Atomically-thin two-dimensional sheets for understanding active sites in catalysis

Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to th...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 44; no. 3; pp. 623 - 636
Main Authors Sun, Yongfu, Gao, Shan, Lei, Fengcai, Xie, Yi
Format Journal Article
LanguageEnglish
Published England 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites-catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity. Atomically-thin two-dimensional sheets can serve as an ideal model to disclose the role of active sites in catalysis.
AbstractList Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called “active sites”. However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites–catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity.
Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites-catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity.Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites-catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity.
Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites-catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity. Atomically-thin two-dimensional sheets can serve as an ideal model to disclose the role of active sites in catalysis.
Author Lei, Fengcai
Gao, Shan
Xie, Yi
Sun, Yongfu
AuthorAffiliation Hefei National Laboratory for Physical Sciences at Microscale
Collaborative Innovation Center of Chemistry for Energy Materials
University of Science & Technology of China
AuthorAffiliation_xml – name: Hefei National Laboratory for Physical Sciences at Microscale
– name: University of Science & Technology of China
– name: Collaborative Innovation Center of Chemistry for Energy Materials
Author_xml – sequence: 1
  givenname: Yongfu
  surname: Sun
  fullname: Sun, Yongfu
– sequence: 2
  givenname: Shan
  surname: Gao
  fullname: Gao, Shan
– sequence: 3
  givenname: Fengcai
  surname: Lei
  fullname: Lei, Fengcai
– sequence: 4
  givenname: Yi
  surname: Xie
  fullname: Xie, Yi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25382246$$D View this record in MEDLINE/PubMed
BookMark eNqF0strGzEQB2BRUhrH7aX3hu0tBLbVa7XrozFNUggU-jgLPWZjhV2to5ET_N9XqeMWSmlAIB2-3yDN6IQcxSkCIW8Z_cCoWHx00iGlXCjzgsyYVLSWrZRHZEYFVTWljB-TE8TbcmKt4q_IMW9Ex7lUM_J1macxODMMuzqvQ6zyw1T7MELEMEUzVLgGyFj1U6q20UPCbKIP8aYyLod7qDBkwKoEnclm2GHA1-RlbwaEN0_7nPy4-PR9dVVff7n8vFpe106qNtfWN9Zb47h0tFtQZTvb0tZZu2Ad90b1pilLMA4dtT0456G3CynANr7rywvm5Gxfd5Omuy1g1mNAB8NgIkxb1LxppWBKKfYsZW2nmBLlFs9T1XBJm06JQk-f6NaO4PUmhdGknT50twC6By5NiAl67UI2uTQ2JxMGzah-HKBeydW3XwNclsj5X5FD1X_i93uc0P12f36D3vi-mHf_M-InSsmw5Q
CitedBy_id crossref_primary_10_1021_acsami_6b07986
crossref_primary_10_1016_j_matpr_2020_05_759
crossref_primary_10_1002_adfm_201703363
crossref_primary_10_1002_adma_202204959
crossref_primary_10_1016_j_apsusc_2022_154099
crossref_primary_10_1016_j_chemosphere_2021_131733
crossref_primary_10_1021_acscatal_7b03437
crossref_primary_10_1016_j_scib_2020_06_019
crossref_primary_10_1021_jacs_0c07249
crossref_primary_10_1016_j_ccr_2022_214970
crossref_primary_10_1002_ange_201902588
crossref_primary_10_1016_j_cej_2022_135623
crossref_primary_10_3390_nano10061012
crossref_primary_10_1016_j_apcatb_2021_120521
crossref_primary_10_1016_j_jallcom_2024_173685
crossref_primary_10_1016_j_cattod_2018_04_039
crossref_primary_10_1021_acsami_7b09108
crossref_primary_10_1002_anie_201503477
crossref_primary_10_1002_smll_202204121
crossref_primary_10_1016_j_seppur_2021_120153
crossref_primary_10_1007_s12274_021_3725_0
crossref_primary_10_1016_j_ijhydene_2023_12_089
crossref_primary_10_1039_D0RA04082G
crossref_primary_10_1016_j_ijhydene_2019_08_225
crossref_primary_10_1016_j_jcat_2018_07_030
crossref_primary_10_3390_nano12223980
crossref_primary_10_1016_j_nanoen_2021_106661
crossref_primary_10_1016_j_jcat_2019_01_002
crossref_primary_10_1021_acsami_0c03796
crossref_primary_10_1021_acs_est_1c07811
crossref_primary_10_1039_C8TA02820F
crossref_primary_10_1021_acssuschemeng_2c01203
crossref_primary_10_1039_C8NR06877A
crossref_primary_10_1039_C9CY01298B
crossref_primary_10_1039_C8NR09680E
crossref_primary_10_1039_C9NJ05219D
crossref_primary_10_1038_ncomms8873
crossref_primary_10_1039_C6TA06534A
crossref_primary_10_1002_ange_201810104
crossref_primary_10_1002_smll_201602235
crossref_primary_10_1016_j_jece_2022_108734
crossref_primary_10_1039_D1SC02772G
crossref_primary_10_1016_j_apcatb_2024_124744
crossref_primary_10_1016_j_apsusc_2021_149244
crossref_primary_10_1039_C5CP06711A
crossref_primary_10_1088_1361_6528_abc3e3
crossref_primary_10_1007_s12274_020_2955_x
crossref_primary_10_1016_j_ceja_2024_100593
crossref_primary_10_1007_s11356_022_21347_y
crossref_primary_10_1016_j_apsusc_2019_144263
crossref_primary_10_1103_PhysRevB_105_184113
crossref_primary_10_1016_j_mtcata_2023_100001
crossref_primary_10_1002_smll_201800759
crossref_primary_10_1039_C8TA07210H
crossref_primary_10_1002_anie_201914245
crossref_primary_10_1039_C9TA06887B
crossref_primary_10_1021_acsmacrolett_5c00017
crossref_primary_10_1002_adma_201804626
crossref_primary_10_1016_j_mtcomm_2020_101585
crossref_primary_10_1016_j_ijhydene_2018_01_040
crossref_primary_10_1007_s10562_018_2574_2
crossref_primary_10_1016_j_apcatb_2019_117806
crossref_primary_10_1039_C7TA07705J
crossref_primary_10_1021_acsami_4c14621
crossref_primary_10_1021_acs_jpclett_9b02340
crossref_primary_10_1007_s00214_017_2175_y
crossref_primary_10_1039_C8TA05054F
crossref_primary_10_1039_C6NR05058A
crossref_primary_10_1021_acs_jpcc_0c05479
crossref_primary_10_1360_nso_20220028
crossref_primary_10_1039_D3CP02117C
crossref_primary_10_1016_j_apmate_2024_100201
crossref_primary_10_1016_j_scriptamat_2021_114346
crossref_primary_10_1039_C8TA11273H
crossref_primary_10_1039_C6TA05091C
crossref_primary_10_1002_anie_202013594
crossref_primary_10_1016_j_cej_2021_134044
crossref_primary_10_1039_C6TA00284F
crossref_primary_10_1016_j_ijhydene_2020_04_284
crossref_primary_10_1016_j_jpcs_2024_112006
crossref_primary_10_1016_j_apmt_2019_100517
crossref_primary_10_1016_j_ceja_2020_100008
crossref_primary_10_1016_j_ijhydene_2024_10_312
crossref_primary_10_1021_acsnano_5b07301
crossref_primary_10_1007_s12274_021_3605_7
crossref_primary_10_1039_C7TA06172B
crossref_primary_10_1039_D1TA09562E
crossref_primary_10_1002_adma_202418757
crossref_primary_10_1021_acs_jpcc_7b05734
crossref_primary_10_1016_j_cej_2023_143945
crossref_primary_10_1016_j_cej_2017_10_005
crossref_primary_10_1016_j_jcis_2024_08_195
crossref_primary_10_1002_asia_202000468
crossref_primary_10_1016_j_nanoso_2017_08_017
crossref_primary_10_1021_acscatal_7b03463
crossref_primary_10_1039_D1TA03863J
crossref_primary_10_1039_D0NR08009H
crossref_primary_10_1039_D0EE00450B
crossref_primary_10_1002_chem_202000280
crossref_primary_10_1016_j_ccr_2023_215057
crossref_primary_10_1039_C6CY00712K
crossref_primary_10_1016_j_cej_2023_147292
crossref_primary_10_1016_j_nanoen_2019_03_010
crossref_primary_10_1039_C7CS00418D
crossref_primary_10_1039_C5CS00781J
crossref_primary_10_1039_D1NR00649E
crossref_primary_10_1039_C9CE01883B
crossref_primary_10_1039_C7NR09620H
crossref_primary_10_1002_tcr_202100310
crossref_primary_10_1021_acsami_0c05108
crossref_primary_10_1002_pssr_202100241
crossref_primary_10_1039_C7TA00075H
crossref_primary_10_1088_1361_6463_ac5191
crossref_primary_10_1142_S1793292020500423
crossref_primary_10_1002_adma_202303072
crossref_primary_10_1016_j_asems_2023_100053
crossref_primary_10_1021_acs_nanolett_9b02888
crossref_primary_10_1002_anie_201509616
crossref_primary_10_1002_EXP_20220174
crossref_primary_10_1039_D0CP02241A
crossref_primary_10_1039_D0TA10429A
crossref_primary_10_1039_D0CC07214A
crossref_primary_10_1002_inf2_12623
crossref_primary_10_1016_j_apcatb_2019_05_003
crossref_primary_10_1021_ja5119495
crossref_primary_10_1039_C7EE03592F
crossref_primary_10_1016_j_jece_2023_109974
crossref_primary_10_24237_djes_2024_17401
crossref_primary_10_1039_C6DT02155G
crossref_primary_10_1039_C8QM00259B
crossref_primary_10_1002_celc_201801247
crossref_primary_10_1016_j_ijhydene_2018_08_126
crossref_primary_10_1039_C6CC00903D
crossref_primary_10_1039_C6CS00571C
crossref_primary_10_1039_C9NR10331G
crossref_primary_10_1002_batt_201900143
crossref_primary_10_1002_smtd_201800181
crossref_primary_10_1016_j_apcatb_2019_118520
crossref_primary_10_1016_j_tetlet_2024_155426
crossref_primary_10_1088_1402_4896_acfa42
crossref_primary_10_1021_acscentsci_6b00164
crossref_primary_10_1016_j_jcis_2019_10_116
crossref_primary_10_1016_j_ccr_2022_214794
crossref_primary_10_1021_acs_jpcc_3c07521
crossref_primary_10_1021_jacs_8b13673
crossref_primary_10_1002_anie_201809492
crossref_primary_10_1002_ange_201801029
crossref_primary_10_1039_D4TA02663B
crossref_primary_10_1021_acsnano_4c12923
crossref_primary_10_1002_tcr_202200143
crossref_primary_10_1039_C7TA06747J
crossref_primary_10_1016_j_jssc_2022_123642
crossref_primary_10_1038_s41467_017_01949_8
crossref_primary_10_1002_ange_202010156
crossref_primary_10_1021_acs_energyfuels_4c00837
crossref_primary_10_1002_ange_202202604
crossref_primary_10_1039_C7CP08671G
crossref_primary_10_1002_cssc_201702295
crossref_primary_10_1016_j_mtsust_2023_100359
crossref_primary_10_1016_j_jes_2023_07_002
crossref_primary_10_1016_j_matchemphys_2016_11_004
crossref_primary_10_1088_2053_1583_ad0f2c
crossref_primary_10_1021_acsnano_4c11606
crossref_primary_10_1016_j_apcatb_2021_120159
crossref_primary_10_1007_s40843_021_1823_9
crossref_primary_10_1016_j_jelechem_2023_117549
crossref_primary_10_1016_j_cej_2023_143571
crossref_primary_10_1039_C6TA05907D
crossref_primary_10_1016_j_jcis_2019_05_103
crossref_primary_10_1039_C6SC05687C
crossref_primary_10_1002_anie_202007767
crossref_primary_10_3866_PKU_WHXB202305019
crossref_primary_10_1016_j_cclet_2021_10_088
crossref_primary_10_1016_j_electacta_2017_10_074
crossref_primary_10_1002_aenm_202303321
crossref_primary_10_1080_10584587_2021_1911357
crossref_primary_10_1209_0295_5075_ac369e
crossref_primary_10_1016_j_cej_2020_126780
crossref_primary_10_1016_j_jallcom_2020_155012
crossref_primary_10_1039_D0RA00845A
crossref_primary_10_1016_j_nanoen_2016_05_009
crossref_primary_10_1002_admi_201600658
crossref_primary_10_1039_D1EE03687D
crossref_primary_10_1039_D1TC03628A
crossref_primary_10_1039_C8NR08469F
crossref_primary_10_1039_C9TA01326A
crossref_primary_10_1002_smll_202105831
crossref_primary_10_1002_ange_202304861
crossref_primary_10_1002_aenm_201702794
crossref_primary_10_1039_C8TA11407B
crossref_primary_10_1002_smll_201800136
crossref_primary_10_1039_C8NR04277B
crossref_primary_10_1002_celc_202001441
crossref_primary_10_1002_cctc_201900256
crossref_primary_10_1016_j_jcis_2020_06_023
crossref_primary_10_1002_smll_201904271
crossref_primary_10_3390_catal9060558
crossref_primary_10_1016_j_mtsust_2022_100264
crossref_primary_10_1016_j_ccr_2022_214515
crossref_primary_10_1016_j_trac_2019_05_002
crossref_primary_10_1039_C9CS00821G
crossref_primary_10_1016_j_bios_2017_06_011
crossref_primary_10_1039_C8NR01095A
crossref_primary_10_1002_advs_201500424
crossref_primary_10_1039_D0TA11606H
crossref_primary_10_1016_j_jmst_2020_09_045
crossref_primary_10_1039_C8NR02932F
crossref_primary_10_1039_D0CC05272H
crossref_primary_10_1016_j_sna_2020_112026
crossref_primary_10_1002_aenm_201701694
crossref_primary_10_1007_s12274_019_2323_x
crossref_primary_10_1016_j_ijhydene_2019_09_041
crossref_primary_10_1002_adma_201801526
crossref_primary_10_1016_j_apsusc_2022_156283
crossref_primary_10_2139_ssrn_4089104
crossref_primary_10_1021_acsami_5b09447
crossref_primary_10_1016_j_mattod_2020_09_004
crossref_primary_10_1016_j_jallcom_2020_156137
crossref_primary_10_1016_j_jphotochemrev_2018_03_002
crossref_primary_10_1039_D0EN00840K
crossref_primary_10_1002_anie_201600686
crossref_primary_10_1039_D0CY01721C
crossref_primary_10_1021_accountsmr_2c00172
crossref_primary_10_1021_acs_accounts_8b00645
crossref_primary_10_1002_anie_201505245
crossref_primary_10_1007_s10904_020_01597_4
crossref_primary_10_1016_j_cej_2020_124371
crossref_primary_10_1039_D2TA09033C
crossref_primary_10_1080_00268976_2020_1800853
crossref_primary_10_1021_acsami_7b16549
crossref_primary_10_1016_j_seppur_2024_129356
crossref_primary_10_1016_j_ijhydene_2024_01_022
crossref_primary_10_1021_acssuschemeng_9b01148
crossref_primary_10_1007_s12274_020_3190_1
crossref_primary_10_1016_j_jcis_2017_06_060
crossref_primary_10_1002_anie_202424768
crossref_primary_10_1021_acsomega_7b00795
crossref_primary_10_1016_j_jallcom_2019_04_150
crossref_primary_10_1016_j_apcatb_2022_121574
crossref_primary_10_1016_j_nantod_2016_02_003
crossref_primary_10_1021_acsaem_2c02062
crossref_primary_10_1002_smll_201700565
crossref_primary_10_1016_j_matdes_2016_12_091
crossref_primary_10_1039_C6TA10303K
crossref_primary_10_1039_D2NR04291F
crossref_primary_10_1002_smll_202200445
crossref_primary_10_1039_D3DT01179H
crossref_primary_10_1016_j_chemphys_2023_111837
crossref_primary_10_1021_acs_jpclett_2c01645
crossref_primary_10_3866_PKU_WHXB202308052
crossref_primary_10_1021_acssuschemeng_6b02883
crossref_primary_10_1039_C7RA01683B
crossref_primary_10_1002_adma_201706347
crossref_primary_10_1002_adma_202208860
crossref_primary_10_1002_chem_202001863
crossref_primary_10_1016_j_seppur_2021_118606
crossref_primary_10_1002_adfm_202212752
crossref_primary_10_1002_ange_201705628
crossref_primary_10_1039_D1TA01094H
crossref_primary_10_1039_C6TA07038H
crossref_primary_10_1039_D4TC02536A
crossref_primary_10_1021_acssuschemeng_8b06195
crossref_primary_10_1007_s40242_024_4147_9
crossref_primary_10_1002_chem_201604510
crossref_primary_10_1002_sstr_202000067
crossref_primary_10_1039_C5NR07205K
crossref_primary_10_1002_smtd_202400211
crossref_primary_10_1039_C7CE01769C
crossref_primary_10_1007_s11426_021_1184_6
crossref_primary_10_1021_acs_nanolett_8b03572
crossref_primary_10_1016_j_ijhydene_2019_04_100
crossref_primary_10_26599_EMD_2023_9370008
crossref_primary_10_1002_anie_201705628
crossref_primary_10_1039_C8TA03128B
crossref_primary_10_1007_s10934_023_01516_1
crossref_primary_10_1016_j_jcat_2021_09_004
crossref_primary_10_1038_s41598_023_45744_6
crossref_primary_10_1002_adma_202302860
crossref_primary_10_1016_j_ccr_2023_215504
crossref_primary_10_1039_C9RA00944B
crossref_primary_10_1002_cctc_201901088
crossref_primary_10_1016_j_jechem_2022_04_049
crossref_primary_10_1515_gps_2022_0084
crossref_primary_10_1002_aenm_202402633
crossref_primary_10_1016_j_fuel_2023_129440
crossref_primary_10_1039_C6CC03739A
crossref_primary_10_1002_asia_201600115
crossref_primary_10_1021_acs_chemrev_1c00158
crossref_primary_10_1016_j_cej_2019_123017
crossref_primary_10_1016_j_jechem_2018_07_007
crossref_primary_10_1016_j_apcatb_2017_04_002
crossref_primary_10_1002_adma_201604464
crossref_primary_10_1016_j_apsusc_2020_148316
crossref_primary_10_1016_j_fuel_2024_132903
crossref_primary_10_1039_D1QI00663K
crossref_primary_10_1039_C6CP05004B
crossref_primary_10_1021_acscatal_0c02501
crossref_primary_10_1016_j_jallcom_2019_05_162
crossref_primary_10_1002_cey2_685
crossref_primary_10_1002_adma_202008376
crossref_primary_10_1016_j_apcatb_2017_03_019
crossref_primary_10_1016_j_ijhydene_2022_05_115
crossref_primary_10_1002_adfm_201700856
crossref_primary_10_1016_j_flatc_2019_100149
crossref_primary_10_1016_j_mtener_2019_01_006
crossref_primary_10_1002_cnma_201500162
crossref_primary_10_1039_D1NR06196H
crossref_primary_10_1016_j_ijhydene_2024_08_302
crossref_primary_10_1039_C7TA09092G
crossref_primary_10_1016_j_cej_2020_126728
crossref_primary_10_1002_anie_201701477
crossref_primary_10_1039_D3CC01322G
crossref_primary_10_1039_C9RA02353D
crossref_primary_10_1016_j_cis_2021_102523
crossref_primary_10_1039_C9CC02310K
crossref_primary_10_1073_pnas_2319751121
crossref_primary_10_1016_j_jpcs_2018_03_032
crossref_primary_10_1016_j_colsurfb_2023_113149
crossref_primary_10_1002_ange_201701477
crossref_primary_10_1021_acssuschemeng_8b02804
crossref_primary_10_1016_j_apcatb_2020_119630
crossref_primary_10_1039_D2NJ02433K
crossref_primary_10_1039_C9NJ00466A
crossref_primary_10_1016_j_molcata_2016_08_029
crossref_primary_10_1039_C9TA03945G
crossref_primary_10_1021_acs_chemrev_3c00382
crossref_primary_10_3390_nano13172463
crossref_primary_10_1002_slct_202403191
crossref_primary_10_1002_aic_15695
crossref_primary_10_1016_j_cej_2021_129048
crossref_primary_10_1016_j_jallcom_2017_02_190
crossref_primary_10_1016_j_seppur_2023_125302
crossref_primary_10_1016_j_jece_2021_106569
crossref_primary_10_1038_ncomms9340
crossref_primary_10_1038_s41598_017_05805_z
crossref_primary_10_3390_catal8100462
crossref_primary_10_1039_D3TA04947G
crossref_primary_10_1007_s40820_020_00504_3
crossref_primary_10_1007_s40843_020_1541_9
crossref_primary_10_1016_j_matt_2019_10_023
crossref_primary_10_1016_j_addr_2021_113970
crossref_primary_10_1016_j_commatsci_2018_04_019
crossref_primary_10_1002_adfm_202210759
crossref_primary_10_1016_j_mattod_2018_01_034
crossref_primary_10_1016_j_electacta_2019_134868
crossref_primary_10_1039_C6RA13487D
crossref_primary_10_1088_1361_6528_abc039
crossref_primary_10_1039_C5CC06590A
crossref_primary_10_1016_j_apsusc_2022_155696
crossref_primary_10_1002_cplu_201600501
crossref_primary_10_1016_j_mtchem_2022_100791
crossref_primary_10_1016_j_apcatb_2022_121714
crossref_primary_10_1021_acsnano_7b08691
crossref_primary_10_1021_acs_est_7b01466
crossref_primary_10_1007_s40843_023_2608_6
crossref_primary_10_1039_C5CS00553A
crossref_primary_10_1039_C5TA10337A
crossref_primary_10_1039_C7NR06755K
crossref_primary_10_1016_j_apmt_2021_101028
crossref_primary_10_1016_j_nanoen_2017_03_030
crossref_primary_10_1002_adma_202211884
crossref_primary_10_1039_D0CC01023E
crossref_primary_10_1016_j_apsusc_2018_06_039
crossref_primary_10_1021_acssuschemeng_6b01156
crossref_primary_10_1021_acs_chemmater_4c00513
crossref_primary_10_1039_C9CY01452G
crossref_primary_10_1021_acs_chemrev_7b00689
crossref_primary_10_1002_cssc_201801044
crossref_primary_10_1002_anie_202010156
crossref_primary_10_1002_adfm_201803272
crossref_primary_10_1016_j_nanoen_2016_09_033
crossref_primary_10_1016_j_pmatsci_2018_07_006
crossref_primary_10_1007_s40843_017_9112_4
crossref_primary_10_1016_j_ensm_2023_102780
crossref_primary_10_1016_j_jallcom_2020_154421
crossref_primary_10_1016_j_mseb_2015_12_003
crossref_primary_10_1021_acsanm_3c04439
crossref_primary_10_1039_D0TA03138K
crossref_primary_10_1007_s42114_019_0075_4
crossref_primary_10_1016_j_nanoen_2017_03_009
crossref_primary_10_1016_j_apcatb_2024_124582
crossref_primary_10_3724_SP_J_1249_2024_03323
crossref_primary_10_1016_j_mattod_2020_10_034
crossref_primary_10_1016_j_apsusc_2021_152262
crossref_primary_10_1002_ange_202424768
crossref_primary_10_1149_1945_7111_abae91
crossref_primary_10_1016_j_apsusc_2018_05_220
crossref_primary_10_1021_acs_inorgchem_9b03204
crossref_primary_10_1021_acsami_9b08060
crossref_primary_10_1016_j_renene_2022_09_077
crossref_primary_10_1021_acscatal_2c05401
crossref_primary_10_1039_D4EE01139B
crossref_primary_10_1021_acsanm_4c00477
crossref_primary_10_1002_adma_201700017
crossref_primary_10_1039_D2DT02711A
crossref_primary_10_1039_C5TA04549E
crossref_primary_10_1021_acscatal_1c04739
crossref_primary_10_1111_jace_16382
crossref_primary_10_1039_D0TA08865J
crossref_primary_10_1016_j_mtchem_2024_102028
crossref_primary_10_1039_C5GC02999F
crossref_primary_10_1039_C9TA00040B
crossref_primary_10_1016_j_ijhydene_2022_06_306
crossref_primary_10_1016_j_radphyschem_2018_09_026
crossref_primary_10_1021_acscatal_9b05445
crossref_primary_10_1016_S1872_2067_23_64449_3
crossref_primary_10_1039_D0CC05449F
crossref_primary_10_1039_C6CS00195E
crossref_primary_10_1016_j_cattod_2018_11_053
crossref_primary_10_1016_j_chemosphere_2021_131254
crossref_primary_10_1016_j_ijhydene_2019_10_235
crossref_primary_10_3390_catal10040464
crossref_primary_10_1002_ange_201509953
crossref_primary_10_1039_C9SE00409B
crossref_primary_10_1103_PhysRevMaterials_6_034010
crossref_primary_10_1002_ange_201811632
crossref_primary_10_1088_1755_1315_300_5_052003
crossref_primary_10_1021_acsami_6b02350
crossref_primary_10_1016_j_colsurfb_2020_111162
crossref_primary_10_1063_1_4961036
crossref_primary_10_1002_ange_201600686
crossref_primary_10_1021_acsami_0c21454
crossref_primary_10_1016_j_jpcs_2024_111889
crossref_primary_10_1016_j_jallcom_2017_07_003
crossref_primary_10_3390_catal7100285
crossref_primary_10_1002_anie_201606313
crossref_primary_10_1038_ncomms11480
crossref_primary_10_1021_acscentsci_2c00252
crossref_primary_10_1016_j_apcatb_2017_06_017
crossref_primary_10_1016_j_checat_2021_01_002
crossref_primary_10_1016_j_ijhydene_2022_09_162
crossref_primary_10_1016_j_jallcom_2018_01_060
crossref_primary_10_3390_molecules28083292
crossref_primary_10_1002_smll_201900497
crossref_primary_10_1016_j_cej_2024_153187
crossref_primary_10_1002_adma_201701546
crossref_primary_10_1039_C7CC06378D
crossref_primary_10_12677_NAT_2022_124033
crossref_primary_10_1016_j_cej_2017_12_012
crossref_primary_10_1016_j_cej_2021_129201
crossref_primary_10_1039_D1TA06308A
crossref_primary_10_1039_C8QI00969D
crossref_primary_10_1002_adma_201902709
crossref_primary_10_1002_smll_202305009
crossref_primary_10_1002_anie_202202604
crossref_primary_10_1088_1361_6528_ab72bf
crossref_primary_10_1016_j_apsusc_2023_157765
crossref_primary_10_1002_smll_201907087
crossref_primary_10_1016_j_cej_2023_145826
crossref_primary_10_1016_j_ijhydene_2022_02_067
crossref_primary_10_1016_j_chemosphere_2021_129534
crossref_primary_10_1002_ange_201809492
crossref_primary_10_1016_j_apcatb_2018_02_024
crossref_primary_10_1016_j_apcatb_2020_119368
crossref_primary_10_1002_ange_202013594
crossref_primary_10_1002_zaac_201800307
crossref_primary_10_1016_j_apsusc_2021_149104
crossref_primary_10_1021_acscatal_8b04064
crossref_primary_10_1021_acs_langmuir_3c03854
crossref_primary_10_1016_j_jhazmat_2022_129061
crossref_primary_10_1039_C8CS00396C
crossref_primary_10_1016_j_apcatb_2021_120402
crossref_primary_10_1016_j_biomaterials_2021_120821
crossref_primary_10_1016_j_nanoen_2018_12_063
crossref_primary_10_1002_anie_202304861
crossref_primary_10_1016_j_cclet_2024_110399
crossref_primary_10_1016_j_nantod_2018_02_007
crossref_primary_10_1016_j_apcatb_2018_10_018
crossref_primary_10_1016_j_talanta_2018_01_059
crossref_primary_10_1039_C7GC02543B
crossref_primary_10_1016_j_mtsust_2022_100118
crossref_primary_10_1002_smtd_201900083
crossref_primary_10_1016_j_cej_2023_148084
crossref_primary_10_1016_j_cej_2022_135754
crossref_primary_10_1038_s41557_018_0136_2
crossref_primary_10_1016_j_jhazmat_2023_132538
crossref_primary_10_1016_j_trac_2025_118213
crossref_primary_10_1021_acs_nanolett_1c02008
crossref_primary_10_1039_C9NR01321K
crossref_primary_10_1039_C9TA03256H
crossref_primary_10_1039_D0NJ04653A
crossref_primary_10_1016_j_ensm_2018_04_005
crossref_primary_10_1016_j_radphyschem_2018_10_007
crossref_primary_10_1007_s40843_017_9214_9
crossref_primary_10_1039_C7TA07808K
crossref_primary_10_1039_D0TB01598A
crossref_primary_10_1007_s42864_023_00229_x
crossref_primary_10_1016_j_apsusc_2017_11_281
crossref_primary_10_1016_j_cclet_2019_03_051
crossref_primary_10_1039_D2QM01299E
crossref_primary_10_1002_ange_201914245
crossref_primary_10_1016_j_jcis_2021_09_002
crossref_primary_10_1021_acsabm_1c00258
crossref_primary_10_1021_acs_chemmater_4c01226
crossref_primary_10_1016_j_apcatb_2020_119398
crossref_primary_10_1021_acs_langmuir_4c03299
crossref_primary_10_1021_acscatal_2c01174
crossref_primary_10_1021_acsnano_7b07974
crossref_primary_10_1093_nsr_nwab142
crossref_primary_10_1039_D4NR03988B
crossref_primary_10_1016_j_apcatb_2018_12_078
crossref_primary_10_1039_C7QI00167C
crossref_primary_10_1039_C5CS00268K
crossref_primary_10_2139_ssrn_4016020
crossref_primary_10_1021_acsami_3c18620
crossref_primary_10_1021_acssuschemeng_7b01713
crossref_primary_10_1039_C9NR09753H
crossref_primary_10_1016_j_jmst_2020_03_033
crossref_primary_10_1021_acsomega_9b01354
crossref_primary_10_1021_acscatal_8b01821
crossref_primary_10_1016_j_jcat_2023_115284
crossref_primary_10_1007_s12274_019_2559_5
crossref_primary_10_1021_acs_accounts_0c00626
crossref_primary_10_1016_j_apsusc_2021_149146
crossref_primary_10_1021_acsami_7b10010
crossref_primary_10_1002_advs_201800064
crossref_primary_10_1016_j_esci_2023_100141
crossref_primary_10_1016_j_jcat_2024_115709
crossref_primary_10_1039_C8CP02013B
crossref_primary_10_3390_catal12101167
crossref_primary_10_1039_D3RA05718F
crossref_primary_10_1016_j_mtphys_2022_100634
crossref_primary_10_1039_C6CY02178F
crossref_primary_10_1016_j_matt_2020_02_006
crossref_primary_10_1002_smll_201700806
crossref_primary_10_1016_j_carbon_2019_06_009
crossref_primary_10_1016_j_jechem_2023_02_043
crossref_primary_10_1016_j_cej_2018_12_008
crossref_primary_10_1039_C6CP01001F
crossref_primary_10_1039_C7CS00864C
crossref_primary_10_1016_j_nanoen_2017_09_008
crossref_primary_10_1039_C7RA06560D
crossref_primary_10_1016_j_jhazmat_2022_129009
crossref_primary_10_1021_acscatal_7b03338
crossref_primary_10_1142_S0217984922501056
crossref_primary_10_1021_jacs_6b11263
crossref_primary_10_1039_D0CP02541K
crossref_primary_10_1021_acscatal_1c00200
crossref_primary_10_1016_j_jelechem_2018_10_007
crossref_primary_10_1016_j_biomaterials_2018_05_055
crossref_primary_10_1007_s12274_017_1509_3
crossref_primary_10_1016_j_jcis_2017_12_079
crossref_primary_10_1002_smll_201704137
crossref_primary_10_1016_j_envres_2022_114699
crossref_primary_10_1039_D2NR01031C
crossref_primary_10_1021_acsmaterialslett_0c00209
crossref_primary_10_1039_D0TA08802A
crossref_primary_10_1016_j_apsusc_2020_147927
crossref_primary_10_1021_acssuschemeng_7b02812
crossref_primary_10_1016_j_optmat_2018_11_030
crossref_primary_10_1039_D3DT01412F
crossref_primary_10_1016_j_jwpe_2024_105830
crossref_primary_10_1016_j_bios_2016_03_042
crossref_primary_10_1016_j_jcis_2016_08_062
crossref_primary_10_1039_D0TA08078K
crossref_primary_10_1016_j_apcatb_2018_12_038
crossref_primary_10_1002_ange_201503477
crossref_primary_10_1039_C5NR06718A
crossref_primary_10_1177_14644207211022768
crossref_primary_10_1016_j_electacta_2018_05_001
crossref_primary_10_1007_s10854_018_8663_6
crossref_primary_10_1016_j_ensm_2018_10_013
crossref_primary_10_1016_j_seppur_2021_119676
crossref_primary_10_1016_j_apcatb_2016_01_062
crossref_primary_10_1002_smtd_201800083
crossref_primary_10_1039_C8DT02613K
crossref_primary_10_1039_C9CC02845E
crossref_primary_10_1039_D2NR05964A
crossref_primary_10_1016_j_cej_2018_12_038
crossref_primary_10_1016_j_jpowsour_2016_09_148
crossref_primary_10_1039_D0TA08384D
crossref_primary_10_1002_adma_201704548
crossref_primary_10_1002_adfm_201801983
crossref_primary_10_1039_C5TA03905C
crossref_primary_10_1002_chem_201503778
crossref_primary_10_1002_adma_202006159
crossref_primary_10_1021_acs_chemmater_6b00430
crossref_primary_10_1038_s41560_019_0355_9
crossref_primary_10_1016_j_jmst_2019_06_020
crossref_primary_10_1039_D0TA08165E
crossref_primary_10_1016_j_seppur_2024_127324
crossref_primary_10_1039_D0CY00425A
crossref_primary_10_1016_j_ijhydene_2016_11_097
crossref_primary_10_1039_C9NR05484G
crossref_primary_10_1039_C8AY01050A
crossref_primary_10_1002_advs_201800430
crossref_primary_10_3390_catal7090252
crossref_primary_10_1021_acsami_1c06771
crossref_primary_10_1039_C8CY00571K
crossref_primary_10_1039_C9QI00325H
crossref_primary_10_1021_acssuschemeng_2c04436
crossref_primary_10_1007_s40843_017_9151_y
crossref_primary_10_1039_C9TA04742E
crossref_primary_10_1016_j_ijhydene_2022_02_005
crossref_primary_10_1016_j_apcatb_2018_04_016
crossref_primary_10_1016_j_matlet_2015_10_155
crossref_primary_10_1039_D3CP03191H
crossref_primary_10_1063_5_0214552
crossref_primary_10_1002_adfm_202203555
crossref_primary_10_1002_cplu_202000811
crossref_primary_10_1021_acs_nanolett_9b01417
crossref_primary_10_1039_D1MH00773D
crossref_primary_10_1039_C7CC07186H
crossref_primary_10_1002_cctc_201900341
crossref_primary_10_1021_acscatal_7b03949
crossref_primary_10_1021_acs_inorgchem_9b01930
crossref_primary_10_1002_cctc_202401358
crossref_primary_10_1016_j_checat_2023_100871
crossref_primary_10_1016_j_ccr_2022_214666
crossref_primary_10_1016_j_surfin_2022_102308
crossref_primary_10_1021_acsaem_0c00872
crossref_primary_10_1002_anie_201810104
crossref_primary_10_1016_j_enchem_2024_100130
crossref_primary_10_1021_acsanm_3c00505
crossref_primary_10_1021_acs_jpcc_4c04224
crossref_primary_10_1002_aoc_7662
crossref_primary_10_1016_j_cclet_2022_02_006
crossref_primary_10_1016_j_ijhydene_2023_04_123
crossref_primary_10_1039_D0TA06099B
crossref_primary_10_1021_acs_inorgchem_0c01828
crossref_primary_10_1039_D1TA03963F
crossref_primary_10_1016_j_cej_2021_133219
crossref_primary_10_1039_D3EE01723K
crossref_primary_10_1039_D0CY01644F
crossref_primary_10_1002_smtd_202000248
crossref_primary_10_1016_j_cej_2017_09_005
crossref_primary_10_1002_anie_201913675
crossref_primary_10_1016_j_nanoen_2016_10_020
crossref_primary_10_1016_j_ijhydene_2023_11_343
crossref_primary_10_1016_j_apsusc_2022_156197
crossref_primary_10_1016_j_photonics_2023_101131
crossref_primary_10_1021_acscatal_7b00007
crossref_primary_10_1016_j_ijhydene_2021_03_182
crossref_primary_10_1021_acs_energyfuels_0c00953
crossref_primary_10_1007_s10853_017_1481_z
crossref_primary_10_1016_j_ijhydene_2022_04_277
crossref_primary_10_1021_acsnano_9b03649
crossref_primary_10_1021_acsami_4c01273
crossref_primary_10_1002_aenm_201701114
crossref_primary_10_1002_anie_201905869
crossref_primary_10_1016_j_ijhydene_2022_04_271
crossref_primary_10_1016_j_jallcom_2020_156465
crossref_primary_10_1039_C6RA08394C
crossref_primary_10_1016_j_apcatb_2015_07_035
crossref_primary_10_1088_2053_1591_ab17b8
crossref_primary_10_1016_j_talanta_2018_01_019
crossref_primary_10_1021_acsabm_4c00862
crossref_primary_10_2139_ssrn_4125485
crossref_primary_10_1002_advs_201600179
crossref_primary_10_1002_adma_202206890
crossref_primary_10_1002_jccs_201900001
crossref_primary_10_1039_C9TA06088J
crossref_primary_10_1016_j_jechem_2022_06_045
crossref_primary_10_1016_S1872_2067_15_60911_1
crossref_primary_10_1002_smll_201600189
crossref_primary_10_1021_acs_chemmater_0c02385
crossref_primary_10_1002_celc_202000477
crossref_primary_10_1021_acsami_1c11081
crossref_primary_10_1002_aenm_201701345
crossref_primary_10_1021_acssuschemeng_8b03153
crossref_primary_10_1039_C7TA00816C
crossref_primary_10_1002_adma_202101751
crossref_primary_10_1016_j_jclepro_2019_118532
crossref_primary_10_3390_catal12010058
crossref_primary_10_1039_C7NR07366F
crossref_primary_10_1039_C8TA11525G
crossref_primary_10_1002_anie_201902588
crossref_primary_10_1016_j_cej_2020_126208
crossref_primary_10_1002_ange_201606313
crossref_primary_10_1007_s11237_015_9410_1
crossref_primary_10_1007_s11595_024_2887_5
crossref_primary_10_1002_adfm_202107280
crossref_primary_10_1016_j_apcatb_2019_117788
crossref_primary_10_3390_molecules27154751
crossref_primary_10_1002_anie_201509953
crossref_primary_10_1002_smll_202207101
crossref_primary_10_1002_advs_201800244
crossref_primary_10_1002_smll_202303631
crossref_primary_10_1039_D0TA11618A
crossref_primary_10_1002_celc_201700445
crossref_primary_10_1016_j_matt_2023_12_014
crossref_primary_10_1016_j_nanoen_2017_07_030
crossref_primary_10_1016_j_ccr_2022_214864
crossref_primary_10_1002_anie_201811632
crossref_primary_10_1016_j_colsurfa_2020_125716
crossref_primary_10_1016_j_enchem_2019_100013
crossref_primary_10_1021_acsami_7b09897
crossref_primary_10_1021_acs_nanolett_0c01908
crossref_primary_10_1002_anbr_202100105
crossref_primary_10_1002_inf2_12219
crossref_primary_10_1016_j_jtice_2018_07_021
crossref_primary_10_1002_cssc_201900621
crossref_primary_10_1016_j_jcis_2023_03_150
crossref_primary_10_1002_smll_202300065
crossref_primary_10_2139_ssrn_4147084
crossref_primary_10_1016_j_ijhydene_2022_06_081
crossref_primary_10_1021_acssuschemeng_7b02163
crossref_primary_10_1021_acscatal_4c01713
crossref_primary_10_1016_j_chphma_2022_01_003
crossref_primary_10_1016_j_matlet_2020_128569
crossref_primary_10_1021_acscatal_8b02662
crossref_primary_10_1039_C5TA06955F
crossref_primary_10_1039_D4DT01553C
crossref_primary_10_1002_eem2_12171
crossref_primary_10_1021_acs_inorgchem_9b02053
crossref_primary_10_1039_C9CC01213C
crossref_primary_10_1016_j_coelec_2019_04_008
crossref_primary_10_1016_j_jece_2023_109696
crossref_primary_10_1039_D0TA06299E
crossref_primary_10_3390_catal14090630
crossref_primary_10_1016_j_cej_2023_147552
crossref_primary_10_1021_acs_est_2c02663
crossref_primary_10_1002_ange_201804142
crossref_primary_10_1021_acs_chemrev_6b00558
crossref_primary_10_1002_adma_202207895
crossref_primary_10_1039_C6QI00334F
crossref_primary_10_1016_j_nanoen_2018_07_029
crossref_primary_10_3390_ma13194326
crossref_primary_10_1002_smll_201800195
crossref_primary_10_1021_acsanm_9b01225
crossref_primary_10_1007_s12274_022_4185_x
crossref_primary_10_1021_acsenergylett_7b00326
crossref_primary_10_1016_j_nanoen_2018_07_010
crossref_primary_10_1007_s11665_020_05180_3
crossref_primary_10_1016_j_jcis_2023_03_123
crossref_primary_10_1016_j_nantod_2016_10_004
crossref_primary_10_1002_aenm_201901312
crossref_primary_10_1016_j_molliq_2022_121046
crossref_primary_10_1016_j_nanoen_2018_08_058
crossref_primary_10_2139_ssrn_4163789
crossref_primary_10_1002_aenm_201702179
crossref_primary_10_1039_C8TA12238E
crossref_primary_10_1002_adma_201601019
crossref_primary_10_1016_j_colsurfa_2020_125992
crossref_primary_10_2139_ssrn_4073642
crossref_primary_10_1016_j_cej_2021_133617
crossref_primary_10_1016_j_mseb_2023_116418
crossref_primary_10_1007_s11705_024_2427_z
crossref_primary_10_1021_acsami_5b08420
crossref_primary_10_1016_j_electacta_2022_141661
crossref_primary_10_1039_C5EE02879E
crossref_primary_10_1016_j_apsusc_2018_08_130
crossref_primary_10_1039_D4GC03829K
crossref_primary_10_1088_1361_6528_abe787
crossref_primary_10_1021_acs_chemrev_3c00229
crossref_primary_10_1002_adma_201807576
crossref_primary_10_1016_j_jallcom_2020_157837
crossref_primary_10_1002_adfm_202100908
crossref_primary_10_1038_s41467_019_10392_w
crossref_primary_10_1002_anie_201804142
crossref_primary_10_1002_cnma_202100087
crossref_primary_10_1016_j_jssc_2021_122751
crossref_primary_10_1088_2053_1583_3_3_035001
crossref_primary_10_1016_j_jallcom_2019_04_239
crossref_primary_10_1016_j_mtsust_2020_100037
crossref_primary_10_1021_acs_inorgchem_2c01984
crossref_primary_10_1039_D3DT03809B
crossref_primary_10_1002_adfm_201910830
crossref_primary_10_1002_aenm_201703482
crossref_primary_10_1002_jctb_5779
crossref_primary_10_1016_j_jcis_2019_03_044
crossref_primary_10_1021_acs_chemrev_3c00005
crossref_primary_10_1016_j_jechem_2019_03_002
crossref_primary_10_1016_j_jpowsour_2018_06_030
crossref_primary_10_1016_j_cplett_2019_136805
crossref_primary_10_1021_acs_chemrev_1c00068
crossref_primary_10_1002_slct_202003267
crossref_primary_10_1002_smll_202208270
crossref_primary_10_1016_j_cej_2019_02_127
crossref_primary_10_3390_catal11121553
crossref_primary_10_1016_j_jcis_2022_10_162
crossref_primary_10_1021_acscatal_5b02730
crossref_primary_10_1039_C5QI00251F
crossref_primary_10_1016_j_cattod_2023_114342
crossref_primary_10_1016_j_mtener_2018_10_015
crossref_primary_10_1557_jmr_2016_234
crossref_primary_10_1016_j_efmat_2024_10_001
crossref_primary_10_1016_j_cej_2021_131246
crossref_primary_10_1039_D4MA01245C
crossref_primary_10_1039_D2CP05471J
crossref_primary_10_1016_j_chphma_2024_06_003
crossref_primary_10_1016_j_seppur_2024_127462
crossref_primary_10_1007_s40242_022_2224_5
crossref_primary_10_1016_j_cej_2019_122039
crossref_primary_10_1002_smtd_201700156
crossref_primary_10_1016_j_susmat_2022_e00406
crossref_primary_10_1007_s10854_022_09743_z
crossref_primary_10_1016_j_cej_2019_123364
crossref_primary_10_1016_j_cej_2025_161384
crossref_primary_10_1016_S1872_2067_20_63708_1
crossref_primary_10_1021_accountsmr_1c00222
crossref_primary_10_1002_aenm_201902494
crossref_primary_10_1039_C6RA22605A
crossref_primary_10_1021_acsaem_8b01521
crossref_primary_10_1002_aenm_202403249
crossref_primary_10_1002_smll_201602970
crossref_primary_10_1007_s12209_020_00277_1
crossref_primary_10_1002_cssc_201901794
crossref_primary_10_1002_cssc_202000329
crossref_primary_10_1016_j_jallcom_2022_167390
crossref_primary_10_1039_C5CP06555K
crossref_primary_10_1039_C9CY01136F
crossref_primary_10_1039_C5TC00288E
crossref_primary_10_1016_j_envpol_2024_125072
crossref_primary_10_1039_C6NR00546B
crossref_primary_10_1002_celc_202100134
crossref_primary_10_1002_smll_201904783
crossref_primary_10_1039_D1SE01478A
crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_011
crossref_primary_10_1039_C7NR04651K
crossref_primary_10_1016_S1872_2067_19_63284_5
crossref_primary_10_1021_jacs_5b12727
crossref_primary_10_2139_ssrn_3979465
crossref_primary_10_1007_s11356_020_11809_6
crossref_primary_10_1039_C7SE00344G
crossref_primary_10_1007_s12613_020_2088_y
crossref_primary_10_1016_j_pmatsci_2017_06_002
crossref_primary_10_1039_D1EN00149C
crossref_primary_10_1002_cssc_202102495
crossref_primary_10_1039_C9CY01488H
crossref_primary_10_1016_j_jcis_2021_11_097
crossref_primary_10_1021_acs_jpclett_3c00006
crossref_primary_10_1039_C7TA03624H
crossref_primary_10_1016_j_apcatb_2019_02_047
crossref_primary_10_1002_smll_201600332
crossref_primary_10_1016_j_jcis_2023_07_117
crossref_primary_10_1116_1_5095413
crossref_primary_10_1002_adma_201700396
crossref_primary_10_1016_j_apsusc_2017_05_058
crossref_primary_10_1016_j_jcis_2021_04_101
crossref_primary_10_1016_j_cej_2022_138514
crossref_primary_10_1016_j_cej_2019_03_182
crossref_primary_10_1002_ange_201913675
crossref_primary_10_1039_D0SC06601J
crossref_primary_10_1039_D3TA06340B
crossref_primary_10_1016_j_carbon_2016_05_028
crossref_primary_10_1016_j_cej_2021_130991
crossref_primary_10_1039_C6CC07371A
crossref_primary_10_1016_j_flatc_2021_100305
crossref_primary_10_1016_j_matt_2020_04_002
crossref_primary_10_1038_s41467_021_22681_4
crossref_primary_10_1016_j_fuel_2024_133267
crossref_primary_10_1002_adma_202303439
crossref_primary_10_1016_j_mtchem_2018_11_002
crossref_primary_10_1016_j_physe_2022_115549
crossref_primary_10_1002_advs_202411422
crossref_primary_10_1016_j_jcis_2024_01_188
crossref_primary_10_1002_solr_202000070
crossref_primary_10_1016_j_jpowsour_2018_08_028
crossref_primary_10_1039_C8NR00068A
crossref_primary_10_1002_ange_201505245
crossref_primary_10_1016_j_scitotenv_2021_152698
crossref_primary_10_1002_adma_201901996
crossref_primary_10_1016_j_nanoen_2018_04_041
crossref_primary_10_1016_j_apcatb_2018_08_017
crossref_primary_10_1016_j_apcatb_2020_119571
crossref_primary_10_1021_acscatal_8b02075
crossref_primary_10_1111_php_13959
crossref_primary_10_3390_catal12121594
crossref_primary_10_1002_anie_201801029
crossref_primary_10_1016_j_jpcs_2019_02_020
crossref_primary_10_3390_catal9090726
crossref_primary_10_1002_ange_201509616
crossref_primary_10_1039_C8NR07186A
crossref_primary_10_1039_C9TA02010A
crossref_primary_10_1021_acssuschemeng_8b03600
crossref_primary_10_1021_acssuschemeng_2c06497
crossref_primary_10_1021_acs_energyfuels_1c01482
crossref_primary_10_1016_j_jallcom_2020_153653
crossref_primary_10_1002_ange_202007767
crossref_primary_10_1021_acs_inorgchem_0c03771
crossref_primary_10_1002_adfm_202002731
crossref_primary_10_1039_C9CP03758F
crossref_primary_10_1002_smll_201703323
crossref_primary_10_1016_j_cej_2023_147102
crossref_primary_10_21595_vp_2023_23272
crossref_primary_10_1002_aenm_202300651
crossref_primary_10_1021_acs_chemrev_8b00501
crossref_primary_10_1016_j_nanoen_2020_105606
crossref_primary_10_1039_D2CP00736C
crossref_primary_10_1021_acsenergylett_8b01206
crossref_primary_10_1002_ange_201905869
crossref_primary_10_1039_C7MH00314E
crossref_primary_10_1002_celc_202300614
crossref_primary_10_1016_j_mtphys_2023_101080
crossref_primary_10_1016_j_jcat_2020_04_002
crossref_primary_10_1021_acscatal_7b03190
crossref_primary_10_1016_j_nanoen_2023_108546
crossref_primary_10_1016_j_apsusc_2018_11_010
Cites_doi 10.1002/aenm.201300611
10.1098/rspa.1925.0061
10.1038/ncomms2066
10.1021/ja3102049
10.1063/1.1529075
10.1016/S1452-3981(23)15306-5
10.1021/ja402956f
10.1038/nmat1311
10.1039/tf9221700621
10.1016/S1293-2558(00)80081-3
10.1021/ja8034637
10.1021/cr1002326
10.1016/S1381-1169(00)00362-9
10.1039/c4ta01659a
10.1021/ja405997s
10.1039/C3CS60231A
10.1039/C4SC00565A
10.1038/ncomms3899
10.1002/anie.201305530
10.1021/nl101700j
10.1038/nmat2914
10.1016/S0009-2509(54)80005-4
10.1039/B802262N
10.1038/nature09718
10.1126/science.1188267
10.1021/ja501866r
10.1002/anie.200906745
10.1021/ja308249k
10.1038/ncomms3390
10.1021/ja408329q
10.1002/adma.201302685
10.1002/smll.201303548
10.1002/anie.201407836
10.1016/j.nanoen.2014.05.017
10.1002/anie.201301066
10.1039/C3QI00050H
10.1002/anie.201204675
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1039/c4cs00236a
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Materials Research Database
AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 636
ExternalDocumentID 25382246
10_1039_C4CS00236A
c4cs00236a
Genre Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
186
1TJ
29B
2WC
3EH
4.4
53G
5GY
6J9
6TJ
705
70~
71~
7~J
85S
8WZ
9M8
A6W
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAUTI
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDPE
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACKIV
ACLDK
ACNCT
ACPVT
ACRPL
ADMRA
ADNMO
ADSRN
ADXHL
AEFDR
AENEX
AENGV
AESAV
AETEA
AETIL
AFFDN
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AI.
AIDUJ
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
AQHUZ
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FA8
FEDTE
GGIMP
GNO
H13
HF~
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
O9-
P2P
R56
R7B
R7D
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RRXOS
RSCEA
SC5
SKA
SKH
SLH
TN5
TWZ
UPT
UQL
VH1
VH6
WH7
WHG
XJT
XOL
ZCG
ZKB
~02
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c467t-bd5bdbac24c08906b8b707cbb9182da6fa5fa5312e80bfeccdefb943eb5d8f253
ISSN 0306-0012
1460-4744
IngestDate Thu Jul 10 19:02:56 EDT 2025
Fri Jul 11 01:32:51 EDT 2025
Thu Jul 10 18:40:55 EDT 2025
Mon Jul 21 05:57:43 EDT 2025
Tue Jul 01 04:18:35 EDT 2025
Thu Apr 24 22:51:03 EDT 2025
Sun Jun 02 15:18:29 EDT 2019
Thu May 19 04:22:40 EDT 2016
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c467t-bd5bdbac24c08906b8b707cbb9182da6fa5fa5312e80bfeccdefb943eb5d8f253
Notes Yongfu Sun received his BS degree in the Department of Chemistry at Anhui University (2006) and PhD degree in Inorganic Chemistry from University of Science and Technology of China (2011). After that he worked as a postdoctoral fellow in National Synchrotron Radiation Laboratory. In 2013, Dr Sun joined the Hefei National Laboratory for Physical Sciences at the Microscale as a research associate professor. His current interests include the theoretical computation, controllable synthesis, fine structure characterization, device assembly and energy-related applications of atomically-thick two-dimensional sheets.
Shan Gao received his BS degree in chemistry from West Anhui University, China, in 2011. He is currently pursuing his PhD degree in inorganic chemistry at the University of Science and Technology of China, under the supervision of Prof. Yi Xie. His current interests include the synthesis and characterization of nanostructures, especially two-dimensional inorganic graphene analogues and their applications in energy storage and conversion.
Yi Xie received her BS degree from Xiamen University (1988) and a PhD from the University of Science and Technology of China (USTC, 1996). She is now a Principal Investigator of Hefei National Laboratory for Physical Sciences at the Microscale and a full professor of the Department of Chemistry, USTC. She was appointed as the Cheung Kong Scholar Professor of inorganic chemistry in 2000 and elected as a member of the Chinese Academy of Sciences in 2013, also a recipient of many awards, including the Chinese National Nature Science Award (2001 and 2012), China Young Scientist Award (2002), China Young Female Scientist Award (2006) and IUPAC Distinguished Women in Chemistry/Chemical Engineering Award (2013). Her research interests are cutting-edge research at four major frontiers: solid state materials chemistry, nanotechnology, energy science and theoretical physics.
Fengcai Lei received her BS degree in physics from Shandong Normal University, China, in 2011. She is currently pursuing her PhD in inorganic chemistry at the University of Science and Technology of China, under the supervision of Prof. Yi Xie. Her current interests include the theoretical computation and the underlying physics during studying the atomically thin inorganic graphene analogues.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25382246
PQID 1652405863
PQPubID 23479
PageCount 14
ParticipantIDs rsc_primary_c4cs00236a
proquest_miscellaneous_2574316661
crossref_citationtrail_10_1039_C4CS00236A
proquest_miscellaneous_1786163906
proquest_miscellaneous_1652405863
crossref_primary_10_1039_C4CS00236A
pubmed_primary_25382246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2015
References Sun (C4CS00236A-(cit14)/*[position()=1]) 2014; 5
Liang (C4CS00236A-(cit6)/*[position()=1]) 2014; 2
Sun (C4CS00236A-(cit25)/*[position()=1]) 2014; 43
Joo (C4CS00236A-(cit8)/*[position()=1]) 2010; 10
Gao (C4CS00236A-(cit42)/*[position()=1]) 2014
Gao (C4CS00236A-(cit7)/*[position()=1]) 2014; 8
Xie (C4CS00236A-(cit22)/*[position()=1]) 2013; 25
Vang (C4CS00236A-(cit13)/*[position()=1]) 2005; 4
Mars (C4CS00236A-(cit33)/*[position()=1]) 1954; 3
Sun (C4CS00236A-(cit2)/*[position()=1]) 2012; 3
Zhao (C4CS00236A-(cit15)/*[position()=1]) 2013; 4
Bi (C4CS00236A-(cit31)/*[position()=1]) 2014; 10
Rios (C4CS00236A-(cit39)/*[position()=1]) 1999; 1
Guan (C4CS00236A-(cit21)/*[position()=1]) 2013; 135
Tang (C4CS00236A-(cit37)/*[position()=1]) 2008; 130
Taylor (C4CS00236A-(cit10)/*[position()=1]) 1925; 108
Hamdani (C4CS00236A-(cit40)/*[position()=1]) 2010; 5
Nakamura (C4CS00236A-(cit30)/*[position()=1]) 2000; 161
Newville (C4CS00236A-(cit26)/*[position()=1]) 2004
Fu (C4CS00236A-(cit11)/*[position()=1]) 2010; 328
Neitzel (C4CS00236A-(cit9)/*[position()=1]) 2010; 3
Dumesic (C4CS00236A-(cit12)/*[position()=1]) 2008
Walter (C4CS00236A-(cit16)/*[position()=1]) 2010; 110
Sun (C4CS00236A-(cit4)/*[position()=1]) 2012; 51
Najafpour (C4CS00236A-(cit18)/*[position()=1]) 2010; 49
Sun (C4CS00236A-(cit5)/*[position()=1]) 2014; 4
Langmuir (C4CS00236A-(cit34)/*[position()=1]) 1922; 17
Zhang (C4CS00236A-(cit38)/*[position()=1]) 2013; 135
Barber (C4CS00236A-(cit36)/*[position()=1]) 2009; 38
Sun (C4CS00236A-(cit19)/*[position()=1]) 2013; 4
Sun (C4CS00236A-(cit27)/*[position()=1]) 2012; 134
Lei (C4CS00236A-(cit3)/*[position()=1]) 2014; 136
Xie (C4CS00236A-(cit23)/*[position()=1]) 2013; 135
Hinshelwood (C4CS00236A-(cit35)/*[position()=1]) 1940
Sun (C4CS00236A-(cit24)/*[position()=1]) 2014; 1
Banger (C4CS00236A-(cit28)/*[position()=1]) 2012; 10
Sun (C4CS00236A-(cit20)/*[position()=1]) 2013; 52
Wang (C4CS00236A-(cit17)/*[position()=1]) 2013; 52
Huang (C4CS00236A-(cit29)/*[position()=1]) 2003; 93
Huang (C4CS00236A-(cit32)/*[position()=1]) 2011; 469
Bajdich (C4CS00236A-(cit41)/*[position()=1]) 2013; 135
References_xml – issn: 1940
  publication-title: The kinetics of chemical change
  doi: Hinshelwood
– issn: 2008
  publication-title: Principles of heterogeneous catalysis
  doi: Dumesic Huber Boundart
– issn: 2004
  publication-title: Fundamentals of XAFS
  doi: Newville
– volume: 4
  start-page: 1300611
  year: 2014
  ident: C4CS00236A-(cit5)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300611
– volume: 108
  start-page: 105
  year: 1925
  ident: C4CS00236A-(cit10)/*[position()=1]
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1925.0061
– volume: 3
  start-page: 1057
  year: 2012
  ident: C4CS00236A-(cit2)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2066
– volume: 134
  start-page: 20294
  year: 2012
  ident: C4CS00236A-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3102049
– volume: 93
  start-page: 582
  year: 2003
  ident: C4CS00236A-(cit29)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1529075
– volume: 5
  start-page: 556
  year: 2010
  ident: C4CS00236A-(cit40)/*[position()=1]
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15306-5
– volume: 135
  start-page: 10411
  year: 2013
  ident: C4CS00236A-(cit21)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402956f
– volume: 4
  start-page: 160
  year: 2005
  ident: C4CS00236A-(cit13)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1311
– volume: 17
  start-page: 621
  year: 1922
  ident: C4CS00236A-(cit34)/*[position()=1]
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9221700621
– volume: 1
  start-page: 267
  year: 1999
  ident: C4CS00236A-(cit39)/*[position()=1]
  publication-title: Solid State Sci.
  doi: 10.1016/S1293-2558(00)80081-3
– volume: 130
  start-page: 13885
  year: 2008
  ident: C4CS00236A-(cit37)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8034637
– volume: 110
  start-page: 6446
  year: 2010
  ident: C4CS00236A-(cit16)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr1002326
– volume: 161
  start-page: 205
  year: 2000
  ident: C4CS00236A-(cit30)/*[position()=1]
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(00)00362-9
– volume: 2
  start-page: 10647
  year: 2014
  ident: C4CS00236A-(cit6)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta01659a
– volume: 135
  start-page: 13521
  year: 2013
  ident: C4CS00236A-(cit41)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405997s
– volume-title: Principles of heterogeneous catalysis
  year: 2008
  ident: C4CS00236A-(cit12)/*[position()=1]
– volume: 43
  start-page: 530
  year: 2014
  ident: C4CS00236A-(cit25)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60231A
– volume: 5
  start-page: 3976
  year: 2014
  ident: C4CS00236A-(cit14)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC00565A
– volume: 4
  start-page: 2899
  year: 2013
  ident: C4CS00236A-(cit19)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3899
– volume: 52
  start-page: 10569
  year: 2013
  ident: C4CS00236A-(cit20)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201305530
– volume: 10
  start-page: 2709
  year: 2010
  ident: C4CS00236A-(cit8)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl101700j
– volume: 10
  start-page: 45
  year: 2012
  ident: C4CS00236A-(cit28)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2914
– volume: 3
  start-page: 41
  year: 1954
  ident: C4CS00236A-(cit33)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(54)80005-4
– volume: 38
  start-page: 185
  year: 2009
  ident: C4CS00236A-(cit36)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B802262N
– volume: 469
  start-page: 389
  year: 2011
  ident: C4CS00236A-(cit32)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature09718
– volume: 328
  start-page: 1141
  year: 2010
  ident: C4CS00236A-(cit11)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1188267
– volume: 136
  start-page: 6826
  year: 2014
  ident: C4CS00236A-(cit3)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501866r
– volume: 49
  start-page: 2233
  year: 2010
  ident: C4CS00236A-(cit18)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200906745
– volume: 135
  start-page: 18
  year: 2013
  ident: C4CS00236A-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308249k
– volume: 4
  start-page: 2390
  year: 2013
  ident: C4CS00236A-(cit15)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3390
– volume: 135
  start-page: 17881
  year: 2013
  ident: C4CS00236A-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408329q
– volume-title: Fundamentals of XAFS
  year: 2004
  ident: C4CS00236A-(cit26)/*[position()=1]
– volume: 3
  start-page: 21
  year: 2010
  ident: C4CS00236A-(cit9)/*[position()=1]
  publication-title: Nat. Educ.
– volume: 25
  start-page: 5807
  year: 2013
  ident: C4CS00236A-(cit22)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302685
– volume: 10
  start-page: 2820
  year: 2014
  ident: C4CS00236A-(cit31)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201303548
– year: 2014
  ident: C4CS00236A-(cit42)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201407836
– volume: 8
  start-page: 205
  year: 2014
  ident: C4CS00236A-(cit7)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.05.017
– volume: 52
  start-page: 5248
  year: 2013
  ident: C4CS00236A-(cit17)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201301066
– volume: 1
  start-page: 58
  year: 2014
  ident: C4CS00236A-(cit24)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C3QI00050H
– volume: 51
  start-page: 8727
  year: 2012
  ident: C4CS00236A-(cit4)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201204675
– volume-title: The kinetics of chemical change
  year: 1940
  ident: C4CS00236A-(cit35)/*[position()=1]
SSID ssj0011762
Score 2.6461535
SecondaryResourceType review_article
Snippet Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 623
SubjectTerms active sites
Atomic properties
Atomic structure
Catalysis
Catalysts
Catalytic activity
Defects
Disorders
electron paramagnetic resonance spectroscopy
electrons
hydrogen production
oxidation
oxygen
photocatalysis
transmission electron microscopy
Two dimensional
X-ray absorption spectroscopy
Title Atomically-thin two-dimensional sheets for understanding active sites in catalysis
URI https://www.ncbi.nlm.nih.gov/pubmed/25382246
https://www.proquest.com/docview/1652405863
https://www.proquest.com/docview/1786163906
https://www.proquest.com/docview/2574316661
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdb-7C9jH11S_eBx_YyijrZlmT7MYSUbmQdrA6kT0aS5SZQ7NI4jO2v30nyV9tsdINgEkU2sn726U539zuEPmiWUBEJgZWvC0xDwXDMkwKDGNQELKKYSLPf8fWEH8_plwVbtCXhm-ySWh6qX1vzSv4HVWgDXE2W7D8g210UGuA74AtHQBiOd8J4XFc22__iJ66XJmDxR4VzQ9fvqDYO1kuta0u4YMvd9kkswkq5A-M5tvGwdhPHcJMMddWOS6CN7GyYS3s_kpVYZ1V5Xmy6OB5h915Pl8NYHxsxADN3rsSqbV04x8jZarjv4LPBvoMTlZQTTCPH3niot7Q18rX5tRqa31ZYcpdpfEuIk9BwoCqq1pbffrBUte75k2_Z0Xw2y9LpIr2PdgMwEUDG7Y6n6edZ50PyI1tOthtTS04bJp_6a19XR27ZGKBxXLWVYKzGkT5GjxpTwRs73J-ge7p8ih5M2gp9z9D3G_h7N_D3HP4e4O9dw99z-HsWfw9O7PB_juZH03RyjJsaGVjBEldjmTOZS6ECqkicEC5jGZFISZmA4ZgLXggGn9APNLx1BbyvuS5kQkMtWR4XAQv30E5Zlfol8nKdMJITqXNGwQ6OZKANOaClNyI8ZiP0sZ2qTDUE8qaOyUVmAxnCJJvQyamd1vEIve_6XjralK293rUznsHUGVeVKHW1WWc-Z6BqspiHf-kTxRysCbjpP_eBBclwPYASOkIvHKTdeODmTQg1nL0HGHfN_bMxQvvb_8gu82L_DmN_hR72b85rtFNfbfQb0GFr-bZ5WH8Dga2fQw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically-thin+two-dimensional+sheets+for+understanding+active+sites+in+catalysis&rft.jtitle=Chemical+Society+reviews&rft.au=Sun%2C+Yongfu&rft.au=Gao%2C+Shan&rft.au=Lei%2C+Fengcai&rft.au=Xie%2C+Yi&rft.date=2015-01-01&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=44&rft.issue=3&rft.spage=623&rft_id=info:doi/10.1039%2Fc4cs00236a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon