Delivery of Cytosolic Components by Autophagic Adaptor Protein p62 Endows Autophagosomes with Unique Antimicrobial Properties

Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycob...

Full description

Saved in:
Bibliographic Details
Published inImmunity (Cambridge, Mass.) Vol. 32; no. 3; pp. 329 - 341
Main Authors Ponpuak, Marisa, Davis, Alexander S., Roberts, Esteban A., Delgado, Monica A., Dinkins, Christina, Zhao, Zijiang, Virgin, Herbert W., Kyei, George B., Johansen, Terje, Vergne, Isabelle, Deretic, Vojo
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 26.03.2010
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1074-7613
1097-4180
1097-4180
DOI10.1016/j.immuni.2010.02.009

Cover

Loading…
Abstract Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycobacterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellular M. tuberculosis and found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killing M. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles. [Display omitted] ► Autophagy converts specific cytoplasmic proteins into antimicrobial peptides ► Autophagic adaptor p62 delivers Fau and ubiquitinated complexes to autolysosomes ► Ribosomal proteins and ubiquitin are digested by lysosomal hydrolases in autolysosomes ► Conversion of cytoplasmic proteins into bactericidal peptides kills M. tuberculosis
AbstractList Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycobecterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellular M. tuberculosis and found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killing M. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles.
Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycobacterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellular M. tuberculosis and found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killing M. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles.
Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycobacterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellular M. tuberculosis and found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killing M. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles. [Display omitted] ► Autophagy converts specific cytoplasmic proteins into antimicrobial peptides ► Autophagic adaptor p62 delivers Fau and ubiquitinated complexes to autolysosomes ► Ribosomal proteins and ubiquitin are digested by lysosomal hydrolases in autolysosomes ► Conversion of cytoplasmic proteins into bactericidal peptides kills M. tuberculosis
Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycobacterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellular M. tuberculosis and found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killing M. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles.Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, including Mycobacterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellular M. tuberculosis and found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killing M. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles.
Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity functions. In one of its innate immunity manifestations, autophagy, is known to contribute to the killing of intracellular microbes, includingMycobacterium tuberculosis, although the molecular mechanisms have been unclear. Here, we delineated sequential steps of the autophagic pathway necessary to control intracellularM. tuberculosisand found that in addition to autophagy initiation and maturation, an accessory autophagy-targeting molecule p62 (A170 or SQSTM1) was required for mycobactericidal activity. The p62 adaptor protein delivered specific ribosomal and bulk ubiquitinated cytosolic proteins to autolysosomes where they were proteolytically converted into products capable of killingM. tuberculosis. Thus, p62 brings cytosolic proteins to autolysosomes where they are processed from innocuous precursors into neo-antimicrobial peptides, explaining in part the unique bactericidal properties of autophagic organelles.
Author Roberts, Esteban A.
Deretic, Vojo
Dinkins, Christina
Zhao, Zijiang
Davis, Alexander S.
Kyei, George B.
Ponpuak, Marisa
Vergne, Isabelle
Delgado, Monica A.
Virgin, Herbert W.
Johansen, Terje
Author_xml – sequence: 1
  givenname: Marisa
  surname: Ponpuak
  fullname: Ponpuak, Marisa
  organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
– sequence: 2
  givenname: Alexander S.
  surname: Davis
  fullname: Davis, Alexander S.
  organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
– sequence: 3
  givenname: Esteban A.
  surname: Roberts
  fullname: Roberts, Esteban A.
  organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
– sequence: 4
  givenname: Monica A.
  surname: Delgado
  fullname: Delgado, Monica A.
  organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
– sequence: 5
  givenname: Christina
  surname: Dinkins
  fullname: Dinkins, Christina
  organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
– sequence: 6
  givenname: Zijiang
  surname: Zhao
  fullname: Zhao, Zijiang
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 7
  givenname: Herbert W.
  surname: Virgin
  fullname: Virgin, Herbert W.
  organization: Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 8
  givenname: George B.
  surname: Kyei
  fullname: Kyei, George B.
  organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
– sequence: 9
  givenname: Terje
  surname: Johansen
  fullname: Johansen, Terje
  organization: Biochemistry Department, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
– sequence: 10
  givenname: Isabelle
  surname: Vergne
  fullname: Vergne, Isabelle
  organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
– sequence: 11
  givenname: Vojo
  surname: Deretic
  fullname: Deretic, Vojo
  email: vderetic@salud.unm.edu
  organization: Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20206555$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB_wDxCyxIJVBjt2nIQF0mgoD6kSLOjacpwbekeJHWyn1Sz47zia0kUXVF7Y8v3OufY95-TEeQeEvOZswxlX7_cbnKbF4aZk-YqVG8baZ-SMs7YuJG_YyXquZVErLk7JeYx7xrisWvaCnJasZKqqqjPy5xOMeAvhQP1Ad4fkox_R0p2f5tzOpUi7A90uyc835lcubHszJx_oj-AToKOzKuml6_1dfKCyxQSR3mG6odcOfy9Aty7hhDb4Ds24amcICSG-JM8HM0Z4db9fkOvPlz93X4ur71--7bZXhZWqToVpxWBMZysjBlEJ3nfNMDDBK95ZKUvDQMlMQNfWwuZlcrEFw5Xse95bKy7Iu6PvHHx-T0x6wmhhHI0Dv0RdS8W4kI16mhSiEU1Z1Zl8-4jc-yW4_A3NKyZL1VR8pd7cU0s3Qa_ngJMJB_0vgQzII5CnE2OA4QHhTK9B670-Bq3XoDUrdQ46yz48kllMJqF3KRgcnxJ_PIohz_wWIehoEZyFHgPYpHuP_zf4C6-XyCM
CitedBy_id crossref_primary_10_1007_s00281_021_00860_1
crossref_primary_10_1016_j_immuni_2010_03_002
crossref_primary_10_1016_j_it_2012_06_003
crossref_primary_10_1111_j_1462_5822_2011_01628_x
crossref_primary_10_1016_j_addr_2016_01_016
crossref_primary_10_1016_j_imbio_2022_152223
crossref_primary_10_1016_j_tube_2020_101900
crossref_primary_10_3390_toxins7082918
crossref_primary_10_4161_auto_7_3_14487
crossref_primary_10_18632_aging_102710
crossref_primary_10_1038_nri3111
crossref_primary_10_1016_j_coi_2011_06_002
crossref_primary_10_1016_j_intimp_2013_11_001
crossref_primary_10_1007_s00281_015_0522_4
crossref_primary_10_1074_jbc_RA120_012809
crossref_primary_10_2174_1568009623666230412104913
crossref_primary_10_3390_toxins15090544
crossref_primary_10_1155_2012_910525
crossref_primary_10_1016_j_mib_2013_05_003
crossref_primary_10_1038_s41420_020_0266_3
crossref_primary_10_1146_annurev_biochem_093010_153308
crossref_primary_10_1038_cdd_2013_187
crossref_primary_10_1083_jcb_201704186
crossref_primary_10_1093_femspd_ftx107
crossref_primary_10_1111_j_1462_5822_2011_01632_x
crossref_primary_10_1177_1753425915594245
crossref_primary_10_1111_j_1600_065X_2010_00995_x
crossref_primary_10_1016_j_phrs_2012_10_003
crossref_primary_10_1073_pnas_1210500109
crossref_primary_10_1242_jcs_252148
crossref_primary_10_1038_cdd_2012_72
crossref_primary_10_1016_j_ceb_2011_03_003
crossref_primary_10_1080_15548627_2019_1687214
crossref_primary_10_1111_j_1462_5822_2012_01754_x
crossref_primary_10_1242_jcs_126128
crossref_primary_10_4161_auto_21332
crossref_primary_10_1021_acs_jafc_2c00148
crossref_primary_10_3390_antibiotics12010139
crossref_primary_10_1021_bi301426j
crossref_primary_10_1083_jcb_202203083
crossref_primary_10_1111_imr_12288
crossref_primary_10_1128_MMBR_00032_13
crossref_primary_10_21931_RB_2022_07_02_9
crossref_primary_10_1038_nrmicro3420
crossref_primary_10_1038_s41419_020_2477_1
crossref_primary_10_1111_j_1600_065X_2010_00984_x
crossref_primary_10_4167_jbv_2017_47_3_122
crossref_primary_10_1016_j_molcel_2014_03_009
crossref_primary_10_1126_science_1201711
crossref_primary_10_4161_auto_7_3_14234
crossref_primary_10_1038_nrgastro_2013_66
crossref_primary_10_1371_journal_pone_0066985
crossref_primary_10_1556_EuJMI_1_2011_1_6
crossref_primary_10_1016_j_nbd_2010_08_015
crossref_primary_10_1016_j_chom_2013_01_008
crossref_primary_10_1002_iub_1070
crossref_primary_10_1093_jmcb_mjac015
crossref_primary_10_1016_j_molimm_2020_05_001
crossref_primary_10_1016_j_immuni_2013_08_027
crossref_primary_10_1016_j_immuni_2013_08_026
crossref_primary_10_1080_15548627_2017_1320636
crossref_primary_10_1155_2013_584715
crossref_primary_10_1189_jlb_4MR0216_079R
crossref_primary_10_1016_j_tube_2018_09_007
crossref_primary_10_1038_s41467_019_09955_8
crossref_primary_10_1111_j_1600_065X_2012_01146_x
crossref_primary_10_3389_fimmu_2018_02914
crossref_primary_10_1016_j_immuni_2012_04_015
crossref_primary_10_1172_JCI92079
crossref_primary_10_1158_0008_5472_CAN_11_3396
crossref_primary_10_1111_febs_16174
crossref_primary_10_3389_fmicb_2021_661446
crossref_primary_10_3389_fmed_2018_00032
crossref_primary_10_1007_s12088_015_0541_9
crossref_primary_10_1016_j_molcel_2018_07_010
crossref_primary_10_1128_mbio_03024_22
crossref_primary_10_1134_S2079086416040095
crossref_primary_10_3389_fimmu_2016_00664
crossref_primary_10_1016_j_semcdb_2010_04_004
crossref_primary_10_1083_jcb_201002021
crossref_primary_10_1111_j_1462_5822_2012_01768_x
crossref_primary_10_1016_j_mib_2013_03_010
crossref_primary_10_1074_jbc_M112_350934
crossref_primary_10_1155_2011_347594
crossref_primary_10_3390_cells9112372
crossref_primary_10_1186_1471_2091_15_4
crossref_primary_10_4161_auto_7_9_16436
crossref_primary_10_4167_jbv_2019_49_1_12
crossref_primary_10_1002_1873_3468_14788
crossref_primary_10_1111_imr_12096
crossref_primary_10_1038_s41423_020_0502_z
crossref_primary_10_1002_art_39441
crossref_primary_10_1038_ni_2215
crossref_primary_10_1111_2049_632X_12023
crossref_primary_10_1038_s41598_021_83835_4
crossref_primary_10_1080_15548627_2017_1402992
crossref_primary_10_1080_15548627_2023_2252301
crossref_primary_10_3389_fmicb_2017_02142
crossref_primary_10_1016_j_yexcr_2011_12_021
crossref_primary_10_1242_jcs_152371
crossref_primary_10_1016_j_coi_2012_04_008
crossref_primary_10_1038_emboj_2011_398
crossref_primary_10_1111_j_1462_5822_2010_01497_x
crossref_primary_10_1242_jcs_094573
crossref_primary_10_1155_2014_825463
crossref_primary_10_1172_JCI77014
crossref_primary_10_4049_jimmunol_2100882
crossref_primary_10_1038_s41419_020_03303_1
crossref_primary_10_1080_15548627_2020_1765521
crossref_primary_10_1371_journal_pone_0086017
crossref_primary_10_3389_fcimb_2021_820095
crossref_primary_10_1016_j_micpath_2017_11_034
crossref_primary_10_1111_cmi_12358
crossref_primary_10_2217_fmb_2022_0026
crossref_primary_10_1042_BST20200900
crossref_primary_10_3389_fcimb_2015_00049
crossref_primary_10_1007_s12374_019_0213_0
crossref_primary_10_1080_22221751_2019_1590129
crossref_primary_10_1093_femsre_fuz006
crossref_primary_10_1155_2012_159807
crossref_primary_10_1002_path_4351
crossref_primary_10_1111_cmi_12540
crossref_primary_10_1093_femspd_ftac004
crossref_primary_10_1038_mt_2011_61
crossref_primary_10_1002_iub_1483
crossref_primary_10_1007_s10989_015_9504_6
crossref_primary_10_1016_j_yexcr_2017_03_039
crossref_primary_10_1126_science_1233028
crossref_primary_10_1155_2012_182834
crossref_primary_10_1016_j_immuni_2013_07_017
crossref_primary_10_1371_journal_ppat_1007329
crossref_primary_10_1080_15548627_2015_1071759
crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00002
crossref_primary_10_1080_15548627_2016_1147672
crossref_primary_10_1038_s41598_021_82905_x
crossref_primary_10_3389_ftubr_2023_1275882
crossref_primary_10_1128_IAI_00358_12
crossref_primary_10_4049_jimmunol_1102108
crossref_primary_10_1016_j_immuni_2021_01_018
crossref_primary_10_5402_2012_738718
crossref_primary_10_1016_j_devcel_2010_04_009
crossref_primary_10_1016_j_cmet_2020_07_001
crossref_primary_10_1016_j_tube_2012_05_004
crossref_primary_10_1016_j_chom_2014_05_005
crossref_primary_10_1016_j_tube_2023_102422
crossref_primary_10_1080_15548627_2021_1938912
crossref_primary_10_1155_2012_219625
crossref_primary_10_1038_s41598_017_03477_3
crossref_primary_10_1093_infdis_jis226
crossref_primary_10_1038_nature12566
crossref_primary_10_1016_j_smim_2014_10_001
crossref_primary_10_1155_2011_732798
crossref_primary_10_3390_cells9010070
crossref_primary_10_1083_jcb_201708039
crossref_primary_10_1080_15548627_2021_2021495
crossref_primary_10_1016_j_bbagen_2017_09_010
crossref_primary_10_3390_pharmaceutics12111071
crossref_primary_10_1038_s41564_024_01608_x
crossref_primary_10_1007_s00281_016_0560_6
crossref_primary_10_3389_fimmu_2014_00103
crossref_primary_10_1016_j_molimm_2014_02_008
crossref_primary_10_1093_intimm_dxs101
crossref_primary_10_1080_15548627_2020_1825273
crossref_primary_10_1038_nri3532
crossref_primary_10_3389_fimmu_2017_01483
crossref_primary_10_3389_fimmu_2020_00460
crossref_primary_10_1146_annurev_biochem_052709_094552
crossref_primary_10_1371_journal_ppat_1005363
crossref_primary_10_1016_j_coi_2010_10_010
crossref_primary_10_1111_cmi_12791
crossref_primary_10_1016_j_semcdb_2016_08_018
crossref_primary_10_1111_jgh_16560
crossref_primary_10_1371_journal_pone_0027972
crossref_primary_10_1164_rccm_201106_0966CI
crossref_primary_10_1038_s41564_020_00795_7
crossref_primary_10_1016_j_micinf_2011_08_014
crossref_primary_10_1016_j_tcb_2012_03_006
crossref_primary_10_3390_ijms18071476
crossref_primary_10_4161_auto_29992
crossref_primary_10_1038_nature09782
crossref_primary_10_3389_fimmu_2017_01458
crossref_primary_10_1074_jbc_M112_412841
crossref_primary_10_1016_j_coi_2014_05_006
crossref_primary_10_1111_cmi_12063
crossref_primary_10_1186_1478_811X_11_16
crossref_primary_10_1111_j_1365_2443_2010_01433_x
crossref_primary_10_1016_j_omtn_2024_102402
crossref_primary_10_3390_v3071166
crossref_primary_10_4049_jimmunol_1001603
crossref_primary_10_1111_j_1462_5822_2010_01491_x
crossref_primary_10_1080_27694127_2023_2242715
crossref_primary_10_1016_j_it_2017_07_005
crossref_primary_10_1146_annurev_immunol_020711_074948
crossref_primary_10_1172_JCI73945
crossref_primary_10_1080_08820139_2020_1828453
crossref_primary_10_1165_rcmb_2012_0282TR
crossref_primary_10_1016_j_bbagen_2021_129989
crossref_primary_10_1002_JLB_3MA0720_682RR
crossref_primary_10_1016_j_cyto_2023_156317
crossref_primary_10_1080_15548627_2015_1109765
crossref_primary_10_1016_j_dci_2020_103693
crossref_primary_10_4161_auto_7_11_17661
crossref_primary_10_1159_000350918
crossref_primary_10_1042_BC20100101
crossref_primary_10_3389_fcimb_2021_750222
crossref_primary_10_1016_j_mam_2011_09_001
crossref_primary_10_1111_j_1744_7909_2012_01178_x
crossref_primary_10_1038_nri3210
crossref_primary_10_1016_j_coi_2011_10_006
crossref_primary_10_3390_ijms21051643
crossref_primary_10_1016_j_molcel_2011_07_039
crossref_primary_10_1111_tra_12752
crossref_primary_10_1146_annurev_pathol_011811_132458
crossref_primary_10_1111_jam_14585
crossref_primary_10_1016_j_redox_2014_12_010
crossref_primary_10_1038_msb_2010_80
crossref_primary_10_1164_rccm_201512_2468SO
crossref_primary_10_1128_microbiolspec_TBTB2_0028_2016
crossref_primary_10_1111_mpp_12991
crossref_primary_10_1155_2014_832704
crossref_primary_10_1007_s00281_010_0227_7
crossref_primary_10_1080_21505594_2018_1536598
crossref_primary_10_4049_jimmunol_1701117
crossref_primary_10_1038_s41467_018_05825_x
crossref_primary_10_1038_s41418_019_0297_6
crossref_primary_10_1016_j_smim_2013_10_018
crossref_primary_10_1038_s41598_020_65422_1
crossref_primary_10_1016_j_cytogfr_2013_01_002
crossref_primary_10_1038_s41598_023_28983_5
crossref_primary_10_1177_1535370213489446
crossref_primary_10_1242_jcs_093757
Cites_doi 10.1186/1471-2172-9-35
10.1016/j.molcel.2009.01.021
10.1016/S0196-9781(03)00114-1
10.1038/ncb1007-1102
10.1016/j.molcel.2009.01.020
10.4049/jimmunol.179.4.2060
10.1038/ncb1854
10.1046/j.0014-2956.2001.02675.x
10.1074/jbc.M607031200
10.1038/nature01912
10.1074/jbc.M802182200
10.1016/S0076-6879(08)03621-5
10.1038/emboj.2008.31
10.1074/jbc.M702824200
10.1096/fj.02-0699fje
10.1038/nature07208
10.1016/j.cell.2009.03.048
10.1016/j.chom.2008.10.003
10.1074/jbc.271.34.20235
10.1074/jbc.271.23.13549
10.1083/jcb.200507002
10.1002/jlb.66.3.423
10.4049/jimmunol.0801143
10.1091/mbc.e08-12-1248
10.1016/j.immuni.2007.05.022
10.1038/ncb1723
10.1073/pnas.0700036104
10.1126/science.1129577
10.1242/jcs.026005
10.1016/j.ceb.2008.03.010
10.1073/pnas.0811045106
10.1182/blood-2008-02-137398
10.1002/jcp.1041520304
10.1016/j.chom.2009.05.016
10.1016/j.immuni.2007.07.004
10.1016/j.peptides.2003.07.028
10.1111/j.1600-065X.2008.00725.x
10.1016/S0021-9258(17)46799-8
10.1073/pnas.0810611105
10.1111/j.1365-2443.2008.01238.x
10.1016/j.molcel.2008.06.001
10.1016/j.immuni.2007.07.022
10.1091/mbc.e08-12-1250
10.1016/j.cell.2004.11.038
10.1183/09031936.00103307
10.1111/j.1600-0854.2005.00368.x
10.1084/jem.142.1.1
10.1074/jbc.M303221200
10.1016/j.cell.2007.10.035
10.1038/nature06639
10.1146/annurev.immunol.021908.132537
10.1034/j.1399-3003.2000.16a20.x
10.1146/annurev.cellbio.20.010403.114015
10.1128/iai.64.3.926-932.1996
10.1038/ncb1846
10.1016/j.cub.2004.04.033
10.1091/mbc.e08-01-0080
10.1038/nri2161
ContentType Journal Article
Copyright 2010 Elsevier Inc.
Copyright Elsevier Limited Mar 26, 2010
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: Copyright Elsevier Limited Mar 26, 2010
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
DOI 10.1016/j.immuni.2010.02.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE

MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1097-4180
EndPage 341
ExternalDocumentID 3236894671
20206555
10_1016_j_immuni_2010_02_009
S1074761310000798
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI042999
– fundername: NIAID NIH HHS
  grantid: AI045148
– fundername: NIAID NIH HHS
  grantid: AI057160
– fundername: NIAID NIH HHS
  grantid: R01 AI042999
– fundername: NIAID NIH HHS
  grantid: R01 AI045148
– fundername: NIAID NIH HHS
  grantid: T32 AI007538
– fundername: NIAID NIH HHS
  grantid: U54 AI057160
– fundername: NIAID NIH HHS
  grantid: R37 AI042999
– fundername: NIAID NIH HHS
  grantid: R01 AI069345
– fundername: NIAID NIH HHS
  grantid: AI069345
GroupedDBID ---
--K
-DZ
.55
.GJ
0R~
1RT
1~5
29I
2WC
3V.
4.4
457
4G.
53G
5GY
5VS
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AALRI
AAQFI
AAQXK
AAUCE
AAVLU
AAXJY
AAXUO
ABMAC
ABMWF
ABOCM
ABVKL
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
ADMUD
AEFWE
AENEX
AEXQZ
AFKRA
AFRAH
AFTJW
AGGSO
AGHFR
AGKMS
AHHHB
AHMBA
AHPSJ
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BPHCQ
BVXVI
C45
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FGOYB
FIRID
G-2
HCIFZ
HVGLF
HZ~
IH2
IHE
IXB
J1W
JIG
LK8
LX5
M2O
M3Z
M41
M7P
N9A
NCXOZ
O-L
O9-
OHT
OK1
OVD
OZT
P2P
PQQKQ
PROAC
R2-
RCE
RIG
ROL
RPZ
SCP
SES
SSZ
TEORI
TR2
UHS
WQ6
X7M
Y6R
ZA5
ZGI
AAMRU
AAYWO
AAYXX
ABDGV
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7T5
7T7
7TK
7TM
7U9
8FD
C1K
EFKBS
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c467t-a93faabc5a3f3531db8ff03151bc442a0e643faeb973c3c3af039ea164dd1dcc3
IEDL.DBID IXB
ISSN 1074-7613
1097-4180
IngestDate Fri Jul 11 02:16:19 EDT 2025
Thu Jul 10 22:11:55 EDT 2025
Sat Aug 23 12:27:26 EDT 2025
Sat May 31 02:11:02 EDT 2025
Fri Jul 04 04:46:08 EDT 2025
Thu Apr 24 22:59:32 EDT 2025
Fri Feb 23 02:28:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords MOLIMMUNO
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-a93faabc5a3f3531db8ff03151bc442a0e643faeb973c3c3af039ea164dd1dcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1074761310000798
PMID 20206555
PQID 1504268517
PQPubID 2031079
PageCount 13
ParticipantIDs proquest_miscellaneous_746013486
proquest_miscellaneous_733838257
proquest_journals_1504268517
pubmed_primary_20206555
crossref_primary_10_1016_j_immuni_2010_02_009
crossref_citationtrail_10_1016_j_immuni_2010_02_009
elsevier_sciencedirect_doi_10_1016_j_immuni_2010_02_009
PublicationCentury 2000
PublicationDate 2010-03-26
PublicationDateYYYYMMDD 2010-03-26
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle Immunity (Cambridge, Mass.)
PublicationTitleAlternate Immunity
PublicationYear 2010
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Fass, Shvets, Degani, Hirschberg, Elazar (bib11) 2006; 281
Komatsu, Waguri, Koike, Sou, Ueno, Hara, Mizushima, Iwata, Ezaki, Murata (bib25) 2007; 131
Lamark, Perander, Outzen, Kristiansen, Øvervatn, Michaelsen, Bjørkøy, Johansen (bib30) 2003; 278
Perrin, Jiang, Birmingham, So, Brumell (bib42) 2004; 14
Mathew, Karp, Beaudoin, Vuong, Chen, Chen, Bray, Reddy, Bhanot, Gelinas (bib33) 2009; 137
Shvets, Fass, Scherz-Shouval, Elazar (bib47) 2008; 121
Baker, Williamson, Wettenhall (bib4) 1996; 271
Xu, Jagannath, Liu, Sharafkhaneh, Kolodziejska, Eissa (bib55) 2007; 27
Armstrong, Hart (bib3) 1975; 142
Nedjic, Aichinger, Emmerich, Mizushima, Klein (bib38) 2008; 455
Biswas, Qureshi, Lee, Croudace, Mura, Lammas (bib5) 2008; 9
Harris, De Haro, Master, Keane, Roberts, Delgado, Deretic (bib13) 2007; 27
Kim, Hailey, Mullen, Lippincott-Schwartz (bib22) 2008; 105
Delgado, Elmaoued, Davis, Kyei, Deretic (bib8) 2008; 27
Pua, Guo, Komatsu, He (bib44) 2009; 182
Matsunaga, Saitoh, Tabata, Omori, Satoh, Kurotori, Maejima, Shirahama-Noda, Ichimura, Isobe (bib34) 2009; 11
Deretic, Levine (bib10) 2009; 5
Kieffer, Goumon, Ruh, Chasserot-Golaz, Nullans, Gasnier, Aunis, Metz-Boutigue (bib21) 2003; 17
Hiemstra, van den Barselaar, Roest, Nibbering, van Furth (bib14) 1999; 66
Miyakawa, Ratnakar, Rao, Costello, Mathieu-Costello, Lehrer, Catanzaro (bib35) 1996; 64
Gutierrez, Master, Singh, Taylor, Colombo, Deretic (bib12) 2004; 119
Olvera, Wool (bib40) 1993; 268
Vadlamudi, Joung, Strominger, Shin (bib50) 1996; 271
Noda, Kumeta, Nakatogawa, Satoo, Adachi, Ishii, Fujioka, Ohsumi, Inagaki (bib39) 2008; 13
Houde, Bertholet, Gagnon, Brunet, Goyette, Laplante, Princiotta, Thibault, Sacks, Desjardins (bib16) 2003; 425
Köchl, Hu, Chan, Tooze (bib24) 2006; 7
Kirkin, Lamark, Sou, Bjørkøy, Nunn, Bruun, Shvets, McEwan, Clausen, Wild (bib23) 2009; 33
Singh, Davis, Taylor, Deretic (bib48) 2006; 313
Yoshimori, Noda (bib56) 2008; 20
Kraft, Deplazes, Sohrmann, Peter (bib27) 2008; 10
Aplin, Jasionowski, Tuttle, Lenk, Dunn (bib2) 1992; 152
Itakura, Kishi, Inoue, Mizushima (bib20) 2008; 19
Wang, Griffiths, Jörnvall, Agerberth, Johansson (bib52) 2002; 269
Huang, Canadien, Lam, Steinberg, Dinauer, Magalhaes, Glogauer, Grinstein, Brumell (bib18) 2009; 106
Alonso, Pethe, Russell, Purdy (bib1) 2007; 104
Münz (bib37) 2009; 27
Ponpuak, Delgado, Elmaoued, Deretic (bib43) 2009; 452
Chang, Neufeld (bib7) 2009; 20
Pankiv, Clausen, Lamark, Brech, Bruun, Outzen, Øvervatn, Bjørkøy, Johansen (bib41) 2007; 282
Schmid, Münz (bib45) 2007; 27
Tollin, Bergman, Svenberg, Jörnvall, Gudmundsson, Agerberth (bib49) 2003; 24
Liu, Stenger, Tang, Modlin (bib32) 2007; 179
Vergne, Chua, Singh, Deretic (bib51) 2004; 20
Wei, Pattingre, Sinha, Bassik, Levine (bib53) 2008; 30
Levine, Deretic (bib31) 2007; 7
Ichimura, Kumanomidou, Sou, Mizushima, Ezaki, Ueno, Kominami, Yamane, Tanaka, Komatsu (bib19) 2008; 283
Bjørkøy, Lamark, Brech, Outzen, Perander, Overvatn, Stenmark, Johansen (bib6) 2005; 171
Sharma, Verma, Khuller (bib46) 2000; 16
Xie, Klionsky (bib54) 2007; 9
Howell, Wilk, Yadav, Bevins (bib17) 2003; 24
Kundu, Lindsten, Yang, Wu, Zhao, Zhang, Selak, Ney, Thompson (bib29) 2008; 112
Mizushima, Levine, Cuervo, Klionsky (bib36) 2008; 451
Zhong, Wang, Li, Yan, Backer, Chait, Heintz, Yue (bib58) 2009; 11
Kraft, Adler, Ingram, Crews, Atkinson, Cairns, Krause, Chu (bib28) 2008; 31
Korolchuk, Mansilla, Menzies, Rubinsztein (bib26) 2009; 33
Delgado, Singh, De Haro, Master, Ponpuak, Dinkins, Ornatowski, Vergne, Deretic (bib9) 2009; 227
Hosokawa, Hara, Kaizuka, Kishi, Takamura, Miura, Iemura, Natsume, Takehana, Yamada (bib15) 2009; 20
Zhao, Fux, Goodwin, Dunay, Strong, Miller, Cadwell, Delgado, Ponpuak, Green (bib57) 2008; 4
Olvera (10.1016/j.immuni.2010.02.009_bib40) 1993; 268
Nedjic (10.1016/j.immuni.2010.02.009_bib38) 2008; 455
Noda (10.1016/j.immuni.2010.02.009_bib39) 2008; 13
Perrin (10.1016/j.immuni.2010.02.009_bib42) 2004; 14
Yoshimori (10.1016/j.immuni.2010.02.009_bib56) 2008; 20
Shvets (10.1016/j.immuni.2010.02.009_bib47) 2008; 121
Bjørkøy (10.1016/j.immuni.2010.02.009_bib6) 2005; 171
Hiemstra (10.1016/j.immuni.2010.02.009_bib14) 1999; 66
Aplin (10.1016/j.immuni.2010.02.009_bib2) 1992; 152
Schmid (10.1016/j.immuni.2010.02.009_bib45) 2007; 27
Köchl (10.1016/j.immuni.2010.02.009_bib24) 2006; 7
Kundu (10.1016/j.immuni.2010.02.009_bib29) 2008; 112
Kraft (10.1016/j.immuni.2010.02.009_bib28) 2008; 31
Matsunaga (10.1016/j.immuni.2010.02.009_bib34) 2009; 11
Singh (10.1016/j.immuni.2010.02.009_bib48) 2006; 313
Delgado (10.1016/j.immuni.2010.02.009_bib9) 2009; 227
Ichimura (10.1016/j.immuni.2010.02.009_bib19) 2008; 283
Kirkin (10.1016/j.immuni.2010.02.009_bib23) 2009; 33
Deretic (10.1016/j.immuni.2010.02.009_bib10) 2009; 5
Huang (10.1016/j.immuni.2010.02.009_bib18) 2009; 106
Komatsu (10.1016/j.immuni.2010.02.009_bib25) 2007; 131
Wei (10.1016/j.immuni.2010.02.009_bib53) 2008; 30
Mizushima (10.1016/j.immuni.2010.02.009_bib36) 2008; 451
Hosokawa (10.1016/j.immuni.2010.02.009_bib15) 2009; 20
Zhong (10.1016/j.immuni.2010.02.009_bib58) 2009; 11
Liu (10.1016/j.immuni.2010.02.009_bib32) 2007; 179
Chang (10.1016/j.immuni.2010.02.009_bib7) 2009; 20
Houde (10.1016/j.immuni.2010.02.009_bib16) 2003; 425
Kraft (10.1016/j.immuni.2010.02.009_bib27) 2008; 10
Vadlamudi (10.1016/j.immuni.2010.02.009_bib50) 1996; 271
Xie (10.1016/j.immuni.2010.02.009_bib54) 2007; 9
Biswas (10.1016/j.immuni.2010.02.009_bib5) 2008; 9
Alonso (10.1016/j.immuni.2010.02.009_bib1) 2007; 104
Kim (10.1016/j.immuni.2010.02.009_bib22) 2008; 105
Baker (10.1016/j.immuni.2010.02.009_bib4) 1996; 271
Mathew (10.1016/j.immuni.2010.02.009_bib33) 2009; 137
Howell (10.1016/j.immuni.2010.02.009_bib17) 2003; 24
Harris (10.1016/j.immuni.2010.02.009_bib13) 2007; 27
Sharma (10.1016/j.immuni.2010.02.009_bib46) 2000; 16
Tollin (10.1016/j.immuni.2010.02.009_bib49) 2003; 24
Kieffer (10.1016/j.immuni.2010.02.009_bib21) 2003; 17
Münz (10.1016/j.immuni.2010.02.009_bib37) 2009; 27
Ponpuak (10.1016/j.immuni.2010.02.009_bib43) 2009; 452
Armstrong (10.1016/j.immuni.2010.02.009_bib3) 1975; 142
Levine (10.1016/j.immuni.2010.02.009_bib31) 2007; 7
Gutierrez (10.1016/j.immuni.2010.02.009_bib12) 2004; 119
Xu (10.1016/j.immuni.2010.02.009_bib55) 2007; 27
Fass (10.1016/j.immuni.2010.02.009_bib11) 2006; 281
Wang (10.1016/j.immuni.2010.02.009_bib52) 2002; 269
Pua (10.1016/j.immuni.2010.02.009_bib44) 2009; 182
Miyakawa (10.1016/j.immuni.2010.02.009_bib35) 1996; 64
Delgado (10.1016/j.immuni.2010.02.009_bib8) 2008; 27
Lamark (10.1016/j.immuni.2010.02.009_bib30) 2003; 278
Pankiv (10.1016/j.immuni.2010.02.009_bib41) 2007; 282
Itakura (10.1016/j.immuni.2010.02.009_bib20) 2008; 19
Korolchuk (10.1016/j.immuni.2010.02.009_bib26) 2009; 33
Vergne (10.1016/j.immuni.2010.02.009_bib51) 2004; 20
Zhao (10.1016/j.immuni.2010.02.009_bib57) 2008; 4
20346769 - Immunity. 2010 Mar 26;32(3):298-9. doi: 10.1016/j.immuni.2010.03.002.
References_xml – volume: 11
  start-page: 385
  year: 2009
  end-page: 396
  ident: bib34
  article-title: Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
  publication-title: Nat. Cell Biol.
– volume: 20
  start-page: 1981
  year: 2009
  end-page: 1991
  ident: bib15
  article-title: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
  publication-title: Mol. Biol. Cell
– volume: 281
  start-page: 36303
  year: 2006
  end-page: 36316
  ident: bib11
  article-title: Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes
  publication-title: J. Biol. Chem.
– volume: 313
  start-page: 1438
  year: 2006
  end-page: 1441
  ident: bib48
  article-title: Human IRGM induces autophagy to eliminate intracellular mycobacteria
  publication-title: Science
– volume: 131
  start-page: 1149
  year: 2007
  end-page: 1163
  ident: bib25
  article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
  publication-title: Cell
– volume: 19
  start-page: 5360
  year: 2008
  end-page: 5372
  ident: bib20
  article-title: Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
  publication-title: Mol. Biol. Cell
– volume: 13
  start-page: 1211
  year: 2008
  end-page: 1218
  ident: bib39
  article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy
  publication-title: Genes Cells
– volume: 27
  start-page: 505
  year: 2007
  end-page: 517
  ident: bib13
  article-title: T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis
  publication-title: Immunity
– volume: 20
  start-page: 401
  year: 2008
  end-page: 407
  ident: bib56
  article-title: Toward unraveling membrane biogenesis in mammalian autophagy
  publication-title: Curr. Opin. Cell Biol.
– volume: 5
  start-page: 527
  year: 2009
  end-page: 549
  ident: bib10
  article-title: Autophagy, immunity, and microbial adaptations
  publication-title: Cell Host Microbe
– volume: 142
  start-page: 1
  year: 1975
  end-page: 16
  ident: bib3
  article-title: Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival
  publication-title: J. Exp. Med.
– volume: 4
  start-page: 458
  year: 2008
  end-page: 469
  ident: bib57
  article-title: Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
  publication-title: Cell Host Microbe
– volume: 451
  start-page: 1069
  year: 2008
  end-page: 1075
  ident: bib36
  article-title: Autophagy fights disease through cellular self-digestion
  publication-title: Nature
– volume: 452
  start-page: 345
  year: 2009
  end-page: 361
  ident: bib43
  article-title: Monitoring autophagy during Mycobacterium tuberculosis infection
  publication-title: Methods Enzymol.
– volume: 64
  start-page: 926
  year: 1996
  end-page: 932
  ident: bib35
  article-title: In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis
  publication-title: Infect. Immun.
– volume: 121
  start-page: 2685
  year: 2008
  end-page: 2695
  ident: bib47
  article-title: The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes
  publication-title: J. Cell Sci.
– volume: 14
  start-page: 806
  year: 2004
  end-page: 811
  ident: bib42
  article-title: Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system
  publication-title: Curr. Biol.
– volume: 152
  start-page: 458
  year: 1992
  end-page: 466
  ident: bib2
  article-title: Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles
  publication-title: J. Cell. Physiol.
– volume: 271
  start-page: 13549
  year: 1996
  end-page: 13555
  ident: bib4
  article-title: The yeast homolog of mammalian ribosomal protein S30 is expressed from a duplicated gene without a ubiquitin-like protein fusion sequence. Evolutionary implications
  publication-title: J. Biol. Chem.
– volume: 33
  start-page: 517
  year: 2009
  end-page: 527
  ident: bib26
  article-title: Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates
  publication-title: Mol. Cell
– volume: 27
  start-page: 423
  year: 2009
  end-page: 449
  ident: bib37
  article-title: Enhancing immunity through autophagy
  publication-title: Annu. Rev. Immunol.
– volume: 7
  start-page: 129
  year: 2006
  end-page: 145
  ident: bib24
  article-title: Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes
  publication-title: Traffic
– volume: 104
  start-page: 6031
  year: 2007
  end-page: 6036
  ident: bib1
  article-title: Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 11
  year: 2007
  end-page: 21
  ident: bib45
  article-title: Innate and adaptive immunity through autophagy
  publication-title: Immunity
– volume: 283
  start-page: 22847
  year: 2008
  end-page: 22857
  ident: bib19
  article-title: Structural basis for sorting mechanism of p62 in selective autophagy
  publication-title: J. Biol. Chem.
– volume: 105
  start-page: 20567
  year: 2008
  end-page: 20574
  ident: bib22
  article-title: Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 227
  start-page: 189
  year: 2009
  end-page: 202
  ident: bib9
  article-title: Autophagy and pattern recognition receptors in innate immunity
  publication-title: Immunol. Rev.
– volume: 119
  start-page: 753
  year: 2004
  end-page: 766
  ident: bib12
  article-title: Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
  publication-title: Cell
– volume: 66
  start-page: 423
  year: 1999
  end-page: 428
  ident: bib14
  article-title: Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages
  publication-title: J. Leukoc. Biol.
– volume: 106
  start-page: 6226
  year: 2009
  end-page: 6231
  ident: bib18
  article-title: Activation of antibacterial autophagy by NADPH oxidases
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 35
  year: 2008
  ident: bib5
  article-title: ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages
  publication-title: BMC Immunol.
– volume: 24
  start-page: 1763
  year: 2003
  end-page: 1770
  ident: bib17
  article-title: Antimicrobial polypeptides of the human colonic epithelium
  publication-title: Peptides
– volume: 271
  start-page: 20235
  year: 1996
  end-page: 20237
  ident: bib50
  article-title: p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 767
  year: 2007
  end-page: 777
  ident: bib31
  article-title: Unveiling the roles of autophagy in innate and adaptive immunity
  publication-title: Nat. Rev. Immunol.
– volume: 27
  start-page: 135
  year: 2007
  end-page: 144
  ident: bib55
  article-title: Toll-like receptor 4 is a sensor for autophagy associated with innate immunity
  publication-title: Immunity
– volume: 282
  start-page: 24131
  year: 2007
  end-page: 24145
  ident: bib41
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 1102
  year: 2007
  end-page: 1109
  ident: bib54
  article-title: Autophagosome formation: core machinery and adaptations
  publication-title: Nat. Cell Biol.
– volume: 33
  start-page: 505
  year: 2009
  end-page: 516
  ident: bib23
  article-title: A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
  publication-title: Mol. Cell
– volume: 171
  start-page: 603
  year: 2005
  end-page: 614
  ident: bib6
  article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
  publication-title: J. Cell Biol.
– volume: 137
  start-page: 1062
  year: 2009
  end-page: 1075
  ident: bib33
  article-title: Autophagy suppresses tumorigenesis through elimination of p62
  publication-title: Cell
– volume: 30
  start-page: 678
  year: 2008
  end-page: 688
  ident: bib53
  article-title: JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
  publication-title: Mol. Cell
– volume: 10
  start-page: 602
  year: 2008
  end-page: 610
  ident: bib27
  article-title: Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
  publication-title: Nat. Cell Biol.
– volume: 24
  start-page: 523
  year: 2003
  end-page: 530
  ident: bib49
  article-title: Antimicrobial peptides in the first line defence of human colon mucosa
  publication-title: Peptides
– volume: 278
  start-page: 34568
  year: 2003
  end-page: 34581
  ident: bib30
  article-title: Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 1110
  year: 2008
  end-page: 1121
  ident: bib8
  article-title: Toll-like receptors control autophagy
  publication-title: EMBO J.
– volume: 179
  start-page: 2060
  year: 2007
  end-page: 2063
  ident: bib32
  article-title: Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin
  publication-title: J. Immunol.
– volume: 20
  start-page: 2004
  year: 2009
  end-page: 2014
  ident: bib7
  article-title: An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation
  publication-title: Mol. Biol. Cell
– volume: 17
  start-page: 776
  year: 2003
  end-page: 778
  ident: bib21
  article-title: The N- and C-terminal fragments of ubiquitin are important for the antimicrobial activities
  publication-title: FASEB J.
– volume: 269
  start-page: 512
  year: 2002
  end-page: 518
  ident: bib52
  article-title: Antibacterial peptides in stimulated human granulocytes: characterization of ubiquitinated histone H1A
  publication-title: Eur. J. Biochem.
– volume: 455
  start-page: 396
  year: 2008
  end-page: 400
  ident: bib38
  article-title: Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance
  publication-title: Nature
– volume: 182
  start-page: 4046
  year: 2009
  end-page: 4055
  ident: bib44
  article-title: Autophagy is essential for mitochondrial clearance in mature T lymphocytes
  publication-title: J. Immunol.
– volume: 11
  start-page: 468
  year: 2009
  end-page: 476
  ident: bib58
  article-title: Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
  publication-title: Nat. Cell Biol.
– volume: 112
  start-page: 1493
  year: 2008
  end-page: 1502
  ident: bib29
  article-title: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
  publication-title: Blood
– volume: 16
  start-page: 112
  year: 2000
  end-page: 117
  ident: bib46
  article-title: Antibacterial activity of human neutrophil peptide-1 against Mycobacterium tuberculosis H37Rv: in vitro and ex vivo study
  publication-title: Eur. Respir. J.
– volume: 20
  start-page: 367
  year: 2004
  end-page: 394
  ident: bib51
  article-title: Cell biology of mycobacterium tuberculosis phagosome
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 31
  start-page: 43
  year: 2008
  end-page: 46
  ident: bib28
  article-title: Mycoplasma pneumoniae induces airway epithelial cell expression of MUC5AC in asthma
  publication-title: Eur. Respir. J.
– volume: 425
  start-page: 402
  year: 2003
  end-page: 406
  ident: bib16
  article-title: Phagosomes are competent organelles for antigen cross-presentation
  publication-title: Nature
– volume: 268
  start-page: 17967
  year: 1993
  end-page: 17974
  ident: bib40
  article-title: The carboxyl extension of a ubiquitin-like protein is rat ribosomal protein S30
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 35
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib5
  article-title: ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages
  publication-title: BMC Immunol.
  doi: 10.1186/1471-2172-9-35
– volume: 33
  start-page: 517
  year: 2009
  ident: 10.1016/j.immuni.2010.02.009_bib26
  article-title: Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.01.021
– volume: 24
  start-page: 523
  year: 2003
  ident: 10.1016/j.immuni.2010.02.009_bib49
  article-title: Antimicrobial peptides in the first line defence of human colon mucosa
  publication-title: Peptides
  doi: 10.1016/S0196-9781(03)00114-1
– volume: 9
  start-page: 1102
  year: 2007
  ident: 10.1016/j.immuni.2010.02.009_bib54
  article-title: Autophagosome formation: core machinery and adaptations
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1007-1102
– volume: 33
  start-page: 505
  year: 2009
  ident: 10.1016/j.immuni.2010.02.009_bib23
  article-title: A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.01.020
– volume: 179
  start-page: 2060
  year: 2007
  ident: 10.1016/j.immuni.2010.02.009_bib32
  article-title: Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.179.4.2060
– volume: 11
  start-page: 468
  year: 2009
  ident: 10.1016/j.immuni.2010.02.009_bib58
  article-title: Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1854
– volume: 269
  start-page: 512
  year: 2002
  ident: 10.1016/j.immuni.2010.02.009_bib52
  article-title: Antibacterial peptides in stimulated human granulocytes: characterization of ubiquitinated histone H1A
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.0014-2956.2001.02675.x
– volume: 281
  start-page: 36303
  year: 2006
  ident: 10.1016/j.immuni.2010.02.009_bib11
  article-title: Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M607031200
– volume: 425
  start-page: 402
  year: 2003
  ident: 10.1016/j.immuni.2010.02.009_bib16
  article-title: Phagosomes are competent organelles for antigen cross-presentation
  publication-title: Nature
  doi: 10.1038/nature01912
– volume: 283
  start-page: 22847
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib19
  article-title: Structural basis for sorting mechanism of p62 in selective autophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802182200
– volume: 452
  start-page: 345
  year: 2009
  ident: 10.1016/j.immuni.2010.02.009_bib43
  article-title: Monitoring autophagy during Mycobacterium tuberculosis infection
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(08)03621-5
– volume: 27
  start-page: 1110
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib8
  article-title: Toll-like receptors control autophagy
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.31
– volume: 282
  start-page: 24131
  year: 2007
  ident: 10.1016/j.immuni.2010.02.009_bib41
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702824200
– volume: 17
  start-page: 776
  year: 2003
  ident: 10.1016/j.immuni.2010.02.009_bib21
  article-title: The N- and C-terminal fragments of ubiquitin are important for the antimicrobial activities
  publication-title: FASEB J.
  doi: 10.1096/fj.02-0699fje
– volume: 455
  start-page: 396
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib38
  article-title: Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance
  publication-title: Nature
  doi: 10.1038/nature07208
– volume: 137
  start-page: 1062
  year: 2009
  ident: 10.1016/j.immuni.2010.02.009_bib33
  article-title: Autophagy suppresses tumorigenesis through elimination of p62
  publication-title: Cell
  doi: 10.1016/j.cell.2009.03.048
– volume: 4
  start-page: 458
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib57
  article-title: Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.10.003
– volume: 271
  start-page: 20235
  year: 1996
  ident: 10.1016/j.immuni.2010.02.009_bib50
  article-title: p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.34.20235
– volume: 271
  start-page: 13549
  year: 1996
  ident: 10.1016/j.immuni.2010.02.009_bib4
  article-title: The yeast homolog of mammalian ribosomal protein S30 is expressed from a duplicated gene without a ubiquitin-like protein fusion sequence. Evolutionary implications
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.23.13549
– volume: 171
  start-page: 603
  year: 2005
  ident: 10.1016/j.immuni.2010.02.009_bib6
  article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200507002
– volume: 66
  start-page: 423
  year: 1999
  ident: 10.1016/j.immuni.2010.02.009_bib14
  article-title: Ubiquicidin, a novel murine microbicidal protein present in the cytosolic fraction of macrophages
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/jlb.66.3.423
– volume: 182
  start-page: 4046
  year: 2009
  ident: 10.1016/j.immuni.2010.02.009_bib44
  article-title: Autophagy is essential for mitochondrial clearance in mature T lymphocytes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0801143
– volume: 20
  start-page: 1981
  year: 2009
  ident: 10.1016/j.immuni.2010.02.009_bib15
  article-title: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e08-12-1248
– volume: 27
  start-page: 135
  year: 2007
  ident: 10.1016/j.immuni.2010.02.009_bib55
  article-title: Toll-like receptor 4 is a sensor for autophagy associated with innate immunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.05.022
– volume: 10
  start-page: 602
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib27
  article-title: Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1723
– volume: 104
  start-page: 6031
  year: 2007
  ident: 10.1016/j.immuni.2010.02.009_bib1
  article-title: Lysosomal killing of Mycobacterium mediated by ubiquitin-derived peptides is enhanced by autophagy
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0700036104
– volume: 313
  start-page: 1438
  year: 2006
  ident: 10.1016/j.immuni.2010.02.009_bib48
  article-title: Human IRGM induces autophagy to eliminate intracellular mycobacteria
  publication-title: Science
  doi: 10.1126/science.1129577
– volume: 121
  start-page: 2685
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib47
  article-title: The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.026005
– volume: 20
  start-page: 401
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib56
  article-title: Toward unraveling membrane biogenesis in mammalian autophagy
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2008.03.010
– volume: 106
  start-page: 6226
  year: 2009
  ident: 10.1016/j.immuni.2010.02.009_bib18
  article-title: Activation of antibacterial autophagy by NADPH oxidases
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0811045106
– volume: 112
  start-page: 1493
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib29
  article-title: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
  publication-title: Blood
  doi: 10.1182/blood-2008-02-137398
– volume: 152
  start-page: 458
  year: 1992
  ident: 10.1016/j.immuni.2010.02.009_bib2
  article-title: Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.1041520304
– volume: 5
  start-page: 527
  year: 2009
  ident: 10.1016/j.immuni.2010.02.009_bib10
  article-title: Autophagy, immunity, and microbial adaptations
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2009.05.016
– volume: 27
  start-page: 11
  year: 2007
  ident: 10.1016/j.immuni.2010.02.009_bib45
  article-title: Innate and adaptive immunity through autophagy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.07.004
– volume: 24
  start-page: 1763
  year: 2003
  ident: 10.1016/j.immuni.2010.02.009_bib17
  article-title: Antimicrobial polypeptides of the human colonic epithelium
  publication-title: Peptides
  doi: 10.1016/j.peptides.2003.07.028
– volume: 227
  start-page: 189
  year: 2009
  ident: 10.1016/j.immuni.2010.02.009_bib9
  article-title: Autophagy and pattern recognition receptors in innate immunity
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2008.00725.x
– volume: 268
  start-page: 17967
  year: 1993
  ident: 10.1016/j.immuni.2010.02.009_bib40
  article-title: The carboxyl extension of a ubiquitin-like protein is rat ribosomal protein S30
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)46799-8
– volume: 105
  start-page: 20567
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib22
  article-title: Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0810611105
– volume: 13
  start-page: 1211
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib39
  article-title: Structural basis of target recognition by Atg8/LC3 during selective autophagy
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2008.01238.x
– volume: 30
  start-page: 678
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib53
  article-title: JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.06.001
– volume: 27
  start-page: 505
  year: 2007
  ident: 10.1016/j.immuni.2010.02.009_bib13
  article-title: T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.07.022
– volume: 20
  start-page: 2004
  year: 2009
  ident: 10.1016/j.immuni.2010.02.009_bib7
  article-title: An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e08-12-1250
– volume: 119
  start-page: 753
  year: 2004
  ident: 10.1016/j.immuni.2010.02.009_bib12
  article-title: Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
  publication-title: Cell
  doi: 10.1016/j.cell.2004.11.038
– volume: 31
  start-page: 43
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib28
  article-title: Mycoplasma pneumoniae induces airway epithelial cell expression of MUC5AC in asthma
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.00103307
– volume: 7
  start-page: 129
  year: 2006
  ident: 10.1016/j.immuni.2010.02.009_bib24
  article-title: Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2005.00368.x
– volume: 142
  start-page: 1
  year: 1975
  ident: 10.1016/j.immuni.2010.02.009_bib3
  article-title: Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.142.1.1
– volume: 278
  start-page: 34568
  year: 2003
  ident: 10.1016/j.immuni.2010.02.009_bib30
  article-title: Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M303221200
– volume: 131
  start-page: 1149
  year: 2007
  ident: 10.1016/j.immuni.2010.02.009_bib25
  article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.035
– volume: 451
  start-page: 1069
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib36
  article-title: Autophagy fights disease through cellular self-digestion
  publication-title: Nature
  doi: 10.1038/nature06639
– volume: 27
  start-page: 423
  year: 2009
  ident: 10.1016/j.immuni.2010.02.009_bib37
  article-title: Enhancing immunity through autophagy
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.021908.132537
– volume: 16
  start-page: 112
  year: 2000
  ident: 10.1016/j.immuni.2010.02.009_bib46
  article-title: Antibacterial activity of human neutrophil peptide-1 against Mycobacterium tuberculosis H37Rv: in vitro and ex vivo study
  publication-title: Eur. Respir. J.
  doi: 10.1034/j.1399-3003.2000.16a20.x
– volume: 20
  start-page: 367
  year: 2004
  ident: 10.1016/j.immuni.2010.02.009_bib51
  article-title: Cell biology of mycobacterium tuberculosis phagosome
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.20.010403.114015
– volume: 64
  start-page: 926
  year: 1996
  ident: 10.1016/j.immuni.2010.02.009_bib35
  article-title: In vitro activity of the antimicrobial peptides human and rabbit defensins and porcine leukocyte protegrin against Mycobacterium tuberculosis
  publication-title: Infect. Immun.
  doi: 10.1128/iai.64.3.926-932.1996
– volume: 11
  start-page: 385
  year: 2009
  ident: 10.1016/j.immuni.2010.02.009_bib34
  article-title: Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1846
– volume: 14
  start-page: 806
  year: 2004
  ident: 10.1016/j.immuni.2010.02.009_bib42
  article-title: Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.04.033
– volume: 19
  start-page: 5360
  year: 2008
  ident: 10.1016/j.immuni.2010.02.009_bib20
  article-title: Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e08-01-0080
– volume: 7
  start-page: 767
  year: 2007
  ident: 10.1016/j.immuni.2010.02.009_bib31
  article-title: Unveiling the roles of autophagy in innate and adaptive immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2161
– reference: 20346769 - Immunity. 2010 Mar 26;32(3):298-9. doi: 10.1016/j.immuni.2010.03.002.
SSID ssj0014590
Score 2.4615552
Snippet Autophagy allows cells to self-digest portions of their own cytoplasm for a multitude of physiological purposes, including innate and adaptive immunity...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 329
SubjectTerms Acidification
Adaptor Proteins, Signal Transducing - immunology
Animals
Antimicrobial agents
Autophagy
Biological Transport
Cells, Cultured
Cytosol - immunology
Cytosol - metabolism
Heat-Shock Proteins - immunology
Mice
Mice, Inbred C57BL
MOLIMMUNO
Mycobacterium
Mycobacterium tuberculosis - immunology
Phagosomes - immunology
Phagosomes - metabolism
Protein Binding
Proteins
Sequestosome-1 Protein
Ubiquitin - metabolism
Title Delivery of Cytosolic Components by Autophagic Adaptor Protein p62 Endows Autophagosomes with Unique Antimicrobial Properties
URI https://dx.doi.org/10.1016/j.immuni.2010.02.009
https://www.ncbi.nlm.nih.gov/pubmed/20206555
https://www.proquest.com/docview/1504268517
https://www.proquest.com/docview/733838257
https://www.proquest.com/docview/746013486
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhoaWX0qaPbJsGHXoV69XDj6O7SQgNKaHt0r0JyZLBJbGX2EvZQ_97Z2zZkEMSKL7ZspE10ugb6ZtPhHyOfRrHqTSML5xjclFyZoTjzEkLk9_CFZnFHd2rb_HFSn5dq_UeWY65MEirDL5_8Om9tw535qE155uqmv9AKiF8blihTjJM-BUy7ZP41l-mnQSpsmjiHULpMX2u53hVfQ5GIHihcmf20PT0EPzsp6HzV-RlwI80H6r4muz5-pA8G06U3B2S51dhr_wN-Xvqb5B0saNNSZe7rmlRApiiA2hqpE9Qu6P5FoUFDLg_mjuzgQCcXqNyQ1XTTczpWe2aP-1UCj5x61uKa7d01Su_0rzuqtuqV3OCal3j0v4darS-Javzs5_LCxYOW2AF-MqOmUyUxthCGVEKGJjOpmWJR0AsbCElN5EH7FIaDyYUBVwGHmbeQLTlHJi0EO_Ifg3VPyJUqsQkrgDYnpTSAQSKEmcT65ziKnWRmhExtrEughI5Hohxo0fK2W89WEajZXTENVhmRtj01mZQ4niifDKaT9_rURomiyfePB6trcOIbjUAZwAzgE-TGaHTYxiLuMFiat9sW51gvA8h92NFJETA0E3jGXk_9KPpZzgg91gp9eG_K_6RvBjIDYLx-Jjsd3db_wkwU2dPyEF--f3X5Uk_OP4B_eIYWw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIj4uCMrXQgEfuEabdew4OS5Lqy10q0p0pb1ZdpxIQW2yarJCe-C_M5M4kTiUSii3xLacTDx-Yz-_Afgc50kcJ8IEfOZcIGYFD0zkeOCExclv5rLU0o7u6iJersW3jdwcwGI4C0O0Su_7e5_eeWt_Z-q_5nRbltMfRCXE5voVapUmD-AhogFF-RvONl_GrQQh03AkHmLx4fxcR_Iqu0MYnuFF0p3pXfPTXfizm4dOn8MzDyDZvO_jCzjIqyN41KeU3B_B45XfLH8Jv7_m18S62LO6YIt9WzekAczIA9QV8SeY3bP5jpQFDPo_NndmixE4uyTphrJi25izk8rVv5qxFDZxkzeMFm_ZupN-ZfOqLW_KTs4Ju3VJa_u3JNL6CtanJ1eLZeCzLQQZOss2MGlUGGMzaaIiwpHpbFIUlANiZjMhuAlzBC-FydGGUYaXwYdpbjDccg5tmkWv4bDC7r8FJqQyymWI21UhHGKgUDmrrHOSy8SFcgLR8I115qXIKSPGtR44Zz91bxlNltEh12iZCQRjrW0vxXFPeTWYT__1S2mcLe6peTxYW_sh3WhEzohmEKCqCbDxMQ5G2mExVV7vGq0o4MeY-19FBIbAkUjiCbzp_6PxZThC91hK-e6_O_4JniyvVuf6_Ozi-3t42jMdooDHx3DY3u7yDwigWvuxGyB_AD2rGdc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Delivery+of+Cytosolic+Components+by+Autophagic+Adaptor+Protein+p62+Endows+Autophagosomes+with+Unique+Antimicrobial+Properties&rft.jtitle=Immunity+%28Cambridge%2C+Mass.%29&rft.au=Ponpuak%2C+Marisa&rft.au=Davis%2C+Alexander+S.&rft.au=Roberts%2C+Esteban+A.&rft.au=Delgado%2C+Monica+A.&rft.date=2010-03-26&rft.issn=1074-7613&rft.volume=32&rft.issue=3&rft.spage=329&rft.epage=341&rft_id=info:doi/10.1016%2Fj.immuni.2010.02.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_immuni_2010_02_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-7613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-7613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-7613&client=summon