Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure
•Intermittent microwave & convection drying was first applied in ginger drying.•A systematic exploration of energy consumption and quality retention was built.•Cluster analysis & PCA were used to evaluate the correlation of different dryings.•IM&CD is very promising in energy saving and...
Saved in:
Published in | Food chemistry Vol. 197; pp. 1292 - 1300 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Intermittent microwave & convection drying was first applied in ginger drying.•A systematic exploration of energy consumption and quality retention was built.•Cluster analysis & PCA were used to evaluate the correlation of different dryings.•IM&CD is very promising in energy saving and quality retention for food drying.
Nowadays, food industry is facing challenges in preserving better quality of fruit and vegetable products after processing. Recently, many attentions have been drawn to ginger rhizome processing due to its numerous health promoting properties. In our study, ginger rhizome slices were subjected to air-drying (AD), freeze drying (FD), infrared drying (IR), microwave drying (MD) and intermittent microwave & convective drying (IM&CD). Quality attributes of the dried samples were compared in terms of volatile compounds, 6, 8, 10-gingerols, 6-shogaol, antioxidant activities and microstructure. Results showed that AD and IR were good drying methods to preserve volatiles. FD, IR and IM&CD led to higher retention of gingerols, TPC, TFC and better antioxidant activities. However, FD and IR had relative high energy consumption and drying time. Therefore, considering about the quality retention and energy consumption, IM&CD would be very promising for thermo sensitive material. |
---|---|
AbstractList | Nowadays, food industry is facing challenges in preserving better quality of fruit and vegetable products after processing. Recently, many attentions have been drawn to ginger rhizome processing due to its numerous health promoting properties. In our study, ginger rhizome slices were subjected to air-drying (AD), freeze drying (FD), infrared drying (IR), microwave drying (MD) and intermittent microwave & convective drying (IM&CD). Quality attributes of the dried samples were compared in terms of volatile compounds, 6, 8, 10-gingerols, 6-shogaol, antioxidant activities and microstructure. Results showed that AD and IR were good drying methods to preserve volatiles. FD, IR and IM&CD led to higher retention of gingerols, TPC, TFC and better antioxidant activities. However, FD and IR had relative high energy consumption and drying time. Therefore, considering about the quality retention and energy consumption, IM&CD would be very promising for thermo sensitive material. •Intermittent microwave & convection drying was first applied in ginger drying.•A systematic exploration of energy consumption and quality retention was built.•Cluster analysis & PCA were used to evaluate the correlation of different dryings.•IM&CD is very promising in energy saving and quality retention for food drying. Nowadays, food industry is facing challenges in preserving better quality of fruit and vegetable products after processing. Recently, many attentions have been drawn to ginger rhizome processing due to its numerous health promoting properties. In our study, ginger rhizome slices were subjected to air-drying (AD), freeze drying (FD), infrared drying (IR), microwave drying (MD) and intermittent microwave & convective drying (IM&CD). Quality attributes of the dried samples were compared in terms of volatile compounds, 6, 8, 10-gingerols, 6-shogaol, antioxidant activities and microstructure. Results showed that AD and IR were good drying methods to preserve volatiles. FD, IR and IM&CD led to higher retention of gingerols, TPC, TFC and better antioxidant activities. However, FD and IR had relative high energy consumption and drying time. Therefore, considering about the quality retention and energy consumption, IM&CD would be very promising for thermo sensitive material. |
Author | Zhao, Dandan Xiao, Gengsheng Wang, Zhengfu An, Kejing Wu, Jijun Xu, Yujuan |
Author_xml | – sequence: 1 givenname: Kejing surname: An fullname: An, Kejing organization: Sericulture and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China – sequence: 2 givenname: Dandan surname: Zhao fullname: Zhao, Dandan organization: College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China – sequence: 3 givenname: Zhengfu surname: Wang fullname: Wang, Zhengfu organization: College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China – sequence: 4 givenname: Jijun surname: Wu fullname: Wu, Jijun organization: Sericulture and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China – sequence: 5 givenname: Yujuan surname: Xu fullname: Xu, Yujuan organization: Sericulture and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China – sequence: 6 givenname: Gengsheng surname: Xiao fullname: Xiao, Gengsheng email: 418259325@qq.com organization: Sericulture and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26675871$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFuEzEQhi1URNPCK1Q-FqkJ9nrXaxAHUEQLUiUkBBcultceNxPt2sF2KvpIvCVepeXAJaexZ75_NDP_GTkJMQAhF5ytOOPyzXblY3R2A9OqYbxbcb5iQjwjC656sexZ35yQBRNMLRVv5Sk5y3nLGKusekFOGyn7TvV8Qf6s47QzCXMMNHrq0HtIEAp16QHDHZ2gbKLLtJbXGwyQgd7VPCR6-bNGHOoreo8WgxmBfovZRnj9rsKmUplioPdxNAVHyFd0nhetGekuRV9TV9SEgvE3uhrn5A5SwZk0wdGKpphL2tuyT_CSPPdmzPDqMZ6TH9efvq8_L2-_3nxZf7xd2lb2ZWmEa3oDqvV1XXCsaU0jrTAtN6odXCucHGQPvm86zzhXb9nQCa_kMLSsfpQ4J5eHvnWcX3vIRU-YLYyjCRD3WXMlpKysbI6jfcda0XacV_TiEd0PEzi9SziZ9KCfnKiAPADzzjmB_4dwpmfL9VY_Wa5nyzXnulpehe__E1os9eAxlGRwPC7_cJBDvek9QtLZIgQLDhPYol3EYy3-AnMKzoY |
CitedBy_id | crossref_primary_10_2139_ssrn_3991761 crossref_primary_10_1007_s11694_018_9850_0 crossref_primary_10_1155_2017_7653791 crossref_primary_10_3390_genes13101740 crossref_primary_10_1007_s11947_024_03399_9 crossref_primary_10_1039_C8FO02421A crossref_primary_10_1080_14787210_2018_1535898 crossref_primary_10_1080_07373937_2022_2068028 crossref_primary_10_1080_10408398_2021_1971944 crossref_primary_10_1016_j_focha_2023_100558 crossref_primary_10_1016_j_apsb_2016_11_006 crossref_primary_10_1080_07373937_2016_1231690 crossref_primary_10_3390_ijms25073625 crossref_primary_10_7235_HORT_20230045 crossref_primary_10_1111_jfpe_14234 crossref_primary_10_3390_agronomy13092288 crossref_primary_10_1007_s11240_023_02603_6 crossref_primary_10_3390_molecules26144159 crossref_primary_10_1111_jfpe_13142 crossref_primary_10_3390_foods12061323 crossref_primary_10_1007_s00217_020_03521_z crossref_primary_10_1016_j_foodchem_2020_128015 crossref_primary_10_3390_app10238438 crossref_primary_10_1007_s11694_021_01008_3 crossref_primary_10_1016_j_jafr_2025_101748 crossref_primary_10_3390_molecules27154737 crossref_primary_10_1007_s11694_019_00242_0 crossref_primary_10_1007_s11224_021_01725_x crossref_primary_10_1016_j_sjbs_2021_05_037 crossref_primary_10_1111_ics_12830 crossref_primary_10_3390_ph15010065 crossref_primary_10_3389_fnut_2020_576532 crossref_primary_10_3390_foods11193003 crossref_primary_10_3390_agronomy10091378 crossref_primary_10_1016_j_compag_2018_04_015 crossref_primary_10_1016_j_foodchem_2016_09_200 crossref_primary_10_1515_ijfe_2022_0121 crossref_primary_10_1016_j_foodchem_2021_131280 crossref_primary_10_1016_j_ultsonch_2022_106047 crossref_primary_10_1016_j_foodchem_2023_138118 crossref_primary_10_3746_jkfn_2024_53_12_1286 crossref_primary_10_1016_j_lwt_2018_08_054 crossref_primary_10_3390_molecules23071646 crossref_primary_10_1177_1082013220929142 crossref_primary_10_1016_j_foodchem_2022_132759 crossref_primary_10_1021_acs_jafc_7b00559 crossref_primary_10_17660_ActaHortic_2024_1407_16 crossref_primary_10_1016_j_aninu_2024_11_014 crossref_primary_10_3390_foods12142679 crossref_primary_10_1111_jfpp_14949 crossref_primary_10_1016_j_ultsonch_2020_105300 crossref_primary_10_1016_j_lwt_2021_112714 crossref_primary_10_1016_j_fshw_2021_02_023 crossref_primary_10_1016_j_carbpol_2016_07_096 crossref_primary_10_1016_j_foodchem_2020_128359 crossref_primary_10_1080_07373937_2018_1547312 crossref_primary_10_1111_jfpp_16696 crossref_primary_10_1080_14786419_2018_1544979 crossref_primary_10_1080_07373937_2017_1423325 crossref_primary_10_1111_jfpp_14277 crossref_primary_10_1016_j_foodchem_2025_143231 crossref_primary_10_1016_j_foodchem_2020_127026 crossref_primary_10_1007_s00231_018_2516_y crossref_primary_10_1016_j_meafoo_2024_100191 crossref_primary_10_1016_j_foodchem_2024_138957 crossref_primary_10_3390_foods11223743 crossref_primary_10_1016_j_lwt_2024_116722 crossref_primary_10_1155_2019_8709343 crossref_primary_10_1007_s00217_023_04200_5 crossref_primary_10_1016_j_jfoodeng_2023_111642 crossref_primary_10_1080_07373937_2019_1699834 crossref_primary_10_1111_and_13296 crossref_primary_10_1007_s00231_024_03459_y crossref_primary_10_1016_j_biopha_2018_11_146 crossref_primary_10_1080_0972060X_2020_1723443 crossref_primary_10_3390_foods12132628 crossref_primary_10_1016_j_crfs_2023_100624 crossref_primary_10_1039_D2FO01602H crossref_primary_10_1016_j_foodchem_2020_128121 crossref_primary_10_1016_j_lwt_2024_115873 crossref_primary_10_1007_s11694_023_02162_6 crossref_primary_10_1002_jsfa_10341 crossref_primary_10_1016_j_foodchem_2024_142413 crossref_primary_10_1111_1750_3841_17339 crossref_primary_10_1016_j_foodchem_2022_134741 crossref_primary_10_1039_D4FB00078A crossref_primary_10_3166_phyto_2022_0306 crossref_primary_10_1080_07373937_2025_2471881 crossref_primary_10_1007_s11356_023_25236_w crossref_primary_10_1007_s11356_020_11509_1 crossref_primary_10_1016_j_biopha_2018_06_148 crossref_primary_10_1002_ffj_3620 crossref_primary_10_1021_acs_jafc_4c00991 crossref_primary_10_1016_j_ifset_2024_103730 crossref_primary_10_1007_s00289_023_04911_5 crossref_primary_10_1080_19476337_2023_2295421 crossref_primary_10_1002_fsn3_3351 crossref_primary_10_1111_jfpe_13348 crossref_primary_10_1080_87559129_2020_1839492 crossref_primary_10_1111_jfpp_16996 crossref_primary_10_1016_j_fbio_2020_100653 crossref_primary_10_3389_fmicb_2022_1021445 crossref_primary_10_1039_C8FO01865K crossref_primary_10_1002_jsfa_11443 crossref_primary_10_1080_10942912_2019_1709497 crossref_primary_10_3390_pharmaceutics13030335 crossref_primary_10_1016_j_foodchem_2023_136539 crossref_primary_10_1016_j_jfca_2024_106566 crossref_primary_10_1080_08327823_2020_1794725 crossref_primary_10_1016_j_jclepro_2017_09_088 crossref_primary_10_1007_s13197_020_04370_0 crossref_primary_10_1016_j_ultsonch_2024_107216 crossref_primary_10_1007_s11694_017_9611_5 crossref_primary_10_3390_pr10040691 crossref_primary_10_1111_jfpe_13117 crossref_primary_10_3390_molecules22122145 crossref_primary_10_1111_jfpe_13471 crossref_primary_10_1111_jfpp_16404 crossref_primary_10_1016_j_nfs_2019_12_001 crossref_primary_10_1016_j_jfca_2022_105072 crossref_primary_10_1016_j_lwt_2017_09_032 crossref_primary_10_1002_pca_3397 crossref_primary_10_1016_j_fbp_2024_12_009 crossref_primary_10_1002_fsn3_1279 crossref_primary_10_1016_j_foodchem_2018_08_012 crossref_primary_10_1016_j_lwt_2021_112879 crossref_primary_10_3390_biom8040119 crossref_primary_10_1016_j_foodchem_2022_133314 crossref_primary_10_5219_1234 crossref_primary_10_1111_jfpe_13485 crossref_primary_10_1016_j_foodres_2019_02_019 crossref_primary_10_1016_j_fbp_2021_11_005 crossref_primary_10_1038_s41598_024_79712_5 crossref_primary_10_1016_j_fbio_2023_102736 crossref_primary_10_1111_jfpp_13942 crossref_primary_10_1111_1750_3841_15009 crossref_primary_10_1007_s11947_024_03348_6 crossref_primary_10_1016_j_jspr_2022_101966 crossref_primary_10_1002_jsfa_11348 crossref_primary_10_1007_s12161_016_0702_4 crossref_primary_10_1016_j_lwt_2022_113452 crossref_primary_10_1007_s13197_020_04891_8 crossref_primary_10_3390_su9112009 crossref_primary_10_3390_foods13223642 crossref_primary_10_1016_j_ultsonch_2022_106225 crossref_primary_10_1080_10942912_2021_1953070 crossref_primary_10_1080_14786419_2024_2409385 crossref_primary_10_1016_j_solener_2023_111890 crossref_primary_10_3390_molecules26154597 crossref_primary_10_1108_BFJ_11_2020_1061 crossref_primary_10_1051_matecconf_201819203023 crossref_primary_10_1007_s11130_023_01109_y crossref_primary_10_1007_s11694_019_00117_4 crossref_primary_10_1007_s10973_021_11108_3 crossref_primary_10_1515_ijfe_2020_0009 crossref_primary_10_3390_horticulturae7010010 crossref_primary_10_3390_pr7100745 crossref_primary_10_1111_jfpe_14223 crossref_primary_10_1002_jsfa_14189 crossref_primary_10_1016_j_foodres_2022_111277 crossref_primary_10_1111_jfbc_13875 crossref_primary_10_1111_jfpe_13252 crossref_primary_10_1007_s12393_017_9165_7 crossref_primary_10_1016_j_indcrop_2020_113167 crossref_primary_10_1016_j_indcrop_2024_120020 crossref_primary_10_1186_s43014_023_00217_1 crossref_primary_10_1590_1678_4499_20240090 crossref_primary_10_3390_molecules29112561 crossref_primary_10_1007_s11696_023_03244_x crossref_primary_10_1016_j_heliyon_2023_e19166 crossref_primary_10_1016_j_lwt_2023_114510 crossref_primary_10_1080_07373937_2021_1998105 crossref_primary_10_1007_s00217_018_3067_7 crossref_primary_10_1007_s00231_023_03426_z crossref_primary_10_1080_07373937_2022_2087184 crossref_primary_10_1016_j_jfoodeng_2018_08_008 crossref_primary_10_3390_separations10030186 crossref_primary_10_1016_j_jchromb_2018_02_020 crossref_primary_10_1007_s11947_021_02715_x crossref_primary_10_1016_j_lwt_2018_11_076 crossref_primary_10_3390_foods12061283 crossref_primary_10_1007_s42853_020_00056_9 crossref_primary_10_1007_s11694_019_00334_x crossref_primary_10_3390_app142210655 crossref_primary_10_3934_agrfood_2022013 crossref_primary_10_1111_jfpp_15988 crossref_primary_10_3390_foods13010104 crossref_primary_10_1007_s11694_016_9372_6 crossref_primary_10_1080_0972060X_2018_1444512 crossref_primary_10_1016_j_afres_2023_100305 crossref_primary_10_1039_C7FO01354J crossref_primary_10_1016_j_ijbiomac_2022_01_021 crossref_primary_10_1111_jfpp_15503 crossref_primary_10_3390_foods12213897 crossref_primary_10_1016_j_foodres_2022_111043 crossref_primary_10_1080_07373937_2020_1741006 crossref_primary_10_1038_s41538_022_00166_y crossref_primary_10_18311_jnr_2022_31385 crossref_primary_10_1080_07373937_2017_1399415 crossref_primary_10_1016_j_lwt_2023_115159 crossref_primary_10_1016_j_ijrefrig_2025_01_034 crossref_primary_10_1016_j_lwt_2023_114862 crossref_primary_10_1016_j_lwt_2021_111238 crossref_primary_10_3233_JCM_247143 crossref_primary_10_1007_s13197_019_04081_1 crossref_primary_10_1080_10495398_2024_2425656 crossref_primary_10_1080_07373937_2023_2217252 crossref_primary_10_1038_s41598_023_39883_z crossref_primary_10_1007_s10341_021_00555_9 crossref_primary_10_1080_07373937_2023_2184380 crossref_primary_10_1007_s12393_025_09398_6 crossref_primary_10_1016_j_fbio_2020_100742 crossref_primary_10_1016_j_heliyon_2024_e30936 crossref_primary_10_1111_jfpp_15994 crossref_primary_10_1016_j_foodchem_2016_01_110 crossref_primary_10_1016_j_lwt_2017_04_015 crossref_primary_10_3390_app14209183 crossref_primary_10_1016_j_ifset_2018_05_021 crossref_primary_10_1002_jsfa_10284 crossref_primary_10_3390_foods9010087 crossref_primary_10_1080_23311932_2024_2420843 crossref_primary_10_3389_fphar_2023_1006265 crossref_primary_10_18185_erzifbed_801731 crossref_primary_10_1016_j_foodchem_2019_125477 crossref_primary_10_1002_fsn3_1878 crossref_primary_10_1111_jfbc_13819 crossref_primary_10_3390_molecules24030469 crossref_primary_10_1016_j_lwt_2019_108913 crossref_primary_10_1016_j_lwt_2021_111105 crossref_primary_10_1016_j_foodchem_2023_136340 crossref_primary_10_1016_j_cofs_2018_12_004 crossref_primary_10_1016_j_lwt_2021_110933 crossref_primary_10_11002_kjfp_2019_26_5_545 crossref_primary_10_1007_s11694_021_01273_2 crossref_primary_10_1080_07373937_2019_1599905 crossref_primary_10_2174_1570180819666220816115506 crossref_primary_10_1016_j_jmst_2025_01_044 crossref_primary_10_1016_j_csite_2024_104334 crossref_primary_10_3390_foods10040868 crossref_primary_10_3390_ani10030452 crossref_primary_10_3390_foods13071096 crossref_primary_10_1080_10942912_2023_2194576 crossref_primary_10_3390_molecules28010412 crossref_primary_10_1208_s12249_018_1165_2 crossref_primary_10_1016_j_jarmap_2020_100262 crossref_primary_10_3390_foods13020260 crossref_primary_10_3923_ijps_2020_169_175 crossref_primary_10_1016_j_lwt_2020_109354 crossref_primary_10_1055_a_2283_8147 crossref_primary_10_1016_j_afres_2022_100182 crossref_primary_10_1016_j_foodchem_2020_128404 crossref_primary_10_1016_j_clnesp_2020_10_001 crossref_primary_10_1016_j_fochx_2023_100987 crossref_primary_10_1016_j_fpsl_2022_100897 crossref_primary_10_1155_2021_6635199 crossref_primary_10_3923_ijps_2023_17_23 crossref_primary_10_3390_foods12061198 crossref_primary_10_1080_10408398_2017_1399103 crossref_primary_10_1016_j_fbp_2021_02_016 crossref_primary_10_1590_fst_04518 crossref_primary_10_1080_10408398_2022_2082371 crossref_primary_10_1016_j_foodchem_2016_07_180 crossref_primary_10_3389_fnut_2023_1142784 crossref_primary_10_5114_bta_2021_111105 crossref_primary_10_1016_j_fochx_2023_100807 crossref_primary_10_15835_nbha50112619 crossref_primary_10_3390_foods11213486 crossref_primary_10_1016_j_foodres_2022_112051 crossref_primary_10_1016_j_heliyon_2021_e06560 crossref_primary_10_1080_0972060X_2022_2152739 crossref_primary_10_3390_foods11213484 crossref_primary_10_3390_foods11111611 crossref_primary_10_3390_life14091204 crossref_primary_10_1016_j_jfca_2024_106057 crossref_primary_10_1016_j_microc_2025_113333 crossref_primary_10_21603_2074_9414_2021_1_170_178 crossref_primary_10_3390_horticulturae9030306 crossref_primary_10_1016_j_crfs_2023_100651 crossref_primary_10_1080_07373937_2018_1510417 crossref_primary_10_1080_07373937_2020_1803351 crossref_primary_10_1080_07373937_2020_1851707 crossref_primary_10_1111_jfpp_13526 crossref_primary_10_3390_agronomy12112763 crossref_primary_10_1080_10408398_2020_1816891 crossref_primary_10_3390_molecules23020380 crossref_primary_10_3390_plants11111487 crossref_primary_10_1016_j_indcrop_2024_119482 crossref_primary_10_1016_j_lwt_2021_112804 crossref_primary_10_1080_07373937_2018_1546733 crossref_primary_10_1016_j_ijgfs_2023_100793 crossref_primary_10_1007_s11947_024_03403_2 crossref_primary_10_3389_fnut_2022_1043175 crossref_primary_10_1111_1750_3841_16264 crossref_primary_10_1007_s44187_024_00223_3 crossref_primary_10_1016_j_fpsl_2022_100917 crossref_primary_10_1016_j_heliyon_2019_e01717 crossref_primary_10_1016_j_fbp_2019_04_010 crossref_primary_10_1016_j_lwt_2024_116225 crossref_primary_10_1016_j_indcrop_2020_112210 crossref_primary_10_1016_j_foodchem_2017_07_106 crossref_primary_10_1007_s11694_022_01435_w crossref_primary_10_1016_j_indcrop_2023_117350 crossref_primary_10_1016_j_indcrop_2018_06_087 crossref_primary_10_1016_j_indcrop_2025_120569 crossref_primary_10_1111_1750_3841_14790 crossref_primary_10_3390_molecules27217223 crossref_primary_10_1016_j_foodchem_2021_130483 crossref_primary_10_1080_07373937_2022_2125526 crossref_primary_10_1016_j_nantod_2023_101963 crossref_primary_10_2174_1573401318666221003110058 crossref_primary_10_1002_fsn3_948 crossref_primary_10_1080_07373937_2024_2303580 crossref_primary_10_1111_ijfs_17555 crossref_primary_10_3389_fnut_2022_809621 crossref_primary_10_1007_s40003_018_0382_y crossref_primary_10_1016_j_heliyon_2020_e04163 crossref_primary_10_1080_07373937_2021_1871917 crossref_primary_10_1016_j_foodres_2018_04_066 crossref_primary_10_3390_molecules26237189 crossref_primary_10_3390_pr10040702 crossref_primary_10_3390_foods10112756 crossref_primary_10_1016_j_indcrop_2021_114048 crossref_primary_10_1016_j_matpr_2022_02_052 crossref_primary_10_1080_07373937_2018_1539745 crossref_primary_10_1111_jfbc_12832 crossref_primary_10_1016_j_fshw_2021_11_014 crossref_primary_10_1016_j_fshw_2022_07_030 crossref_primary_10_1016_j_foodchem_2022_133148 crossref_primary_10_1111_jfpe_14504 crossref_primary_10_1590_1413_7054201943025318 crossref_primary_10_1016_j_heliyon_2024_e24165 crossref_primary_10_1111_jfpe_13535 crossref_primary_10_1007_s11694_024_02843_w crossref_primary_10_1007_s12393_020_09215_2 crossref_primary_10_1007_s13197_019_03700_1 crossref_primary_10_3390_foods12061311 crossref_primary_10_1007_s11947_021_02646_7 crossref_primary_10_1016_j_foodchem_2025_143041 crossref_primary_10_1016_j_indcrop_2023_117463 crossref_primary_10_1016_j_lwt_2024_116241 |
Cites_doi | 10.1080/10412905.2007.9699240 10.1016/j.foodchem.2010.11.022 10.1007/s11947-012-0877-7 10.1021/jf00059a031 10.1248/yakushi1947.113.10_712 10.1016/j.foodchem.2011.06.026 10.1016/j.foodchem.2008.02.016 10.1016/j.foodchem.2014.09.162 10.1021/jf020635c 10.1016/S0076-6879(99)99017-1 10.1016/S0260-8774(03)00251-6 10.1002/jps.1116 10.1016/S0021-9673(00)01217-6 10.1016/j.tifs.2006.04.011 10.1016/j.fbp.2011.10.003 10.1016/j.jpba.2006.06.037 10.1080/07373939908917542 10.1080/07373937.2011.634976 10.1111/j.1365-2621.2012.03104.x 10.1080/07373937.2011.589554 10.1016/j.foodchem.2004.10.054 10.1002/(SICI)1097-0010(20000115)80:2<209::AID-JSFA516>3.0.CO;2-8 10.1016/j.biosystemseng.2009.05.010 10.1021/jf0115589 10.1016/j.lwt.2006.12.013 10.1016/j.foodchem.2006.06.023 10.1007/s11947-010-0353-1 10.1021/jf990146l 10.1081/DRT-120015585 10.1054/plef.2002.0441 10.1021/jf9801973 10.1016/j.foodchem.2013.05.053 10.1016/j.fct.2006.11.002 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd Copyright © 2015 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Ltd – notice: Copyright © 2015 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.foodchem.2015.11.033 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Chemistry Diet & Clinical Nutrition |
EISSN | 1873-7072 |
EndPage | 1300 |
ExternalDocumentID | 26675871 10_1016_j_foodchem_2015_11_033 S0308814615301783 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM KZ1 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SCC SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K WH7 ~G- ~KM 29H 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLV HVGLF HZ~ R2- SCB SEW SSH VH1 WUQ Y6R CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c467t-a3d27ae84f000ed024a26c3a41a84bd43d6b67ef725f011890b53f86bb4089083 |
IEDL.DBID | .~1 |
ISSN | 0308-8146 |
IngestDate | Mon Jul 21 10:50:36 EDT 2025 Thu Jul 10 22:20:29 EDT 2025 Thu Apr 03 07:00:04 EDT 2025 Tue Jul 01 04:34:09 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Fri Feb 23 02:24:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 10-Gingerol (PubChem CID: 168115) 6-Gingerol (PubChem CID: 442793) 2,2-Diphenyl-1-picrylhydrazyl (PubChem CID: 74358) Antioxidant activity α-Curcumene (PubChem CID: 3083834) Ginger Zingerone (PubChem CID: 31211) β-Bisabolene (PubChem CID: 10104370) Volatiles 6-Shogaol (PubChem CID: 5281794) β-Phellandrene (PubChem CID: 11142) 8-Gingerol (PubChem CID: 168114) 2,2′-Azinobis (3-ethylbenzo thiazoline-6-sulfonic acid) diammonium salt (ABTS) (PubChem CID: 9570474) Intermittent microwave & convective drying Microstructure |
Language | English |
License | Copyright © 2015 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-a3d27ae84f000ed024a26c3a41a84bd43d6b67ef725f011890b53f86bb4089083 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 26675871 |
PQID | 1750434511 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1836640862 proquest_miscellaneous_1750434511 pubmed_primary_26675871 crossref_primary_10_1016_j_foodchem_2015_11_033 crossref_citationtrail_10_1016_j_foodchem_2015_11_033 elsevier_sciencedirect_doi_10_1016_j_foodchem_2015_11_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-15 |
PublicationDateYYYYMMDD | 2016-04-15 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Food chemistry |
PublicationTitleAlternate | Food Chem |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mishra, Gauta, Sharma (b0105) 2004; 69 Chan, Lim, Wong, Lianto, Wong, Lim, Lim (b0025) 2008; 109 Gunasekaran (b0050) 1999; 17 Stoilova, Krastanov, Stoyanova, Denev, Gargova (b0170) 2007; 102 Liapis, Bruttini (b0095) 1995; Vol. 1 Zhang, Tang, Mujumdar, Wang (b0200) 2006; 17 Puengphian, Sirichote (b0130) 2008; 1 Kaensup, Chutima, Wongwises (b0075) 2002; 20 Gümüşay, Borazan, Ercal, Demirkol (b0045) 2015; 173 Asami, Hong, Barret, Mitchell (b0005) 2003; 51 Shukla, Singh (b0150) 2007; 45 Hinneburg, Damien, Hiltunen (b0060) 2006; 97 Toor, Savage (b0180) 2006; 94 Sellami, Wannes, Bettaieb, Berrima, Chahed, Marzouk, Limam (b0145) 2011; 126 Yoshikawa, Chatani, Hatakeyama, Nishino, Yamahara, Murakami (b0190) 1993; 113 Bartley, Jacobs (b0015) 2000; 80 Thomson, Al-Qattan, Al-Sawan, Alnaqeeb, Khan, Ali (b0175) 2002; 67 Huang, Chung, Wang, Law, Chen (b0065) 2011; 29 Nishimura (b0120) 1995; 43 Nirmala Menon, Padmakumari, Sankari Kutty, Sumathikutty, Sreekumar, Arumugham (b0115) 2007; 19 Ding, An, Zhao, Li, Guo, Wang (b0040) 2012; 90 Cheng, Liu, Peng, Qi, Li (b0030) 2011; 129 Larsen, Ibrahim, Khaw, Saw (b0090) 1999 Schieber, Keller, Carle (b0135) 2001; 910 Guo, Wu, Du, Zhang, Yang (b0055) 2014; 16 Soysal, Ayhan, Eştürk, Arıkan (b0165) 2009; 103 Dewanto, Wu, Adom, Liu (b0035) 2002; 50 Mujumdar, Law (b0110) 2010; 3 Sellami, Rahali, Rebey, Bourgou, Limam, Marzouk (b0140) 2013; 6 Velioglu, Mazza, Gao, Oomah (b0185) 1998; 46 Bhattarai, Tran, Duke (b0020) 2001; 90 Kubra, Rao (b0085) 2012; 47 Lim, Murtijaya (b0100) 2007; 40 Huang, Wang, Chu, Qin (b0070) 2012; 30 Sogi, Siddiq, Greiby, Dolan (b0160) 2013; 141 Yu, Huang, Yang, Liu, Duan (b0195) 2007; 43 Singleton, Orthofer, Lamuela-Raventos (b0155) 1999; 299 Azian, Mustafa Kamal, Azlina (b0010) 2004; 62 Kähkönen, Hopia, Vuorela, Rauha, Pihlaja, Kujala, Heinonen (b0080) 1999; 47 Niwa, Kanoh, Kasama, Neigishi (b0125) 1988; 14 Lim (10.1016/j.foodchem.2015.11.033_b0100) 2007; 40 Huang (10.1016/j.foodchem.2015.11.033_b0065) 2011; 29 Kähkönen (10.1016/j.foodchem.2015.11.033_b0080) 1999; 47 Sogi (10.1016/j.foodchem.2015.11.033_b0160) 2013; 141 Nishimura (10.1016/j.foodchem.2015.11.033_b0120) 1995; 43 Larsen (10.1016/j.foodchem.2015.11.033_b0090) 1999 Yu (10.1016/j.foodchem.2015.11.033_b0195) 2007; 43 Yoshikawa (10.1016/j.foodchem.2015.11.033_b0190) 1993; 113 Mujumdar (10.1016/j.foodchem.2015.11.033_b0110) 2010; 3 Kaensup (10.1016/j.foodchem.2015.11.033_b0075) 2002; 20 Guo (10.1016/j.foodchem.2015.11.033_b0055) 2014; 16 Shukla (10.1016/j.foodchem.2015.11.033_b0150) 2007; 45 Zhang (10.1016/j.foodchem.2015.11.033_b0200) 2006; 17 Dewanto (10.1016/j.foodchem.2015.11.033_b0035) 2002; 50 Thomson (10.1016/j.foodchem.2015.11.033_b0175) 2002; 67 Bartley (10.1016/j.foodchem.2015.11.033_b0015) 2000; 80 Singleton (10.1016/j.foodchem.2015.11.033_b0155) 1999; 299 Azian (10.1016/j.foodchem.2015.11.033_b0010) 2004; 62 Nirmala Menon (10.1016/j.foodchem.2015.11.033_b0115) 2007; 19 Kubra (10.1016/j.foodchem.2015.11.033_b0085) 2012; 47 Niwa (10.1016/j.foodchem.2015.11.033_b0125) 1988; 14 Liapis (10.1016/j.foodchem.2015.11.033_b0095) 1995; Vol. 1 Gunasekaran (10.1016/j.foodchem.2015.11.033_b0050) 1999; 17 Soysal (10.1016/j.foodchem.2015.11.033_b0165) 2009; 103 Sellami (10.1016/j.foodchem.2015.11.033_b0145) 2011; 126 Mishra (10.1016/j.foodchem.2015.11.033_b0105) 2004; 69 Toor (10.1016/j.foodchem.2015.11.033_b0180) 2006; 94 Bhattarai (10.1016/j.foodchem.2015.11.033_b0020) 2001; 90 Puengphian (10.1016/j.foodchem.2015.11.033_b0130) 2008; 1 Cheng (10.1016/j.foodchem.2015.11.033_b0030) 2011; 129 Sellami (10.1016/j.foodchem.2015.11.033_b0140) 2013; 6 Hinneburg (10.1016/j.foodchem.2015.11.033_b0060) 2006; 97 Ding (10.1016/j.foodchem.2015.11.033_b0040) 2012; 90 Huang (10.1016/j.foodchem.2015.11.033_b0070) 2012; 30 Velioglu (10.1016/j.foodchem.2015.11.033_b0185) 1998; 46 Chan (10.1016/j.foodchem.2015.11.033_b0025) 2008; 109 Stoilova (10.1016/j.foodchem.2015.11.033_b0170) 2007; 102 Asami (10.1016/j.foodchem.2015.11.033_b0005) 2003; 51 Gümüşay (10.1016/j.foodchem.2015.11.033_b0045) 2015; 173 Schieber (10.1016/j.foodchem.2015.11.033_b0135) 2001; 910 |
References_xml | – volume: 30 start-page: 248 year: 2012 end-page: 255 ident: b0070 article-title: Effect of oven drying, microwave drying, and silica gel drying methods on the volatile components of ginger ( publication-title: Drying Technology – volume: 910 start-page: 265 year: 2001 end-page: 273 ident: b0135 article-title: Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography publication-title: Journal of Chromatography A – volume: 173 start-page: 156 year: 2015 end-page: 162 ident: b0045 article-title: Drying effects on the antioxidant properties of tomatoes and ginger publication-title: Food Chemistry – volume: 103 start-page: 455 year: 2009 end-page: 463 ident: b0165 article-title: Intermittent microwave-convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality publication-title: Biosystem Engineering – volume: 97 start-page: 122 year: 2006 end-page: 129 ident: b0060 article-title: Antioxidant activities of extracts from selected culinary herbs and spices publication-title: ASEAN Food Journal – volume: 43 start-page: 24 year: 2007 end-page: 31 ident: b0195 article-title: Development of gas chromatography–mass spectrometry with microwave distillation and simultaneous solid-phase micro-extraction for rapid determination of volatile constituents in ginger publication-title: Journal of Pharmaceutical and Biomedical Analysis – volume: 17 start-page: 524 year: 2006 end-page: 534 ident: b0200 article-title: Trends in microwave related drying of fruits and vegetables publication-title: Trends in Food Science & Technology – volume: 1 start-page: 29 year: 2008 end-page: 36 ident: b0130 article-title: [6]-Gingerol content and bioactive properties of ginger ( publication-title: Asian Journal of Food and Agro-Industry – volume: 102 start-page: 764 year: 2007 end-page: 770 ident: b0170 article-title: Antioxidant activity of a ginger extract ( publication-title: Food Chemistry – volume: 6 start-page: 806 year: 2013 end-page: 817 ident: b0140 article-title: Total phenolics, flavonoids, and antioxidant activity of sage ( publication-title: Food and Bioprocess Technology – volume: 47 start-page: 3954 year: 1999 end-page: 3962 ident: b0080 article-title: Antioxidant activity of plant extracts containing phenolic compounds publication-title: Journal of Agricultural Food Chemistry – volume: 113 start-page: 712 year: 1993 end-page: 717 ident: b0190 article-title: Crude drug processing by far-infrared treatment. II. Chemical fluctuation of the constituents during drying of publication-title: Yakugaku Zasshi – volume: 29 start-page: 1884 year: 2011 end-page: 1889 ident: b0065 article-title: Formation of 6-shogaol of ginger oil under different drying conditions publication-title: Drying Technology – volume: 109 start-page: 477 year: 2008 end-page: 483 ident: b0025 article-title: Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species publication-title: Food Chemistry – volume: 40 start-page: 1664 year: 2007 end-page: 1669 ident: b0100 article-title: Antioxidant properties of publication-title: LWT – Food Science and Technology – volume: 67 start-page: 475 year: 2002 end-page: 478 ident: b0175 article-title: The use of ginger ( publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids – volume: 19 start-page: 105 year: 2007 end-page: 109 ident: b0115 article-title: Effect of processing on the flavor compounds of Indian fresh ginger ( publication-title: Journal of Essential Oil Research – volume: 299 start-page: 152 year: 1999 end-page: 178 ident: b0155 article-title: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteau reagent publication-title: Oxidants and antioxidants part A – volume: 90 start-page: 515 year: 2012 end-page: 524 ident: b0040 article-title: Effect of drying methods on volatiles of Chinese ginger ( publication-title: Food and Bioproducts Processing – volume: 20 start-page: 2067 year: 2002 end-page: 2079 ident: b0075 article-title: Experimental study on drying of chilli in a combined microwave-vacuum rotary drum dryer publication-title: Drying Technology – volume: 50 start-page: 3010 year: 2002 end-page: 3014 ident: b0035 article-title: Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity publication-title: Journal of Agricultural and Food Chemistry – volume: 80 start-page: 209 year: 2000 end-page: 215 ident: b0015 article-title: Effects of drying on flavour compounds in Australian-grown ginger ( publication-title: Journal of the Science of Food and Agriculture – volume: Vol. 1 start-page: 309 year: 1995 end-page: 344 ident: b0095 article-title: Freeze drying publication-title: Handbook of industrial drying – volume: 16 start-page: 1063 year: 2014 end-page: 1072 ident: b0055 article-title: Comparative antioxidant properties of some gingerols and shogaols, and the relationship of their contents with the antioxidant potencies of fresh and dried ginger ( publication-title: Journal of Agricultural Science and Technology – volume: 43 start-page: 2941 year: 1995 end-page: 2945 ident: b0120 article-title: Identification of the characteristic odorants in fresh rhizomes of ginger ( publication-title: Journal of Agricultural and Food Chemistry – volume: 69 start-page: 274 year: 2004 end-page: 279 ident: b0105 article-title: Shelf-life extension of fresh ginger ( publication-title: Journal of Food Microbiology and Safety – volume: 90 start-page: 1658 year: 2001 end-page: 1664 ident: b0020 article-title: The stability of gingerol and shogaol in aqueous solutions publication-title: Journal of Pharmaceutical Sciences – volume: 14 start-page: 361 year: 1988 end-page: 372 ident: b0125 article-title: Activation of antioxidant activity in natural medicinal products by heating, brewing and lipophilization. A new drug delivery system publication-title: Drugs under Experimental and Clinical Research – volume: 141 start-page: 2649 year: 2013 end-page: 2655 ident: b0160 article-title: Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods publication-title: Food Chemistry – volume: 94 start-page: 90 year: 2006 end-page: 97 ident: b0180 article-title: Effect of semi-drying on the antioxidant components of tomatoes publication-title: Food Chemistry – volume: 46 start-page: 4113 year: 1998 end-page: 4117 ident: b0185 article-title: Antioxidative activity and total phenolics in selected fruits, vegetables and grain products publication-title: Journal of Agricultural Food Chemistry – volume: 17 start-page: 395 year: 1999 end-page: 412 ident: b0050 article-title: Pulsed microwave-vacuum drying of food materials publication-title: Drying Technology – volume: 3 start-page: 843 year: 2010 end-page: 852 ident: b0110 article-title: Drying technology: Trends and applications in postharvest processing publication-title: Food and Bioprocess Technology – volume: 129 start-page: 1785 year: 2011 end-page: 1792 ident: b0030 article-title: Steamed ginger ( publication-title: Food Chemistry – volume: 47 start-page: 2311 year: 2012 end-page: 2317 ident: b0085 article-title: Microwave drying of ginger ( publication-title: International Journal of Food Science and Technology – year: 1999 ident: b0090 article-title: Gingers of Peninsular Malaysia and Singapore – volume: 51 start-page: 1237 year: 2003 end-page: 1241 ident: b0005 article-title: Comparison of the total phenolic and ascorbic content of freeze-dried and air dried marionberry, strawberry, and corn grown using conventional, organic and sustainable agricultural practices publication-title: Journal of Agricultural and Food Chemistry – volume: 62 start-page: 359 year: 2004 end-page: 364 ident: b0010 article-title: Changes of cell structure in ginger during processing publication-title: Journal of Food Engineering – volume: 126 start-page: 691 year: 2011 end-page: 697 ident: b0145 article-title: Qualitative and quantitative changes in the essential oil of publication-title: Food Chemistry – volume: 45 start-page: 683 year: 2007 end-page: 690 ident: b0150 article-title: Cancer preventive properties of ginger: A brief review publication-title: Food and Chemical Toxicology – volume: 19 start-page: 105 year: 2007 ident: 10.1016/j.foodchem.2015.11.033_b0115 article-title: Effect of processing on the flavor compounds of Indian fresh ginger (Zingiber officinale Rosc.) publication-title: Journal of Essential Oil Research doi: 10.1080/10412905.2007.9699240 – volume: 126 start-page: 691 year: 2011 ident: 10.1016/j.foodchem.2015.11.033_b0145 article-title: Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods publication-title: Food Chemistry doi: 10.1016/j.foodchem.2010.11.022 – volume: 1 start-page: 29 issue: 1 year: 2008 ident: 10.1016/j.foodchem.2015.11.033_b0130 article-title: [6]-Gingerol content and bioactive properties of ginger (Zingiber officinale Roscoe) extracts from supercritical CO2 extraction publication-title: Asian Journal of Food and Agro-Industry – volume: 6 start-page: 806 issue: 3 year: 2013 ident: 10.1016/j.foodchem.2015.11.033_b0140 article-title: Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods publication-title: Food and Bioprocess Technology doi: 10.1007/s11947-012-0877-7 – volume: 16 start-page: 1063 issue: 5 year: 2014 ident: 10.1016/j.foodchem.2015.11.033_b0055 article-title: Comparative antioxidant properties of some gingerols and shogaols, and the relationship of their contents with the antioxidant potencies of fresh and dried ginger (Zingiber officinale Roscoe) publication-title: Journal of Agricultural Science and Technology – volume: 97 start-page: 122 issue: 1 year: 2006 ident: 10.1016/j.foodchem.2015.11.033_b0060 article-title: Antioxidant activities of extracts from selected culinary herbs and spices publication-title: ASEAN Food Journal – volume: 43 start-page: 2941 issue: 11 year: 1995 ident: 10.1016/j.foodchem.2015.11.033_b0120 article-title: Identification of the characteristic odorants in fresh rhizomes of ginger (Zingiber officinale Roscoe) using aroma extract dilution analysis and modified multidimensional gas chromatography–mass spectroscopy publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf00059a031 – volume: 113 start-page: 712 year: 1993 ident: 10.1016/j.foodchem.2015.11.033_b0190 article-title: Crude drug processing by far-infrared treatment. II. Chemical fluctuation of the constituents during drying of Zingiberis rhizoma publication-title: Yakugaku Zasshi doi: 10.1248/yakushi1947.113.10_712 – volume: 129 start-page: 1785 issue: 4 year: 2011 ident: 10.1016/j.foodchem.2015.11.033_b0030 article-title: Steamed ginger (Zingiber officinale): Changed chemical profile and increased anticancer potential publication-title: Food Chemistry doi: 10.1016/j.foodchem.2011.06.026 – volume: 109 start-page: 477 issue: 3 year: 2008 ident: 10.1016/j.foodchem.2015.11.033_b0025 article-title: Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species publication-title: Food Chemistry doi: 10.1016/j.foodchem.2008.02.016 – volume: 173 start-page: 156 year: 2015 ident: 10.1016/j.foodchem.2015.11.033_b0045 article-title: Drying effects on the antioxidant properties of tomatoes and ginger publication-title: Food Chemistry doi: 10.1016/j.foodchem.2014.09.162 – volume: 51 start-page: 1237 year: 2003 ident: 10.1016/j.foodchem.2015.11.033_b0005 article-title: Comparison of the total phenolic and ascorbic content of freeze-dried and air dried marionberry, strawberry, and corn grown using conventional, organic and sustainable agricultural practices publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf020635c – volume: 14 start-page: 361 year: 1988 ident: 10.1016/j.foodchem.2015.11.033_b0125 article-title: Activation of antioxidant activity in natural medicinal products by heating, brewing and lipophilization. A new drug delivery system publication-title: Drugs under Experimental and Clinical Research – volume: 299 start-page: 152 year: 1999 ident: 10.1016/j.foodchem.2015.11.033_b0155 article-title: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteau reagent publication-title: Methods in Enzymology doi: 10.1016/S0076-6879(99)99017-1 – volume: Vol. 1 start-page: 309 year: 1995 ident: 10.1016/j.foodchem.2015.11.033_b0095 article-title: Freeze drying – volume: 62 start-page: 359 year: 2004 ident: 10.1016/j.foodchem.2015.11.033_b0010 article-title: Changes of cell structure in ginger during processing publication-title: Journal of Food Engineering doi: 10.1016/S0260-8774(03)00251-6 – volume: 90 start-page: 1658 issue: 10 year: 2001 ident: 10.1016/j.foodchem.2015.11.033_b0020 article-title: The stability of gingerol and shogaol in aqueous solutions publication-title: Journal of Pharmaceutical Sciences doi: 10.1002/jps.1116 – volume: 910 start-page: 265 year: 2001 ident: 10.1016/j.foodchem.2015.11.033_b0135 article-title: Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography publication-title: Journal of Chromatography A doi: 10.1016/S0021-9673(00)01217-6 – volume: 17 start-page: 524 issue: 10 year: 2006 ident: 10.1016/j.foodchem.2015.11.033_b0200 article-title: Trends in microwave related drying of fruits and vegetables publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2006.04.011 – volume: 90 start-page: 515 issue: 3 year: 2012 ident: 10.1016/j.foodchem.2015.11.033_b0040 article-title: Effect of drying methods on volatiles of Chinese ginger (Zingiber officinale Roscoe) publication-title: Food and Bioproducts Processing doi: 10.1016/j.fbp.2011.10.003 – volume: 43 start-page: 24 year: 2007 ident: 10.1016/j.foodchem.2015.11.033_b0195 article-title: Development of gas chromatography–mass spectrometry with microwave distillation and simultaneous solid-phase micro-extraction for rapid determination of volatile constituents in ginger publication-title: Journal of Pharmaceutical and Biomedical Analysis doi: 10.1016/j.jpba.2006.06.037 – volume: 17 start-page: 395 issue: 3 year: 1999 ident: 10.1016/j.foodchem.2015.11.033_b0050 article-title: Pulsed microwave-vacuum drying of food materials publication-title: Drying Technology doi: 10.1080/07373939908917542 – volume: 30 start-page: 248 issue: 3 year: 2012 ident: 10.1016/j.foodchem.2015.11.033_b0070 article-title: Effect of oven drying, microwave drying, and silica gel drying methods on the volatile components of ginger (Zingiber officinale Roscoe) by HS-SPME-GC–MS publication-title: Drying Technology doi: 10.1080/07373937.2011.634976 – year: 1999 ident: 10.1016/j.foodchem.2015.11.033_b0090 – volume: 47 start-page: 2311 issue: 11 year: 2012 ident: 10.1016/j.foodchem.2015.11.033_b0085 article-title: Microwave drying of ginger (Zingiber officinale Roscoe) and its effects on polyphenolic content and antioxidant activity publication-title: International Journal of Food Science and Technology doi: 10.1111/j.1365-2621.2012.03104.x – volume: 29 start-page: 1884 year: 2011 ident: 10.1016/j.foodchem.2015.11.033_b0065 article-title: Formation of 6-shogaol of ginger oil under different drying conditions publication-title: Drying Technology doi: 10.1080/07373937.2011.589554 – volume: 94 start-page: 90 issue: 1 year: 2006 ident: 10.1016/j.foodchem.2015.11.033_b0180 article-title: Effect of semi-drying on the antioxidant components of tomatoes publication-title: Food Chemistry doi: 10.1016/j.foodchem.2004.10.054 – volume: 80 start-page: 209 issue: 2 year: 2000 ident: 10.1016/j.foodchem.2015.11.033_b0015 article-title: Effects of drying on flavour compounds in Australian-grown ginger (Zingiber officinale) publication-title: Journal of the Science of Food and Agriculture doi: 10.1002/(SICI)1097-0010(20000115)80:2<209::AID-JSFA516>3.0.CO;2-8 – volume: 103 start-page: 455 year: 2009 ident: 10.1016/j.foodchem.2015.11.033_b0165 article-title: Intermittent microwave-convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality publication-title: Biosystem Engineering doi: 10.1016/j.biosystemseng.2009.05.010 – volume: 50 start-page: 3010 issue: 10 year: 2002 ident: 10.1016/j.foodchem.2015.11.033_b0035 article-title: Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf0115589 – volume: 69 start-page: 274 issue: 9 year: 2004 ident: 10.1016/j.foodchem.2015.11.033_b0105 article-title: Shelf-life extension of fresh ginger (Zingiber officinale) by gamma irradiation publication-title: Journal of Food Microbiology and Safety – volume: 40 start-page: 1664 issue: 9 year: 2007 ident: 10.1016/j.foodchem.2015.11.033_b0100 article-title: Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods publication-title: LWT – Food Science and Technology doi: 10.1016/j.lwt.2006.12.013 – volume: 102 start-page: 764 issue: 3 year: 2007 ident: 10.1016/j.foodchem.2015.11.033_b0170 article-title: Antioxidant activity of a ginger extract (Zingiber officinale) publication-title: Food Chemistry doi: 10.1016/j.foodchem.2006.06.023 – volume: 3 start-page: 843 year: 2010 ident: 10.1016/j.foodchem.2015.11.033_b0110 article-title: Drying technology: Trends and applications in postharvest processing publication-title: Food and Bioprocess Technology doi: 10.1007/s11947-010-0353-1 – volume: 47 start-page: 3954 year: 1999 ident: 10.1016/j.foodchem.2015.11.033_b0080 article-title: Antioxidant activity of plant extracts containing phenolic compounds publication-title: Journal of Agricultural Food Chemistry doi: 10.1021/jf990146l – volume: 20 start-page: 2067 issue: 10 year: 2002 ident: 10.1016/j.foodchem.2015.11.033_b0075 article-title: Experimental study on drying of chilli in a combined microwave-vacuum rotary drum dryer publication-title: Drying Technology doi: 10.1081/DRT-120015585 – volume: 67 start-page: 475 issue: 6 year: 2002 ident: 10.1016/j.foodchem.2015.11.033_b0175 article-title: The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids doi: 10.1054/plef.2002.0441 – volume: 46 start-page: 4113 year: 1998 ident: 10.1016/j.foodchem.2015.11.033_b0185 article-title: Antioxidative activity and total phenolics in selected fruits, vegetables and grain products publication-title: Journal of Agricultural Food Chemistry doi: 10.1021/jf9801973 – volume: 141 start-page: 2649 issue: 3 year: 2013 ident: 10.1016/j.foodchem.2015.11.033_b0160 article-title: Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods publication-title: Food Chemistry doi: 10.1016/j.foodchem.2013.05.053 – volume: 45 start-page: 683 issue: 5 year: 2007 ident: 10.1016/j.foodchem.2015.11.033_b0150 article-title: Cancer preventive properties of ginger: A brief review publication-title: Food and Chemical Toxicology doi: 10.1016/j.fct.2006.11.002 |
SSID | ssj0002018 |
Score | 2.634006 |
Snippet | •Intermittent microwave & convection drying was first applied in ginger drying.•A systematic exploration of energy consumption and quality retention was... Nowadays, food industry is facing challenges in preserving better quality of fruit and vegetable products after processing. Recently, many attentions have been... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1292 |
SubjectTerms | air drying Antioxidant activity Antioxidants - chemistry Antioxidants - pharmacology Catechols - analysis energy Fatty Alcohols - analysis Flavonoids - analysis food industry freeze drying Freeze Drying - methods fruit quality Ginger health promotion Humans Intermittent microwave & convective drying Microstructure Microwaves Plant Extracts - pharmacology Principal Component Analysis rhizomes vegetable products volatile compounds Volatiles Volatilization Zingiber officinale Zingiber officinale - chemistry Zingiber officinale - ultrastructure |
Title | Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure |
URI | https://dx.doi.org/10.1016/j.foodchem.2015.11.033 https://www.ncbi.nlm.nih.gov/pubmed/26675871 https://www.proquest.com/docview/1750434511 https://www.proquest.com/docview/1836640862 |
Volume | 197 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqcoALgvK1FKpBQgikZjeJHcfhVi1UC4g9AJUqLpEd2yjVkqyardQT_4d_yUwSL3AoPXBKnNiKlRmPx_bMe4w9V3GlU09xYUWeRqKoZKRSXURVha5cnFid5JSc_HEpFyfi_Wl2usPmIReGwipH2z_Y9N5aj09m49-cret69pmQVmgDC8csccwT4qcQOWn59MfvMA_8oBpOElS_3fVHlvDZ1LetxX9DGelJNiU0T86vmqCuckD7iej4Drs9epBwNHTyLttxzR67OQ_EbXts8qZ2G3gBI-TnCpYBcR_rhUTk7h77Od9yEELrIVClbMCeU-4TDOTSHeBrYtl2nYNv_SYgvPxKNEcG7wYECuyPg09tV7Xu1WsYEhY6qBtA24eSX7nuEKoRmQBGlvBD0BRoeVlbvNLDNUV4U03dWPhOcYIDtu3FubvPTo7ffpkvopG5IarQ8G4izW2aa6eERwk4i36ATmXFtUi0EsYKbqWRufN5mnlKfS1ik3GvpDEixoLiD9hu0zbuEYPYWq2tMj6VnM54dUyA0NpImxhvTDJhWRBXWY2w5sSusSpD_NpZGcRckphxzVOimCdstm23HoA9rm1RBG0o_1LREmefa9s-C-pTojbQoYxuXHvRlQnh63NCiftHHcWlFLT4nLCHg-5t-4wOFi758uTxf_Run93CkqRDsiR7wnZRuu4p-lobc9APpgN24-jdh8XyF2pnLF0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLgvJaymOQAIHU7ObpOEgc0JZqS9s9QCtVXIwdOyjVNlk1WwEX_g9n_iAzSbzAofSAesrLjpzMeDy2Z76PsafCz1VYUFxYloZenOXcE6HKvDxHV84PjApSSk7en_LJYfzuKDlaYT9dLgyFVfa2v7PprbXu74z6vzmal-XoAyGt0AIW9lnimHcM1rv22xectzWvd7ZQyM_CcPvtwXji9dQCXo6WYeGpyISpsiIu0CRYgwOVCnkeqThQItYmjgzXPLVFGiYF5WZmvk6iQnCtYx8vRITvvcKuxmguiDZh-P13XAl-oei2LkS7vvZHWvLxsKhrg8KgFPggGRJ8aBSdNyKe5_G2I9_2DXa9d1nhTfdXbrIVW62ztbFjiltng63SLuA59BijM5g6iH8s5zKfm1vsx3hJegh1AY6bZQHmlJKtoGOzbgAfE623bSx8blcd4cVH4lXSeNZBXmB7LLyvm7y2L19BlyHRQFkBGltUtZltNiHvoRCgpyXfBEWRnV9Lg0e6OaeQciqpKgMnFJjYgemendrb7PBS5HmHrVZ1Ze8x8I1RyghdhDyiTWXlEwK10twEutA6GLDEiUvmPY460XnMpAuYO5ZOzJLEjJMsiWIesNGy3rxDErmwRua0Qf7VJyQOdxfWfeLUR6I20C6Qqmx91siAAP0jgqX7RxkRcR7TbHfA7na6t2wzenQ4x0yD-__RusdsbXKwvyf3dqa7G-waPuG0QxckD9gqSto-REdvoR-1HQvYp8vuyb8AVFhm5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+different+drying+methods+on+Chinese+ginger+%28Zingiber+officinale+Roscoe%29%3A+Changes+in+volatiles%2C+chemical+profile%2C+antioxidant+properties%2C+and+microstructure&rft.jtitle=Food+chemistry&rft.au=An%2C+Kejing&rft.au=Zhao%2C+Dandan&rft.au=Wang%2C+Zhengfu&rft.au=Wu%2C+Jijun&rft.date=2016-04-15&rft.eissn=1873-7072&rft.volume=197+Pt+B&rft.spage=1292&rft_id=info:doi/10.1016%2Fj.foodchem.2015.11.033&rft_id=info%3Apmid%2F26675871&rft.externalDocID=26675871 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon |