Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure

•Intermittent microwave & convection drying was first applied in ginger drying.•A systematic exploration of energy consumption and quality retention was built.•Cluster analysis & PCA were used to evaluate the correlation of different dryings.•IM&CD is very promising in energy saving and...

Full description

Saved in:
Bibliographic Details
Published inFood chemistry Vol. 197; pp. 1292 - 1300
Main Authors An, Kejing, Zhao, Dandan, Wang, Zhengfu, Wu, Jijun, Xu, Yujuan, Xiao, Gengsheng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Intermittent microwave & convection drying was first applied in ginger drying.•A systematic exploration of energy consumption and quality retention was built.•Cluster analysis & PCA were used to evaluate the correlation of different dryings.•IM&CD is very promising in energy saving and quality retention for food drying. Nowadays, food industry is facing challenges in preserving better quality of fruit and vegetable products after processing. Recently, many attentions have been drawn to ginger rhizome processing due to its numerous health promoting properties. In our study, ginger rhizome slices were subjected to air-drying (AD), freeze drying (FD), infrared drying (IR), microwave drying (MD) and intermittent microwave & convective drying (IM&CD). Quality attributes of the dried samples were compared in terms of volatile compounds, 6, 8, 10-gingerols, 6-shogaol, antioxidant activities and microstructure. Results showed that AD and IR were good drying methods to preserve volatiles. FD, IR and IM&CD led to higher retention of gingerols, TPC, TFC and better antioxidant activities. However, FD and IR had relative high energy consumption and drying time. Therefore, considering about the quality retention and energy consumption, IM&CD would be very promising for thermo sensitive material.
AbstractList Nowadays, food industry is facing challenges in preserving better quality of fruit and vegetable products after processing. Recently, many attentions have been drawn to ginger rhizome processing due to its numerous health promoting properties. In our study, ginger rhizome slices were subjected to air-drying (AD), freeze drying (FD), infrared drying (IR), microwave drying (MD) and intermittent microwave & convective drying (IM&CD). Quality attributes of the dried samples were compared in terms of volatile compounds, 6, 8, 10-gingerols, 6-shogaol, antioxidant activities and microstructure. Results showed that AD and IR were good drying methods to preserve volatiles. FD, IR and IM&CD led to higher retention of gingerols, TPC, TFC and better antioxidant activities. However, FD and IR had relative high energy consumption and drying time. Therefore, considering about the quality retention and energy consumption, IM&CD would be very promising for thermo sensitive material.
•Intermittent microwave & convection drying was first applied in ginger drying.•A systematic exploration of energy consumption and quality retention was built.•Cluster analysis & PCA were used to evaluate the correlation of different dryings.•IM&CD is very promising in energy saving and quality retention for food drying. Nowadays, food industry is facing challenges in preserving better quality of fruit and vegetable products after processing. Recently, many attentions have been drawn to ginger rhizome processing due to its numerous health promoting properties. In our study, ginger rhizome slices were subjected to air-drying (AD), freeze drying (FD), infrared drying (IR), microwave drying (MD) and intermittent microwave & convective drying (IM&CD). Quality attributes of the dried samples were compared in terms of volatile compounds, 6, 8, 10-gingerols, 6-shogaol, antioxidant activities and microstructure. Results showed that AD and IR were good drying methods to preserve volatiles. FD, IR and IM&CD led to higher retention of gingerols, TPC, TFC and better antioxidant activities. However, FD and IR had relative high energy consumption and drying time. Therefore, considering about the quality retention and energy consumption, IM&CD would be very promising for thermo sensitive material.
Author Zhao, Dandan
Xiao, Gengsheng
Wang, Zhengfu
An, Kejing
Wu, Jijun
Xu, Yujuan
Author_xml – sequence: 1
  givenname: Kejing
  surname: An
  fullname: An, Kejing
  organization: Sericulture and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
– sequence: 2
  givenname: Dandan
  surname: Zhao
  fullname: Zhao, Dandan
  organization: College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
– sequence: 3
  givenname: Zhengfu
  surname: Wang
  fullname: Wang, Zhengfu
  organization: College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
– sequence: 4
  givenname: Jijun
  surname: Wu
  fullname: Wu, Jijun
  organization: Sericulture and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
– sequence: 5
  givenname: Yujuan
  surname: Xu
  fullname: Xu, Yujuan
  organization: Sericulture and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
– sequence: 6
  givenname: Gengsheng
  surname: Xiao
  fullname: Xiao, Gengsheng
  email: 418259325@qq.com
  organization: Sericulture and Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26675871$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuEzEQhi1URNPCK1Q-FqkJ9nrXaxAHUEQLUiUkBBcultceNxPt2sF2KvpIvCVepeXAJaexZ75_NDP_GTkJMQAhF5ytOOPyzXblY3R2A9OqYbxbcb5iQjwjC656sexZ35yQBRNMLRVv5Sk5y3nLGKusekFOGyn7TvV8Qf6s47QzCXMMNHrq0HtIEAp16QHDHZ2gbKLLtJbXGwyQgd7VPCR6-bNGHOoreo8WgxmBfovZRnj9rsKmUplioPdxNAVHyFd0nhetGekuRV9TV9SEgvE3uhrn5A5SwZk0wdGKpphL2tuyT_CSPPdmzPDqMZ6TH9efvq8_L2-_3nxZf7xd2lb2ZWmEa3oDqvV1XXCsaU0jrTAtN6odXCucHGQPvm86zzhXb9nQCa_kMLSsfpQ4J5eHvnWcX3vIRU-YLYyjCRD3WXMlpKysbI6jfcda0XacV_TiEd0PEzi9SziZ9KCfnKiAPADzzjmB_4dwpmfL9VY_Wa5nyzXnulpehe__E1os9eAxlGRwPC7_cJBDvek9QtLZIgQLDhPYol3EYy3-AnMKzoY
CitedBy_id crossref_primary_10_2139_ssrn_3991761
crossref_primary_10_1007_s11694_018_9850_0
crossref_primary_10_1155_2017_7653791
crossref_primary_10_3390_genes13101740
crossref_primary_10_1007_s11947_024_03399_9
crossref_primary_10_1039_C8FO02421A
crossref_primary_10_1080_14787210_2018_1535898
crossref_primary_10_1080_07373937_2022_2068028
crossref_primary_10_1080_10408398_2021_1971944
crossref_primary_10_1016_j_focha_2023_100558
crossref_primary_10_1016_j_apsb_2016_11_006
crossref_primary_10_1080_07373937_2016_1231690
crossref_primary_10_3390_ijms25073625
crossref_primary_10_7235_HORT_20230045
crossref_primary_10_1111_jfpe_14234
crossref_primary_10_3390_agronomy13092288
crossref_primary_10_1007_s11240_023_02603_6
crossref_primary_10_3390_molecules26144159
crossref_primary_10_1111_jfpe_13142
crossref_primary_10_3390_foods12061323
crossref_primary_10_1007_s00217_020_03521_z
crossref_primary_10_1016_j_foodchem_2020_128015
crossref_primary_10_3390_app10238438
crossref_primary_10_1007_s11694_021_01008_3
crossref_primary_10_1016_j_jafr_2025_101748
crossref_primary_10_3390_molecules27154737
crossref_primary_10_1007_s11694_019_00242_0
crossref_primary_10_1007_s11224_021_01725_x
crossref_primary_10_1016_j_sjbs_2021_05_037
crossref_primary_10_1111_ics_12830
crossref_primary_10_3390_ph15010065
crossref_primary_10_3389_fnut_2020_576532
crossref_primary_10_3390_foods11193003
crossref_primary_10_3390_agronomy10091378
crossref_primary_10_1016_j_compag_2018_04_015
crossref_primary_10_1016_j_foodchem_2016_09_200
crossref_primary_10_1515_ijfe_2022_0121
crossref_primary_10_1016_j_foodchem_2021_131280
crossref_primary_10_1016_j_ultsonch_2022_106047
crossref_primary_10_1016_j_foodchem_2023_138118
crossref_primary_10_3746_jkfn_2024_53_12_1286
crossref_primary_10_1016_j_lwt_2018_08_054
crossref_primary_10_3390_molecules23071646
crossref_primary_10_1177_1082013220929142
crossref_primary_10_1016_j_foodchem_2022_132759
crossref_primary_10_1021_acs_jafc_7b00559
crossref_primary_10_17660_ActaHortic_2024_1407_16
crossref_primary_10_1016_j_aninu_2024_11_014
crossref_primary_10_3390_foods12142679
crossref_primary_10_1111_jfpp_14949
crossref_primary_10_1016_j_ultsonch_2020_105300
crossref_primary_10_1016_j_lwt_2021_112714
crossref_primary_10_1016_j_fshw_2021_02_023
crossref_primary_10_1016_j_carbpol_2016_07_096
crossref_primary_10_1016_j_foodchem_2020_128359
crossref_primary_10_1080_07373937_2018_1547312
crossref_primary_10_1111_jfpp_16696
crossref_primary_10_1080_14786419_2018_1544979
crossref_primary_10_1080_07373937_2017_1423325
crossref_primary_10_1111_jfpp_14277
crossref_primary_10_1016_j_foodchem_2025_143231
crossref_primary_10_1016_j_foodchem_2020_127026
crossref_primary_10_1007_s00231_018_2516_y
crossref_primary_10_1016_j_meafoo_2024_100191
crossref_primary_10_1016_j_foodchem_2024_138957
crossref_primary_10_3390_foods11223743
crossref_primary_10_1016_j_lwt_2024_116722
crossref_primary_10_1155_2019_8709343
crossref_primary_10_1007_s00217_023_04200_5
crossref_primary_10_1016_j_jfoodeng_2023_111642
crossref_primary_10_1080_07373937_2019_1699834
crossref_primary_10_1111_and_13296
crossref_primary_10_1007_s00231_024_03459_y
crossref_primary_10_1016_j_biopha_2018_11_146
crossref_primary_10_1080_0972060X_2020_1723443
crossref_primary_10_3390_foods12132628
crossref_primary_10_1016_j_crfs_2023_100624
crossref_primary_10_1039_D2FO01602H
crossref_primary_10_1016_j_foodchem_2020_128121
crossref_primary_10_1016_j_lwt_2024_115873
crossref_primary_10_1007_s11694_023_02162_6
crossref_primary_10_1002_jsfa_10341
crossref_primary_10_1016_j_foodchem_2024_142413
crossref_primary_10_1111_1750_3841_17339
crossref_primary_10_1016_j_foodchem_2022_134741
crossref_primary_10_1039_D4FB00078A
crossref_primary_10_3166_phyto_2022_0306
crossref_primary_10_1080_07373937_2025_2471881
crossref_primary_10_1007_s11356_023_25236_w
crossref_primary_10_1007_s11356_020_11509_1
crossref_primary_10_1016_j_biopha_2018_06_148
crossref_primary_10_1002_ffj_3620
crossref_primary_10_1021_acs_jafc_4c00991
crossref_primary_10_1016_j_ifset_2024_103730
crossref_primary_10_1007_s00289_023_04911_5
crossref_primary_10_1080_19476337_2023_2295421
crossref_primary_10_1002_fsn3_3351
crossref_primary_10_1111_jfpe_13348
crossref_primary_10_1080_87559129_2020_1839492
crossref_primary_10_1111_jfpp_16996
crossref_primary_10_1016_j_fbio_2020_100653
crossref_primary_10_3389_fmicb_2022_1021445
crossref_primary_10_1039_C8FO01865K
crossref_primary_10_1002_jsfa_11443
crossref_primary_10_1080_10942912_2019_1709497
crossref_primary_10_3390_pharmaceutics13030335
crossref_primary_10_1016_j_foodchem_2023_136539
crossref_primary_10_1016_j_jfca_2024_106566
crossref_primary_10_1080_08327823_2020_1794725
crossref_primary_10_1016_j_jclepro_2017_09_088
crossref_primary_10_1007_s13197_020_04370_0
crossref_primary_10_1016_j_ultsonch_2024_107216
crossref_primary_10_1007_s11694_017_9611_5
crossref_primary_10_3390_pr10040691
crossref_primary_10_1111_jfpe_13117
crossref_primary_10_3390_molecules22122145
crossref_primary_10_1111_jfpe_13471
crossref_primary_10_1111_jfpp_16404
crossref_primary_10_1016_j_nfs_2019_12_001
crossref_primary_10_1016_j_jfca_2022_105072
crossref_primary_10_1016_j_lwt_2017_09_032
crossref_primary_10_1002_pca_3397
crossref_primary_10_1016_j_fbp_2024_12_009
crossref_primary_10_1002_fsn3_1279
crossref_primary_10_1016_j_foodchem_2018_08_012
crossref_primary_10_1016_j_lwt_2021_112879
crossref_primary_10_3390_biom8040119
crossref_primary_10_1016_j_foodchem_2022_133314
crossref_primary_10_5219_1234
crossref_primary_10_1111_jfpe_13485
crossref_primary_10_1016_j_foodres_2019_02_019
crossref_primary_10_1016_j_fbp_2021_11_005
crossref_primary_10_1038_s41598_024_79712_5
crossref_primary_10_1016_j_fbio_2023_102736
crossref_primary_10_1111_jfpp_13942
crossref_primary_10_1111_1750_3841_15009
crossref_primary_10_1007_s11947_024_03348_6
crossref_primary_10_1016_j_jspr_2022_101966
crossref_primary_10_1002_jsfa_11348
crossref_primary_10_1007_s12161_016_0702_4
crossref_primary_10_1016_j_lwt_2022_113452
crossref_primary_10_1007_s13197_020_04891_8
crossref_primary_10_3390_su9112009
crossref_primary_10_3390_foods13223642
crossref_primary_10_1016_j_ultsonch_2022_106225
