Atomically-thin two-dimensional sheets for understanding active sites in catalysis
Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to th...
Saved in:
Published in | Chemical Society reviews Vol. 44; no. 3; pp. 623 - 636 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites-catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity.
Atomically-thin two-dimensional sheets can serve as an ideal model to disclose the role of active sites in catalysis. |
---|---|
AbstractList | Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called “active sites”. However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites–catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity. Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites-catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity.Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites-catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity. Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called "active sites". However, the atomic level interplay between active sites and catalytic activity is still an open question, owing to the large difference between idealized models and real catalysts. This stimulates us to pursue a suitable material model for studying the active sites-catalytic activity relationship, in which the atomically-thin two-dimensional sheets could serve as an ideal model, owing to their relatively simple type of active site and the ultrahigh fraction of active sites that are comparable to the overall atoms. In this tutorial review, we focus on the recent progress in disclosing the factors that affect the activity of reactive sites, including characterization of atomic coordination number, structural defects and disorder in ultrathin two-dimensional sheets by X-ray absorption fine structure spectroscopy, positron annihilation spectroscopy, electron spin resonance and high resolution transmission electron microscopy. Also, we overview their applications in CO catalytic oxidation, photocatalytic water splitting, electrocatalytic oxygen and hydrogen evolution reactions, and hence highlight the atomic level interplay among coordination number, structural defects/disorder, active sites and catalytic activity in the two-dimensional sheets with atomic thickness. Finally, we also present the major challenges and opportunities regarding the role of active sites in catalysis. We believe that this review provides critical insights for understanding the catalysis and hence helps to develop new catalysts with high catalytic activity. Atomically-thin two-dimensional sheets can serve as an ideal model to disclose the role of active sites in catalysis. |
Author | Lei, Fengcai Gao, Shan Xie, Yi Sun, Yongfu |
AuthorAffiliation | Hefei National Laboratory for Physical Sciences at Microscale Collaborative Innovation Center of Chemistry for Energy Materials University of Science & Technology of China |
AuthorAffiliation_xml | – name: Hefei National Laboratory for Physical Sciences at Microscale – name: University of Science & Technology of China – name: Collaborative Innovation Center of Chemistry for Energy Materials |
Author_xml | – sequence: 1 givenname: Yongfu surname: Sun fullname: Sun, Yongfu – sequence: 2 givenname: Shan surname: Gao fullname: Gao, Shan – sequence: 3 givenname: Fengcai surname: Lei fullname: Lei, Fengcai – sequence: 4 givenname: Yi surname: Xie fullname: Xie, Yi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25382246$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0strGzEQB2BRUhrH7aX3hu0tBLbVa7XrozFNUggU-jgLPWZjhV2to5ET_N9XqeMWSmlAIB2-3yDN6IQcxSkCIW8Z_cCoWHx00iGlXCjzgsyYVLSWrZRHZEYFVTWljB-TE8TbcmKt4q_IMW9Ex7lUM_J1macxODMMuzqvQ6zyw1T7MELEMEUzVLgGyFj1U6q20UPCbKIP8aYyLod7qDBkwKoEnclm2GHA1-RlbwaEN0_7nPy4-PR9dVVff7n8vFpe106qNtfWN9Zb47h0tFtQZTvb0tZZu2Ad90b1pilLMA4dtT0456G3CynANr7rywvm5Gxfd5Omuy1g1mNAB8NgIkxb1LxppWBKKfYsZW2nmBLlFs9T1XBJm06JQk-f6NaO4PUmhdGknT50twC6By5NiAl67UI2uTQ2JxMGzah-HKBeydW3XwNclsj5X5FD1X_i93uc0P12f36D3vi-mHf_M-InSsmw5Q |
CitedBy_id | crossref_primary_10_1021_acsami_6b07986 crossref_primary_10_1016_j_matpr_2020_05_759 crossref_primary_10_1002_adfm_201703363 crossref_primary_10_1002_adma_202204959 crossref_primary_10_1016_j_apsusc_2022_154099 crossref_primary_10_1016_j_chemosphere_2021_131733 crossref_primary_10_1021_acscatal_7b03437 crossref_primary_10_1016_j_scib_2020_06_019 crossref_primary_10_1021_jacs_0c07249 crossref_primary_10_1016_j_ccr_2022_214970 crossref_primary_10_1002_ange_201902588 crossref_primary_10_1016_j_cej_2022_135623 crossref_primary_10_3390_nano10061012 crossref_primary_10_1016_j_apcatb_2021_120521 crossref_primary_10_1016_j_jallcom_2024_173685 crossref_primary_10_1016_j_cattod_2018_04_039 crossref_primary_10_1021_acsami_7b09108 crossref_primary_10_1002_anie_201503477 crossref_primary_10_1002_smll_202204121 crossref_primary_10_1016_j_seppur_2021_120153 crossref_primary_10_1007_s12274_021_3725_0 crossref_primary_10_1016_j_ijhydene_2023_12_089 crossref_primary_10_1039_D0RA04082G crossref_primary_10_1016_j_ijhydene_2019_08_225 crossref_primary_10_1016_j_jcat_2018_07_030 crossref_primary_10_3390_nano12223980 crossref_primary_10_1016_j_nanoen_2021_106661 crossref_primary_10_1016_j_jcat_2019_01_002 crossref_primary_10_1021_acsami_0c03796 crossref_primary_10_1021_acs_est_1c07811 crossref_primary_10_1039_C8TA02820F crossref_primary_10_1021_acssuschemeng_2c01203 crossref_primary_10_1039_C8NR06877A crossref_primary_10_1039_C9CY01298B crossref_primary_10_1039_C8NR09680E crossref_primary_10_1039_C9NJ05219D crossref_primary_10_1038_ncomms8873 crossref_primary_10_1039_C6TA06534A crossref_primary_10_1002_ange_201810104 crossref_primary_10_1002_smll_201602235 crossref_primary_10_1016_j_jece_2022_108734 crossref_primary_10_1039_D1SC02772G crossref_primary_10_1016_j_apcatb_2024_124744 crossref_primary_10_1016_j_apsusc_2021_149244 crossref_primary_10_1039_C5CP06711A crossref_primary_10_1088_1361_6528_abc3e3 crossref_primary_10_1007_s12274_020_2955_x crossref_primary_10_1016_j_ceja_2024_100593 crossref_primary_10_1007_s11356_022_21347_y crossref_primary_10_1016_j_apsusc_2019_144263 crossref_primary_10_1103_PhysRevB_105_184113 crossref_primary_10_1016_j_mtcata_2023_100001 crossref_primary_10_1002_smll_201800759 crossref_primary_10_1039_C8TA07210H crossref_primary_10_1002_anie_201914245 crossref_primary_10_1039_C9TA06887B crossref_primary_10_1021_acsmacrolett_5c00017 crossref_primary_10_1002_adma_201804626 crossref_primary_10_1016_j_mtcomm_2020_101585 crossref_primary_10_1016_j_ijhydene_2018_01_040 crossref_primary_10_1007_s10562_018_2574_2 crossref_primary_10_1016_j_apcatb_2019_117806 crossref_primary_10_1039_C7TA07705J crossref_primary_10_1021_acsami_4c14621 crossref_primary_10_1021_acs_jpclett_9b02340 crossref_primary_10_1007_s00214_017_2175_y crossref_primary_10_1039_C8TA05054F crossref_primary_10_1039_C6NR05058A crossref_primary_10_1021_acs_jpcc_0c05479 crossref_primary_10_1360_nso_20220028 crossref_primary_10_1039_D3CP02117C crossref_primary_10_1016_j_apmate_2024_100201 crossref_primary_10_1016_j_scriptamat_2021_114346 crossref_primary_10_1039_C8TA11273H crossref_primary_10_1039_C6TA05091C crossref_primary_10_1002_anie_202013594 crossref_primary_10_1016_j_cej_2021_134044 crossref_primary_10_1039_C6TA00284F crossref_primary_10_1016_j_ijhydene_2020_04_284 crossref_primary_10_1016_j_jpcs_2024_112006 crossref_primary_10_1016_j_apmt_2019_100517 crossref_primary_10_1016_j_ceja_2020_100008 crossref_primary_10_1016_j_ijhydene_2024_10_312 crossref_primary_10_1021_acsnano_5b07301 crossref_primary_10_1007_s12274_021_3605_7 crossref_primary_10_1039_C7TA06172B crossref_primary_10_1039_D1TA09562E crossref_primary_10_1002_adma_202418757 crossref_primary_10_1021_acs_jpcc_7b05734 crossref_primary_10_1016_j_cej_2023_143945 crossref_primary_10_1016_j_cej_2017_10_005 crossref_primary_10_1016_j_jcis_2024_08_195 crossref_primary_10_1002_asia_202000468 crossref_primary_10_1016_j_nanoso_2017_08_017 crossref_primary_10_1021_acscatal_7b03463 crossref_primary_10_1039_D1TA03863J crossref_primary_10_1039_D0NR08009H crossref_primary_10_1039_D0EE00450B crossref_primary_10_1002_chem_202000280 crossref_primary_10_1016_j_ccr_2023_215057 crossref_primary_10_1039_C6CY00712K crossref_primary_10_1016_j_cej_2023_147292 crossref_primary_10_1016_j_nanoen_2019_03_010 crossref_primary_10_1039_C7CS00418D crossref_primary_10_1039_C5CS00781J crossref_primary_10_1039_D1NR00649E crossref_primary_10_1039_C9CE01883B crossref_primary_10_1039_C7NR09620H crossref_primary_10_1002_tcr_202100310 crossref_primary_10_1021_acsami_0c05108 crossref_primary_10_1002_pssr_202100241 crossref_primary_10_1039_C7TA00075H crossref_primary_10_1088_1361_6463_ac5191 crossref_primary_10_1142_S1793292020500423 crossref_primary_10_1002_adma_202303072 crossref_primary_10_1016_j_asems_2023_100053 crossref_primary_10_1021_acs_nanolett_9b02888 crossref_primary_10_1002_anie_201509616 crossref_primary_10_1002_EXP_20220174 crossref_primary_10_1039_D0CP02241A crossref_primary_10_1039_D0TA10429A crossref_primary_10_1039_D0CC07214A crossref_primary_10_1002_inf2_12623 crossref_primary_10_1016_j_apcatb_2019_05_003 crossref_primary_10_1021_ja5119495 crossref_primary_10_1039_C7EE03592F crossref_primary_10_1016_j_jece_2023_109974 crossref_primary_10_24237_djes_2024_17401 crossref_primary_10_1039_C6DT02155G crossref_primary_10_1039_C8QM00259B crossref_primary_10_1002_celc_201801247 crossref_primary_10_1016_j_ijhydene_2018_08_126 crossref_primary_10_1039_C6CC00903D crossref_primary_10_1039_C6CS00571C crossref_primary_10_1039_C9NR10331G crossref_primary_10_1002_batt_201900143 crossref_primary_10_1002_smtd_201800181 crossref_primary_10_1016_j_apcatb_2019_118520 crossref_primary_10_1016_j_tetlet_2024_155426 crossref_primary_10_1088_1402_4896_acfa42 crossref_primary_10_1021_acscentsci_6b00164 crossref_primary_10_1016_j_jcis_2019_10_116 crossref_primary_10_1016_j_ccr_2022_214794 crossref_primary_10_1021_acs_jpcc_3c07521 crossref_primary_10_1021_jacs_8b13673 crossref_primary_10_1002_anie_201809492 crossref_primary_10_1002_ange_201801029 crossref_primary_10_1039_D4TA02663B crossref_primary_10_1021_acsnano_4c12923 crossref_primary_10_1002_tcr_202200143 crossref_primary_10_1039_C7TA06747J crossref_primary_10_1016_j_jssc_2022_123642 crossref_primary_10_1038_s41467_017_01949_8 crossref_primary_10_1002_ange_202010156 crossref_primary_10_1021_acs_energyfuels_4c00837 crossref_primary_10_1002_ange_202202604 crossref_primary_10_1039_C7CP08671G crossref_primary_10_1002_cssc_201702295 crossref_primary_10_1016_j_mtsust_2023_100359 crossref_primary_10_1016_j_jes_2023_07_002 crossref_primary_10_1016_j_matchemphys_2016_11_004 crossref_primary_10_1088_2053_1583_ad0f2c crossref_primary_10_1021_acsnano_4c11606 crossref_primary_10_1016_j_apcatb_2021_120159 crossref_primary_10_1007_s40843_021_1823_9 crossref_primary_10_1016_j_jelechem_2023_117549 crossref_primary_10_1016_j_cej_2023_143571 crossref_primary_10_1039_C6TA05907D crossref_primary_10_1016_j_jcis_2019_05_103 crossref_primary_10_1039_C6SC05687C crossref_primary_10_1002_anie_202007767 crossref_primary_10_3866_PKU_WHXB202305019 crossref_primary_10_1016_j_cclet_2021_10_088 crossref_primary_10_1016_j_electacta_2017_10_074 crossref_primary_10_1002_aenm_202303321 crossref_primary_10_1080_10584587_2021_1911357 crossref_primary_10_1209_0295_5075_ac369e crossref_primary_10_1016_j_cej_2020_126780 crossref_primary_10_1016_j_jallcom_2020_155012 crossref_primary_10_1039_D0RA00845A crossref_primary_10_1016_j_nanoen_2016_05_009 crossref_primary_10_1002_admi_201600658 crossref_primary_10_1039_D1EE03687D crossref_primary_10_1039_D1TC03628A crossref_primary_10_1039_C8NR08469F crossref_primary_10_1039_C9TA01326A crossref_primary_10_1002_smll_202105831 crossref_primary_10_1002_ange_202304861 crossref_primary_10_1002_aenm_201702794 crossref_primary_10_1039_C8TA11407B crossref_primary_10_1002_smll_201800136 crossref_primary_10_1039_C8NR04277B crossref_primary_10_1002_celc_202001441 crossref_primary_10_1002_cctc_201900256 crossref_primary_10_1016_j_jcis_2020_06_023 crossref_primary_10_1002_smll_201904271 crossref_primary_10_3390_catal9060558 crossref_primary_10_1016_j_mtsust_2022_100264 crossref_primary_10_1016_j_ccr_2022_214515 crossref_primary_10_1016_j_trac_2019_05_002 crossref_primary_10_1039_C9CS00821G crossref_primary_10_1016_j_bios_2017_06_011 crossref_primary_10_1039_C8NR01095A crossref_primary_10_1002_advs_201500424 crossref_primary_10_1039_D0TA11606H crossref_primary_10_1016_j_jmst_2020_09_045 crossref_primary_10_1039_C8NR02932F crossref_primary_10_1039_D0CC05272H crossref_primary_10_1016_j_sna_2020_112026 crossref_primary_10_1002_aenm_201701694 crossref_primary_10_1007_s12274_019_2323_x crossref_primary_10_1016_j_ijhydene_2019_09_041 crossref_primary_10_1002_adma_201801526 crossref_primary_10_1016_j_apsusc_2022_156283 crossref_primary_10_2139_ssrn_4089104 crossref_primary_10_1021_acsami_5b09447 crossref_primary_10_1016_j_mattod_2020_09_004 crossref_primary_10_1016_j_jallcom_2020_156137 crossref_primary_10_1016_j_jphotochemrev_2018_03_002 crossref_primary_10_1039_D0EN00840K crossref_primary_10_1002_anie_201600686 crossref_primary_10_1039_D0CY01721C crossref_primary_10_1021_accountsmr_2c00172 crossref_primary_10_1021_acs_accounts_8b00645 crossref_primary_10_1002_anie_201505245 crossref_primary_10_1007_s10904_020_01597_4 crossref_primary_10_1016_j_cej_2020_124371 crossref_primary_10_1039_D2TA09033C crossref_primary_10_1080_00268976_2020_1800853 crossref_primary_10_1021_acsami_7b16549 crossref_primary_10_1016_j_seppur_2024_129356 crossref_primary_10_1016_j_ijhydene_2024_01_022 crossref_primary_10_1021_acssuschemeng_9b01148 crossref_primary_10_1007_s12274_020_3190_1 crossref_primary_10_1016_j_jcis_2017_06_060 crossref_primary_10_1002_anie_202424768 crossref_primary_10_1021_acsomega_7b00795 crossref_primary_10_1016_j_jallcom_2019_04_150 crossref_primary_10_1016_j_apcatb_2022_121574 crossref_primary_10_1016_j_nantod_2016_02_003 crossref_primary_10_1021_acsaem_2c02062 crossref_primary_10_1002_smll_201700565 crossref_primary_10_1016_j_matdes_2016_12_091 crossref_primary_10_1039_C6TA10303K crossref_primary_10_1039_D2NR04291F crossref_primary_10_1002_smll_202200445 crossref_primary_10_1039_D3DT01179H crossref_primary_10_1016_j_chemphys_2023_111837 crossref_primary_10_1021_acs_jpclett_2c01645 crossref_primary_10_3866_PKU_WHXB202308052 crossref_primary_10_1021_acssuschemeng_6b02883 crossref_primary_10_1039_C7RA01683B crossref_primary_10_1002_adma_201706347 crossref_primary_10_1002_adma_202208860 crossref_primary_10_1002_chem_202001863 crossref_primary_10_1016_j_seppur_2021_118606 crossref_primary_10_1002_adfm_202212752 crossref_primary_10_1002_ange_201705628 crossref_primary_10_1039_D1TA01094H crossref_primary_10_1039_C6TA07038H crossref_primary_10_1039_D4TC02536A crossref_primary_10_1021_acssuschemeng_8b06195 crossref_primary_10_1007_s40242_024_4147_9 crossref_primary_10_1002_chem_201604510 crossref_primary_10_1002_sstr_202000067 crossref_primary_10_1039_C5NR07205K crossref_primary_10_1002_smtd_202400211 crossref_primary_10_1039_C7CE01769C crossref_primary_10_1007_s11426_021_1184_6 crossref_primary_10_1021_acs_nanolett_8b03572 crossref_primary_10_1016_j_ijhydene_2019_04_100 crossref_primary_10_26599_EMD_2023_9370008 crossref_primary_10_1002_anie_201705628 crossref_primary_10_1039_C8TA03128B crossref_primary_10_1007_s10934_023_01516_1 crossref_primary_10_1016_j_jcat_2021_09_004 crossref_primary_10_1038_s41598_023_45744_6 crossref_primary_10_1002_adma_202302860 crossref_primary_10_1016_j_ccr_2023_215504 crossref_primary_10_1039_C9RA00944B crossref_primary_10_1002_cctc_201901088 crossref_primary_10_1016_j_jechem_2022_04_049 crossref_primary_10_1515_gps_2022_0084 crossref_primary_10_1002_aenm_202402633 crossref_primary_10_1016_j_fuel_2023_129440 crossref_primary_10_1039_C6CC03739A crossref_primary_10_1002_asia_201600115 crossref_primary_10_1021_acs_chemrev_1c00158 crossref_primary_10_1016_j_cej_2019_123017 crossref_primary_10_1016_j_jechem_2018_07_007 crossref_primary_10_1016_j_apcatb_2017_04_002 crossref_primary_10_1002_adma_201604464 crossref_primary_10_1016_j_apsusc_2020_148316 crossref_primary_10_1016_j_fuel_2024_132903 crossref_primary_10_1039_D1QI00663K crossref_primary_10_1039_C6CP05004B crossref_primary_10_1021_acscatal_0c02501 crossref_primary_10_1016_j_jallcom_2019_05_162 crossref_primary_10_1002_cey2_685 crossref_primary_10_1002_adma_202008376 crossref_primary_10_1016_j_apcatb_2017_03_019 crossref_primary_10_1016_j_ijhydene_2022_05_115 crossref_primary_10_1002_adfm_201700856 crossref_primary_10_1016_j_flatc_2019_100149 crossref_primary_10_1016_j_mtener_2019_01_006 crossref_primary_10_1002_cnma_201500162 crossref_primary_10_1039_D1NR06196H crossref_primary_10_1016_j_ijhydene_2024_08_302 crossref_primary_10_1039_C7TA09092G crossref_primary_10_1016_j_cej_2020_126728 crossref_primary_10_1002_anie_201701477 crossref_primary_10_1039_D3CC01322G crossref_primary_10_1039_C9RA02353D crossref_primary_10_1016_j_cis_2021_102523 crossref_primary_10_1039_C9CC02310K crossref_primary_10_1073_pnas_2319751121 crossref_primary_10_1016_j_jpcs_2018_03_032 crossref_primary_10_1016_j_colsurfb_2023_113149 crossref_primary_10_1002_ange_201701477 crossref_primary_10_1021_acssuschemeng_8b02804 crossref_primary_10_1016_j_apcatb_2020_119630 crossref_primary_10_1039_D2NJ02433K crossref_primary_10_1039_C9NJ00466A crossref_primary_10_1016_j_molcata_2016_08_029 crossref_primary_10_1039_C9TA03945G crossref_primary_10_1021_acs_chemrev_3c00382 crossref_primary_10_3390_nano13172463 crossref_primary_10_1002_slct_202403191 crossref_primary_10_1002_aic_15695 crossref_primary_10_1016_j_cej_2021_129048 crossref_primary_10_1016_j_jallcom_2017_02_190 crossref_primary_10_1016_j_seppur_2023_125302 crossref_primary_10_1016_j_jece_2021_106569 crossref_primary_10_1038_ncomms9340 crossref_primary_10_1038_s41598_017_05805_z crossref_primary_10_3390_catal8100462 crossref_primary_10_1039_D3TA04947G crossref_primary_10_1007_s40820_020_00504_3 crossref_primary_10_1007_s40843_020_1541_9 crossref_primary_10_1016_j_matt_2019_10_023 crossref_primary_10_1016_j_addr_2021_113970 crossref_primary_10_1016_j_commatsci_2018_04_019 crossref_primary_10_1002_adfm_202210759 crossref_primary_10_1016_j_mattod_2018_01_034 crossref_primary_10_1016_j_electacta_2019_134868 crossref_primary_10_1039_C6RA13487D crossref_primary_10_1088_1361_6528_abc039 crossref_primary_10_1039_C5CC06590A crossref_primary_10_1016_j_apsusc_2022_155696 crossref_primary_10_1002_cplu_201600501 crossref_primary_10_1016_j_mtchem_2022_100791 crossref_primary_10_1016_j_apcatb_2022_121714 crossref_primary_10_1021_acsnano_7b08691 crossref_primary_10_1021_acs_est_7b01466 crossref_primary_10_1007_s40843_023_2608_6 crossref_primary_10_1039_C5CS00553A crossref_primary_10_1039_C5TA10337A crossref_primary_10_1039_C7NR06755K crossref_primary_10_1016_j_apmt_2021_101028 crossref_primary_10_1016_j_nanoen_2017_03_030 crossref_primary_10_1002_adma_202211884 crossref_primary_10_1039_D0CC01023E crossref_primary_10_1016_j_apsusc_2018_06_039 crossref_primary_10_1021_acssuschemeng_6b01156 crossref_primary_10_1021_acs_chemmater_4c00513 crossref_primary_10_1039_C9CY01452G crossref_primary_10_1021_acs_chemrev_7b00689 crossref_primary_10_1002_cssc_201801044 crossref_primary_10_1002_anie_202010156 crossref_primary_10_1002_adfm_201803272 crossref_primary_10_1016_j_nanoen_2016_09_033 crossref_primary_10_1016_j_pmatsci_2018_07_006 crossref_primary_10_1007_s40843_017_9112_4 crossref_primary_10_1016_j_ensm_2023_102780 crossref_primary_10_1016_j_jallcom_2020_154421 crossref_primary_10_1016_j_mseb_2015_12_003 crossref_primary_10_1021_acsanm_3c04439 crossref_primary_10_1039_D0TA03138K crossref_primary_10_1007_s42114_019_0075_4 crossref_primary_10_1016_j_nanoen_2017_03_009 crossref_primary_10_1016_j_apcatb_2024_124582 crossref_primary_10_3724_SP_J_1249_2024_03323 crossref_primary_10_1016_j_mattod_2020_10_034 crossref_primary_10_1016_j_apsusc_2021_152262 crossref_primary_10_1002_ange_202424768 crossref_primary_10_1149_1945_7111_abae91 crossref_primary_10_1016_j_apsusc_2018_05_220 crossref_primary_10_1021_acs_inorgchem_9b03204 crossref_primary_10_1021_acsami_9b08060 crossref_primary_10_1016_j_renene_2022_09_077 crossref_primary_10_1021_acscatal_2c05401 crossref_primary_10_1039_D4EE01139B crossref_primary_10_1021_acsanm_4c00477 crossref_primary_10_1002_adma_201700017 crossref_primary_10_1039_D2DT02711A crossref_primary_10_1039_C5TA04549E crossref_primary_10_1021_acscatal_1c04739 crossref_primary_10_1111_jace_16382 crossref_primary_10_1039_D0TA08865J crossref_primary_10_1016_j_mtchem_2024_102028 crossref_primary_10_1039_C5GC02999F crossref_primary_10_1039_C9TA00040B crossref_primary_10_1016_j_ijhydene_2022_06_306 crossref_primary_10_1016_j_radphyschem_2018_09_026 crossref_primary_10_1021_acscatal_9b05445 crossref_primary_10_1016_S1872_2067_23_64449_3 crossref_primary_10_1039_D0CC05449F crossref_primary_10_1039_C6CS00195E crossref_primary_10_1016_j_cattod_2018_11_053 crossref_primary_10_1016_j_chemosphere_2021_131254 crossref_primary_10_1016_j_ijhydene_2019_10_235 crossref_primary_10_3390_catal10040464 crossref_primary_10_1002_ange_201509953 crossref_primary_10_1039_C9SE00409B crossref_primary_10_1103_PhysRevMaterials_6_034010 crossref_primary_10_1002_ange_201811632 crossref_primary_10_1088_1755_1315_300_5_052003 crossref_primary_10_1021_acsami_6b02350 crossref_primary_10_1016_j_colsurfb_2020_111162 crossref_primary_10_1063_1_4961036 crossref_primary_10_1002_ange_201600686 crossref_primary_10_1021_acsami_0c21454 crossref_primary_10_1016_j_jpcs_2024_111889 crossref_primary_10_1016_j_jallcom_2017_07_003 crossref_primary_10_3390_catal7100285 crossref_primary_10_1002_anie_201606313 crossref_primary_10_1038_ncomms11480 crossref_primary_10_1021_acscentsci_2c00252 crossref_primary_10_1016_j_apcatb_2017_06_017 crossref_primary_10_1016_j_checat_2021_01_002 crossref_primary_10_1016_j_ijhydene_2022_09_162 crossref_primary_10_1016_j_jallcom_2018_01_060 crossref_primary_10_3390_molecules28083292 crossref_primary_10_1002_smll_201900497 crossref_primary_10_1016_j_cej_2024_153187 crossref_primary_10_1002_adma_201701546 crossref_primary_10_1039_C7CC06378D crossref_primary_10_12677_NAT_2022_124033 crossref_primary_10_1016_j_cej_2017_12_012 crossref_primary_10_1016_j_cej_2021_129201 crossref_primary_10_1039_D1TA06308A crossref_primary_10_1039_C8QI00969D crossref_primary_10_1002_adma_201902709 crossref_primary_10_1002_smll_202305009 crossref_primary_10_1002_anie_202202604 crossref_primary_10_1088_1361_6528_ab72bf crossref_primary_10_1016_j_apsusc_2023_157765 crossref_primary_10_1002_smll_201907087 crossref_primary_10_1016_j_cej_2023_145826 crossref_primary_10_1016_j_ijhydene_2022_02_067 crossref_primary_10_1016_j_chemosphere_2021_129534 crossref_primary_10_1002_ange_201809492 crossref_primary_10_1016_j_apcatb_2018_02_024 crossref_primary_10_1016_j_apcatb_2020_119368 crossref_primary_10_1002_ange_202013594 crossref_primary_10_1002_zaac_201800307 crossref_primary_10_1016_j_apsusc_2021_149104 crossref_primary_10_1021_acscatal_8b04064 crossref_primary_10_1021_acs_langmuir_3c03854 crossref_primary_10_1016_j_jhazmat_2022_129061 crossref_primary_10_1039_C8CS00396C crossref_primary_10_1016_j_apcatb_2021_120402 crossref_primary_10_1016_j_biomaterials_2021_120821 crossref_primary_10_1016_j_nanoen_2018_12_063 crossref_primary_10_1002_anie_202304861 crossref_primary_10_1016_j_cclet_2024_110399 crossref_primary_10_1016_j_nantod_2018_02_007 crossref_primary_10_1016_j_apcatb_2018_10_018 crossref_primary_10_1016_j_talanta_2018_01_059 crossref_primary_10_1039_C7GC02543B crossref_primary_10_1016_j_mtsust_2022_100118 crossref_primary_10_1002_smtd_201900083 crossref_primary_10_1016_j_cej_2023_148084 crossref_primary_10_1016_j_cej_2022_135754 crossref_primary_10_1038_s41557_018_0136_2 crossref_primary_10_1016_j_jhazmat_2023_132538 crossref_primary_10_1016_j_trac_2025_118213 crossref_primary_10_1021_acs_nanolett_1c02008 crossref_primary_10_1039_C9NR01321K crossref_primary_10_1039_C9TA03256H crossref_primary_10_1039_D0NJ04653A crossref_primary_10_1016_j_ensm_2018_04_005 crossref_primary_10_1016_j_radphyschem_2018_10_007 crossref_primary_10_1007_s40843_017_9214_9 crossref_primary_10_1039_C7TA07808K crossref_primary_10_1039_D0TB01598A crossref_primary_10_1007_s42864_023_00229_x crossref_primary_10_1016_j_apsusc_2017_11_281 crossref_primary_10_1016_j_cclet_2019_03_051 crossref_primary_10_1039_D2QM01299E crossref_primary_10_1002_ange_201914245 crossref_primary_10_1016_j_jcis_2021_09_002 crossref_primary_10_1021_acsabm_1c00258 crossref_primary_10_1021_acs_chemmater_4c01226 crossref_primary_10_1016_j_apcatb_2020_119398 crossref_primary_10_1021_acs_langmuir_4c03299 crossref_primary_10_1021_acscatal_2c01174 crossref_primary_10_1021_acsnano_7b07974 crossref_primary_10_1093_nsr_nwab142 crossref_primary_10_1039_D4NR03988B crossref_primary_10_1016_j_apcatb_2018_12_078 crossref_primary_10_1039_C7QI00167C crossref_primary_10_1039_C5CS00268K crossref_primary_10_2139_ssrn_4016020 crossref_primary_10_1021_acsami_3c18620 crossref_primary_10_1021_acssuschemeng_7b01713 crossref_primary_10_1039_C9NR09753H crossref_primary_10_1016_j_jmst_2020_03_033 crossref_primary_10_1021_acsomega_9b01354 crossref_primary_10_1021_acscatal_8b01821 crossref_primary_10_1016_j_jcat_2023_115284 crossref_primary_10_1007_s12274_019_2559_5 crossref_primary_10_1021_acs_accounts_0c00626 crossref_primary_10_1016_j_apsusc_2021_149146 crossref_primary_10_1021_acsami_7b10010 crossref_primary_10_1002_advs_201800064 crossref_primary_10_1016_j_esci_2023_100141 crossref_primary_10_1016_j_jcat_2024_115709 crossref_primary_10_1039_C8CP02013B crossref_primary_10_3390_catal12101167 crossref_primary_10_1039_D3RA05718F crossref_primary_10_1016_j_mtphys_2022_100634 crossref_primary_10_1039_C6CY02178F crossref_primary_10_1016_j_matt_2020_02_006 crossref_primary_10_1002_smll_201700806 crossref_primary_10_1016_j_carbon_2019_06_009 crossref_primary_10_1016_j_jechem_2023_02_043 crossref_primary_10_1016_j_cej_2018_12_008 crossref_primary_10_1039_C6CP01001F crossref_primary_10_1039_C7CS00864C crossref_primary_10_1016_j_nanoen_2017_09_008 crossref_primary_10_1039_C7RA06560D crossref_primary_10_1016_j_jhazmat_2022_129009 crossref_primary_10_1021_acscatal_7b03338 crossref_primary_10_1142_S0217984922501056 crossref_primary_10_1021_jacs_6b11263 crossref_primary_10_1039_D0CP02541K crossref_primary_10_1021_acscatal_1c00200 crossref_primary_10_1016_j_jelechem_2018_10_007 crossref_primary_10_1016_j_biomaterials_2018_05_055 crossref_primary_10_1007_s12274_017_1509_3 crossref_primary_10_1016_j_jcis_2017_12_079 crossref_primary_10_1002_smll_201704137 crossref_primary_10_1016_j_envres_2022_114699 crossref_primary_10_1039_D2NR01031C crossref_primary_10_1021_acsmaterialslett_0c00209 crossref_primary_10_1039_D0TA08802A crossref_primary_10_1016_j_apsusc_2020_147927 crossref_primary_10_1021_acssuschemeng_7b02812 crossref_primary_10_1016_j_optmat_2018_11_030 crossref_primary_10_1039_D3DT01412F crossref_primary_10_1016_j_jwpe_2024_105830 crossref_primary_10_1016_j_bios_2016_03_042 crossref_primary_10_1016_j_jcis_2016_08_062 crossref_primary_10_1039_D0TA08078K crossref_primary_10_1016_j_apcatb_2018_12_038 crossref_primary_10_1002_ange_201503477 crossref_primary_10_1039_C5NR06718A crossref_primary_10_1177_14644207211022768 crossref_primary_10_1016_j_electacta_2018_05_001 crossref_primary_10_1007_s10854_018_8663_6 crossref_primary_10_1016_j_ensm_2018_10_013 crossref_primary_10_1016_j_seppur_2021_119676 crossref_primary_10_1016_j_apcatb_2016_01_062 crossref_primary_10_1002_smtd_201800083 crossref_primary_10_1039_C8DT02613K crossref_primary_10_1039_C9CC02845E crossref_primary_10_1039_D2NR05964A crossref_primary_10_1016_j_cej_2018_12_038 crossref_primary_10_1016_j_jpowsour_2016_09_148 crossref_primary_10_1039_D0TA08384D crossref_primary_10_1002_adma_201704548 crossref_primary_10_1002_adfm_201801983 crossref_primary_10_1039_C5TA03905C crossref_primary_10_1002_chem_201503778 crossref_primary_10_1002_adma_202006159 crossref_primary_10_1021_acs_chemmater_6b00430 crossref_primary_10_1038_s41560_019_0355_9 crossref_primary_10_1016_j_jmst_2019_06_020 crossref_primary_10_1039_D0TA08165E crossref_primary_10_1016_j_seppur_2024_127324 crossref_primary_10_1039_D0CY00425A crossref_primary_10_1016_j_ijhydene_2016_11_097 crossref_primary_10_1039_C9NR05484G crossref_primary_10_1039_C8AY01050A crossref_primary_10_1002_advs_201800430 crossref_primary_10_3390_catal7090252 crossref_primary_10_1021_acsami_1c06771 crossref_primary_10_1039_C8CY00571K crossref_primary_10_1039_C9QI00325H crossref_primary_10_1021_acssuschemeng_2c04436 crossref_primary_10_1007_s40843_017_9151_y crossref_primary_10_1039_C9TA04742E crossref_primary_10_1016_j_ijhydene_2022_02_005 crossref_primary_10_1016_j_apcatb_2018_04_016 crossref_primary_10_1016_j_matlet_2015_10_155 crossref_primary_10_1039_D3CP03191H crossref_primary_10_1063_5_0214552 crossref_primary_10_1002_adfm_202203555 crossref_primary_10_1002_cplu_202000811 crossref_primary_10_1021_acs_nanolett_9b01417 crossref_primary_10_1039_D1MH00773D crossref_primary_10_1039_C7CC07186H crossref_primary_10_1002_cctc_201900341 crossref_primary_10_1021_acscatal_7b03949 crossref_primary_10_1021_acs_inorgchem_9b01930 crossref_primary_10_1002_cctc_202401358 crossref_primary_10_1016_j_checat_2023_100871 crossref_primary_10_1016_j_ccr_2022_214666 crossref_primary_10_1016_j_surfin_2022_102308 crossref_primary_10_1021_acsaem_0c00872 crossref_primary_10_1002_anie_201810104 crossref_primary_10_1016_j_enchem_2024_100130 crossref_primary_10_1021_acsanm_3c00505 crossref_primary_10_1021_acs_jpcc_4c04224 crossref_primary_10_1002_aoc_7662 crossref_primary_10_1016_j_cclet_2022_02_006 crossref_primary_10_1016_j_ijhydene_2023_04_123 crossref_primary_10_1039_D0TA06099B crossref_primary_10_1021_acs_inorgchem_0c01828 crossref_primary_10_1039_D1TA03963F crossref_primary_10_1016_j_cej_2021_133219 crossref_primary_10_1039_D3EE01723K crossref_primary_10_1039_D0CY01644F crossref_primary_10_1002_smtd_202000248 crossref_primary_10_1016_j_cej_2017_09_005 crossref_primary_10_1002_anie_201913675 crossref_primary_10_1016_j_nanoen_2016_10_020 crossref_primary_10_1016_j_ijhydene_2023_11_343 crossref_primary_10_1016_j_apsusc_2022_156197 crossref_primary_10_1016_j_photonics_2023_101131 crossref_primary_10_1021_acscatal_7b00007 crossref_primary_10_1016_j_ijhydene_2021_03_182 crossref_primary_10_1021_acs_energyfuels_0c00953 crossref_primary_10_1007_s10853_017_1481_z crossref_primary_10_1016_j_ijhydene_2022_04_277 crossref_primary_10_1021_acsnano_9b03649 crossref_primary_10_1021_acsami_4c01273 crossref_primary_10_1002_aenm_201701114 crossref_primary_10_1002_anie_201905869 crossref_primary_10_1016_j_ijhydene_2022_04_271 crossref_primary_10_1016_j_jallcom_2020_156465 crossref_primary_10_1039_C6RA08394C crossref_primary_10_1016_j_apcatb_2015_07_035 crossref_primary_10_1088_2053_1591_ab17b8 crossref_primary_10_1016_j_talanta_2018_01_019 crossref_primary_10_1021_acsabm_4c00862 crossref_primary_10_2139_ssrn_4125485 crossref_primary_10_1002_advs_201600179 crossref_primary_10_1002_adma_202206890 crossref_primary_10_1002_jccs_201900001 crossref_primary_10_1039_C9TA06088J crossref_primary_10_1016_j_jechem_2022_06_045 crossref_primary_10_1016_S1872_2067_15_60911_1 crossref_primary_10_1002_smll_201600189 crossref_primary_10_1021_acs_chemmater_0c02385 crossref_primary_10_1002_celc_202000477 crossref_primary_10_1021_acsami_1c11081 crossref_primary_10_1002_aenm_201701345 crossref_primary_10_1021_acssuschemeng_8b03153 crossref_primary_10_1039_C7TA00816C crossref_primary_10_1002_adma_202101751 crossref_primary_10_1016_j_jclepro_2019_118532 crossref_primary_10_3390_catal12010058 crossref_primary_10_1039_C7NR07366F crossref_primary_10_1039_C8TA11525G crossref_primary_10_1002_anie_201902588 crossref_primary_10_1016_j_cej_2020_126208 crossref_primary_10_1002_ange_201606313 crossref_primary_10_1007_s11237_015_9410_1 crossref_primary_10_1007_s11595_024_2887_5 crossref_primary_10_1002_adfm_202107280 crossref_primary_10_1016_j_apcatb_2019_117788 crossref_primary_10_3390_molecules27154751 crossref_primary_10_1002_anie_201509953 crossref_primary_10_1002_smll_202207101 crossref_primary_10_1002_advs_201800244 crossref_primary_10_1002_smll_202303631 crossref_primary_10_1039_D0TA11618A crossref_primary_10_1002_celc_201700445 crossref_primary_10_1016_j_matt_2023_12_014 crossref_primary_10_1016_j_nanoen_2017_07_030 crossref_primary_10_1016_j_ccr_2022_214864 crossref_primary_10_1002_anie_201811632 crossref_primary_10_1016_j_colsurfa_2020_125716 crossref_primary_10_1016_j_enchem_2019_100013 crossref_primary_10_1021_acsami_7b09897 crossref_primary_10_1021_acs_nanolett_0c01908 crossref_primary_10_1002_anbr_202100105 crossref_primary_10_1002_inf2_12219 crossref_primary_10_1016_j_jtice_2018_07_021 crossref_primary_10_1002_cssc_201900621 crossref_primary_10_1016_j_jcis_2023_03_150 crossref_primary_10_1002_smll_202300065 crossref_primary_10_2139_ssrn_4147084 crossref_primary_10_1016_j_ijhydene_2022_06_081 crossref_primary_10_1021_acssuschemeng_7b02163 crossref_primary_10_1021_acscatal_4c01713 crossref_primary_10_1016_j_chphma_2022_01_003 crossref_primary_10_1016_j_matlet_2020_128569 crossref_primary_10_1021_acscatal_8b02662 crossref_primary_10_1039_C5TA06955F crossref_primary_10_1039_D4DT01553C crossref_primary_10_1002_eem2_12171 crossref_primary_10_1021_acs_inorgchem_9b02053 crossref_primary_10_1039_C9CC01213C crossref_primary_10_1016_j_coelec_2019_04_008 crossref_primary_10_1016_j_jece_2023_109696 crossref_primary_10_1039_D0TA06299E crossref_primary_10_3390_catal14090630 crossref_primary_10_1016_j_cej_2023_147552 crossref_primary_10_1021_acs_est_2c02663 crossref_primary_10_1002_ange_201804142 crossref_primary_10_1021_acs_chemrev_6b00558 crossref_primary_10_1002_adma_202207895 crossref_primary_10_1039_C6QI00334F crossref_primary_10_1016_j_nanoen_2018_07_029 crossref_primary_10_3390_ma13194326 crossref_primary_10_1002_smll_201800195 crossref_primary_10_1021_acsanm_9b01225 crossref_primary_10_1007_s12274_022_4185_x crossref_primary_10_1021_acsenergylett_7b00326 crossref_primary_10_1016_j_nanoen_2018_07_010 crossref_primary_10_1007_s11665_020_05180_3 crossref_primary_10_1016_j_jcis_2023_03_123 crossref_primary_10_1016_j_nantod_2016_10_004 crossref_primary_10_1002_aenm_201901312 crossref_primary_10_1016_j_molliq_2022_121046 crossref_primary_10_1016_j_nanoen_2018_08_058 crossref_primary_10_2139_ssrn_4163789 crossref_primary_10_1002_aenm_201702179 crossref_primary_10_1039_C8TA12238E crossref_primary_10_1002_adma_201601019 crossref_primary_10_1016_j_colsurfa_2020_125992 crossref_primary_10_2139_ssrn_4073642 crossref_primary_10_1016_j_cej_2021_133617 crossref_primary_10_1016_j_mseb_2023_116418 crossref_primary_10_1007_s11705_024_2427_z crossref_primary_10_1021_acsami_5b08420 crossref_primary_10_1016_j_electacta_2022_141661 crossref_primary_10_1039_C5EE02879E crossref_primary_10_1016_j_apsusc_2018_08_130 crossref_primary_10_1039_D4GC03829K crossref_primary_10_1088_1361_6528_abe787 crossref_primary_10_1021_acs_chemrev_3c00229 crossref_primary_10_1002_adma_201807576 crossref_primary_10_1016_j_jallcom_2020_157837 crossref_primary_10_1002_adfm_202100908 crossref_primary_10_1038_s41467_019_10392_w crossref_primary_10_1002_anie_201804142 crossref_primary_10_1002_cnma_202100087 crossref_primary_10_1016_j_jssc_2021_122751 crossref_primary_10_1088_2053_1583_3_3_035001 crossref_primary_10_1016_j_jallcom_2019_04_239 crossref_primary_10_1016_j_mtsust_2020_100037 crossref_primary_10_1021_acs_inorgchem_2c01984 crossref_primary_10_1039_D3DT03809B crossref_primary_10_1002_adfm_201910830 crossref_primary_10_1002_aenm_201703482 crossref_primary_10_1002_jctb_5779 crossref_primary_10_1016_j_jcis_2019_03_044 crossref_primary_10_1021_acs_chemrev_3c00005 crossref_primary_10_1016_j_jechem_2019_03_002 crossref_primary_10_1016_j_jpowsour_2018_06_030 crossref_primary_10_1016_j_cplett_2019_136805 crossref_primary_10_1021_acs_chemrev_1c00068 crossref_primary_10_1002_slct_202003267 crossref_primary_10_1002_smll_202208270 crossref_primary_10_1016_j_cej_2019_02_127 crossref_primary_10_3390_catal11121553 crossref_primary_10_1016_j_jcis_2022_10_162 crossref_primary_10_1021_acscatal_5b02730 crossref_primary_10_1039_C5QI00251F crossref_primary_10_1016_j_cattod_2023_114342 crossref_primary_10_1016_j_mtener_2018_10_015 crossref_primary_10_1557_jmr_2016_234 crossref_primary_10_1016_j_efmat_2024_10_001 crossref_primary_10_1016_j_cej_2021_131246 crossref_primary_10_1039_D4MA01245C crossref_primary_10_1039_D2CP05471J crossref_primary_10_1016_j_chphma_2024_06_003 crossref_primary_10_1016_j_seppur_2024_127462 crossref_primary_10_1007_s40242_022_2224_5 crossref_primary_10_1016_j_cej_2019_122039 crossref_primary_10_1002_smtd_201700156 crossref_primary_10_1016_j_susmat_2022_e00406 crossref_primary_10_1007_s10854_022_09743_z crossref_primary_10_1016_j_cej_2019_123364 crossref_primary_10_1016_j_cej_2025_161384 crossref_primary_10_1016_S1872_2067_20_63708_1 crossref_primary_10_1021_accountsmr_1c00222 crossref_primary_10_1002_aenm_201902494 crossref_primary_10_1039_C6RA22605A crossref_primary_10_1021_acsaem_8b01521 crossref_primary_10_1002_aenm_202403249 crossref_primary_10_1002_smll_201602970 crossref_primary_10_1007_s12209_020_00277_1 crossref_primary_10_1002_cssc_201901794 crossref_primary_10_1002_cssc_202000329 crossref_primary_10_1016_j_jallcom_2022_167390 crossref_primary_10_1039_C5CP06555K crossref_primary_10_1039_C9CY01136F crossref_primary_10_1039_C5TC00288E crossref_primary_10_1016_j_envpol_2024_125072 crossref_primary_10_1039_C6NR00546B crossref_primary_10_1002_celc_202100134 crossref_primary_10_1002_smll_201904783 crossref_primary_10_1039_D1SE01478A crossref_primary_10_1016_j_ijheatmasstransfer_2016_10_011 crossref_primary_10_1039_C7NR04651K crossref_primary_10_1016_S1872_2067_19_63284_5 crossref_primary_10_1021_jacs_5b12727 crossref_primary_10_2139_ssrn_3979465 crossref_primary_10_1007_s11356_020_11809_6 crossref_primary_10_1039_C7SE00344G crossref_primary_10_1007_s12613_020_2088_y crossref_primary_10_1016_j_pmatsci_2017_06_002 crossref_primary_10_1039_D1EN00149C crossref_primary_10_1002_cssc_202102495 crossref_primary_10_1039_C9CY01488H crossref_primary_10_1016_j_jcis_2021_11_097 crossref_primary_10_1021_acs_jpclett_3c00006 crossref_primary_10_1039_C7TA03624H crossref_primary_10_1016_j_apcatb_2019_02_047 crossref_primary_10_1002_smll_201600332 crossref_primary_10_1016_j_jcis_2023_07_117 crossref_primary_10_1116_1_5095413 crossref_primary_10_1002_adma_201700396 crossref_primary_10_1016_j_apsusc_2017_05_058 crossref_primary_10_1016_j_jcis_2021_04_101 crossref_primary_10_1016_j_cej_2022_138514 crossref_primary_10_1016_j_cej_2019_03_182 crossref_primary_10_1002_ange_201913675 crossref_primary_10_1039_D0SC06601J crossref_primary_10_1039_D3TA06340B crossref_primary_10_1016_j_carbon_2016_05_028 crossref_primary_10_1016_j_cej_2021_130991 crossref_primary_10_1039_C6CC07371A crossref_primary_10_1016_j_flatc_2021_100305 crossref_primary_10_1016_j_matt_2020_04_002 crossref_primary_10_1038_s41467_021_22681_4 crossref_primary_10_1016_j_fuel_2024_133267 crossref_primary_10_1002_adma_202303439 crossref_primary_10_1016_j_mtchem_2018_11_002 crossref_primary_10_1016_j_physe_2022_115549 crossref_primary_10_1002_advs_202411422 crossref_primary_10_1016_j_jcis_2024_01_188 crossref_primary_10_1002_solr_202000070 crossref_primary_10_1016_j_jpowsour_2018_08_028 crossref_primary_10_1039_C8NR00068A crossref_primary_10_1002_ange_201505245 crossref_primary_10_1016_j_scitotenv_2021_152698 crossref_primary_10_1002_adma_201901996 crossref_primary_10_1016_j_nanoen_2018_04_041 crossref_primary_10_1016_j_apcatb_2018_08_017 crossref_primary_10_1016_j_apcatb_2020_119571 crossref_primary_10_1021_acscatal_8b02075 crossref_primary_10_1111_php_13959 crossref_primary_10_3390_catal12121594 crossref_primary_10_1002_anie_201801029 crossref_primary_10_1016_j_jpcs_2019_02_020 crossref_primary_10_3390_catal9090726 crossref_primary_10_1002_ange_201509616 crossref_primary_10_1039_C8NR07186A crossref_primary_10_1039_C9TA02010A crossref_primary_10_1021_acssuschemeng_8b03600 crossref_primary_10_1021_acssuschemeng_2c06497 crossref_primary_10_1021_acs_energyfuels_1c01482 crossref_primary_10_1016_j_jallcom_2020_153653 crossref_primary_10_1002_ange_202007767 crossref_primary_10_1021_acs_inorgchem_0c03771 crossref_primary_10_1002_adfm_202002731 crossref_primary_10_1039_C9CP03758F crossref_primary_10_1002_smll_201703323 crossref_primary_10_1016_j_cej_2023_147102 crossref_primary_10_21595_vp_2023_23272 crossref_primary_10_1002_aenm_202300651 crossref_primary_10_1021_acs_chemrev_8b00501 crossref_primary_10_1016_j_nanoen_2020_105606 crossref_primary_10_1039_D2CP00736C crossref_primary_10_1021_acsenergylett_8b01206 crossref_primary_10_1002_ange_201905869 crossref_primary_10_1039_C7MH00314E crossref_primary_10_1002_celc_202300614 crossref_primary_10_1016_j_mtphys_2023_101080 crossref_primary_10_1016_j_jcat_2020_04_002 crossref_primary_10_1021_acscatal_7b03190 crossref_primary_10_1016_j_nanoen_2023_108546 crossref_primary_10_1016_j_apsusc_2018_11_010 |
Cites_doi | 10.1002/aenm.201300611 10.1098/rspa.1925.0061 10.1038/ncomms2066 10.1021/ja3102049 10.1063/1.1529075 10.1016/S1452-3981(23)15306-5 10.1021/ja402956f 10.1038/nmat1311 10.1039/tf9221700621 10.1016/S1293-2558(00)80081-3 10.1021/ja8034637 10.1021/cr1002326 10.1016/S1381-1169(00)00362-9 10.1039/c4ta01659a 10.1021/ja405997s 10.1039/C3CS60231A 10.1039/C4SC00565A 10.1038/ncomms3899 10.1002/anie.201305530 10.1021/nl101700j 10.1038/nmat2914 10.1016/S0009-2509(54)80005-4 10.1039/B802262N 10.1038/nature09718 10.1126/science.1188267 10.1021/ja501866r 10.1002/anie.200906745 10.1021/ja308249k 10.1038/ncomms3390 10.1021/ja408329q 10.1002/adma.201302685 10.1002/smll.201303548 10.1002/anie.201407836 10.1016/j.nanoen.2014.05.017 10.1002/anie.201301066 10.1039/C3QI00050H 10.1002/anie.201204675 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1039/c4cs00236a |
DatabaseName | CrossRef PubMed MEDLINE - Academic Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 636 |
ExternalDocumentID | 25382246 10_1039_C4CS00236A c4cs00236a |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 186 1TJ 29B 2WC 3EH 4.4 53G 5GY 6J9 6TJ 705 70~ 71~ 7~J 85S 8WZ 9M8 A6W AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAUTI AAWGC AAXHV AAXPP AAYXX ABASK ABDPE ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACKIV ACLDK ACNCT ACPVT ACRPL ADMRA ADNMO ADSRN ADXHL AEFDR AENEX AENGV AESAV AETEA AETIL AFFDN AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AI. AIDUJ AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP AQHUZ ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FA8 FEDTE GGIMP GNO H13 HF~ HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH O9- P2P R56 R7B R7D RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RRXOS RSCEA SC5 SKA SKH SLH TN5 TWZ UPT UQL VH1 VH6 WH7 WHG XJT XOL ZCG ZKB ~02 NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-bd5bdbac24c08906b8b707cbb9182da6fa5fa5312e80bfeccdefb943eb5d8f253 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Thu Jul 10 19:02:56 EDT 2025 Fri Jul 11 01:32:51 EDT 2025 Thu Jul 10 18:40:55 EDT 2025 Mon Jul 21 05:57:43 EDT 2025 Tue Jul 01 04:18:35 EDT 2025 Thu Apr 24 22:51:03 EDT 2025 Sun Jun 02 15:18:29 EDT 2019 Thu May 19 04:22:40 EDT 2016 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c467t-bd5bdbac24c08906b8b707cbb9182da6fa5fa5312e80bfeccdefb943eb5d8f253 |
Notes | Yongfu Sun received his BS degree in the Department of Chemistry at Anhui University (2006) and PhD degree in Inorganic Chemistry from University of Science and Technology of China (2011). After that he worked as a postdoctoral fellow in National Synchrotron Radiation Laboratory. In 2013, Dr Sun joined the Hefei National Laboratory for Physical Sciences at the Microscale as a research associate professor. His current interests include the theoretical computation, controllable synthesis, fine structure characterization, device assembly and energy-related applications of atomically-thick two-dimensional sheets. Shan Gao received his BS degree in chemistry from West Anhui University, China, in 2011. He is currently pursuing his PhD degree in inorganic chemistry at the University of Science and Technology of China, under the supervision of Prof. Yi Xie. His current interests include the synthesis and characterization of nanostructures, especially two-dimensional inorganic graphene analogues and their applications in energy storage and conversion. Yi Xie received her BS degree from Xiamen University (1988) and a PhD from the University of Science and Technology of China (USTC, 1996). She is now a Principal Investigator of Hefei National Laboratory for Physical Sciences at the Microscale and a full professor of the Department of Chemistry, USTC. She was appointed as the Cheung Kong Scholar Professor of inorganic chemistry in 2000 and elected as a member of the Chinese Academy of Sciences in 2013, also a recipient of many awards, including the Chinese National Nature Science Award (2001 and 2012), China Young Scientist Award (2002), China Young Female Scientist Award (2006) and IUPAC Distinguished Women in Chemistry/Chemical Engineering Award (2013). Her research interests are cutting-edge research at four major frontiers: solid state materials chemistry, nanotechnology, energy science and theoretical physics. Fengcai Lei received her BS degree in physics from Shandong Normal University, China, in 2011. She is currently pursuing her PhD in inorganic chemistry at the University of Science and Technology of China, under the supervision of Prof. Yi Xie. Her current interests include the theoretical computation and the underlying physics during studying the atomically thin inorganic graphene analogues. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25382246 |
PQID | 1652405863 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | rsc_primary_c4cs00236a proquest_miscellaneous_2574316661 crossref_citationtrail_10_1039_C4CS00236A proquest_miscellaneous_1786163906 proquest_miscellaneous_1652405863 crossref_primary_10_1039_C4CS00236A pubmed_primary_25382246 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2015 |
References | Sun (C4CS00236A-(cit14)/*[position()=1]) 2014; 5 Liang (C4CS00236A-(cit6)/*[position()=1]) 2014; 2 Sun (C4CS00236A-(cit25)/*[position()=1]) 2014; 43 Joo (C4CS00236A-(cit8)/*[position()=1]) 2010; 10 Gao (C4CS00236A-(cit42)/*[position()=1]) 2014 Gao (C4CS00236A-(cit7)/*[position()=1]) 2014; 8 Xie (C4CS00236A-(cit22)/*[position()=1]) 2013; 25 Vang (C4CS00236A-(cit13)/*[position()=1]) 2005; 4 Mars (C4CS00236A-(cit33)/*[position()=1]) 1954; 3 Sun (C4CS00236A-(cit2)/*[position()=1]) 2012; 3 Zhao (C4CS00236A-(cit15)/*[position()=1]) 2013; 4 Bi (C4CS00236A-(cit31)/*[position()=1]) 2014; 10 Rios (C4CS00236A-(cit39)/*[position()=1]) 1999; 1 Guan (C4CS00236A-(cit21)/*[position()=1]) 2013; 135 Tang (C4CS00236A-(cit37)/*[position()=1]) 2008; 130 Taylor (C4CS00236A-(cit10)/*[position()=1]) 1925; 108 Hamdani (C4CS00236A-(cit40)/*[position()=1]) 2010; 5 Nakamura (C4CS00236A-(cit30)/*[position()=1]) 2000; 161 Newville (C4CS00236A-(cit26)/*[position()=1]) 2004 Fu (C4CS00236A-(cit11)/*[position()=1]) 2010; 328 Neitzel (C4CS00236A-(cit9)/*[position()=1]) 2010; 3 Dumesic (C4CS00236A-(cit12)/*[position()=1]) 2008 Walter (C4CS00236A-(cit16)/*[position()=1]) 2010; 110 Sun (C4CS00236A-(cit4)/*[position()=1]) 2012; 51 Najafpour (C4CS00236A-(cit18)/*[position()=1]) 2010; 49 Sun (C4CS00236A-(cit5)/*[position()=1]) 2014; 4 Langmuir (C4CS00236A-(cit34)/*[position()=1]) 1922; 17 Zhang (C4CS00236A-(cit38)/*[position()=1]) 2013; 135 Barber (C4CS00236A-(cit36)/*[position()=1]) 2009; 38 Sun (C4CS00236A-(cit19)/*[position()=1]) 2013; 4 Sun (C4CS00236A-(cit27)/*[position()=1]) 2012; 134 Lei (C4CS00236A-(cit3)/*[position()=1]) 2014; 136 Xie (C4CS00236A-(cit23)/*[position()=1]) 2013; 135 Hinshelwood (C4CS00236A-(cit35)/*[position()=1]) 1940 Sun (C4CS00236A-(cit24)/*[position()=1]) 2014; 1 Banger (C4CS00236A-(cit28)/*[position()=1]) 2012; 10 Sun (C4CS00236A-(cit20)/*[position()=1]) 2013; 52 Wang (C4CS00236A-(cit17)/*[position()=1]) 2013; 52 Huang (C4CS00236A-(cit29)/*[position()=1]) 2003; 93 Huang (C4CS00236A-(cit32)/*[position()=1]) 2011; 469 Bajdich (C4CS00236A-(cit41)/*[position()=1]) 2013; 135 |
References_xml | – issn: 1940 publication-title: The kinetics of chemical change doi: Hinshelwood – issn: 2008 publication-title: Principles of heterogeneous catalysis doi: Dumesic Huber Boundart – issn: 2004 publication-title: Fundamentals of XAFS doi: Newville – volume: 4 start-page: 1300611 year: 2014 ident: C4CS00236A-(cit5)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300611 – volume: 108 start-page: 105 year: 1925 ident: C4CS00236A-(cit10)/*[position()=1] publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1925.0061 – volume: 3 start-page: 1057 year: 2012 ident: C4CS00236A-(cit2)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2066 – volume: 134 start-page: 20294 year: 2012 ident: C4CS00236A-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3102049 – volume: 93 start-page: 582 year: 2003 ident: C4CS00236A-(cit29)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.1529075 – volume: 5 start-page: 556 year: 2010 ident: C4CS00236A-(cit40)/*[position()=1] publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)15306-5 – volume: 135 start-page: 10411 year: 2013 ident: C4CS00236A-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402956f – volume: 4 start-page: 160 year: 2005 ident: C4CS00236A-(cit13)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1311 – volume: 17 start-page: 621 year: 1922 ident: C4CS00236A-(cit34)/*[position()=1] publication-title: Trans. Faraday Soc. doi: 10.1039/tf9221700621 – volume: 1 start-page: 267 year: 1999 ident: C4CS00236A-(cit39)/*[position()=1] publication-title: Solid State Sci. doi: 10.1016/S1293-2558(00)80081-3 – volume: 130 start-page: 13885 year: 2008 ident: C4CS00236A-(cit37)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8034637 – volume: 110 start-page: 6446 year: 2010 ident: C4CS00236A-(cit16)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 161 start-page: 205 year: 2000 ident: C4CS00236A-(cit30)/*[position()=1] publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/S1381-1169(00)00362-9 – volume: 2 start-page: 10647 year: 2014 ident: C4CS00236A-(cit6)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c4ta01659a – volume: 135 start-page: 13521 year: 2013 ident: C4CS00236A-(cit41)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405997s – volume-title: Principles of heterogeneous catalysis year: 2008 ident: C4CS00236A-(cit12)/*[position()=1] – volume: 43 start-page: 530 year: 2014 ident: C4CS00236A-(cit25)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60231A – volume: 5 start-page: 3976 year: 2014 ident: C4CS00236A-(cit14)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC00565A – volume: 4 start-page: 2899 year: 2013 ident: C4CS00236A-(cit19)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3899 – volume: 52 start-page: 10569 year: 2013 ident: C4CS00236A-(cit20)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201305530 – volume: 10 start-page: 2709 year: 2010 ident: C4CS00236A-(cit8)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl101700j – volume: 10 start-page: 45 year: 2012 ident: C4CS00236A-(cit28)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2914 – volume: 3 start-page: 41 year: 1954 ident: C4CS00236A-(cit33)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(54)80005-4 – volume: 38 start-page: 185 year: 2009 ident: C4CS00236A-(cit36)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/B802262N – volume: 469 start-page: 389 year: 2011 ident: C4CS00236A-(cit32)/*[position()=1] publication-title: Nature doi: 10.1038/nature09718 – volume: 328 start-page: 1141 year: 2010 ident: C4CS00236A-(cit11)/*[position()=1] publication-title: Science doi: 10.1126/science.1188267 – volume: 136 start-page: 6826 year: 2014 ident: C4CS00236A-(cit3)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501866r – volume: 49 start-page: 2233 year: 2010 ident: C4CS00236A-(cit18)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200906745 – volume: 135 start-page: 18 year: 2013 ident: C4CS00236A-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308249k – volume: 4 start-page: 2390 year: 2013 ident: C4CS00236A-(cit15)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3390 – volume: 135 start-page: 17881 year: 2013 ident: C4CS00236A-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408329q – volume-title: Fundamentals of XAFS year: 2004 ident: C4CS00236A-(cit26)/*[position()=1] – volume: 3 start-page: 21 year: 2010 ident: C4CS00236A-(cit9)/*[position()=1] publication-title: Nat. Educ. – volume: 25 start-page: 5807 year: 2013 ident: C4CS00236A-(cit22)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201302685 – volume: 10 start-page: 2820 year: 2014 ident: C4CS00236A-(cit31)/*[position()=1] publication-title: Small doi: 10.1002/smll.201303548 – year: 2014 ident: C4CS00236A-(cit42)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201407836 – volume: 8 start-page: 205 year: 2014 ident: C4CS00236A-(cit7)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.05.017 – volume: 52 start-page: 5248 year: 2013 ident: C4CS00236A-(cit17)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201301066 – volume: 1 start-page: 58 year: 2014 ident: C4CS00236A-(cit24)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C3QI00050H – volume: 51 start-page: 8727 year: 2012 ident: C4CS00236A-(cit4)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201204675 – volume-title: The kinetics of chemical change year: 1940 ident: C4CS00236A-(cit35)/*[position()=1] |
SSID | ssj0011762 |
Score | 2.6461535 |
SecondaryResourceType | review_article |
Snippet | Catalysis can speed up chemical reactions and it usually occurs on the low coordinated steps, edges, terraces, kinks and corner atoms that are often called... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 623 |
SubjectTerms | active sites Atomic properties Atomic structure Catalysis Catalysts Catalytic activity Defects Disorders electron paramagnetic resonance spectroscopy electrons hydrogen production oxidation oxygen photocatalysis transmission electron microscopy Two dimensional X-ray absorption spectroscopy |
Title | Atomically-thin two-dimensional sheets for understanding active sites in catalysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25382246 https://www.proquest.com/docview/1652405863 https://www.proquest.com/docview/1786163906 https://www.proquest.com/docview/2574316661 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdb-7C9jH11S_eBx_YyijrZlmT7MYSUbmQdrA6kT0aS5SZQ7NI4jO2v30nyV9tsdINgEkU2sn726U539zuEPmiWUBEJgZWvC0xDwXDMkwKDGNQELKKYSLPf8fWEH8_plwVbtCXhm-ySWh6qX1vzSv4HVWgDXE2W7D8g210UGuA74AtHQBiOd8J4XFc22__iJ66XJmDxR4VzQ9fvqDYO1kuta0u4YMvd9kkswkq5A-M5tvGwdhPHcJMMddWOS6CN7GyYS3s_kpVYZ1V5Xmy6OB5h915Pl8NYHxsxADN3rsSqbV04x8jZarjv4LPBvoMTlZQTTCPH3niot7Q18rX5tRqa31ZYcpdpfEuIk9BwoCqq1pbffrBUte75k2_Z0Xw2y9LpIr2PdgMwEUDG7Y6n6edZ50PyI1tOthtTS04bJp_6a19XR27ZGKBxXLWVYKzGkT5GjxpTwRs73J-ge7p8ih5M2gp9z9D3G_h7N_D3HP4e4O9dw99z-HsWfw9O7PB_juZH03RyjJsaGVjBEldjmTOZS6ECqkicEC5jGZFISZmA4ZgLXggGn9APNLx1BbyvuS5kQkMtWR4XAQv30E5Zlfol8nKdMJITqXNGwQ6OZKANOaClNyI8ZiP0sZ2qTDUE8qaOyUVmAxnCJJvQyamd1vEIve_6XjralK293rUznsHUGVeVKHW1WWc-Z6BqspiHf-kTxRysCbjpP_eBBclwPYASOkIvHKTdeODmTQg1nL0HGHfN_bMxQvvb_8gu82L_DmN_hR72b85rtFNfbfQb0GFr-bZ5WH8Dga2fQw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically-thin+two-dimensional+sheets+for+understanding+active+sites+in+catalysis&rft.jtitle=Chemical+Society+reviews&rft.au=Sun%2C+Yongfu&rft.au=Gao%2C+Shan&rft.au=Lei%2C+Fengcai&rft.au=Xie%2C+Yi&rft.date=2015-01-01&rft.issn=1460-4744&rft.eissn=1460-4744&rft.volume=44&rft.issue=3&rft.spage=623&rft_id=info:doi/10.1039%2Fc4cs00236a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |