
  year: 2009
  ident: 1016_CR3
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2008.12.021
– volume: 145
  start-page: 1023
  issue: 6
  year: 2008
  ident: 1016_CR12
  publication-title: Am J Ophthamol
  doi: 10.1016/j.ajo.2008.01.014
– volume: 6
  start-page: 38897
  year: 2016
  ident: 1016_CR18
  publication-title: Sci Rep
  doi: 10.1038/srep38897
– volume: 19
  start-page: 071412
  issue: 7
  year: 2014
  ident: 1016_CR11
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.19.7.071412
– volume: 6
  start-page: 26286
  year: 2016
  ident: 1016_CR16
  publication-title: Sci Rep
  doi: 10.1038/srep26286
– volume: 12
  start-page: 2825
  year: 2011
  ident: 1016_CR25
  publication-title: J Mach Learn Res
– volume: 22
  start-page: pii: E2086
  issue: 12
  year: 2017
  ident: 1016_CR13
  publication-title: Molecules
  doi: 10.3390/molecules22122086
– volume: 241
  start-page: 89
  issue: 2
  year: 2003
  ident: 1016_CR7
  publication-title: Grafes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-002-0613-5
– volume: 7
  start-page: 9425
  issue: 1
  year: 2017
  ident: 1016_CR30
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-09891-x
– volume: 12
  start-page: 145
  issue: 1
  year: 1999
  ident: 1016_CR23
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(98)00116-6
– volume: 53
  start-page: 3592
  issue: 7
  year: 2012
  ident: 1016_CR8
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.12-9493
– volume: 147
  start-page: 869
  issue: 5
  year: 2009
  ident: 1016_CR2
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2008.11.018
– volume: 269
  start-page: 543
  year: 1983
  ident: 1016_CR24
  publication-title: Doklady AN USSR
– volume: 104
  start-page: 1033
  issue: 6
  year: 1997
  ident: 1016_CR6
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(97)30190-0
– volume: 123
  start-page: 1974
  issue: 9
  year: 2016
  ident: 1016_CR31
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.05.029
– volume: 153
  start-page: 692
  issue: 4
  year: 2012
  ident: 1016_CR32
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2011.08.042
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 1016_CR22
  publication-title: JMLR
– volume: 16
  start-page: 68
  year: 2017
  ident: 1016_CR28
  publication-title: BioMed Eng Online
  doi: 10.1186/s12938-017-0352-9
– volume: 254
  start-page: 1178
  issue: 5035
  year: 1991
  ident: 1016_CR10
  publication-title: Science
  doi: 10.1126/science.1957169
– ident: 1016_CR19
– volume: 35
  start-page: 1
  issue: 10
  year: 2015
  ident: 1016_CR1
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000602
– volume: 124
  start-page: 962
  issue: 7
  year: 2017
  ident: 1016_CR20
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.02.008
– ident: 1016_CR21
– volume: 27
  start-page: 297
  issue: 2
  year: 2008
  ident: 1016_CR26
  publication-title: Stat Med
  doi: 10.1002/sim.2993
– volume: 251
  start-page: 1055
  issue: 4
  year: 2013
  ident: 1016_CR9
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/s00417-012-2120-7
– ident: 1016_CR29
– volume: 54
  start-page: 159
  year: 2014
  ident: 1016_CR5
  publication-title: Dev Ophthalmol
  doi: 10.1159/000360462
– volume: 96
  start-page: 811
  issue: 6
  year: 1989
  ident: 1016_CR4
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(89)32811-9
– ident: 1016_CR27
  doi: 10.1109/CVPR.2009.5206848
SSID ssj0009796
ssib005392831
Score 2.3459692
Snippet Purpose In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography...
In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT)...
PurposeIn this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography...
SourceID proquest
pubmed
crossref
springer
nii
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1871
SubjectTerms Aged
Artificial neural networks
Confidence intervals
Deep Learning
Early Diagnosis
Epiretinal Membrane
Epiretinal Membrane - diagnosis
Female
Humans
Image detection
Imaging, Three-Dimensional
Imaging, Three-Dimensional - methods
Machine Learning
Male
Medical imaging
Medicine
Medicine & Public Health
Membranes
Neural networks
Ophthalmology
Optical Coherence Tomography
Original Paper
Retina
Retina - diagnostic imaging
Sensitivity analysis
Support Vector Machine
Support vector machines
Three dimensional imaging
Three dimensional models
Tomography
Tomography, Optical Coherence
Tomography, Optical Coherence - methods
Training
Visual Acuity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RrYS4IN4EWmQkToBFHCd2fKpgaVUhURBqpd4iO3aqldhsYHer_oX-684kzq4Q0EsO8UOWZzz-5uEZgDdWeJ0VHpWcMrM8V1JyY5zi1kpnUumU8X2U74k6Psu_nBfn0eC2jGGVo0zsBbVf1GQj_5CRzxLht1QH3S9OVaPIuxpLaOzALorgspjA7qfDk-8_tml3dV-hi97s8EKnYvRrDo_nNEVeCkpvKhS_-uNm2mlns3-Bzr8cpv09dPQA7kcAyT4OFH8Id0L7CO5-jS7yx3A93VQWZDEIiy3XHcFsdtmb6Nm8D6AMzLae-RA6FktHXLwfm_j4h61G0ztq1AwBLg4gtwM1hW5GTyBpNfMwR60bp6Qw-gsmP_Nv09MncHZ0eDo95rHeAq9RXK648yZr8Ar3QfuyliZombuyVt6buhFCh9xZZRHAKdMIWZhM10ajhmu1NTazmXwKk3bRhufA0kZYrYpgEB3koXYl0t27ukyV14VofALpuNdVHZORU02Mn9U2jTKRp0LyDFFoVwm83Qzphkwct3XeRwLi1PQVpZYGYUtOPlpKSZfnCeyNpK3ioV1WWxZL4PWmGY8b-VBwDxfrvg9hRpkXCTwbWGKzGtnjJS0TeDfyyHby_y71xe1LeQn3EKOZIeZwDyar3-uwjzho5V5FZr8BN7IBvA
  priority: 102
  providerName: ProQuest
Title Comparison between support vector machine and deep learning, machine-learning technologies for detecting epiretinal membrane using 3D-OCT
URI https://cir.nii.ac.jp/crid/1873961343027154944
https://link.springer.com/article/10.1007/s10792-018-1016-x
https://www.ncbi.nlm.nih.gov/pubmed/30218173
https://www.proquest.com/docview/2103986236
https://www.proquest.com/docview/2105056345
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB-8OxBfxG9X70oEn9TAZrObbB7b2nooVpEr1Kclu8keBbtXbCv-C_7XzuxuWsVT8GUDmw9CJh-_yfwyA_DcCqeTzKGSkyeWp0pKbkypuLWyNLEslXEty3emzufp20W26N9xbwLbPZgk2536l8dumpiSgtyRCsUROJ5kqLoTj2-eDA-ednUblIue6fBMxyKYMq9r4rfD6KhZLq_DmX_YSNujZ3oHbveYkQ07Id-FG765Bzff91bx-_BjvA8myHreFdvs1oSs2bf2Vp6tWs6kZ7ZxzHm_Zn20iMtXIYuHP2wbbttRiWaIabECWRooy6-X9OqRerPyK1S0sUlizl8y-Zp_GF88gPl0cjE-532IBV7hDrnlpTNJjae289rllTRey7TMK-WcqWohtE9LqyxiNmVqITOT6MpoVGqttsYmNpEP4bi5avxjYHEtrFaZNwgIUl-VOYralVUeK6czUbsI4jDWRdX7H6cwGF-Kg-dkEk-B4umIZ98jeLGvsu6cb_yr8BkKEJumr8i1NIhUUjLLkhe6NI3gNIi26NfppkjIEo5KnVQRPNtn4wojswmO4dWuLUMwUaZZBI-6KbHvjWwhkpYRvAxz5ND4X7v65L9KP4VbiNJMxzo8hePt150_QyS0LQdwpBd6ACfD6Wg0o_TN53cTTEeT2cdPg3Zd_ATDpQLy
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVoJeEG8CLRgJLoBFHCd2fEAItq22tF0Q2kq9BSd2qpW62YXdhfIT-DP8Rmby2BUCeuslh_ghKzMef5NvPAPw1Aqno8Shk5NGlsdKSm5Mrri1MjehzJVxdZTvQPWP4_cnycka_OruwlBYZWcTa0PtJgX9I38VEWeJ8FuqN9MvnKpGEbvaldBo1OLA__iOLtvs9f4OyvdZFO3tDnt93lYV4AUahTnPnYlKPKic1y4tpPFaxnlaKOdMUQqhfZxbZRGmKFMKmZhIF0ajH2e1NTaylOgATf4GwgyDu2jj3e7g46dVml9dVwSjO0I80aHoeNTmsp6mSE9B6VSF4ud_nIRXqtHoXyD3L4K2Pvf2bsD1FrCyt42G3YQ1X92Cq0ctJX8bfvaWlQxZG_TFZospwXr2raYE2LgO2PTMVo4576esLVVx-rJr4t0bNu9-9aMHzxBQ4wCiOajJT0d05ZJWM_Zj9PJxSgrbP2Vyh3_oDe_A8aVI4i6sV5PK3wcWlsJqlXiDaCT2RZ6inrm8SEPldCJKF0DYfeusaJOfUw2Os2yVtpnEk6F4mqi38wCeL4dMm8wfF3XeRgHi1PQUqZYGYVJMnDClwIvjALY60WatkZhlK5UO4MmyGbc3cTb4DSeLug9hVBknAdxrVGK5GlnjMy0DeNHpyGry_y71wcVLeQzX-sOjw-xwf3DwEDYRH5om3nEL1udfF34bMdg8f9QqPoPPl73XfgPqiT6t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVRxQbwJtGAkuABW4zix4wNCsNtVS2GpUCv1FpzYqVZidwO7C-Un8Jf4dczksSsE9NZLDvFDVmY8_ibfeAbgiRVOR4lDJyeNLI-VlNyYXHFrZW5CmSvj6ijfkdo_id-eJqcb8Ku7C0NhlZ1NrA21mxX0j3w3Is4S4bdUu2UbFnE0GL6qvnCqIEVMa1dOo1GRQ__jO7pv85cHA5T10yga7h3393lbYYAXaCAWPHcmKvHQcl67tJDGaxnnaaGcM0UphPZxbpVFyKJMKWRiIl0YjT6d1dbYyFLSAzT_mxpPxbQHm2_2Rkcf1yl_dV0djO4L8USHouNUm4t7mqI-BaVWFYqf_3EqXpmOx_8CvH-RtfUZOLwO11rwyl432nYDNvz0Jmy9b-n5W_Czv6pqyNoAMDZfVgTx2beaHmCTOnjTMzt1zHlfsbZsxdmLrol3b9ii--2P3jxDcI0DiPKgJl-N6folrWbiJ-jx45QUwn_G5IB_6B_fhpNLkcQd6E1nU38PWFgKq1XiDSKT2Bd5ijrn8iINldOJKF0AYfets6JNhE71OD5n6xTOJJ4MxdNEwJ0H8Gw1pGqygFzUeQcFiFPTU6RaGoRMMfHDlA4vjgPY7kSbtQZjnq3VO4DHq2bc6sTf4DecLes-hFdlnARwt1GJ1WpkjdW0DOB5pyPryf-71PsXL-URbOEey94djA4fwFWEiqYJfdyG3uLr0u8gHFvkD1u9Z_Dpsrfab9hNQtk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+between+support+vector+machine+and+deep+learning%2C+machine-learning+technologies+for+detecting+epiretinal+membrane+using+3D-OCT&rft.jtitle=International+Ophthalmology&rft.au=Tomoaki+Sonobe&rft.au=Hitoshi+Tabuchi&rft.au=Hideharu+Ohsugi&rft.au=Hiroki+Masumoto&rft.date=2019-08-01&rft.pub=Springer+Science+and+Business+Media+LLC&rft.issn=0165-5701&rft.eissn=1573-2630&rft.volume=39&rft.spage=1871&rft.epage=1877&rft_id=info:doi/10.1007%2Fs10792-018-1016-x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-5701&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-5701&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-5701&client=summon