crossref_primary_10_1080_10942912_2021_1953070
crossref_primary_10_1080_14786419_2024_2409385
crossref_primary_10_1016_j_solener_2023_111890
crossref_primary_10_3390_molecules26154597
crossref_primary_10_1108_BFJ_11_2020_1061
crossref_primary_10_1051_matecconf_201819203023
crossref_primary_10_1007_s11130_023_01109_y
crossref_primary_10_1007_s11694_019_00117_4
crossref_primary_10_1007_s10973_021_11108_3
crossref_primary_10_1515_ijfe_2020_0009
crossref_primary_10_3390_horticulturae7010010
crossref_primary_10_3390_pr7100745
crossref_primary_10_1111_jfpe_14223
crossref_primary_10_1002_jsfa_14189
crossref_primary_10_1016_j_foodres_2022_111277
crossref_primary_10_1111_jfbc_13875
crossref_primary_10_1111_jfpe_13252
crossref_primary_10_1007_s12393_017_9165_7
crossref_primary_10_1016_j_indcrop_2020_113167
crossref_primary_10_1016_j_indcrop_2024_120020
crossref_primary_10_1186_s43014_023_00217_1
crossref_primary_10_1590_1678_4499_20240090
crossref_primary_10_3390_molecules29112561
crossref_primary_10_1007_s11696_023_03244_x
crossref_primary_10_1016_j_heliyon_2023_e19166
crossref_primary_10_1016_j_lwt_2023_114510
crossref_primary_10_1080_07373937_2021_1998105
crossref_primary_10_1007_s00217_018_3067_7
crossref_primary_10_1007_s00231_023_03426_z
crossref_primary_10_1080_07373937_2022_2087184
crossref_primary_10_1016_j_jfoodeng_2018_08_008
crossref_primary_10_3390_separations10030186
crossref_primary_10_1016_j_jchromb_2018_02_020
crossref_primary_10_1007_s11947_021_02715_x
crossref_primary_10_1016_j_lwt_2018_11_076
crossref_primary_10_3390_foods12061283
crossref_primary_10_1007_s42853_020_00056_9
crossref_primary_10_1007_s11694_019_00334_x
crossref_primary_10_3390_app142210655
crossref_primary_10_3934_agrfood_2022013
crossref_primary_10_1111_jfpp_15988
crossref_primary_10_3390_foods13010104
crossref_primary_10_1007_s11694_016_9372_6
crossref_primary_10_1080_0972060X_2018_1444512
crossref_primary_10_1016_j_afres_2023_100305
crossref_primary_10_1039_C7FO01354J
crossref_primary_10_1016_j_ijbiomac_2022_01_021
crossref_primary_10_1111_jfpp_15503
crossref_primary_10_3390_foods12213897
crossref_primary_10_1016_j_foodres_2022_111043
crossref_primary_10_1080_07373937_2020_1741006
crossref_primary_10_1038_s41538_022_00166_y
crossref_primary_10_18311_jnr_2022_31385
crossref_primary_10_1080_07373937_2017_1399415
crossref_primary_10_1016_j_lwt_2023_115159
crossref_primary_10_1016_j_ijrefrig_2025_01_034
crossref_primary_10_1016_j_lwt_2023_114862
crossref_primary_10_1016_j_lwt_2021_111238
crossref_primary_10_3233_JCM_247143
crossref_primary_10_1007_s13197_019_04081_1
crossref_primary_10_1080_10495398_2024_2425656
crossref_primary_10_1080_07373937_2023_2217252
crossref_primary_10_1038_s41598_023_39883_z
crossref_primary_10_1007_s10341_021_00555_9
crossref_primary_10_1080_07373937_2023_2184380
crossref_primary_10_1007_s12393_025_09398_6
crossref_primary_10_1016_j_fbio_2020_100742
crossref_primary_10_1016_j_heliyon_2024_e30936
crossref_primary_10_1111_jfpp_15994
crossref_primary_10_1016_j_foodchem_2016_01_110
crossref_primary_10_1016_j_lwt_2017_04_015
crossref_primary_10_3390_app14209183
crossref_primary_10_1016_j_ifset_2018_05_021
crossref_primary_10_1002_jsfa_10284
crossref_primary_10_3390_foods9010087
crossref_primary_10_1080_23311932_2024_2420843
crossref_primary_10_3389_fphar_2023_1006265
crossref_primary_10_18185_erzifbed_801731
crossref_primary_10_1016_j_foodchem_2019_125477
crossref_primary_10_1002_fsn3_1878
crossref_primary_10_1111_jfbc_13819
crossref_primary_10_3390_molecules24030469
crossref_primary_10_1016_j_lwt_2019_108913
crossref_primary_10_1016_j_lwt_2021_111105
crossref_primary_10_1016_j_foodchem_2023_136340
crossref_primary_10_1016_j_cofs_2018_12_004
crossref_primary_10_1016_j_lwt_2021_110933
crossref_primary_10_11002_kjfp_2019_26_5_545
crossref_primary_10_1007_s11694_021_01273_2
crossref_primary_10_1080_07373937_2019_1599905
crossref_primary_10_2174_1570180819666220816115506
crossref_primary_10_1016_j_jmst_2025_01_044
crossref_primary_10_1016_j_csite_2024_104334
crossref_primary_10_3390_foods10040868
crossref_primary_10_3390_ani10030452
crossref_primary_10_3390_foods13071096
crossref_primary_10_1080_10942912_2023_2194576
crossref_primary_10_3390_molecules28010412
crossref_primary_10_1208_s12249_018_1165_2
crossref_primary_10_1016_j_jarmap_2020_100262
crossref_primary_10_3390_foods13020260
crossref_primary_10_3923_ijps_2020_169_175
crossref_primary_10_1016_j_lwt_2020_109354
crossref_primary_10_1055_a_2283_8147
crossref_primary_10_1016_j_afres_2022_100182
crossref_primary_10_1016_j_foodchem_2020_128404
crossref_primary_10_1016_j_clnesp_2020_10_001
crossref_primary_10_1016_j_fochx_2023_100987
crossref_primary_10_1016_j_fpsl_2022_100897
crossref_primary_10_1155_2021_6635199
crossref_primary_10_3923_ijps_2023_17_23
crossref_primary_10_3390_foods12061198
crossref_primary_10_1080_10408398_2017_1399103
crossref_primary_10_1016_j_fbp_2021_02_016
crossref_primary_10_1590_fst_04518
crossref_primary_10_1080_10408398_2022_2082371
crossref_primary_10_1016_j_foodchem_2016_07_180
crossref_primary_10_3389_fnut_2023_1142784
crossref_primary_10_5114_bta_2021_111105
crossref_primary_10_1016_j_fochx_2023_100807
crossref_primary_10_15835_nbha50112619
crossref_primary_10_3390_foods11213486
crossref_primary_10_1016_j_foodres_2022_112051
crossref_primary_10_1016_j_heliyon_2021_e06560
crossref_primary_10_1080_0972060X_2022_2152739
crossref_primary_10_3390_foods11213484
crossref_primary_10_3390_foods11111611
crossref_primary_10_3390_life14091204
crossref_primary_10_1016_j_jfca_2024_106057
crossref_primary_10_1016_j_microc_2025_113333
crossref_primary_10_21603_2074_9414_2021_1_170_178
crossref_primary_10_3390_horticulturae9030306
crossref_primary_10_1016_j_crfs_2023_100651
crossref_primary_10_1080_07373937_2018_1510417
crossref_primary_10_1080_07373937_2020_1803351
crossref_primary_10_1080_07373937_2020_1851707
crossref_primary_10_1111_jfpp_13526
crossref_primary_10_3390_agronomy12112763
crossref_primary_10_1080_10408398_2020_1816891
crossref_primary_10_3390_molecules23020380
crossref_primary_10_3390_plants11111487
crossref_primary_10_1016_j_indcrop_2024_119482
crossref_primary_10_1016_j_lwt_2021_112804
crossref_primary_10_1080_07373937_2018_1546733
crossref_primary_10_1016_j_ijgfs_2023_100793
crossref_primary_10_1007_s11947_024_03403_2
crossref_primary_10_3389_fnut_2022_1043175
crossref_primary_10_1111_1750_3841_16264
crossref_primary_10_1007_s44187_024_00223_3
crossref_primary_10_1016_j_fpsl_2022_100917
crossref_primary_10_1016_j_heliyon_2019_e01717
crossref_primary_10_1016_j_fbp_2019_04_010
crossref_primary_10_1016_j_lwt_2024_116225
crossref_primary_10_1016_j_indcrop_2020_112210
crossref_primary_10_1016_j_foodchem_2017_07_106
crossref_primary_10_1007_s11694_022_01435_w
crossref_primary_10_1016_j_indcrop_2023_117350
crossref_primary_10_1016_j_indcrop_2018_06_087
crossref_primary_10_1016_j_indcrop_2025_120569
crossref_primary_10_1111_1750_3841_14790
crossref_primary_10_3390_molecules27217223
crossref_primary_10_1016_j_foodchem_2021_130483
crossref_primary_10_1080_07373937_2022_2125526
crossref_primary_10_1016_j_nantod_2023_101963
crossref_primary_10_2174_1573401318666221003110058
crossref_primary_10_1002_fsn3_948
crossref_primary_10_1080_07373937_2024_2303580
crossref_primary_10_1111_ijfs_17555
crossref_primary_10_3389_fnut_2022_809621
crossref_primary_10_1007_s40003_018_0382_y
crossref_primary_10_1016_j_heliyon_2020_e04163
crossref_primary_10_1080_07373937_2021_1871917
crossref_primary_10_1016_j_foodres_2018_04_066
crossref_primary_10_3390_molecules26237189
crossref_primary_10_3390_pr10040702
crossref_primary_10_3390_foods10112756
crossref_primary_10_1016_j_indcrop_2021_114048
crossref_primary_10_1016_j_matpr_2022_02_052
crossref_primary_10_1080_07373937_2018_1539745
crossref_primary_10_1111_jfbc_12832
crossref_primary_10_1016_j_fshw_2021_11_014
crossref_primary_10_1016_j_fshw_2022_07_030
crossref_primary_10_1016_j_foodchem_2022_133148
crossref_primary_10_1111_jfpe_14504
crossref_primary_10_1590_1413_7054201943025318
crossref_primary_10_1016_j_heliyon_2024_e24165
crossref_primary_10_1111_jfpe_13535
crossref_primary_10_1007_s11694_024_02843_w
crossref_primary_10_1007_s12393_020_09215_2
crossref_primary_10_1007_s13197_019_03700_1
crossref_primary_10_3390_foods12061311
crossref_primary_10_1007_s11947_021_02646_7
crossref_primary_10_1016_j_foodchem_2025_143041
crossref_primary_10_1016_j_indcrop_2023_117463
crossref_primary_10_1016_j_lwt_2024_116241
Cites_doi 10.1080/10412905.2007.9699240
10.1016/j.foodchem.2010.11.022
10.1007/s11947-012-0877-7
10.1021/jf00059a031
10.1248/yakushi1947.113.10_712
10.1016/j.foodchem.2011.06.026
10.1016/j.foodchem.2008.02.016
10.1016/j.foodchem.2014.09.162
10.1021/jf020635c
10.1016/S0076-6879(99)99017-1
10.1016/S0260-8774(03)00251-6
10.1002/jps.1116
10.1016/S0021-9673(00)01217-6
10.1016/j.tifs.2006.04.011
10.1016/j.fbp.2011.10.003
10.1016/j.jpba.2006.06.037
10.1080/07373939908917542
10.1080/07373937.2011.634976
10.1111/j.1365-2621.2012.03104.x
10.1080/07373937.2011.589554
10.1016/j.foodchem.2004.10.054
10.1002/(SICI)1097-0010(20000115)80:2<209::AID-JSFA516>3.0.CO;2-8
10.1016/j.biosystemseng.2009.05.010
10.1021/jf0115589
10.1016/j.lwt.2006.12.013
10.1016/j.foodchem.2006.06.023
10.1007/s11947-010-0353-1
10.1021/jf990146l
10.1081/DRT-120015585
10.1054/plef.2002.0441
10.1021/jf9801973
10.1016/j.foodchem.2013.05.053
10.1016/j.fct.2006.11.002
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright © 2015 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Ltd
– notice: Copyright © 2015 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.foodchem.2015.11.033
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
EndPage 1300
ExternalDocumentID 26675871
10_1016_j_foodchem_2015_11_033
S0308814615301783
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
SCB
SEW
SSH
VH1
WUQ
Y6R
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c467t-a3d27ae84f000ed024a26c3a41a84bd43d6b67ef725f011890b53f86bb4089083
IEDL.DBID .~1
ISSN 0308-8146
IngestDate Mon Jul 21 10:50:36 EDT 2025
Thu Jul 10 22:20:29 EDT 2025
Thu Apr 03 07:00:04 EDT 2025
Tue Jul 01 04:34:09 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Fri Feb 23 02:24:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 10-Gingerol (PubChem CID: 168115)
6-Gingerol (PubChem CID: 442793)
2,2-Diphenyl-1-picrylhydrazyl (PubChem CID: 74358)
Antioxidant activity
α-Curcumene (PubChem CID: 3083834)
Ginger
Zingerone (PubChem CID: 31211)
β-Bisabolene (PubChem CID: 10104370)
Volatiles
6-Shogaol (PubChem CID: 5281794)
β-Phellandrene (PubChem CID: 11142)
8-Gingerol (PubChem CID: 168114)
2,2′-Azinobis (3-ethylbenzo thiazoline-6-sulfonic acid) diammonium salt (ABTS) (PubChem CID: 9570474)
Intermittent microwave & convective drying
Microstructure
Language English
License Copyright © 2015 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c467t-a3d27ae84f000ed024a26c3a41a84bd43d6b67ef725f011890b53f86bb4089083
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 26675871
PQID 1750434511
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1836640862
proquest_miscellaneous_1750434511
pubmed_primary_26675871
crossref_primary_10_1016_j_foodchem_2015_11_033
crossref_citationtrail_10_1016_j_foodchem_2015_11_033
elsevier_sciencedirect_doi_10_1016_j_foodchem_2015_11_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-15
PublicationDateYYYYMMDD 2016-04-15
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mishra, Gauta, Sharma (b0105) 2004; 69
Chan, Lim, Wong, Lianto, Wong, Lim, Lim (b0025) 2008; 109
Gunasekaran (b0050) 1999; 17
Stoilova, Krastanov, Stoyanova, Denev, Gargova (b0170) 2007; 102
Liapis, Bruttini (b0095) 1995; Vol. 1
Zhang, Tang, Mujumdar, Wang (b0200) 2006; 17
Puengphian, Sirichote (b0130) 2008; 1
Kaensup, Chutima, Wongwises (b0075) 2002; 20
Gümüşay, Borazan, Ercal, Demirkol (b0045) 2015; 173
Asami, Hong, Barret, Mitchell (b0005) 2003; 51
Shukla, Singh (b0150) 2007; 45
Hinneburg, Damien, Hiltunen (b0060) 2006; 97
Toor, Savage (b0180) 2006; 94
Sellami, Wannes, Bettaieb, Berrima, Chahed, Marzouk, Limam (b0145) 2011; 126
Yoshikawa, Chatani, Hatakeyama, Nishino, Yamahara, Murakami (b0190) 1993; 113
Bartley, Jacobs (b0015) 2000; 80
Thomson, Al-Qattan, Al-Sawan, Alnaqeeb, Khan, Ali (b0175) 2002; 67
Huang, Chung, Wang, Law, Chen (b0065) 2011; 29
Nishimura (b0120) 1995; 43
Nirmala Menon, Padmakumari, Sankari Kutty, Sumathikutty, Sreekumar, Arumugham (b0115) 2007; 19
Ding, An, Zhao, Li, Guo, Wang (b0040) 2012; 90
Cheng, Liu, Peng, Qi, Li (b0030) 2011; 129
Larsen, Ibrahim, Khaw, Saw (b0090) 1999
Schieber, Keller, Carle (b0135) 2001; 910
Guo, Wu, Du, Zhang, Yang (b0055) 2014; 16
Soysal, Ayhan, Eştürk, Arıkan (b0165) 2009; 103
Dewanto, Wu, Adom, Liu (b0035) 2002; 50
Mujumdar, Law (b0110) 2010; 3
Sellami, Rahali, Rebey, Bourgou, Limam, Marzouk (b0140) 2013; 6
Velioglu, Mazza, Gao, Oomah (b0185) 1998; 46
Bhattarai, Tran, Duke (b0020) 2001; 90
Kubra, Rao (b0085) 2012; 47
Lim, Murtijaya (b0100) 2007; 40
Huang, Wang, Chu, Qin (b0070) 2012; 30
Sogi, Siddiq, Greiby, Dolan (b0160) 2013; 141
Yu, Huang, Yang, Liu, Duan (b0195) 2007; 43
Singleton, Orthofer, Lamuela-Raventos (b0155) 1999; 299
Azian, Mustafa Kamal, Azlina (b0010) 2004; 62
Kähkönen, Hopia, Vuorela, Rauha, Pihlaja, Kujala, Heinonen (b0080) 1999; 47
Niwa, Kanoh, Kasama, Neigishi (b0125) 1988; 14
Lim (10.1016/j.foodchem.2015.11.033_b0100) 2007; 40
Huang (10.1016/j.foodchem.2015.11.033_b0065) 2011; 29
Kähkönen (10.1016/j.foodchem.2015.11.033_b0080) 1999; 47
Sogi (10.1016/j.foodchem.2015.11.033_b0160) 2013; 141
Nishimura (10.1016/j.foodchem.2015.11.033_b0120) 1995; 43
Larsen (10.1016/j.foodchem.2015.11.033_b0090) 1999
Yu (10.1016/j.foodchem.2015.11.033_b0195) 2007; 43
Yoshikawa (10.1016/j.foodchem.2015.11.033_b0190) 1993; 113
Mujumdar (10.1016/j.foodchem.2015.11.033_b0110) 2010; 3
Kaensup (10.1016/j.foodchem.2015.11.033_b0075) 2002; 20
Guo (10.1016/j.foodchem.2015.11.033_b0055) 2014; 16
Shukla (10.1016/j.foodchem.2015.11.033_b0150) 2007; 45
Zhang (10.1016/j.foodchem.2015.11.033_b0200) 2006; 17
Dewanto (10.1016/j.foodchem.2015.11.033_b0035) 2002; 50
Thomson (10.1016/j.foodchem.2015.11.033_b0175) 2002; 67
Bartley (10.1016/j.foodchem.2015.11.033_b0015) 2000; 80
Singleton (10.1016/j.foodchem.2015.11.033_b0155) 1999; 299
Azian (10.1016/j.foodchem.2015.11.033_b0010) 2004; 62
Nirmala Menon (10.1016/j.foodchem.2015.11.033_b0115) 2007; 19
Kubra (10.1016/j.foodchem.2015.11.033_b0085) 2012; 47
Niwa (10.1016/j.foodchem.2015.11.033_b0125) 1988; 14
Liapis (10.1016/j.foodchem.2015.11.033_b0095) 1995; Vol. 1
Gunasekaran (10.1016/j.foodchem.2015.11.033_b0050) 1999; 17
Soysal (10.1016/j.foodchem.2015.11.033_b0165) 2009; 103
Sellami (10.1016/j.foodchem.2015.11.033_b0145) 2011; 126
Mishra (10.1016/j.foodchem.2015.11.033_b0105) 2004; 69
Toor (10.1016/j.foodchem.2015.11.033_b0180) 2006; 94
Bhattarai (10.1016/j.foodchem.2015.11.033_b0020) 2001; 90
Puengphian (10.1016/j.foodchem.2015.11.033_b0130) 2008; 1
Cheng (10.1016/j.foodchem.2015.11.033_b0030) 2011; 129
Sellami (10.1016/j.foodchem.2015.11.033_b0140) 2013; 6
Hinneburg (10.1016/j.foodchem.2015.11.033_b0060) 2006; 97
Ding (10.1016/j.foodchem.2015.11.033_b0040) 2012; 90
Huang (10.1016/j.foodchem.2015.11.033_b0070) 2012; 30
Velioglu (10.1016/j.foodchem.2015.11.033_b0185) 1998; 46
Chan (10.1016/j.foodchem.2015.11.033_b0025) 2008; 109
Stoilova (10.1016/j.foodchem.2015.11.033_b0170) 2007; 102
Asami (10.1016/j.foodchem.2015.11.033_b0005) 2003; 51
Gümüşay (10.1016/j.foodchem.2015.11.033_b0045) 2015; 173
Schieber (10.1016/j.foodchem.2015.11.033_b0135) 2001; 910
References_xml – volume: 30
  start-page: 248
  year: 2012
  end-page: 255
  ident: b0070
  article-title: Effect of oven drying, microwave drying, and silica gel drying methods on the volatile components of ginger (
  publication-title: Drying Technology
– volume: 910
  start-page: 265
  year: 2001
  end-page: 273
  ident: b0135
  article-title: Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography
  publication-title: Journal of Chromatography A
– volume: 173
  start-page: 156
  year: 2015
  end-page: 162
  ident: b0045
  article-title: Drying effects on the antioxidant properties of tomatoes and ginger
  publication-title: Food Chemistry
– volume: 103
  start-page: 455
  year: 2009
  end-page: 463
  ident: b0165
  article-title: Intermittent microwave-convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality
  publication-title: Biosystem Engineering
– volume: 97
  start-page: 122
  year: 2006
  end-page: 129
  ident: b0060
  article-title: Antioxidant activities of extracts from selected culinary herbs and spices
  publication-title: ASEAN Food Journal
– volume: 43
  start-page: 24
  year: 2007
  end-page: 31
  ident: b0195
  article-title: Development of gas chromatography–mass spectrometry with microwave distillation and simultaneous solid-phase micro-extraction for rapid determination of volatile constituents in ginger
  publication-title: Journal of Pharmaceutical and Biomedical Analysis
– volume: 17
  start-page: 524
  year: 2006
  end-page: 534
  ident: b0200
  article-title: Trends in microwave related drying of fruits and vegetables
  publication-title: Trends in Food Science & Technology
– volume: 1
  start-page: 29
  year: 2008
  end-page: 36
  ident: b0130
  article-title: [6]-Gingerol content and bioactive properties of ginger (
  publication-title: Asian Journal of Food and Agro-Industry
– volume: 102
  start-page: 764
  year: 2007
  end-page: 770
  ident: b0170
  article-title: Antioxidant activity of a ginger extract (
  publication-title: Food Chemistry
– volume: 6
  start-page: 806
  year: 2013
  end-page: 817
  ident: b0140
  article-title: Total phenolics, flavonoids, and antioxidant activity of sage (
  publication-title: Food and Bioprocess Technology
– volume: 47
  start-page: 3954
  year: 1999
  end-page: 3962
  ident: b0080
  article-title: Antioxidant activity of plant extracts containing phenolic compounds
  publication-title: Journal of Agricultural Food Chemistry
– volume: 113
  start-page: 712
  year: 1993
  end-page: 717
  ident: b0190
  article-title: Crude drug processing by far-infrared treatment. II. Chemical fluctuation of the constituents during drying of
  publication-title: Yakugaku Zasshi
– volume: 29
  start-page: 1884
  year: 2011
  end-page: 1889
  ident: b0065
  article-title: Formation of 6-shogaol of ginger oil under different drying conditions
  publication-title: Drying Technology
– volume: 109
  start-page: 477
  year: 2008
  end-page: 483
  ident: b0025
  article-title: Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species
  publication-title: Food Chemistry
– volume: 40
  start-page: 1664
  year: 2007
  end-page: 1669
  ident: b0100
  article-title: Antioxidant properties of
  publication-title: LWT – Food Science and Technology
– volume: 67
  start-page: 475
  year: 2002
  end-page: 478
  ident: b0175
  article-title: The use of ginger (
  publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids
– volume: 19
  start-page: 105
  year: 2007
  end-page: 109
  ident: b0115
  article-title: Effect of processing on the flavor compounds of Indian fresh ginger (
  publication-title: Journal of Essential Oil Research
– volume: 299
  start-page: 152
  year: 1999
  end-page: 178
  ident: b0155
  article-title: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteau reagent
  publication-title: Oxidants and antioxidants part A
– volume: 90
  start-page: 515
  year: 2012
  end-page: 524
  ident: b0040
  article-title: Effect of drying methods on volatiles of Chinese ginger (
  publication-title: Food and Bioproducts Processing
– volume: 20
  start-page: 2067
  year: 2002
  end-page: 2079
  ident: b0075
  article-title: Experimental study on drying of chilli in a combined microwave-vacuum rotary drum dryer
  publication-title: Drying Technology
– volume: 50
  start-page: 3010
  year: 2002
  end-page: 3014
  ident: b0035
  article-title: Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 80
  start-page: 209
  year: 2000
  end-page: 215
  ident: b0015
  article-title: Effects of drying on flavour compounds in Australian-grown ginger (
  publication-title: Journal of the Science of Food and Agriculture
– volume: Vol. 1
  start-page: 309
  year: 1995
  end-page: 344
  ident: b0095
  article-title: Freeze drying
  publication-title: Handbook of industrial drying
– volume: 16
  start-page: 1063
  year: 2014
  end-page: 1072
  ident: b0055
  article-title: Comparative antioxidant properties of some gingerols and shogaols, and the relationship of their contents with the antioxidant potencies of fresh and dried ginger (
  publication-title: Journal of Agricultural Science and Technology
– volume: 43
  start-page: 2941
  year: 1995
  end-page: 2945
  ident: b0120
  article-title: Identification of the characteristic odorants in fresh rhizomes of ginger (
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 69
  start-page: 274
  year: 2004
  end-page: 279
  ident: b0105
  article-title: Shelf-life extension of fresh ginger (
  publication-title: Journal of Food Microbiology and Safety
– volume: 90
  start-page: 1658
  year: 2001
  end-page: 1664
  ident: b0020
  article-title: The stability of gingerol and shogaol in aqueous solutions
  publication-title: Journal of Pharmaceutical Sciences
– volume: 14
  start-page: 361
  year: 1988
  end-page: 372
  ident: b0125
  article-title: Activation of antioxidant activity in natural medicinal products by heating, brewing and lipophilization. A new drug delivery system
  publication-title: Drugs under Experimental and Clinical Research
– volume: 141
  start-page: 2649
  year: 2013
  end-page: 2655
  ident: b0160
  article-title: Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods
  publication-title: Food Chemistry
– volume: 94
  start-page: 90
  year: 2006
  end-page: 97
  ident: b0180
  article-title: Effect of semi-drying on the antioxidant components of tomatoes
  publication-title: Food Chemistry
– volume: 46
  start-page: 4113
  year: 1998
  end-page: 4117
  ident: b0185
  article-title: Antioxidative activity and total phenolics in selected fruits, vegetables and grain products
  publication-title: Journal of Agricultural Food Chemistry
– volume: 17
  start-page: 395
  year: 1999
  end-page: 412
  ident: b0050
  article-title: Pulsed microwave-vacuum drying of food materials
  publication-title: Drying Technology
– volume: 3
  start-page: 843
  year: 2010
  end-page: 852
  ident: b0110
  article-title: Drying technology: Trends and applications in postharvest processing
  publication-title: Food and Bioprocess Technology
– volume: 129
  start-page: 1785
  year: 2011
  end-page: 1792
  ident: b0030
  article-title: Steamed ginger (
  publication-title: Food Chemistry
– volume: 47
  start-page: 2311
  year: 2012
  end-page: 2317
  ident: b0085
  article-title: Microwave drying of ginger (
  publication-title: International Journal of Food Science and Technology
– year: 1999
  ident: b0090
  article-title: Gingers of Peninsular Malaysia and Singapore
– volume: 51
  start-page: 1237
  year: 2003
  end-page: 1241
  ident: b0005
  article-title: Comparison of the total phenolic and ascorbic content of freeze-dried and air dried marionberry, strawberry, and corn grown using conventional, organic and sustainable agricultural practices
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 62
  start-page: 359
  year: 2004
  end-page: 364
  ident: b0010
  article-title: Changes of cell structure in ginger during processing
  publication-title: Journal of Food Engineering
– volume: 126
  start-page: 691
  year: 2011
  end-page: 697
  ident: b0145
  article-title: Qualitative and quantitative changes in the essential oil of
  publication-title: Food Chemistry
– volume: 45
  start-page: 683
  year: 2007
  end-page: 690
  ident: b0150
  article-title: Cancer preventive properties of ginger: A brief review
  publication-title: Food and Chemical Toxicology
– volume: 19
  start-page: 105
  year: 2007
  ident: 10.1016/j.foodchem.2015.11.033_b0115
  article-title: Effect of processing on the flavor compounds of Indian fresh ginger (Zingiber officinale Rosc.)
  publication-title: Journal of Essential Oil Research
  doi: 10.1080/10412905.2007.9699240
– volume: 126
  start-page: 691
  year: 2011
  ident: 10.1016/j.foodchem.2015.11.033_b0145
  article-title: Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2010.11.022
– volume: 1
  start-page: 29
  issue: 1
  year: 2008
  ident: 10.1016/j.foodchem.2015.11.033_b0130
  article-title: [6]-Gingerol content and bioactive properties of ginger (Zingiber officinale Roscoe) extracts from supercritical CO2 extraction
  publication-title: Asian Journal of Food and Agro-Industry
– volume: 6
  start-page: 806
  issue: 3
  year: 2013
  ident: 10.1016/j.foodchem.2015.11.033_b0140
  article-title: Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods
  publication-title: Food and Bioprocess Technology
  doi: 10.1007/s11947-012-0877-7
– volume: 16
  start-page: 1063
  issue: 5
  year: 2014
  ident: 10.1016/j.foodchem.2015.11.033_b0055
  article-title: Comparative antioxidant properties of some gingerols and shogaols, and the relationship of their contents with the antioxidant potencies of fresh and dried ginger (Zingiber officinale Roscoe)
  publication-title: Journal of Agricultural Science and Technology
– volume: 97
  start-page: 122
  issue: 1
  year: 2006
  ident: 10.1016/j.foodchem.2015.11.033_b0060
  article-title: Antioxidant activities of extracts from selected culinary herbs and spices
  publication-title: ASEAN Food Journal
– volume: 43
  start-page: 2941
  issue: 11
  year: 1995
  ident: 10.1016/j.foodchem.2015.11.033_b0120
  article-title: Identification of the characteristic odorants in fresh rhizomes of ginger (Zingiber officinale Roscoe) using aroma extract dilution analysis and modified multidimensional gas chromatography–mass spectroscopy
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf00059a031
– volume: 113
  start-page: 712
  year: 1993
  ident: 10.1016/j.foodchem.2015.11.033_b0190
  article-title: Crude drug processing by far-infrared treatment. II. Chemical fluctuation of the constituents during drying of Zingiberis rhizoma
  publication-title: Yakugaku Zasshi
  doi: 10.1248/yakushi1947.113.10_712
– volume: 129
  start-page: 1785
  issue: 4
  year: 2011
  ident: 10.1016/j.foodchem.2015.11.033_b0030
  article-title: Steamed ginger (Zingiber officinale): Changed chemical profile and increased anticancer potential
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2011.06.026
– volume: 109
  start-page: 477
  issue: 3
  year: 2008
  ident: 10.1016/j.foodchem.2015.11.033_b0025
  article-title: Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2008.02.016
– volume: 173
  start-page: 156
  year: 2015
  ident: 10.1016/j.foodchem.2015.11.033_b0045
  article-title: Drying effects on the antioxidant properties of tomatoes and ginger
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2014.09.162
– volume: 51
  start-page: 1237
  year: 2003
  ident: 10.1016/j.foodchem.2015.11.033_b0005
  article-title: Comparison of the total phenolic and ascorbic content of freeze-dried and air dried marionberry, strawberry, and corn grown using conventional, organic and sustainable agricultural practices
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf020635c
– volume: 14
  start-page: 361
  year: 1988
  ident: 10.1016/j.foodchem.2015.11.033_b0125
  article-title: Activation of antioxidant activity in natural medicinal products by heating, brewing and lipophilization. A new drug delivery system
  publication-title: Drugs under Experimental and Clinical Research
– volume: 299
  start-page: 152
  year: 1999
  ident: 10.1016/j.foodchem.2015.11.033_b0155
  article-title: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteau reagent
  publication-title: Methods in Enzymology
  doi: 10.1016/S0076-6879(99)99017-1
– volume: Vol. 1
  start-page: 309
  year: 1995
  ident: 10.1016/j.foodchem.2015.11.033_b0095
  article-title: Freeze drying
– volume: 62
  start-page: 359
  year: 2004
  ident: 10.1016/j.foodchem.2015.11.033_b0010
  article-title: Changes of cell structure in ginger during processing
  publication-title: Journal of Food Engineering
  doi: 10.1016/S0260-8774(03)00251-6
– volume: 90
  start-page: 1658
  issue: 10
  year: 2001
  ident: 10.1016/j.foodchem.2015.11.033_b0020
  article-title: The stability of gingerol and shogaol in aqueous solutions
  publication-title: Journal of Pharmaceutical Sciences
  doi: 10.1002/jps.1116
– volume: 910
  start-page: 265
  year: 2001
  ident: 10.1016/j.foodchem.2015.11.033_b0135
  article-title: Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography
  publication-title: Journal of Chromatography A
  doi: 10.1016/S0021-9673(00)01217-6
– volume: 17
  start-page: 524
  issue: 10
  year: 2006
  ident: 10.1016/j.foodchem.2015.11.033_b0200
  article-title: Trends in microwave related drying of fruits and vegetables
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2006.04.011
– volume: 90
  start-page: 515
  issue: 3
  year: 2012
  ident: 10.1016/j.foodchem.2015.11.033_b0040
  article-title: Effect of drying methods on volatiles of Chinese ginger (Zingiber officinale Roscoe)
  publication-title: Food and Bioproducts Processing
  doi: 10.1016/j.fbp.2011.10.003
– volume: 43
  start-page: 24
  year: 2007
  ident: 10.1016/j.foodchem.2015.11.033_b0195
  article-title: Development of gas chromatography–mass spectrometry with microwave distillation and simultaneous solid-phase micro-extraction for rapid determination of volatile constituents in ginger
  publication-title: Journal of Pharmaceutical and Biomedical Analysis
  doi: 10.1016/j.jpba.2006.06.037
– volume: 17
  start-page: 395
  issue: 3
  year: 1999
  ident: 10.1016/j.foodchem.2015.11.033_b0050
  article-title: Pulsed microwave-vacuum drying of food materials
  publication-title: Drying Technology
  doi: 10.1080/07373939908917542
– volume: 30
  start-page: 248
  issue: 3
  year: 2012
  ident: 10.1016/j.foodchem.2015.11.033_b0070
  article-title: Effect of oven drying, microwave drying, and silica gel drying methods on the volatile components of ginger (Zingiber officinale Roscoe) by HS-SPME-GC–MS
  publication-title: Drying Technology
  doi: 10.1080/07373937.2011.634976
– year: 1999
  ident: 10.1016/j.foodchem.2015.11.033_b0090
– volume: 47
  start-page: 2311
  issue: 11
  year: 2012
  ident: 10.1016/j.foodchem.2015.11.033_b0085
  article-title: Microwave drying of ginger (Zingiber officinale Roscoe) and its effects on polyphenolic content and antioxidant activity
  publication-title: International Journal of Food Science and Technology
  doi: 10.1111/j.1365-2621.2012.03104.x
– volume: 29
  start-page: 1884
  year: 2011
  ident: 10.1016/j.foodchem.2015.11.033_b0065
  article-title: Formation of 6-shogaol of ginger oil under different drying conditions
  publication-title: Drying Technology
  doi: 10.1080/07373937.2011.589554
– volume: 94
  start-page: 90
  issue: 1
  year: 2006
  ident: 10.1016/j.foodchem.2015.11.033_b0180
  article-title: Effect of semi-drying on the antioxidant components of tomatoes
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2004.10.054
– volume: 80
  start-page: 209
  issue: 2
  year: 2000
  ident: 10.1016/j.foodchem.2015.11.033_b0015
  article-title: Effects of drying on flavour compounds in Australian-grown ginger (Zingiber officinale)
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/(SICI)1097-0010(20000115)80:2<209::AID-JSFA516>3.0.CO;2-8
– volume: 103
  start-page: 455
  year: 2009
  ident: 10.1016/j.foodchem.2015.11.033_b0165
  article-title: Intermittent microwave-convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality
  publication-title: Biosystem Engineering
  doi: 10.1016/j.biosystemseng.2009.05.010
– volume: 50
  start-page: 3010
  issue: 10
  year: 2002
  ident: 10.1016/j.foodchem.2015.11.033_b0035
  article-title: Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf0115589
– volume: 69
  start-page: 274
  issue: 9
  year: 2004
  ident: 10.1016/j.foodchem.2015.11.033_b0105
  article-title: Shelf-life extension of fresh ginger (Zingiber officinale) by gamma irradiation
  publication-title: Journal of Food Microbiology and Safety
– volume: 40
  start-page: 1664
  issue: 9
  year: 2007
  ident: 10.1016/j.foodchem.2015.11.033_b0100
  article-title: Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods
  publication-title: LWT – Food Science and Technology
  doi: 10.1016/j.lwt.2006.12.013
– volume: 102
  start-page: 764
  issue: 3
  year: 2007
  ident: 10.1016/j.foodchem.2015.11.033_b0170
  article-title: Antioxidant activity of a ginger extract (Zingiber officinale)
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2006.06.023
– volume: 3
  start-page: 843
  year: 2010
  ident: 10.1016/j.foodchem.2015.11.033_b0110
  article-title: Drying technology: Trends and applications in postharvest processing
  publication-title: Food and Bioprocess Technology
  doi: 10.1007/s11947-010-0353-1
– volume: 47
  start-page: 3954
  year: 1999
  ident: 10.1016/j.foodchem.2015.11.033_b0080
  article-title: Antioxidant activity of plant extracts containing phenolic compounds
  publication-title: Journal of Agricultural Food Chemistry
  doi: 10.1021/jf990146l
– volume: 20
  start-page: 2067
  issue: 10
  year: 2002
  ident: 10.1016/j.foodchem.2015.11.033_b0075
  article-title: Experimental study on drying of chilli in a combined microwave-vacuum rotary drum dryer
  publication-title: Drying Technology
  doi: 10.1081/DRT-120015585
– volume: 67
  start-page: 475
  issue: 6
  year: 2002
  ident: 10.1016/j.foodchem.2015.11.033_b0175
  article-title: The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent
  publication-title: Prostaglandins, Leukotrienes and Essential Fatty Acids
  doi: 10.1054/plef.2002.0441
– volume: 46
  start-page: 4113
  year: 1998
  ident: 10.1016/j.foodchem.2015.11.033_b0185
  article-title: Antioxidative activity and total phenolics in selected fruits, vegetables and grain products
  publication-title: Journal of Agricultural Food Chemistry
  doi: 10.1021/jf9801973
– volume: 141
  start-page: 2649
  issue: 3
  year: 2013
  ident: 10.1016/j.foodchem.2015.11.033_b0160
  article-title: Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2013.05.053
– volume: 45
  start-page: 683
  issue: 5
  year: 2007
  ident: 10.1016/j.foodchem.2015.11.033_b0150
  article-title: Cancer preventive properties of ginger: A brief review
  publication-title: Food and Chemical Toxicology
  doi: 10.1016/j.fct.2006.11.002
SSID ssj0002018
Score 2.634006
Snippet •Intermittent microwave & convection drying was first applied in ginger drying.•A systematic exploration of energy consumption and quality retention was...
Nowadays, food industry is facing challenges in preserving better quality of fruit and vegetable products after processing. Recently, many attentions have been...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1292
SubjectTerms air drying
Antioxidant activity
Antioxidants - chemistry
Antioxidants - pharmacology
Catechols - analysis
energy
Fatty Alcohols - analysis
Flavonoids - analysis
food industry
freeze drying
Freeze Drying - methods
fruit quality
Ginger
health promotion
Humans
Intermittent microwave & convective drying
Microstructure
Microwaves
Plant Extracts - pharmacology
Principal Component Analysis
rhizomes
vegetable products
volatile compounds
Volatiles
Volatilization
Zingiber officinale
Zingiber officinale - chemistry
Zingiber officinale - ultrastructure
Title Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure
URI https://dx.doi.org/10.1016/j.foodchem.2015.11.033
https://www.ncbi.nlm.nih.gov/pubmed/26675871
https://www.proquest.com/docview/1750434511
https://www.proquest.com/docview/1836640862
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqcoALgvK1FKpBQgikZjeJHcfhVi1UC4g9AJUqLpEd2yjVkqyardQT_4d_yUwSL3AoPXBKnNiKlRmPx_bMe4w9V3GlU09xYUWeRqKoZKRSXURVha5cnFid5JSc_HEpFyfi_Wl2usPmIReGwipH2z_Y9N5aj09m49-cret69pmQVmgDC8csccwT4qcQOWn59MfvMA_8oBpOElS_3fVHlvDZ1LetxX9DGelJNiU0T86vmqCuckD7iej4Drs9epBwNHTyLttxzR67OQ_EbXts8qZ2G3gBI-TnCpYBcR_rhUTk7h77Od9yEELrIVClbMCeU-4TDOTSHeBrYtl2nYNv_SYgvPxKNEcG7wYECuyPg09tV7Xu1WsYEhY6qBtA24eSX7nuEKoRmQBGlvBD0BRoeVlbvNLDNUV4U03dWPhOcYIDtu3FubvPTo7ffpkvopG5IarQ8G4izW2aa6eERwk4i36ATmXFtUi0EsYKbqWRufN5mnlKfS1ik3GvpDEixoLiD9hu0zbuEYPYWq2tMj6VnM54dUyA0NpImxhvTDJhWRBXWY2w5sSusSpD_NpZGcRckphxzVOimCdstm23HoA9rm1RBG0o_1LREmefa9s-C-pTojbQoYxuXHvRlQnh63NCiftHHcWlFLT4nLCHg-5t-4wOFi758uTxf_Run93CkqRDsiR7wnZRuu4p-lobc9APpgN24-jdh8XyF2pnLF0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQLgvJaymOQAIHU7ObpOEgc0JZqS9s9QCtVXIwdOyjVNlk1WwEX_g9n_iAzSbzAofSAesrLjpzMeDy2Z76PsafCz1VYUFxYloZenOXcE6HKvDxHV84PjApSSk7en_LJYfzuKDlaYT9dLgyFVfa2v7PprbXu74z6vzmal-XoAyGt0AIW9lnimHcM1rv22xectzWvd7ZQyM_CcPvtwXji9dQCXo6WYeGpyISpsiIu0CRYgwOVCnkeqThQItYmjgzXPLVFGiYF5WZmvk6iQnCtYx8vRITvvcKuxmguiDZh-P13XAl-oei2LkS7vvZHWvLxsKhrg8KgFPggGRJ8aBSdNyKe5_G2I9_2DXa9d1nhTfdXbrIVW62ztbFjiltng63SLuA59BijM5g6iH8s5zKfm1vsx3hJegh1AY6bZQHmlJKtoGOzbgAfE623bSx8blcd4cVH4lXSeNZBXmB7LLyvm7y2L19BlyHRQFkBGltUtZltNiHvoRCgpyXfBEWRnV9Lg0e6OaeQciqpKgMnFJjYgemendrb7PBS5HmHrVZ1Ze8x8I1RyghdhDyiTWXlEwK10twEutA6GLDEiUvmPY460XnMpAuYO5ZOzJLEjJMsiWIesNGy3rxDErmwRua0Qf7VJyQOdxfWfeLUR6I20C6Qqmx91siAAP0jgqX7RxkRcR7TbHfA7na6t2wzenQ4x0yD-__RusdsbXKwvyf3dqa7G-waPuG0QxckD9gqSto-REdvoR-1HQvYp8vuyb8AVFhm5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+different+drying+methods+on+Chinese+ginger+%28Zingiber+officinale+Roscoe%29%3A+Changes+in+volatiles%2C+chemical+profile%2C+antioxidant+properties%2C+and+microstructure&rft.jtitle=Food+chemistry&rft.au=An%2C+Kejing&rft.au=Zhao%2C+Dandan&rft.au=Wang%2C+Zhengfu&rft.au=Wu%2C+Jijun&rft.date=2016-04-15&rft.eissn=1873-7072&rft.volume=197+Pt+B&rft.spage=1292&rft_id=info:doi/10.1016%2Fj.foodchem.2015.11.033&rft_id=info%3Apmid%2F26675871&rft.externalDocID=26675871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon