Delivery of Cytosolic Components by Autophagic Adaptor Protein p62 Endows Autophagosomes with Unique Antimicrobial Properties
Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycob...
Saved in:
Published in | Immunity (Cambridge, Mass.) Vol. 32; no. 3; pp. 329 - 341 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
26.03.2010
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1074-7613 1097-4180 1097-4180 |
DOI | 10.1016/j.immuni.2010.02.009 |
Cover
Loading…
Abstract | Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including
Mycobacterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellular
M. tuberculosis and found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killing
M. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles.
[Display omitted]
► Autophagy converts specific cytoplasmic proteins into antimicrobial peptides ► Autophagic adaptor p62 delivers Fau and ubiquitinated complexes to autolysosomes ► Ribosomal proteins and ubiquitin are digested by lysosomal hydrolases in autolysosomes ► Conversion of cytoplasmic proteins into bactericidal peptides kills
M. tuberculosis |
---|---|
AbstractList | Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycobecterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellular M. tuberculosis and found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killing M. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles. Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycobacterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellular M. tuberculosis and found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killing M. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles. Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycobacterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellular M. tuberculosis and found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killing M. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles. [Display omitted] ► Autophagy converts specific cytoplasmic proteins into antimicrobial peptides ► Autophagic adaptor p62 delivers Fau and ubiquitinated complexes to autolysosomes ► Ribosomal proteins and ubiquitin are digested by lysosomal hydrolases in autolysosomes ► Conversion of cytoplasmic proteins into bactericidal peptides kills M. tuberculosis Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycobacterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellular M. tuberculosis and found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killing M. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles.Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycobacterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellular M. tuberculosis and found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killing M. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles. Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, includingMycobacterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellularM. tuberculosisand found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killingM. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles. |
Author | Roberts, Esteban A. Deretic, Vojo Dinkins, Christina Zhao, Zijiang Davis, Alexander S. Kyei, George B. Ponpuak, Marisa Vergne, Isabelle Delgado, Monica A. Virgin, Herbert W. Johansen, Terje |
Author_xml | – sequence: 1 givenname: Marisa surname: Ponpuak fullname: Ponpuak, Marisa organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA – sequence: 2 givenname: Alexander S. surname: Davis fullname: Davis, Alexander S. organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA – sequence: 3 givenname: Esteban A. surname: Roberts fullname: Roberts, Esteban A. organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA – sequence: 4 givenname: Monica A. surname: Delgado fullname: Delgado, Monica A. organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA – sequence: 5 givenname: Christina surname: Dinkins fullname: Dinkins, Christina organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA – sequence: 6 givenname: Zijiang surname: Zhao fullname: Zhao, Zijiang organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 7 givenname: Herbert W. surname: Virgin fullname: Virgin, Herbert W. organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 8 givenname: George B. surname: Kyei fullname: Kyei, George B. organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA – sequence: 9 givenname: Terje surname: Johansen fullname: Johansen, Terje organization: Biochemistry Department, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway – sequence: 10 givenname: Isabelle surname: Vergne fullname: Vergne, Isabelle organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA – sequence: 11 givenname: Vojo surname: Deretic fullname: Deretic, Vojo email: vderetic@salud.unm.edu organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20206555$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URB_wDxCyxIJVBjt2nIQF0mgoD6kSLOjacpwbekeJHWyn1Sz47zia0kUXVF7Y8v3OufY95-TEeQeEvOZswxlX7_cbnKbF4aZk-YqVG8baZ-SMs7YuJG_YyXquZVErLk7JeYx7xrisWvaCnJasZKqqqjPy5xOMeAvhQP1Ad4fkox_R0p2f5tzOpUi7A90uyc835lcubHszJx_oj-AToKOzKuml6_1dfKCyxQSR3mG6odcOfy9Aty7hhDb4Ds24amcICSG-JM8HM0Z4db9fkOvPlz93X4ur71--7bZXhZWqToVpxWBMZysjBlEJ3nfNMDDBK95ZKUvDQMlMQNfWwuZlcrEFw5Xse95bKy7Iu6PvHHx-T0x6wmhhHI0Dv0RdS8W4kI16mhSiEU1Z1Zl8-4jc-yW4_A3NKyZL1VR8pd7cU0s3Qa_ngJMJB_0vgQzII5CnE2OA4QHhTK9B670-Bq3XoDUrdQ46yz48kllMJqF3KRgcnxJ_PIohz_wWIehoEZyFHgPYpHuP_zf4C6-XyCM |
CitedBy_id | crossref_primary_10_1007_s00281_021_00860_1 crossref_primary_10_1016_j_immuni_2010_03_002 crossref_primary_10_1016_j_it_2012_06_003 crossref_primary_10_1111_j_1462_5822_2011_01628_x crossref_primary_10_1016_j_addr_2016_01_016 crossref_primary_10_1016_j_imbio_2022_152223 crossref_primary_10_1016_j_tube_2020_101900 crossref_primary_10_3390_toxins7082918 crossref_primary_10_4161_auto_7_3_14487 crossref_primary_10_18632_aging_102710 crossref_primary_10_1038_nri3111 crossref_primary_10_1016_j_coi_2011_06_002 crossref_primary_10_1016_j_intimp_2013_11_001 crossref_primary_10_1007_s00281_015_0522_4 crossref_primary_10_1074_jbc_RA120_012809 crossref_primary_10_2174_1568009623666230412104913 crossref_primary_10_3390_toxins15090544 crossref_primary_10_1155_2012_910525 crossref_primary_10_1016_j_mib_2013_05_003 crossref_primary_10_1038_s41420_020_0266_3 crossref_primary_10_1146_annurev_biochem_093010_153308 crossref_primary_10_1038_cdd_2013_187 crossref_primary_10_1083_jcb_201704186 crossref_primary_10_1093_femspd_ftx107 crossref_primary_10_1111_j_1462_5822_2011_01632_x crossref_primary_10_1177_1753425915594245 crossref_primary_10_1111_j_1600_065X_2010_00995_x crossref_primary_10_1016_j_phrs_2012_10_003 crossref_primary_10_1073_pnas_1210500109 crossref_primary_10_1242_jcs_252148 crossref_primary_10_1038_cdd_2012_72 crossref_primary_10_1016_j_ceb_2011_03_003 crossref_primary_10_1080_15548627_2019_1687214 crossref_primary_10_1111_j_1462_5822_2012_01754_x crossref_primary_10_1242_jcs_126128 crossref_primary_10_4161_auto_21332 crossref_primary_10_1021_acs_jafc_2c00148 crossref_primary_10_3390_antibiotics12010139 crossref_primary_10_1021_bi301426j crossref_primary_10_1083_jcb_202203083 crossref_primary_10_1111_imr_12288 crossref_primary_10_1128_MMBR_00032_13 crossref_primary_10_21931_RB_2022_07_02_9 crossref_primary_10_1038_nrmicro3420 crossref_primary_10_1038_s41419_020_2477_1 crossref_primary_10_1111_j_1600_065X_2010_00984_x crossref_primary_10_4167_jbv_2017_47_3_122 crossref_primary_10_1016_j_molcel_2014_03_009 crossref_primary_10_1126_science_1201711 crossref_primary_10_4161_auto_7_3_14234 crossref_primary_10_1038_nrgastro_2013_66 crossref_primary_10_1371_journal_pone_0066985 crossref_primary_10_1556_EuJMI_1_2011_1_6 crossref_primary_10_1016_j_nbd_2010_08_015 crossref_primary_10_1016_j_chom_2013_01_008 crossref_primary_10_1002_iub_1070 crossref_primary_10_1093_jmcb_mjac015 crossref_primary_10_1016_j_molimm_2020_05_001 crossref_primary_10_1016_j_immuni_2013_08_027 crossref_primary_10_1016_j_immuni_2013_08_026 crossref_primary_10_1080_15548627_2017_1320636 crossref_primary_10_1155_2013_584715 crossref_primary_10_1189_jlb_4MR0216_079R crossref_primary_10_1016_j_tube_2018_09_007 crossref_primary_10_1038_s41467_019_09955_8 crossref_primary_10_1111_j_1600_065X_2012_01146_x crossref_primary_10_3389_fimmu_2018_02914 crossref_primary_10_1016_j_immuni_2012_04_015 crossref_primary_10_1172_JCI92079 crossref_primary_10_1158_0008_5472_CAN_11_3396 crossref_primary_10_1111_febs_16174 crossref_primary_10_3389_fmicb_2021_661446 crossref_primary_10_3389_fmed_2018_00032 crossref_primary_10_1007_s12088_015_0541_9 crossref_primary_10_1016_j_molcel_2018_07_010 crossref_primary_10_1128_mbio_03024_22 crossref_primary_10_1134_S2079086416040095 crossref_primary_10_3389_fimmu_2016_00664 crossref_primary_10_1016_j_semcdb_2010_04_004 crossref_primary_10_1083_jcb_201002021 crossref_primary_10_1111_j_1462_5822_2012_01768_x crossref_primary_10_1016_j_mib_2013_03_010 crossref_primary_10_1074_jbc_M112_350934 crossref_primary_10_1155_2011_347594 crossref_primary_10_3390_cells9112372 crossref_primary_10_1186_1471_2091_15_4 crossref_primary_10_4161_auto_7_9_16436 crossref_primary_10_4167_jbv_2019_49_1_12 crossref_primary_10_1002_1873_3468_14788 crossref_primary_10_1111_imr_12096 crossref_primary_10_1038_s41423_020_0502_z crossref_primary_10_1002_art_39441 crossref_primary_10_1038_ni_2215 crossref_primary_10_1111_2049_632X_12023 crossref_primary_10_1038_s41598_021_83835_4 crossref_primary_10_1080_15548627_2017_1402992 crossref_primary_10_1080_15548627_2023_2252301 crossref_primary_10_3389_fmicb_2017_02142 crossref_primary_10_1016_j_yexcr_2011_12_021 crossref_primary_10_1242_jcs_152371 crossref_primary_10_1016_j_coi_2012_04_008 crossref_primary_10_1038_emboj_2011_398 crossref_primary_10_1111_j_1462_5822_2010_01497_x crossref_primary_10_1242_jcs_094573 crossref_primary_10_1155_2014_825463 crossref_primary_10_1172_JCI77014 crossref_primary_10_4049_jimmunol_2100882 crossref_primary_10_1038_s41419_020_03303_1 crossref_primary_10_1080_15548627_2020_1765521 crossref_primary_10_1371_journal_pone_0086017 crossref_primary_10_3389_fcimb_2021_820095 crossref_primary_10_1016_j_micpath_2017_11_034 crossref_primary_10_1111_cmi_12358 crossref_primary_10_2217_fmb_2022_0026 crossref_primary_10_1042_BST20200900 crossref_primary_10_3389_fcimb_2015_00049 crossref_primary_10_1007_s12374_019_0213_0 crossref_primary_10_1080_22221751_2019_1590129 crossref_primary_10_1093_femsre_fuz006 crossref_primary_10_1155_2012_159807 crossref_primary_10_1002_path_4351 crossref_primary_10_1111_cmi_12540 crossref_primary_10_1093_femspd_ftac004 crossref_primary_10_1038_mt_2011_61 crossref_primary_10_1002_iub_1483 crossref_primary_10_1007_s10989_015_9504_6 crossref_primary_10_1016_j_yexcr_2017_03_039 crossref_primary_10_1126_science_1233028 crossref_primary_10_1155_2012_182834 crossref_primary_10_1016_j_immuni_2013_07_017 crossref_primary_10_1371_journal_ppat_1007329 crossref_primary_10_1080_15548627_2015_1071759 crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00002 crossref_primary_10_1080_15548627_2016_1147672 crossref_primary_10_1038_s41598_021_82905_x crossref_primary_10_3389_ftubr_2023_1275882 crossref_primary_10_1128_IAI_00358_12 crossref_primary_10_4049_jimmunol_1102108 crossref_primary_10_1016_j_immuni_2021_01_018 crossref_primary_10_5402_2012_738718 crossref_primary_10_1016_j_devcel_2010_04_009 crossref_primary_10_1016_j_cmet_2020_07_001 crossref_primary_10_1016_j_tube_2012_05_004 crossref_primary_10_1016_j_chom_2014_05_005 crossref_primary_10_1016_j_tube_2023_102422 crossref_primary_10_1080_15548627_2021_1938912 crossref_primary_10_1155_2012_219625 crossref_primary_10_1038_s41598_017_03477_3 crossref_primary_10_1093_infdis_jis226 crossref_primary_10_1038_nature12566 crossref_primary_10_1016_j_smim_2014_10_001 crossref_primary_10_1155_2011_732798 crossref_primary_10_3390_cells9010070 crossref_primary_10_1083_jcb_201708039 crossref_primary_10_1080_15548627_2021_2021495 crossref_primary_10_1016_j_bbagen_2017_09_010 crossref_primary_10_3390_pharmaceutics12111071 crossref_primary_10_1038_s41564_024_01608_x crossref_primary_10_1007_s00281_016_0560_6 crossref_primary_10_3389_fimmu_2014_00103 crossref_primary_10_1016_j_molimm_2014_02_008 crossref_primary_10_1093_intimm_dxs101 crossref_primary_10_1080_15548627_2020_1825273 crossref_primary_10_1038_nri3532 crossref_primary_10_3389_fimmu_2017_01483 crossref_primary_10_3389_fimmu_2020_00460 crossref_primary_10_1146_annurev_biochem_052709_094552 crossref_primary_10_1371_journal_ppat_1005363 crossref_primary_10_1016_j_coi_2010_10_010 crossref_primary_10_1111_cmi_12791 crossref_primary_10_1016_j_semcdb_2016_08_018 crossref_primary_10_1111_jgh_16560 crossref_primary_10_1371_journal_pone_0027972 crossref_primary_10_1164_rccm_201106_0966CI crossref_primary_10_1038_s41564_020_00795_7 crossref_primary_10_1016_j_micinf_2011_08_014 crossref_primary_10_1016_j_tcb_2012_03_006 crossref_primary_10_3390_ijms18071476 crossref_primary_10_4161_auto_29992 crossref_primary_10_1038_nature09782 crossref_primary_10_3389_fimmu_2017_01458 crossref_primary_10_1074_jbc_M112_412841 crossref_primary_10_1016_j_coi_2014_05_006 crossref_primary_10_1111_cmi_12063 crossref_primary_10_1186_1478_811X_11_16 crossref_primary_10_1111_j_1365_2443_2010_01433_x crossref_primary_10_1016_j_omtn_2024_102402 crossref_primary_10_3390_v3071166 crossref_primary_10_4049_jimmunol_1001603 crossref_primary_10_1111_j_1462_5822_2010_01491_x crossref_primary_10_1080_27694127_2023_2242715 crossref_primary_10_1016_j_it_2017_07_005 crossref_primary_10_1146_annurev_immunol_020711_074948 crossref_primary_10_1172_JCI73945 crossref_primary_10_1080_08820139_2020_1828453 crossref_primary_10_1165_rcmb_2012_0282TR crossref_primary_10_1016_j_bbagen_2021_129989 crossref_primary_10_1002_JLB_3MA0720_682RR crossref_primary_10_1016_j_cyto_2023_156317 crossref_primary_10_1080_15548627_2015_1109765 crossref_primary_10_1016_j_dci_2020_103693 crossref_primary_10_4161_auto_7_11_17661 crossref_primary_10_1159_000350918 crossref_primary_10_1042_BC20100101 crossref_primary_10_3389_fcimb_2021_750222 crossref_primary_10_1016_j_mam_2011_09_001 crossref_primary_10_1111_j_1744_7909_2012_01178_x crossref_primary_10_1038_nri3210 crossref_primary_10_1016_j_coi_2011_10_006 crossref_primary_10_3390_ijms21051643 crossref_primary_10_1016_j_molcel_2011_07_039 crossref_primary_10_1111_tra_12752 crossref_primary_10_1146_annurev_pathol_011811_132458 crossref_primary_10_1111_jam_14585 crossref_primary_10_1016_j_redox_2014_12_010 crossref_primary_10_1038_msb_2010_80 crossref_primary_10_1164_rccm_201512_2468SO crossref_primary_10_1128_microbiolspec_TBTB2_0028_2016 crossref_primary_10_1111_mpp_12991 crossref_primary_10_1155_2014_832704 crossref_primary_10_1007_s00281_010_0227_7 crossref_primary_10_1080_21505594_2018_1536598 crossref_primary_10_4049_jimmunol_1701117 crossref_primary_10_1038_s41467_018_05825_x crossref_primary_10_1038_s41418_019_0297_6 crossref_primary_10_1016_j_smim_2013_10_018 crossref_primary_10_1038_s41598_020_65422_1 crossref_primary_10_1016_j_cytogfr_2013_01_002 crossref_primary_10_1038_s41598_023_28983_5 crossref_primary_10_1177_1535370213489446 crossref_primary_10_1242_jcs_093757 |
Cites_doi | 10.1186/1471-2172-9-35 10.1016/j.molcel.2009.01.021 10.1016/S0196-9781(03)00114-1 10.1038/ncb1007-1102 10.1016/j.molcel.2009.01.020 10.4049/jimmunol.179.4.2060 10.1038/ncb1854 10.1046/j.0014-2956.2001.02675.x 10.1074/jbc.M607031200 10.1038/nature01912 10.1074/jbc.M802182200 10.1016/S0076-6879(08)03621-5 10.1038/emboj.2008.31 10.1074/jbc.M702824200 10.1096/fj.02-0699fje 10.1038/nature07208 10.1016/j.cell.2009.03.048 10.1016/j.chom.2008.10.003 10.1074/jbc.271.34.20235 10.1074/jbc.271.23.13549 10.1083/jcb.200507002 10.1002/jlb.66.3.423 10.4049/jimmunol.0801143 10.1091/mbc.e08-12-1248 10.1016/j.immuni.2007.05.022 10.1038/ncb1723 10.1073/pnas.0700036104 10.1126/science.1129577 10.1242/jcs.026005 10.1016/j.ceb.2008.03.010 10.1073/pnas.0811045106 10.1182/blood-2008-02-137398 10.1002/jcp.1041520304 10.1016/j.chom.2009.05.016 10.1016/j.immuni.2007.07.004 10.1016/j.peptides.2003.07.028 10.1111/j.1600-065X.2008.00725.x 10.1016/S0021-9258(17)46799-8 10.1073/pnas.0810611105 10.1111/j.1365-2443.2008.01238.x 10.1016/j.molcel.2008.06.001 10.1016/j.immuni.2007.07.022 10.1091/mbc.e08-12-1250 10.1016/j.cell.2004.11.038 10.1183/09031936.00103307 10.1111/j.1600-0854.2005.00368.x 10.1084/jem.142.1.1 10.1074/jbc.M303221200 10.1016/j.cell.2007.10.035 10.1038/nature06639 10.1146/annurev.immunol.021908.132537 10.1034/j.1399-3003.2000.16a20.x 10.1146/annurev.cellbio.20.010403.114015 10.1128/iai.64.3.926-932.1996 10.1038/ncb1846 10.1016/j.cub.2004.04.033 10.1091/mbc.e08-01-0080 10.1038/nri2161 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. Copyright Elsevier Limited Mar 26, 2010 |
Copyright_xml | – notice: 2010 Elsevier Inc. – notice: Copyright Elsevier Limited Mar 26, 2010 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 |
DOI | 10.1016/j.immuni.2010.02.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Nursing & Allied Health Premium Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1097-4180 |
EndPage | 341 |
ExternalDocumentID | 3236894671 20206555 10_1016_j_immuni_2010_02_009 S1074761310000798 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI042999 – fundername: NIAID NIH HHS grantid: AI045148 – fundername: NIAID NIH HHS grantid: AI057160 – fundername: NIAID NIH HHS grantid: R01 AI042999 – fundername: NIAID NIH HHS grantid: R01 AI045148 – fundername: NIAID NIH HHS grantid: T32 AI007538 – fundername: NIAID NIH HHS grantid: U54 AI057160 – fundername: NIAID NIH HHS grantid: R37 AI042999 – fundername: NIAID NIH HHS grantid: R01 AI069345 – fundername: NIAID NIH HHS grantid: AI069345 |
GroupedDBID | --- --K -DZ .55 .GJ 0R~ 1RT 1~5 29I 2WC 3V. 4.4 457 4G. 53G 5GY 5VS 62- 6I. 7-5 7RV 7X7 8C1 8FE 8FH AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AALRI AAQFI AAQXK AAUCE AAVLU AAXJY AAXUO ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACIWK ACPRK ADBBV ADEZE ADFRT ADJPV ADMUD AEFWE AENEX AEXQZ AFKRA AFRAH AFTJW AGGSO AGHFR AGKMS AHHHB AHMBA AHPSJ AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL BBNVY BENPR BHPHI BKEYQ BPHCQ BVXVI C45 CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FGOYB FIRID G-2 HCIFZ HVGLF HZ~ IH2 IHE IXB J1W JIG LK8 LX5 M2O M3Z M41 M7P N9A NCXOZ O-L O9- OHT OK1 OVD OZT P2P PQQKQ PROAC R2- RCE RIG ROL RPZ SCP SES SSZ TEORI TR2 UHS WQ6 X7M Y6R ZA5 ZGI AAMRU AAYWO AAYXX ABDGV ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7T5 7T7 7TK 7TM 7U9 8FD C1K EFKBS FR3 H94 K9. M7N NAPCQ P64 RC3 7X8 |
ID | FETCH-LOGICAL-c467t-a93faabc5a3f3531db8ff03151bc442a0e643faeb973c3c3af039ea164dd1dcc3 |
IEDL.DBID | IXB |
ISSN | 1074-7613 1097-4180 |
IngestDate | Fri Jul 11 02:16:19 EDT 2025 Thu Jul 10 22:11:55 EDT 2025 Sat Aug 23 12:27:26 EDT 2025 Sat May 31 02:11:02 EDT 2025 Fri Jul 04 04:46:08 EDT 2025 Thu Apr 24 22:59:32 EDT 2025 Fri Feb 23 02:28:40 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | MOLIMMUNO |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-a93faabc5a3f3531db8ff03151bc442a0e643faeb973c3c3af039ea164dd1dcc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1074761310000798 |
PMID | 20206555 |
PQID | 1504268517 |
PQPubID | 2031079 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_746013486 proquest_miscellaneous_733838257 proquest_journals_1504268517 pubmed_primary_20206555 crossref_primary_10_1016_j_immuni_2010_02_009 crossref_citationtrail_10_1016_j_immuni_2010_02_009 elsevier_sciencedirect_doi_10_1016_j_immuni_2010_02_009 |
PublicationCentury | 2000 |
PublicationDate | 2010-03-26 |
PublicationDateYYYYMMDD | 2010-03-26 |
PublicationDate_xml | – month: 03 year: 2010 text: 2010-03-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | Immunity (Cambridge, Mass.) |
PublicationTitleAlternate | Immunity |
PublicationYear | 2010 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Fass, Shvets, Degani, Hirschberg, Elazar (bib11) 2006; 281 Komatsu, Waguri, Koike, Sou, Ueno, Hara, Mizushima, Iwata, Ezaki, Murata (bib25) 2007; 131 Lamark, Perander, Outzen, Kristiansen, Øvervatn, Michaelsen, Bjørkøy, Johansen (bib30) 2003; 278 Perrin, Jiang, Birmingham, So, Brumell (bib42) 2004; 14 Mathew, Karp, Beaudoin, Vuong, Chen, Chen, Bray, Reddy, Bhanot, Gelinas (bib33) 2009; 137 Shvets, Fass, Scherz-Shouval, Elazar (bib47) 2008; 121 Baker, Williamson, Wettenhall (bib4) 1996; 271 Xu, Jagannath, Liu, Sharafkhaneh, Kolodziejska, Eissa (bib55) 2007; 27 Armstrong, Hart (bib3) 1975; 142 Nedjic, Aichinger, Emmerich, Mizushima, Klein (bib38) 2008; 455 Biswas, Qureshi, Lee, Croudace, Mura, Lammas (bib5) 2008; 9 Harris, De Haro, Master, Keane, Roberts, Delgado, Deretic (bib13) 2007; 27 Kim, Hailey, Mullen, Lippincott-Schwartz (bib22) 2008; 105 Delgado, Elmaoued, Davis, Kyei, Deretic (bib8) 2008; 27 Pua, Guo, Komatsu, He (bib44) 2009; 182 Matsunaga, Saitoh, Tabata, Omori, Satoh, Kurotori, Maejima, Shirahama-Noda, Ichimura, Isobe (bib34) 2009; 11 Deretic, Levine (bib10) 2009; 5 Kieffer, Goumon, Ruh, Chasserot-Golaz, Nullans, Gasnier, Aunis, Metz-Boutigue (bib21) 2003; 17 Hiemstra, van den Barselaar, Roest, Nibbering, van Furth (bib14) 1999; 66 Miyakawa, Ratnakar, Rao, Costello, Mathieu-Costello, Lehrer, Catanzaro (bib35) 1996; 64 Gutierrez, Master, Singh, Taylor, Colombo, Deretic (bib12) 2004; 119 Olvera, Wool (bib40) 1993; 268 Vadlamudi, Joung, Strominger, Shin (bib50) 1996; 271 Noda, Kumeta, Nakatogawa, Satoo, Adachi, Ishii, Fujioka, Ohsumi, Inagaki (bib39) 2008; 13 Houde, Bertholet, Gagnon, Brunet, Goyette, Laplante, Princiotta, Thibault, Sacks, Desjardins (bib16) 2003; 425 Köchl, Hu, Chan, Tooze (bib24) 2006; 7 Kirkin, Lamark, Sou, Bjørkøy, Nunn, Bruun, Shvets, McEwan, Clausen, Wild (bib23) 2009; 33 Singh, Davis, Taylor, Deretic (bib48) 2006; 313 Yoshimori, Noda (bib56) 2008; 20 Kraft, Deplazes, Sohrmann, Peter (bib27) 2008; 10 Aplin, Jasionowski, Tuttle, Lenk, Dunn (bib2) 1992; 152 Itakura, Kishi, Inoue, Mizushima (bib20) 2008; 19 Wang, Griffiths, Jörnvall, Agerberth, Johansson (bib52) 2002; 269 Huang, Canadien, Lam, Steinberg, Dinauer, Magalhaes, Glogauer, Grinstein, Brumell (bib18) 2009; 106 Alonso, Pethe, Russell, Purdy (bib1) 2007; 104 Münz (bib37) 2009; 27 Ponpuak, Delgado, Elmaoued, Deretic (bib43) 2009; 452 Chang, Neufeld (bib7) 2009; 20 Pankiv, Clausen, Lamark, Brech, Bruun, Outzen, Øvervatn, Bjørkøy, Johansen (bib41) 2007; 282 Schmid, Münz (bib45) 2007; 27 Tollin, Bergman, Svenberg, Jörnvall, Gudmundsson, Agerberth (bib49) 2003; 24 Liu, Stenger, Tang, Modlin (bib32) 2007; 179 Vergne, Chua, Singh, Deretic (bib51) 2004; 20 Wei, Pattingre, Sinha, Bassik, Levine (bib53) 2008; 30 Levine, Deretic (bib31) 2007; 7 Ichimura, Kumanomidou, Sou, Mizushima, Ezaki, Ueno, Kominami, Yamane, Tanaka, Komatsu (bib19) 2008; 283 Bjørkøy, Lamark, Brech, Outzen, Perander, Overvatn, Stenmark, Johansen (bib6) 2005; 171 Sharma, Verma, Khuller (bib46) 2000; 16 Xie, Klionsky (bib54) 2007; 9 Howell, Wilk, Yadav, Bevins (bib17) 2003; 24 Kundu, Lindsten, Yang, Wu, Zhao, Zhang, Selak, Ney, Thompson (bib29) 2008; 112 Mizushima, Levine, Cuervo, Klionsky (bib36) 2008; 451 Zhong, Wang, Li, Yan, Backer, Chait, Heintz, Yue (bib58) 2009; 11 Kraft, Adler, Ingram, Crews, Atkinson, Cairns, Krause, Chu (bib28) 2008; 31 Korolchuk, Mansilla, Menzies, Rubinsztein (bib26) 2009; 33 Delgado, Singh, De Haro, Master, Ponpuak, Dinkins, Ornatowski, Vergne, Deretic (bib9) 2009; 227 Hosokawa, Hara, Kaizuka, Kishi, Takamura, Miura, Iemura, Natsume, Takehana, Yamada (bib15) 2009; 20 Zhao, Fux, Goodwin, Dunay, Strong, Miller, Cadwell, Delgado, Ponpuak, Green (bib57) 2008; 4 Olvera (10.1016/j.immuni.2010.02.009_bib40) 1993; 268 Nedjic (10.1016/j.immuni.2010.02.009_bib38) 2008; 455 Noda (10.1016/j.immuni.2010.02.009_bib39) 2008; 13 Perrin (10.1016/j.immuni.2010.02.009_bib42) 2004; 14 Yoshimori (10.1016/j.immuni.2010.02.009_bib56) 2008; 20 Shvets (10.1016/j.immuni.2010.02.009_bib47) 2008; 121 Bjørkøy (10.1016/j.immuni.2010.02.009_bib6) 2005; 171 Hiemstra (10.1016/j.immuni.2010.02.009_bib14) 1999; 66 Aplin (10.1016/j.immuni.2010.02.009_bib2) 1992; 152 Schmid (10.1016/j.immuni.2010.02.009_bib45) 2007; 27 Köchl (10.1016/j.immuni.2010.02.009_bib24) 2006; 7 Kundu (10.1016/j.immuni.2010.02.009_bib29) 2008; 112 Kraft (10.1016/j.immuni.2010.02.009_bib28) 2008; 31 Matsunaga (10.1016/j.immuni.2010.02.009_bib34) 2009; 11 Singh (10.1016/j.immuni.2010.02.009_bib48) 2006; 313 Delgado (10.1016/j.immuni.2010.02.009_bib9) 2009; 227 Ichimura (10.1016/j.immuni.2010.02.009_bib19) 2008; 283 Kirkin (10.1016/j.immuni.2010.02.009_bib23) 2009; 33 Deretic (10.1016/j.immuni.2010.02.009_bib10) 2009; 5 Huang (10.1016/j.immuni.2010.02.009_bib18) 2009; 106 Komatsu (10.1016/j.immuni.2010.02.009_bib25) 2007; 131 Wei (10.1016/j.immuni.2010.02.009_bib53) 2008; 30 Mizushima (10.1016/j.immuni.2010.02.009_bib36) 2008; 451 Hosokawa (10.1016/j.immuni.2010.02.009_bib15) 2009; 20 Zhong (10.1016/j.immuni.2010.02.009_bib58) 2009; 11 Liu (10.1016/j.immuni.2010.02.009_bib32) 2007; 179 Chang (10.1016/j.immuni.2010.02.009_bib7) 2009; 20 Houde (10.1016/j.immuni.2010.02.009_bib16) 2003; 425 Kraft (10.1016/j.immuni.2010.02.009_bib27) 2008; 10 Vadlamudi (10.1016/j.immuni.2010.02.009_bib50) 1996; 271 Xie (10.1016/j.immuni.2010.02.009_bib54) 2007; 9 Biswas (10.1016/j.immuni.2010.02.009_bib5) 2008; 9 Alonso (10.1016/j.immuni.2010.02.009_bib1) 2007; 104 Kim (10.1016/j.immuni.2010.02.009_bib22) 2008; 105 Baker (10.1016/j.immuni.2010.02.009_bib4) 1996; 271 Mathew (10.1016/j.immuni.2010.02.009_bib33) 2009; 137 Howell (10.1016/j.immuni.2010.02.009_bib17) 2003; 24 Harris (10.1016/j.immuni.2010.02.009_bib13) 2007; 27 Sharma (10.1016/j.immuni.2010.02.009_bib46) 2000; 16 Tollin (10.1016/j.immuni.2010.02.009_bib49) 2003; 24 Kieffer (10.1016/j.immuni.2010.02.009_bib21) 2003; 17 Münz (10.1016/j.immuni.2010.02.009_bib37) 2009; 27 Ponpuak (10.1016/j.immuni.2010.02.009_bib43) 2009; 452 Armstrong (10.1016/j.immuni.2010.02.009_bib3) 1975; 142 Levine (10.1016/j.immuni.2010.02.009_bib31) 2007; 7 Gutierrez (10.1016/j.immuni.2010.02.009_bib12) 2004; 119 Xu (10.1016/j.immuni.2010.02.009_bib55) 2007; 27 Fass (10.1016/j.immuni.2010.02.009_bib11) 2006; 281 Wang (10.1016/j.immuni.2010.02.009_bib52) 2002; 269 Pua (10.1016/j.immuni.2010.02.009_bib44) 2009; 182 Miyakawa (10.1016/j.immuni.2010.02.009_bib35) 1996; 64 Delgado (10.1016/j.immuni.2010.02.009_bib8) 2008; 27 Lamark (10.1016/j.immuni.2010.02.009_bib30) 2003; 278 Pankiv (10.1016/j.immuni.2010.02.009_bib41) 2007; 282 Itakura (10.1016/j.immuni.2010.02.009_bib20) 2008; 19 Korolchuk (10.1016/j.immuni.2010.02.009_bib26) 2009; 33 Vergne (10.1016/j.immuni.2010.02.009_bib51) 2004; 20 Zhao (10.1016/j.immuni.2010.02.009_bib57) 2008; 4 20346769 - Immunity. 2010 Mar 26;32(3):298-9. doi: 10.1016/j.immuni.2010.03.002. |
References_xml | – volume: 11 start-page: 385 year: 2009 end-page: 396 ident: bib34 article-title: Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages publication-title: Nat. Cell Biol. – volume: 20 start-page: 1981 year: 2009 end-page: 1991 ident: bib15 article-title: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy publication-title: Mol. Biol. Cell – volume: 281 start-page: 36303 year: 2006 end-page: 36316 ident: bib11 article-title: Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes publication-title: J. Biol. Chem. – volume: 313 start-page: 1438 year: 2006 end-page: 1441 ident: bib48 article-title: Human IRGM induces autophagy to eliminate intracellular mycobacteria publication-title: Science – volume: 131 start-page: 1149 year: 2007 end-page: 1163 ident: bib25 article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice publication-title: Cell – volume: 19 start-page: 5360 year: 2008 end-page: 5372 ident: bib20 article-title: Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG publication-title: Mol. Biol. Cell – volume: 13 start-page: 1211 year: 2008 end-page: 1218 ident: bib39 article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy publication-title: Genes Cells – volume: 27 start-page: 505 year: 2007 end-page: 517 ident: bib13 article-title: T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis publication-title: Immunity – volume: 20 start-page: 401 year: 2008 end-page: 407 ident: bib56 article-title: Toward unraveling membrane biogenesis in mammalian autophagy publication-title: Curr. Opin. Cell Biol. – volume: 5 start-page: 527 year: 2009 end-page: 549 ident: bib10 article-title: Autophagy, immunity, and microbial adaptations publication-title: Cell Host Microbe – volume: 142 start-page: 1 year: 1975 end-page: 16 ident: bib3 article-title: Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival publication-title: J. Exp. Med. – volume: 4 start-page: 458 year: 2008 end-page: 469 ident: bib57 article-title: Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens publication-title: Cell Host Microbe – volume: 451 start-page: 1069 year: 2008 end-page: 1075 ident: bib36 article-title: Autophagy fights disease through cellular self-digestion publication-title: Nature – volume: 452 start-page: 345 year: 2009 end-page: 361 ident: bib43 article-title: Monitoring autophagy during Mycobacterium tuberculosis infection publication-title: Methods Enzymol. – volume: 64 start-page: 926 year: 1996 end-page: 932 ident: bib35 article-title: In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis publication-title: Infect. Immun. – volume: 121 start-page: 2685 year: 2008 end-page: 2695 ident: bib47 article-title: The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes publication-title: J. Cell Sci. – volume: 14 start-page: 806 year: 2004 end-page: 811 ident: bib42 article-title: Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system publication-title: Curr. Biol. – volume: 152 start-page: 458 year: 1992 end-page: 466 ident: bib2 article-title: Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles publication-title: J. Cell. Physiol. – volume: 271 start-page: 13549 year: 1996 end-page: 13555 ident: bib4 article-title: The yeast homolog of mammalian ribosomal protein S30 is expressed from a duplicated gene without a ubiquitin-like protein fusion sequence. Evolutionary implications publication-title: J. Biol. Chem. – volume: 33 start-page: 517 year: 2009 end-page: 527 ident: bib26 article-title: Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates publication-title: Mol. Cell – volume: 27 start-page: 423 year: 2009 end-page: 449 ident: bib37 article-title: Enhancing immunity through autophagy publication-title: Annu. Rev. Immunol. – volume: 7 start-page: 129 year: 2006 end-page: 145 ident: bib24 article-title: Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes publication-title: Traffic – volume: 104 start-page: 6031 year: 2007 end-page: 6036 ident: bib1 article-title: Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 11 year: 2007 end-page: 21 ident: bib45 article-title: Innate and adaptive immunity through autophagy publication-title: Immunity – volume: 283 start-page: 22847 year: 2008 end-page: 22857 ident: bib19 article-title: Structural basis for sorting mechanism of p62 in selective autophagy publication-title: J. Biol. Chem. – volume: 105 start-page: 20567 year: 2008 end-page: 20574 ident: bib22 article-title: Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes publication-title: Proc. Natl. Acad. Sci. USA – volume: 227 start-page: 189 year: 2009 end-page: 202 ident: bib9 article-title: Autophagy and pattern recognition receptors in innate immunity publication-title: Immunol. Rev. – volume: 119 start-page: 753 year: 2004 end-page: 766 ident: bib12 article-title: Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages publication-title: Cell – volume: 66 start-page: 423 year: 1999 end-page: 428 ident: bib14 article-title: Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages publication-title: J. Leukoc. Biol. – volume: 106 start-page: 6226 year: 2009 end-page: 6231 ident: bib18 article-title: Activation of antibacterial autophagy by NADPH oxidases publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 35 year: 2008 ident: bib5 article-title: ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages publication-title: BMC Immunol. – volume: 24 start-page: 1763 year: 2003 end-page: 1770 ident: bib17 article-title: Antimicrobial polypeptides of the human colonic epithelium publication-title: Peptides – volume: 271 start-page: 20235 year: 1996 end-page: 20237 ident: bib50 article-title: p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins publication-title: J. Biol. Chem. – volume: 7 start-page: 767 year: 2007 end-page: 777 ident: bib31 article-title: Unveiling the roles of autophagy in innate and adaptive immunity publication-title: Nat. Rev. Immunol. – volume: 27 start-page: 135 year: 2007 end-page: 144 ident: bib55 article-title: Toll-like receptor 4 is a sensor for autophagy associated with innate immunity publication-title: Immunity – volume: 282 start-page: 24131 year: 2007 end-page: 24145 ident: bib41 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J. Biol. Chem. – volume: 9 start-page: 1102 year: 2007 end-page: 1109 ident: bib54 article-title: Autophagosome formation: core machinery and adaptations publication-title: Nat. Cell Biol. – volume: 33 start-page: 505 year: 2009 end-page: 516 ident: bib23 article-title: A role for NBR1 in autophagosomal degradation of ubiquitinated substrates publication-title: Mol. Cell – volume: 171 start-page: 603 year: 2005 end-page: 614 ident: bib6 article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death publication-title: J. Cell Biol. – volume: 137 start-page: 1062 year: 2009 end-page: 1075 ident: bib33 article-title: Autophagy suppresses tumorigenesis through elimination of p62 publication-title: Cell – volume: 30 start-page: 678 year: 2008 end-page: 688 ident: bib53 article-title: JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy publication-title: Mol. Cell – volume: 10 start-page: 602 year: 2008 end-page: 610 ident: bib27 article-title: Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease publication-title: Nat. Cell Biol. – volume: 24 start-page: 523 year: 2003 end-page: 530 ident: bib49 article-title: Antimicrobial peptides in the first line defence of human colon mucosa publication-title: Peptides – volume: 278 start-page: 34568 year: 2003 end-page: 34581 ident: bib30 article-title: Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins publication-title: J. Biol. Chem. – volume: 27 start-page: 1110 year: 2008 end-page: 1121 ident: bib8 article-title: Toll-like receptors control autophagy publication-title: EMBO J. – volume: 179 start-page: 2060 year: 2007 end-page: 2063 ident: bib32 article-title: Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin publication-title: J. Immunol. – volume: 20 start-page: 2004 year: 2009 end-page: 2014 ident: bib7 article-title: An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation publication-title: Mol. Biol. Cell – volume: 17 start-page: 776 year: 2003 end-page: 778 ident: bib21 article-title: The N- and C-terminal fragments of ubiquitin are important for the antimicrobial activities publication-title: FASEB J. – volume: 269 start-page: 512 year: 2002 end-page: 518 ident: bib52 article-title: Antibacterial peptides in stimulated human granulocytes: characterization of ubiquitinated histone H1A publication-title: Eur. J. Biochem. – volume: 455 start-page: 396 year: 2008 end-page: 400 ident: bib38 article-title: Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance publication-title: Nature – volume: 182 start-page: 4046 year: 2009 end-page: 4055 ident: bib44 article-title: Autophagy is essential for mitochondrial clearance in mature T lymphocytes publication-title: J. Immunol. – volume: 11 start-page: 468 year: 2009 end-page: 476 ident: bib58 article-title: Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex publication-title: Nat. Cell Biol. – volume: 112 start-page: 1493 year: 2008 end-page: 1502 ident: bib29 article-title: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation publication-title: Blood – volume: 16 start-page: 112 year: 2000 end-page: 117 ident: bib46 article-title: Antibacterial activity of human neutrophil peptide-1 against Mycobacterium tuberculosis H37Rv: in vitro and ex vivo study publication-title: Eur. Respir. J. – volume: 20 start-page: 367 year: 2004 end-page: 394 ident: bib51 article-title: Cell biology of mycobacterium tuberculosis phagosome publication-title: Annu. Rev. Cell Dev. Biol. – volume: 31 start-page: 43 year: 2008 end-page: 46 ident: bib28 article-title: Mycoplasma pneumoniae induces airway epithelial cell expression of MUC5AC in asthma publication-title: Eur. Respir. J. – volume: 425 start-page: 402 year: 2003 end-page: 406 ident: bib16 article-title: Phagosomes are competent organelles for antigen cross-presentation publication-title: Nature – volume: 268 start-page: 17967 year: 1993 end-page: 17974 ident: bib40 article-title: The carboxyl extension of a ubiquitin-like protein is rat ribosomal protein S30 publication-title: J. Biol. Chem. – volume: 9 start-page: 35 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib5 article-title: ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages publication-title: BMC Immunol. doi: 10.1186/1471-2172-9-35 – volume: 33 start-page: 517 year: 2009 ident: 10.1016/j.immuni.2010.02.009_bib26 article-title: Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.01.021 – volume: 24 start-page: 523 year: 2003 ident: 10.1016/j.immuni.2010.02.009_bib49 article-title: Antimicrobial peptides in the first line defence of human colon mucosa publication-title: Peptides doi: 10.1016/S0196-9781(03)00114-1 – volume: 9 start-page: 1102 year: 2007 ident: 10.1016/j.immuni.2010.02.009_bib54 article-title: Autophagosome formation: core machinery and adaptations publication-title: Nat. Cell Biol. doi: 10.1038/ncb1007-1102 – volume: 33 start-page: 505 year: 2009 ident: 10.1016/j.immuni.2010.02.009_bib23 article-title: A role for NBR1 in autophagosomal degradation of ubiquitinated substrates publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.01.020 – volume: 179 start-page: 2060 year: 2007 ident: 10.1016/j.immuni.2010.02.009_bib32 article-title: Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin publication-title: J. Immunol. doi: 10.4049/jimmunol.179.4.2060 – volume: 11 start-page: 468 year: 2009 ident: 10.1016/j.immuni.2010.02.009_bib58 article-title: Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex publication-title: Nat. Cell Biol. doi: 10.1038/ncb1854 – volume: 269 start-page: 512 year: 2002 ident: 10.1016/j.immuni.2010.02.009_bib52 article-title: Antibacterial peptides in stimulated human granulocytes: characterization of ubiquitinated histone H1A publication-title: Eur. J. Biochem. doi: 10.1046/j.0014-2956.2001.02675.x – volume: 281 start-page: 36303 year: 2006 ident: 10.1016/j.immuni.2010.02.009_bib11 article-title: Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M607031200 – volume: 425 start-page: 402 year: 2003 ident: 10.1016/j.immuni.2010.02.009_bib16 article-title: Phagosomes are competent organelles for antigen cross-presentation publication-title: Nature doi: 10.1038/nature01912 – volume: 283 start-page: 22847 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib19 article-title: Structural basis for sorting mechanism of p62 in selective autophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802182200 – volume: 452 start-page: 345 year: 2009 ident: 10.1016/j.immuni.2010.02.009_bib43 article-title: Monitoring autophagy during Mycobacterium tuberculosis infection publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(08)03621-5 – volume: 27 start-page: 1110 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib8 article-title: Toll-like receptors control autophagy publication-title: EMBO J. doi: 10.1038/emboj.2008.31 – volume: 282 start-page: 24131 year: 2007 ident: 10.1016/j.immuni.2010.02.009_bib41 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702824200 – volume: 17 start-page: 776 year: 2003 ident: 10.1016/j.immuni.2010.02.009_bib21 article-title: The N- and C-terminal fragments of ubiquitin are important for the antimicrobial activities publication-title: FASEB J. doi: 10.1096/fj.02-0699fje – volume: 455 start-page: 396 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib38 article-title: Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance publication-title: Nature doi: 10.1038/nature07208 – volume: 137 start-page: 1062 year: 2009 ident: 10.1016/j.immuni.2010.02.009_bib33 article-title: Autophagy suppresses tumorigenesis through elimination of p62 publication-title: Cell doi: 10.1016/j.cell.2009.03.048 – volume: 4 start-page: 458 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib57 article-title: Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.10.003 – volume: 271 start-page: 20235 year: 1996 ident: 10.1016/j.immuni.2010.02.009_bib50 article-title: p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.34.20235 – volume: 271 start-page: 13549 year: 1996 ident: 10.1016/j.immuni.2010.02.009_bib4 article-title: The yeast homolog of mammalian ribosomal protein S30 is expressed from a duplicated gene without a ubiquitin-like protein fusion sequence. Evolutionary implications publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.23.13549 – volume: 171 start-page: 603 year: 2005 ident: 10.1016/j.immuni.2010.02.009_bib6 article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death publication-title: J. Cell Biol. doi: 10.1083/jcb.200507002 – volume: 66 start-page: 423 year: 1999 ident: 10.1016/j.immuni.2010.02.009_bib14 article-title: Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages publication-title: J. Leukoc. Biol. doi: 10.1002/jlb.66.3.423 – volume: 182 start-page: 4046 year: 2009 ident: 10.1016/j.immuni.2010.02.009_bib44 article-title: Autophagy is essential for mitochondrial clearance in mature T lymphocytes publication-title: J. Immunol. doi: 10.4049/jimmunol.0801143 – volume: 20 start-page: 1981 year: 2009 ident: 10.1016/j.immuni.2010.02.009_bib15 article-title: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e08-12-1248 – volume: 27 start-page: 135 year: 2007 ident: 10.1016/j.immuni.2010.02.009_bib55 article-title: Toll-like receptor 4 is a sensor for autophagy associated with innate immunity publication-title: Immunity doi: 10.1016/j.immuni.2007.05.022 – volume: 10 start-page: 602 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib27 article-title: Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease publication-title: Nat. Cell Biol. doi: 10.1038/ncb1723 – volume: 104 start-page: 6031 year: 2007 ident: 10.1016/j.immuni.2010.02.009_bib1 article-title: Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0700036104 – volume: 313 start-page: 1438 year: 2006 ident: 10.1016/j.immuni.2010.02.009_bib48 article-title: Human IRGM induces autophagy to eliminate intracellular mycobacteria publication-title: Science doi: 10.1126/science.1129577 – volume: 121 start-page: 2685 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib47 article-title: The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes publication-title: J. Cell Sci. doi: 10.1242/jcs.026005 – volume: 20 start-page: 401 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib56 article-title: Toward unraveling membrane biogenesis in mammalian autophagy publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2008.03.010 – volume: 106 start-page: 6226 year: 2009 ident: 10.1016/j.immuni.2010.02.009_bib18 article-title: Activation of antibacterial autophagy by NADPH oxidases publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0811045106 – volume: 112 start-page: 1493 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib29 article-title: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation publication-title: Blood doi: 10.1182/blood-2008-02-137398 – volume: 152 start-page: 458 year: 1992 ident: 10.1016/j.immuni.2010.02.009_bib2 article-title: Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles publication-title: J. Cell. Physiol. doi: 10.1002/jcp.1041520304 – volume: 5 start-page: 527 year: 2009 ident: 10.1016/j.immuni.2010.02.009_bib10 article-title: Autophagy, immunity, and microbial adaptations publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.05.016 – volume: 27 start-page: 11 year: 2007 ident: 10.1016/j.immuni.2010.02.009_bib45 article-title: Innate and adaptive immunity through autophagy publication-title: Immunity doi: 10.1016/j.immuni.2007.07.004 – volume: 24 start-page: 1763 year: 2003 ident: 10.1016/j.immuni.2010.02.009_bib17 article-title: Antimicrobial polypeptides of the human colonic epithelium publication-title: Peptides doi: 10.1016/j.peptides.2003.07.028 – volume: 227 start-page: 189 year: 2009 ident: 10.1016/j.immuni.2010.02.009_bib9 article-title: Autophagy and pattern recognition receptors in innate immunity publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2008.00725.x – volume: 268 start-page: 17967 year: 1993 ident: 10.1016/j.immuni.2010.02.009_bib40 article-title: The carboxyl extension of a ubiquitin-like protein is rat ribosomal protein S30 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)46799-8 – volume: 105 start-page: 20567 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib22 article-title: Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810611105 – volume: 13 start-page: 1211 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib39 article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy publication-title: Genes Cells doi: 10.1111/j.1365-2443.2008.01238.x – volume: 30 start-page: 678 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib53 article-title: JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.06.001 – volume: 27 start-page: 505 year: 2007 ident: 10.1016/j.immuni.2010.02.009_bib13 article-title: T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis publication-title: Immunity doi: 10.1016/j.immuni.2007.07.022 – volume: 20 start-page: 2004 year: 2009 ident: 10.1016/j.immuni.2010.02.009_bib7 article-title: An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e08-12-1250 – volume: 119 start-page: 753 year: 2004 ident: 10.1016/j.immuni.2010.02.009_bib12 article-title: Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages publication-title: Cell doi: 10.1016/j.cell.2004.11.038 – volume: 31 start-page: 43 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib28 article-title: Mycoplasma pneumoniae induces airway epithelial cell expression of MUC5AC in asthma publication-title: Eur. Respir. J. doi: 10.1183/09031936.00103307 – volume: 7 start-page: 129 year: 2006 ident: 10.1016/j.immuni.2010.02.009_bib24 article-title: Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes publication-title: Traffic doi: 10.1111/j.1600-0854.2005.00368.x – volume: 142 start-page: 1 year: 1975 ident: 10.1016/j.immuni.2010.02.009_bib3 article-title: Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival publication-title: J. Exp. Med. doi: 10.1084/jem.142.1.1 – volume: 278 start-page: 34568 year: 2003 ident: 10.1016/j.immuni.2010.02.009_bib30 article-title: Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M303221200 – volume: 131 start-page: 1149 year: 2007 ident: 10.1016/j.immuni.2010.02.009_bib25 article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice publication-title: Cell doi: 10.1016/j.cell.2007.10.035 – volume: 451 start-page: 1069 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib36 article-title: Autophagy fights disease through cellular self-digestion publication-title: Nature doi: 10.1038/nature06639 – volume: 27 start-page: 423 year: 2009 ident: 10.1016/j.immuni.2010.02.009_bib37 article-title: Enhancing immunity through autophagy publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.021908.132537 – volume: 16 start-page: 112 year: 2000 ident: 10.1016/j.immuni.2010.02.009_bib46 article-title: Antibacterial activity of human neutrophil peptide-1 against Mycobacterium tuberculosis H37Rv: in vitro and ex vivo study publication-title: Eur. Respir. J. doi: 10.1034/j.1399-3003.2000.16a20.x – volume: 20 start-page: 367 year: 2004 ident: 10.1016/j.immuni.2010.02.009_bib51 article-title: Cell biology of mycobacterium tuberculosis phagosome publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.20.010403.114015 – volume: 64 start-page: 926 year: 1996 ident: 10.1016/j.immuni.2010.02.009_bib35 article-title: In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis publication-title: Infect. Immun. doi: 10.1128/iai.64.3.926-932.1996 – volume: 11 start-page: 385 year: 2009 ident: 10.1016/j.immuni.2010.02.009_bib34 article-title: Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages publication-title: Nat. Cell Biol. doi: 10.1038/ncb1846 – volume: 14 start-page: 806 year: 2004 ident: 10.1016/j.immuni.2010.02.009_bib42 article-title: Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.04.033 – volume: 19 start-page: 5360 year: 2008 ident: 10.1016/j.immuni.2010.02.009_bib20 article-title: Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e08-01-0080 – volume: 7 start-page: 767 year: 2007 ident: 10.1016/j.immuni.2010.02.009_bib31 article-title: Unveiling the roles of autophagy in innate and adaptive immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2161 – reference: 20346769 - Immunity. 2010 Mar 26;32(3):298-9. doi: 10.1016/j.immuni.2010.03.002. |
SSID | ssj0014590 |
Score | 2.4615552 |
Snippet | Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 329 |
SubjectTerms | Acidification Adaptor Proteins, Signal Transducing - immunology Animals Antimicrobial agents Autophagy Biological Transport Cells, Cultured Cytosol - immunology Cytosol - metabolism Heat-Shock Proteins - immunology Mice Mice, Inbred C57BL MOLIMMUNO Mycobacterium Mycobacterium tuberculosis - immunology Phagosomes - immunology Phagosomes - metabolism Protein Binding Proteins Sequestosome-1 Protein Ubiquitin - metabolism |
Title | Delivery of Cytosolic Components by Autophagic Adaptor Protein p62 Endows Autophagosomes with Unique Antimicrobial Properties |
URI | https://dx.doi.org/10.1016/j.immuni.2010.02.009 https://www.ncbi.nlm.nih.gov/pubmed/20206555 https://www.proquest.com/docview/1504268517 https://www.proquest.com/docview/733838257 https://www.proquest.com/docview/746013486 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhoaWX0qaPbJsGHXoV69XDj6O7SQgNKaHt0r0JyZLBJbGX2EvZQ_97Z2zZkEMSKL7ZspE10ugb6ZtPhHyOfRrHqTSML5xjclFyZoTjzEkLk9_CFZnFHd2rb_HFSn5dq_UeWY65MEirDL5_8Om9tw535qE155uqmv9AKiF8blihTjJM-BUy7ZP41l-mnQSpsmjiHULpMX2u53hVfQ5GIHihcmf20PT0EPzsp6HzV-RlwI80H6r4muz5-pA8G06U3B2S51dhr_wN-Xvqb5B0saNNSZe7rmlRApiiA2hqpE9Qu6P5FoUFDLg_mjuzgQCcXqNyQ1XTTczpWe2aP-1UCj5x61uKa7d01Su_0rzuqtuqV3OCal3j0v4darS-Javzs5_LCxYOW2AF-MqOmUyUxthCGVEKGJjOpmWJR0AsbCElN5EH7FIaDyYUBVwGHmbeQLTlHJi0EO_Ifg3VPyJUqsQkrgDYnpTSAQSKEmcT65ziKnWRmhExtrEughI5Hohxo0fK2W89WEajZXTENVhmRtj01mZQ4niifDKaT9_rURomiyfePB6trcOIbjUAZwAzgE-TGaHTYxiLuMFiat9sW51gvA8h92NFJETA0E3jGXk_9KPpZzgg91gp9eG_K_6RvBjIDYLx-Jjsd3db_wkwU2dPyEF--f3X5Uk_OP4B_eIYWw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIj4uCMrXQgEfuEabdew4OS5Lqy10q0p0pb1ZdpxIQW2yarJCe-C_M5M4kTiUSii3xLacTDx-Yz-_Afgc50kcJ8IEfOZcIGYFD0zkeOCExclv5rLU0o7u6iJersW3jdwcwGI4C0O0Su_7e5_eeWt_Z-q_5nRbltMfRCXE5voVapUmD-AhogFF-RvONl_GrQQh03AkHmLx4fxcR_Iqu0MYnuFF0p3pXfPTXfizm4dOn8MzDyDZvO_jCzjIqyN41KeU3B_B45XfLH8Jv7_m18S62LO6YIt9WzekAczIA9QV8SeY3bP5jpQFDPo_NndmixE4uyTphrJi25izk8rVv5qxFDZxkzeMFm_ZupN-ZfOqLW_KTs4Ju3VJa_u3JNL6CtanJ1eLZeCzLQQZOss2MGlUGGMzaaIiwpHpbFIUlANiZjMhuAlzBC-FydGGUYaXwYdpbjDccg5tmkWv4bDC7r8FJqQyymWI21UhHGKgUDmrrHOSy8SFcgLR8I115qXIKSPGtR44Zz91bxlNltEh12iZCQRjrW0vxXFPeTWYT__1S2mcLe6peTxYW_sh3WhEzohmEKCqCbDxMQ5G2mExVV7vGq0o4MeY-19FBIbAkUjiCbzp_6PxZThC91hK-e6_O_4JniyvVuf6_Ozi-3t42jMdooDHx3DY3u7yDwigWvuxGyB_AD2rGdc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delivery+of+Cytosolic+Components+by+Autophagic+Adaptor+Protein+p62+Endows+Autophagosomes+with+Unique+Antimicrobial+Properties&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Ponpuak%2C+Marisa&rft.au=Davis%2C+Alexander+S.&rft.au=Roberts%2C+Esteban+A.&rft.au=Delgado%2C+Monica+A.&rft.date=2010-03-26&rft.issn=1074-7613&rft.volume=32&rft.issue=3&rft.spage=329&rft.epage=341&rft_id=info:doi/10.1016%2Fj.immuni.2010.02.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_immuni_2010_02_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon |