Recent advances in nano-enabled agriculture for improving plant performance
Nano-enabled agriculture is an emerging hot topic. To facilitate the development of nano-enabled agriculture, reviews addressing or discussing the applications, knowledge gap, future research needs, and possible new research field of plant nanobiotechnology in agricultural production are encouraged....
Saved in:
Published in | The Crop journal Vol. 10; no. 1; pp. 1 - 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2022
KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nano-enabled agriculture is an emerging hot topic. To facilitate the development of nano-enabled agriculture, reviews addressing or discussing the applications, knowledge gap, future research needs, and possible new research field of plant nanobiotechnology in agricultural production are encouraged. Here we review the following topics in plant nanobiotechnology for agriculture: 1) improving stress tolerance, 2) stress sensing and early detection, 3) targeted delivery and controlled release of agrochemicals, 4) transgenic events in non-model crop species, and 5) seed nanopriming. We discuss the knowledge gaps in these topics. Besides the use of nanomaterials for harvesting more electrons to improve photosynthetic performance, they could be used to convert nIR and UV to visible light to expand the light spectrum for photosynthesis. We discuss this approach to maintaining plant photosynthesis under light-insufficient conditions. Our aim in this review is to aid researchers to learn quickly how to use plant nanobiotechnology for improving agricultural production. |
---|---|
AbstractList | Nano-enabled agriculture is an emerging hot topic. To facilitate the development of nano-enabled agriculture, reviews addressing or discussing the applications, knowledge gap, future research needs, and possible new research field of plant nanobiotechnology in agricultural production are encouraged. Here we review the following topics in plant nanobiotechnology for agriculture: 1) improving stress tolerance, 2) stress sensing and early detection, 3) targeted delivery and controlled release of agrochemicals, 4) transgenic events in non-model crop species, and 5) seed nanopriming. We discuss the knowledge gaps in these topics. Besides the use of nanomaterials for harvesting more electrons to improve photosynthetic performance, they could be used to convert nIR and UV to visible light to expand the light spectrum for photosynthesis. We discuss this approach to maintaining plant photosynthesis under light-insufficient conditions. Our aim in this review is to aid researchers to learn quickly how to use plant nanobiotechnology for improving agricultural production. |
Author | Wu, Honghong Li, Zhaohu |
Author_xml | – sequence: 1 givenname: Honghong surname: Wu fullname: Wu, Honghong email: honghong.wu@mail.hzau.edu.cn organization: MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China – sequence: 2 givenname: Zhaohu surname: Li fullname: Li, Zhaohu email: lizhaohu@cau.edu.cn organization: MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China |
BookMark | eNp9kc2LFDEQxYOs4Lru3WMfvXRbSeej25ssui4uCKLnUJ1UD2l6kjHpGfC_N-MoiKCnKor6PerVe86uYorE2EsOHQeuXy-dWzoBgnegOwDxhF0LwWWruORXf_TP2G0pCwDwXkqh4Zp9_EyO4tagP2F0VJoQm4gxtRRxWsk3uMvBHdftmKmZU27C_pDTKcRdc1ixggfKdbw_wy_Y0xnXQre_6g37-v7dl7sP7eOn-4e7t4-tk9ps7eiEBBhGP4gZyYPsAZRUko_GDMb4eRJq0DgSCTMKz42ZnFeqnzgOI0jX37CHi65PuNhDDnvM323CYH8OUt5ZzFtwK9kZUOtBz9OEgySlBiDS3vDRIXGcsWq9umhVV9-OVDa7D8XRWr1ROhYrdK-lGqWRdVVfVl1OpWSarQsbbiHFLWNYLQd7DsMu1i32HIYFbWsYFYS_wN83_wd5c0Go_vEUKNviAtUf-5DJbdVo-Df8AwWZof4 |
CitedBy_id | crossref_primary_10_1186_s12951_021_01176_w crossref_primary_10_1021_acsanm_2c05384 crossref_primary_10_1016_j_bcab_2024_103117 crossref_primary_10_1016_j_crope_2023_12_002 crossref_primary_10_1016_j_susmat_2023_e00809 crossref_primary_10_1007_s10142_024_01485_x crossref_primary_10_1016_j_mseb_2024_117383 crossref_primary_10_1016_j_rhisph_2023_100792 crossref_primary_10_1016_j_susmat_2022_e00493 crossref_primary_10_1007_s13762_023_04795_y crossref_primary_10_1186_s12951_022_01509_3 crossref_primary_10_1039_D1EN00845E crossref_primary_10_1007_s44154_022_00065_y crossref_primary_10_1016_j_crope_2023_03_002 crossref_primary_10_1039_D3SC06122A crossref_primary_10_1186_s12951_023_02135_3 crossref_primary_10_1016_j_jia_2024_05_028 crossref_primary_10_1021_acsagscitech_4c00651 crossref_primary_10_32615_ps_2021_049 crossref_primary_10_1002_gch2_202400008 crossref_primary_10_1007_s00425_021_03727_9 crossref_primary_10_1016_j_aac_2022_12_002 crossref_primary_10_29235_1029_8940_2023_68_4_332_344 crossref_primary_10_1016_j_mtbio_2023_100759 crossref_primary_10_1051_rees_2023014 crossref_primary_10_1016_j_matpr_2022_09_306 crossref_primary_10_1016_j_plana_2024_100095 crossref_primary_10_3390_nano13131978 crossref_primary_10_3390_plants12213744 crossref_primary_10_1007_s11356_023_26482_8 crossref_primary_10_1021_acsami_4c11833 crossref_primary_10_1016_j_biortech_2023_129987 crossref_primary_10_3390_plants11040511 crossref_primary_10_3389_fpls_2022_1098772 crossref_primary_10_1016_j_heliyon_2022_e12207 crossref_primary_10_1016_j_plana_2022_100003 crossref_primary_10_3389_fpls_2022_843575 crossref_primary_10_1016_j_plana_2022_100008 crossref_primary_10_1002_gch2_202200025 crossref_primary_10_1016_j_onano_2023_100198 crossref_primary_10_1093_pcp_pcac147 crossref_primary_10_3390_plants14020233 crossref_primary_10_1071_FP23196 crossref_primary_10_1016_j_jclepro_2022_133729 crossref_primary_10_1016_j_stress_2024_100652 crossref_primary_10_1016_j_indcrop_2025_120523 crossref_primary_10_1007_s12668_024_01413_0 crossref_primary_10_1039_D1EN00390A crossref_primary_10_1039_D2EN00688J crossref_primary_10_1016_j_ccr_2024_216299 crossref_primary_10_1007_s11240_024_02875_6 crossref_primary_10_1016_j_stress_2024_100411 crossref_primary_10_1039_D3EN00173C crossref_primary_10_1016_j_cis_2025_103414 crossref_primary_10_1002_slct_202403065 crossref_primary_10_1039_D4EN00963K crossref_primary_10_1016_j_chemosphere_2022_134474 crossref_primary_10_1039_D4EN00520A crossref_primary_10_1007_s13562_024_00925_w crossref_primary_10_1016_j_scitotenv_2023_168640 crossref_primary_10_1016_j_sajb_2023_09_022 crossref_primary_10_1016_j_sajb_2024_02_035 crossref_primary_10_1007_s44177_022_00029_x crossref_primary_10_1021_acs_langmuir_3c01515 crossref_primary_10_1021_acs_jafc_3c09646 crossref_primary_10_3390_ijms24065121 crossref_primary_10_1021_acsnano_2c02162 crossref_primary_10_1186_s12870_023_04046_9 crossref_primary_10_1021_acsnano_3c05182 crossref_primary_10_1186_s12951_024_02733_9 crossref_primary_10_3389_fpls_2022_946717 crossref_primary_10_4028_p_7adOG1 crossref_primary_10_3390_nano14231874 crossref_primary_10_1002_smll_202304237 crossref_primary_10_3389_fpls_2022_865048 crossref_primary_10_3390_f14010163 crossref_primary_10_1016_j_bios_2024_116261 |
Cites_doi | 10.1021/acs.jafc.7b02178 10.1186/s11671-017-1839-9 10.1038/am.2013.88 10.1038/s41565-019-0470-6 10.1002/smll.201403276 10.1039/C4EN00138A 10.1186/s12951-016-0199-4 10.1104/pp.110.166181 10.1021/acs.biomac.0c00487 10.1021/acsnano.0c03140 10.1021/nn4034794 10.1094/PHYTO-01-15-0006-R 10.1186/s12951-019-0533-8 10.1038/nmat3890 10.1094/PHYTO-08-12-0183-R 10.1016/j.jhazmat.2020.124534 10.1039/b922024k 10.1104/pp.17.00857 10.1016/j.tplants.2011.08.003 10.1021/acs.jafc.7b02150 10.1111/nph.12797 10.1146/annurev-anchem-061417-125747 10.1038/s41565-019-0463-5 10.1021/acssuschemeng.9b02180 10.1007/s11051-015-2907-7 10.1038/s41467-020-17029-3 10.1039/D0EN00214C 10.1016/j.tplants.2016.08.002 10.1039/C8EN00323H 10.1021/acsomega.8b01894 10.1016/j.taap.2017.05.025 10.1016/j.jplph.2017.05.007 10.1021/acssuschemeng.9b04800 10.1104/pp.20.00733 10.1021/acs.jafc.8b01727 10.1039/D0RA02156C 10.1038/s41565-019-0382-5 10.1002/smll.202000705 10.1039/C9EN00265K 10.1071/EN19254 10.1021/cm061580n 10.1080/03650340.2020.1723003 10.1021/acsami.8b07179 10.1038/pj.2014.40 10.1016/j.carbon.2013.11.072 10.1016/j.envpol.2017.01.002 10.1016/j.ccr.2019.213042 10.1016/j.chemosphere.2018.09.120 10.1021/acsnano.9b09178 10.1073/pnas.1610359113 10.1021/acssuschemeng.8b03379 10.1038/s41467-017-00074-w 10.1080/01904167.2020.1750647 10.1016/j.ijbiomac.2015.01.027 10.1039/C1CS15188F 10.1021/acs.jafc.8b01600 10.1038/s41565-021-00854-y 10.1021/acs.jafc.7b01957 10.1038/ncomms12699 10.1073/pnas.1319955111 10.1038/s41565-019-0475-1 10.1038/s41586-019-1449-z 10.1038/s41565-020-0706-5 10.1021/acsomega.9b03680 10.1038/s41565-019-0375-4 10.1038/s43016-020-0051-8 10.1186/s12951-021-00892-7 10.1038/nnano.2007.260 10.1002/admt.201700223 10.1073/pnas.1818290116 10.1016/j.envres.2019.109099 10.1038/nplants.2016.207 10.1007/s12575-009-9008-x 10.1021/acsnano.7b05723 10.1038/s41477-020-0632-4 10.1093/jxb/erv490 10.1016/j.febslet.2014.08.026 10.2134/agronj2005.0001 10.1016/j.envpol.2016.09.060 10.1038/s41396-020-0670-y 10.3390/ijerph8051402 10.1039/C8QM00509E 10.1126/science.aat7744 10.1002/btm2.10003 10.1039/C9EN00626E 10.3389/fmicb.2018.00790 10.1039/D0RA00478B 10.1038/s41598-017-08669-5 10.1002/advs.201902064 10.1105/tpc.4.11.1353 10.1080/01904167.2012.663443 10.1039/C7CS00877E 10.1021/es402659t 10.1016/j.matlet.2013.10.011 10.1039/D0EN00387E 10.1039/C9EN00973F 10.1021/acs.jafc.8b01345 10.3389/fenvs.2014.00053 10.1016/j.tplants.2014.06.013 10.1016/j.scitotenv.2006.11.007 10.1371/journal.pone.0097881 10.1186/s11671-017-2404-2 10.1126/science.1208859 10.1007/s13593-012-0105-x 10.1021/nn200262u 10.1038/s41565-018-0223-y 10.1038/s41565-018-0131-1 10.1073/pnas.1911734116 10.1111/jac.12280 10.1002/aenm.201201014 10.1016/j.scitotenv.2019.136365 10.1021/acs.nanolett.5b04467 10.1016/j.rsci.2017.08.001 10.1080/00206817009475289 10.1039/C4CC09596K 10.1021/acs.jafc.9b06615 10.1039/C9QM00614A 10.1007/s12298-014-0234-6 10.1093/jxb/erq444 10.1166/jnn.2018.14262 10.1155/2010/932527 10.1126/science.abb1400 10.1111/ppa.12443 10.1080/17429145.2017.1310944 10.1073/pnas.1421020112 10.1021/acsomega.8b03491 10.1039/C7LC00930E 10.1021/ja1084942 10.1007/s10658-014-0399-4 10.1002/ldr.2780 10.1039/C9NR03127H 10.1038/s41565-020-00776-1 10.1021/acssuschemeng.8b06013 10.1104/pp.16.00434 10.1016/j.jpha.2019.04.003 10.1021/acsomega.8b02604 10.1126/sciadv.aaz0495 10.1021/acs.nanolett.5b02453 10.1016/j.cj.2018.01.003 10.1007/s00344-018-9818-7 10.1039/C7SC05476A 10.1016/j.envexpbot.2018.05.003 10.1146/annurev-anchem-061516-045310 10.1039/C8NR10514F 10.1111/nph.15550 10.1146/annurev-arplant-050718-100049 10.1038/s41598-020-73222-w 10.1074/jbc.M209264200 10.1016/j.plantsci.2015.10.003 10.1021/acs.nanolett.9b05159 10.1021/acs.est.5b00685 10.1038/s41467-020-15731-w 10.1016/j.tplants.2016.04.005 10.3390/su13041781 10.1021/es301977w 10.1007/s00299-015-1784-y 10.1016/j.scienta.2018.10.007 10.1016/j.sajb.2019.08.018 |
ContentType | Journal Article |
Copyright | 2021 Crop Science Society of China and Institute of Crop Science |
Copyright_xml | – notice: 2021 Crop Science Society of China and Institute of Crop Science |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.cj.2021.06.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2214-5141 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_f0a6686fbba84e5580ee6d719cae1afa 10_1016_j_cj_2021_06_002 S2214514121001240 |
GroupedDBID | -04 -0D -SD -S~ 0SF 4.4 457 5VR 5VS 6I. 92M 93N 93Q 9D9 9DD AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABDBF ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CAJED CAJUS CCEZO CHBEP CHDYS EBS EJD FA0 FDB GROUPED_DOAJ IPNFZ IXB JUIAU KQ8 M41 M~E NCXOZ OK1 Q-- Q-3 R-D RIG ROL RT4 SSZ T8T TCJ TGD U1F U1G U5D U5N ~MK 0R~ 7X2 AAHBH AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFKRA AFPUW AIGII AKBMS AKRWK AKYEP ATCPS BENPR BHPHI CCPQU CITATION HCIFZ M0K PHGZM PHGZT PIMPY 7S9 L.6 |
ID | FETCH-LOGICAL-c467t-9c240089d82faed0430054541977877dfb2586a9ee2792d177bcd553b1a8904c3 |
IEDL.DBID | DOA |
ISSN | 2214-5141 |
IngestDate | Wed Aug 27 01:26:05 EDT 2025 Fri Jul 11 02:30:20 EDT 2025 Tue Jul 01 04:30:39 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Thu Jul 20 20:10:18 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nano-enabled agriculture Mechanisms Nanosensors Signaling molecules Photosynthesis Stress tolerance |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c467t-9c240089d82faed0430054541977877dfb2586a9ee2792d177bcd553b1a8904c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/f0a6686fbba84e5580ee6d719cae1afa |
PQID | 2636459474 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f0a6686fbba84e5580ee6d719cae1afa proquest_miscellaneous_2636459474 crossref_citationtrail_10_1016_j_cj_2021_06_002 crossref_primary_10_1016_j_cj_2021_06_002 elsevier_sciencedirect_doi_10_1016_j_cj_2021_06_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | The Crop journal |
PublicationYear | 2022 |
Publisher | Elsevier B.V KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
References | M.K. van Ittersum, L.G.J. van Bussel, J. Wolf, P. Grassini, J. van Wart, N. Guilpart, L. Claessens, H. de Groot, K. Wiebe, D. Mason-D’Croz, H. Yang, H. Boogaard, P.A.J. van Oort, M.P. van Loon, K. Saito, O. Adimo, S. Adjei-Nsiah, A. Agali, A. Bala, R. Chikowo, K. Kaizzi, M. Kouressy, J.H.J.R. Makoi, K. Ouattara, K. Tesfaye, K.G. Cassman, Can sub-saharan africa feed itself?, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 14964–14969. Foyer (b0815) 2018; 154 Albersheim (b0705) 2011 Kongcharoen, Kaewsalong, Dethoup (b0400) 2020; 10 Suzuki, Rivero, Shulaev, Blumwald, Mittler (b0560) 2014; 203 Prasad, Sudhakar, Sreenivasulu, Latha, Munaswamy, Reddy, Sreeprasad, Sajanlal, Pradeep (b0760) 2012; 35 Saharan, Sharma, Yadav, Choudhary, Sharma, Pal, Raliya, Biswas (b0460) 2015; 75 K.J. Dietz, S. Herth, plant nanotoxicology, Trends Plant Sci. 16 (2011) 582–589. Nietzel, Elsässer, Ruberti, Steinbeck, Ugalde, Fuchs, Wagner, Ostermann, Moseler, Lemke, Fricker, Müller-Schüssele, Moerschbacher, Costa, Meyer, Schwarzländer (b0495) 2019; 221 Srivastava, Shamim, Kumar, Mishra, Pandey, Kumar, Yadav, Siddiqui, Singh (b0405) 2017; 24 Paret, Vallad, Averett, Jones, Olson (b0375) 2013; 103 Taran, Storozhenko, Svietlova, Batsmanova, Shvartau, Kovalenko (b0410) 2017; 12 Liu, Li, Chen, Gu, Wu, Li (b0030) 2021; 19 Chugh, Siddique, Solaiman (b0180) 2021; 13 Choi, Toyota, Kim, Hilleary, Gilroy (b0480) 2014; 111 Exposito-Rodriguez, Laissue, Yvon-Durocher, Smirnoff, Mullineaux (b0500) 2017; 8 Gilbertson, Pourzahedi, Laughton, Gao, Zimmerman, Theis, Westerhoff, Lowry (b0170) 2020; 15 Xu, Qu (b0210) 2014; 6 Pradhan, Patra, Das, Chandra, Mitra, Dey, Akbar, Palit, Goswami (b0575) 2013; 47 Pirmohamed, Dowding, Singh, Wasserman, Heckert, Karakoti, King, Seal, Self (b0025) 2010; 46 Das, Roychoudhury (b0640) 2014; 2 Demirer, Zhang, Goh, Pinals, Chang, Landry (b0585) 2020; 6 Acharya, Jayaprakasha, Crosby, Jifon, Patil (b0165) 2019; 7 Paparella, Araújo, Rossi, Wijayasinghe, Carbonera, Balestrazzi (b0730) 2015; 34 Malik, Padhye, Poddar (b0800) 2019; 4 Walkey, Das, Seal, Erlichman, Heckman, Ghibelli, Traversa, McGinnis, Self (b0220) 2015; 2 Mitter, Worrall, Robinson, Li, Jain, Taochy, Fletcher, Carroll, G.Q. (Max) Lu, Z.P. Xu (b0100) 2017; 3 Machado, Beckers, Fischer, Müller, Sayer, de Araújo, Landfester, Wurm (b0010) 2020; 21 Zhang, Boghossian, Barone, Rwei, Kim, Lin, Heller, Hilmer, Nair, Reuel, Strano (b0085) 2011; 133 Cai, Chen, Liu, Wang, Yang, Ding (b0370) 2018; 9 Abdel Latef, Srivastava, El-sadek, Kordrostami, Tran (b0270) 2018; 29 Maswada, Djanaguiraman, Prasad (b0745) 2018; 204 Ghorbanpour, Mohammadi, Kariman (b0255) 2020; 7 Narayanan, Park (b0300) 2014; 140 Jiang, Zhou, Tao, Yuan, Liu, Wu, Wu, Xiang, Niu, Liu, Li, Ye, Byeon, Xue, Zhao, Wang, Crawford, Johnson, Hu, Pei, Zhou, Swift, Zhang, Vo-Dinh, Hu, Siedow, Pei (b0535) 2019; 572 Kwak, Wong, Lew, Bisker, Lee, Kaplan, Dong, Liu, Koman, Sinclair, Hamann, Strano (b0065) 2017; 10 Popp, Pető, Nagy (b0390) 2013; 33 Anselmo, Mitragotri (b0615) 2016; 1 Loo, Chien, Yin, Kong, Ho, Yong (b0790) 2019; 400 Zhang, Yan, Avellan, Gao, Matyjaszewski, Tilton, Lowry (b0055) 2020; 14 Koman, Lew, Wong, Kwak, Giraldo, Strano (b0530) 2017; 17 Demirer, Silva, Jackson, Thomas, Ehrhardt, Rhee, Mortimer, Landry (b0720) 2021; 16 Tan, Chi-Lung (b0430) 1970; 12 Su, Ma, Zhao, Shen, Lou, Yin, Shan (b0240) 2018; 3 Gao, Zhuang, Nie, Zhang, Zhang, Gu, Wang, Feng, Yang, Perrett, Yan (b0020) 2007; 2 Kasote, Lee, Jayaprakasha, Patil (b0770) 2019; 7 Li, Wu, Santana, Fahlgren, Giraldo (b0425) 2018; 10 Wu, Tito, Giraldo (b0050) 2017; 11 Giraldo, Landry, Faltermeier, McNicholas, Iverson, Boghossian, Reuel, Hilmer, Sen, Brew, Strano (b0515) 2014; 13 Santana, Wu, Hu, Giraldo (b0060) 2020; 11 Servin, Elmer, Mukherjee, De la Torre-Roche, Hamdi, White, Bindraban, Dimkpa (b0385) 2015; 17 Gilroy, Suzuki, Miller, Choi, Toyota, Devireddy, Mittler (b0465) 2014; 19 Oren, Ceylan, Schnable, Dong (b0525) 2017; 2 Narayana, Bhat, Fathima, Lokesh, Surya, Yelamaggad (b0565) 2020; 10 Balfourier, Luciani, Wang, Lelong, Ersen, Khelfa, Alloyeau, Gazeau, Carn (b0450) 2020; 117 A.E. Stapleton, Ultraviolet radiation and plants: burning questions, Plant Cell. 4 (1992) 1353–1358. Pausch, Basem, Bisom-Rapp, Tsuchida, Li, Cress, Knott, Jacobsen, Banfield (b0715) 2020; 337 Lu, Huang, Huang, Corvini, Ji, Zhao (b0235) 2020; 7 Huang, Rajasekaran, Ozcan, Santra (b0360) 2018; 66 Landry, Mitter (b0645) 2019; 14 Wei, Cheng, Min, Olson, Siegwart (b0700) 2020; 11 White, Gardea-Torresdey (b0140) 2018; 13 Liu, Fu, Li, Nauman Khan, Wu (b0635) 2021; 13 Zhang, Demirer, Zhang, Ye, Goh, Aditham, Cunningham, Fan, Landry (b0675) 2019; 116 Mahdy, Sherif, Elkhatib, Fathi, Ahmed (b0755) 2020; 43 Schwartz, Hendrix, Hoffer, Sanders, Zheng (b0665) 2020; 184 Borgatta, Ma, Hudson-Smith, Elmer, Plaza Pérez, De La Torre-Roche, Zuverza-Mena, Haynes, White, Hamers (b0335) 2018; 6 Altpeter, Springer, Bartley, Blechl, Brutnell, Citovsky, Conrad, Gelvin, Jackson, Kausch, Lemaux, Medford, Orozco-Cárdenas, Tricoli, Van Eck, Voytas, Walbot, Wang, Zhang, Neal Stewart (b0655) 2016; 28 Thagun, Chuah, Numata (b0670) 2019; 6 Sun, Song, Zhu, Liu, Liu, Wang, Li (b0415) 2021; 67 Buchman, Elmer, Ma, Landy, White, Haynes (b0355) 2019; 7 Toyota, Spencer, Sawai-Toyota, Jiaqi, Zhang, Koo, Howe, Gilroy (b0490) 2018; 361 Spielman-Sun, Avellan, Bland, Tappero, Acerbo, Unrine, Giraldo, Lowry (b0625) 2019; 6 Zhang, Pribil, Palmgren, Gao (b0690) 2020; 1 Rong, Tuttle, Neal Reilly, Clark (b0550) 2019; 12 Acharya, Jayaprakasha, Crosby, Jifon, Patil (b0120) 2019; 7 Cromwell, Yang, Starr, Jo (b0315) 2014; 46 So, Wiederrecht, Mondloch, Hupp, Farha (b0820) 2015; 51 Sharifi, Behzadi, Laurent, Forrest, Stroeve, Mahmoudi (b0445) 2012; 41 Chaudhuri, Hormann, Frommer (b0510) 2011; 62 Airs, Temperton, Sambles, Farnham, Skill, Llewellyn (b0785) 2014; 588 Zhao, Lu, Wang, Zhang, Huang, Wu, Xing, Wang, Ji (b0145) 2020; 68 Shabala, Wu, Bose (b0485) 2015; 241 Wong, Misra, Giraldo, Kwak, Son, Landry, Swan, Blankschtein, Strano (b0660) 2016; 16 Giraldo, Landry, Kwak, Jain, Wong, Iverson, Ben-Naim, Strano (b0075) 2015; 11 Raliya, Saharan, Dimkpa, Biswas (b0610) 2018; 66 Camara, Campos, Monteiro, Do Espirito Santo Pereira, De Freitas Proença, Fraceto (b0600) 2019; 17 Giraldo, Wu, Newkirk, Kruss (b0070) 2019; 14 Wu, Nißler, Morris, Herrmann, Hu, Jeon, Kruss, Giraldo (b0080) 2020; 20 Ooms, Dinh, Sargent, Sinton (b0810) 2016; 7 Mohanta, Patnaik, Sood, Das (b0680) 2019; 9 Pulizzi (b0135) 2019; 14 Setsukinai, Urano, Kakinuma, Majima, Nagano (b0545) 2003; 278 Palmqvist, Seisenbaeva, Svedlindh, Kessler (b0260) 2017; 12 Adisa, Reddy Pullagurala, Rawat, Hernandez-Viezcas, Dimkpa, Elmer, White, Peralta-Videa, Gardea-Torresdey (b0380) 2018; 66 Mahakham, Sarmah, Maensiri, Theerakulpisut (b0115) 2017; 7 Wu, Shabala, Shabala, Giraldo (b0035) 2018; 5 Li, Pan, Xu, Wu, Zhuang, Zhang, Zhang, Lei, Hu, Liu (b0805) 2021; 410 Lee (b0125) 2011; 333 Boghossian, Sen, Gibbons, Sen, Faltermeier, Giraldo, Zhang, Zhang, Heller, Strano (b0225) 2013; 3 Spicer, Jumeaux, Gupta, Stevens (b0440) 2018; 47 Li, Han, Wang, Zhang, Jia, Qin, Wang, Wu, Fang, Yang (b0605) 2019; 3 Li, Yang, Gao, Zhang (b0765) 2015; 10 M. Kah, R.S. Kookana, A. Gogos, T.D. Bucheli, A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues, Nat. Nanotechnol. 13 (2018) 677–684. Mittler (b0475) 2017; 22 Foyer, Shigeoka (b0630) 2011; 155 Jisha, Puthur (b0735) 2014; 20 Dimkpa, Bindraban (b0595) 2018; 66 Wang, Lombi, Zhao, Kopittke (b0005) 2016; 21 Wu (b0540) 2018; 6 Antonaru, Cardona, Larkum, Nürnberg (b0780) 2020; 14 Son, Park, Kim, Koh, Kim, An, Jang, Kim, Jhe, Hong (b0090) 2011; 5 Li, Xu, Wu, Zhuang, Zhang, Zhang, Lei, Hu, Liu (b0350) 2020; 4 Dutta, Pal, Seehra, Shi, Eyring, Ernst (b0215) 2006; 18 Mishra, Singh, Singh, Keswani, Naqvi, Singh (b0305) 2014; 9 Djanaguiraman, Nair, Giraldo, Prasad (b0045) 2018; 3 Jameel, Shoeb, Khan, Ullah, Mobin, Farooqi, Adnan (b0280) 2020; 5 Younis, Abdel-Aziz, Heikal (b0750) 2019; 125 Bakshi (b0185) 2020; 182 Yao, Cheng, Zhou, Zhao, Lin, Wang, Wu, Li, Wei (b0230) 2018; 9 Erickson (b0710) 2009; 11 Wang, Liu, Chen, Han, Yuan (b0345) 2014; 68 Zhang, Guo, Zhang, Fu, White, Lynch (b0160) 2020; 16 Yoon, Hoon Byeon, Park, Hwang (b0320) 2007; 373 Sun, Hussain, Yi, Rookes, Kong, Cahill (b0580) 2017; 18 L. Cao, Z. Zhou, S. Niu, C. Cao, X. Li, Y. Shan, Q. Huang, Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2,4-dichlorophenoxy acetic acid sodium salt release, J. Agric. Food Chem. 66 (2018) 6594–6603. Ayoub, Khairy, Elsaid, Rashwan, Abdel-Hafez (b0340) 2018; 66 An, Hu, Li, Wu, Shen, White, Tian, Li, Giraldo (b0420) 2020; 12 Iavicoli, Leso, Beezhold, Shvedova (b0155) 2017; 329 Zhao, Zhao, Lou, Su, Wei, Yang, Wang, Guan, Pu, Shen (b0245) 2019; 11 Martínez-Ballesta, Zapata, Chalbi, Carvajal (b0250) 2016; 14 Kanhed, Birla, Gaikwad, Gade, Seabra, Rubilar, Duran, Rai (b0325) 2014; 115 Sun, Song, Guo, Zhu, Liu, Liu, Li (b0265) 2020; 21 Ma, Borgatta, Hudson, Tamijani, de la Torre-Roche, Zuverza-Mena, Shen, Elmer, Xing, Mason, Hamers, White (b0285) 2020; 15 Damalas, Eleftherohorinos (b0275) 2011; 8 Ocsoy, Paret, Ocsoy, Kunwar, Chen, You, Tan (b0295) 2013; 7 Finch-Savage, Bassel (b0725) 2016; 67 Hu, An, Faulkner, Wu, Li, Tian, Giraldo (b0015) 2020; 14 González-Fernández, Prats, Jorrín-Novo (b0395) 2010; 2010 Mikula, Izydorczyk, Skrzypczak, Mironiuk, Moustakas, Witek-Krowiak, Chojnacka (b0590) 2020; 712 C. Ma, J.C. White, O.P. Dhankher, B. Xing, Metal-based nanotoxicity and detoxification pathways in higher plants, Environ. Sci. Technol. 49 (2015) 7109–7122. Lew, Koman, Silmore, Seo, Gordiichuk, Kwak, Park, Ang, Khong, Lee, Chan-Park, Chua, Strano (b0555) 2020; 6 Di Giacomo, Daraio, Maresca (b0520) 2015; 112 Kobayashi, Wei, Iida, Ijiro, Niikura (b0455) 2014; 46 Adisa, Pullagurala, Peralta-Videa, Dimkpa, Elmer, Gardea-Torresdey, White (b0175) 2019; 6 Cumplido-Nájera, González-Morales, Ortega-Ortíz, Cadenas-Pliego, Benavides-Mendoza, Juárez-Maldonado (b0330) 2019; 245 Sundaria, Singh, Upreti, Chauhan, Jaiswal, Kumar (b0740) 2019; 38 Lei, An, Zhang, Wu, Gong, Balfourier (10.1016/j.cj.2021.06.002_b0450) 2020; 117 Acharya (10.1016/j.cj.2021.06.002_b0165) 2019; 7 10.1016/j.cj.2021.06.002_b0775 Lee (10.1016/j.cj.2021.06.002_b0125) 2011; 333 Albersheim (10.1016/j.cj.2021.06.002_b0705) 2011 10.1016/j.cj.2021.06.002_b0130 Loo (10.1016/j.cj.2021.06.002_b0790) 2019; 400 Abdel Latef (10.1016/j.cj.2021.06.002_b0270) 2018; 29 Chaudhuri (10.1016/j.cj.2021.06.002_b0510) 2011; 62 Chen (10.1016/j.cj.2021.06.002_b0695) 2019; 70 Narayanan (10.1016/j.cj.2021.06.002_b0300) 2014; 140 Mishra (10.1016/j.cj.2021.06.002_b0305) 2014; 9 Li (10.1016/j.cj.2021.06.002_b0425) 2018; 10 Yoon (10.1016/j.cj.2021.06.002_b0320) 2007; 373 Stewart (10.1016/j.cj.2021.06.002_b0570) 2005; 97 Younis (10.1016/j.cj.2021.06.002_b0750) 2019; 125 Foyer (10.1016/j.cj.2021.06.002_b0815) 2018; 154 Martínez-Ballesta (10.1016/j.cj.2021.06.002_b0250) 2016; 14 Das (10.1016/j.cj.2021.06.002_b0640) 2014; 2 Airs (10.1016/j.cj.2021.06.002_b0785) 2014; 588 Kongcharoen (10.1016/j.cj.2021.06.002_b0400) 2020; 10 Palmqvist (10.1016/j.cj.2021.06.002_b0260) 2017; 12 Oren (10.1016/j.cj.2021.06.002_b0525) 2017; 2 Dutta (10.1016/j.cj.2021.06.002_b0215) 2006; 18 Cromwell (10.1016/j.cj.2021.06.002_b0315) 2014; 46 Huang (10.1016/j.cj.2021.06.002_b0360) 2018; 66 Yang (10.1016/j.cj.2021.06.002_b0195) 2017; 12 Ayoub (10.1016/j.cj.2021.06.002_b0340) 2018; 66 Boghossian (10.1016/j.cj.2021.06.002_b0225) 2013; 3 Lew (10.1016/j.cj.2021.06.002_b0555) 2020; 6 Ma (10.1016/j.cj.2021.06.002_b0285) 2020; 15 Ooms (10.1016/j.cj.2021.06.002_b0810) 2016; 7 Wu (10.1016/j.cj.2021.06.002_b0080) 2020; 20 Buchman (10.1016/j.cj.2021.06.002_b0355) 2019; 7 Giraldo (10.1016/j.cj.2021.06.002_b0070) 2019; 14 Su (10.1016/j.cj.2021.06.002_b0240) 2018; 3 Kobayashi (10.1016/j.cj.2021.06.002_b0455) 2014; 46 Wei (10.1016/j.cj.2021.06.002_b0700) 2020; 11 Thagun (10.1016/j.cj.2021.06.002_b0670) 2019; 6 Rong (10.1016/j.cj.2021.06.002_b0550) 2019; 12 Anselmo (10.1016/j.cj.2021.06.002_b0615) 2016; 1 Li (10.1016/j.cj.2021.06.002_b0350) 2020; 4 Rossi (10.1016/j.cj.2021.06.002_b0040) 2016; 219 Borgatta (10.1016/j.cj.2021.06.002_b0335) 2018; 6 Giraldo (10.1016/j.cj.2021.06.002_b0515) 2014; 13 Zhang (10.1016/j.cj.2021.06.002_b0675) 2019; 116 Spielman-Sun (10.1016/j.cj.2021.06.002_b0625) 2019; 6 Srivastava (10.1016/j.cj.2021.06.002_b0405) 2017; 24 10.1016/j.cj.2021.06.002_b0110 Wang (10.1016/j.cj.2021.06.002_b0345) 2014; 68 Machado (10.1016/j.cj.2021.06.002_b0010) 2020; 21 Ghorbanpour (10.1016/j.cj.2021.06.002_b0255) 2020; 7 Camara (10.1016/j.cj.2021.06.002_b0600) 2019; 17 Wong (10.1016/j.cj.2021.06.002_b0660) 2016; 16 Sun (10.1016/j.cj.2021.06.002_b0415) 2021; 67 10.1016/j.cj.2021.06.002_b0190 Mahdy (10.1016/j.cj.2021.06.002_b0755) 2020; 43 Yu (10.1016/j.cj.2021.06.002_b0650) 2017; 175 Paret (10.1016/j.cj.2021.06.002_b0375) 2013; 103 Gilbertson (10.1016/j.cj.2021.06.002_b0170) 2020; 15 Sun (10.1016/j.cj.2021.06.002_b0265) 2020; 21 Suzuki (10.1016/j.cj.2021.06.002_b0560) 2014; 203 Pulizzi (10.1016/j.cj.2021.06.002_b0135) 2019; 14 Tan (10.1016/j.cj.2021.06.002_b0430) 1970; 12 Wu (10.1016/j.cj.2021.06.002_b0035) 2018; 5 10.1016/j.cj.2021.06.002_b0105 Chugh (10.1016/j.cj.2021.06.002_b0180) 2021; 13 Cumplido-Nájera (10.1016/j.cj.2021.06.002_b0330) 2019; 245 Prasad (10.1016/j.cj.2021.06.002_b0760) 2012; 35 Zhu (10.1016/j.cj.2021.06.002_b0620) 2012; 46 Liu (10.1016/j.cj.2021.06.002_b0635) 2021; 13 Zhang (10.1016/j.cj.2021.06.002_b0690) 2020; 1 Landry (10.1016/j.cj.2021.06.002_b0645) 2019; 14 Di Giacomo (10.1016/j.cj.2021.06.002_b0520) 2015; 112 Wu (10.1016/j.cj.2021.06.002_b0540) 2018; 6 Demirer (10.1016/j.cj.2021.06.002_b0095) 2019; 14 Kwak (10.1016/j.cj.2021.06.002_b0065) 2017; 10 Dimkpa (10.1016/j.cj.2021.06.002_b0595) 2018; 66 Iavicoli (10.1016/j.cj.2021.06.002_b0155) 2017; 329 Saharan (10.1016/j.cj.2021.06.002_b0460) 2015; 75 Raliya (10.1016/j.cj.2021.06.002_b0610) 2018; 66 González-Fernández (10.1016/j.cj.2021.06.002_b0395) 2010; 2010 Paparella (10.1016/j.cj.2021.06.002_b0730) 2015; 34 Pausch (10.1016/j.cj.2021.06.002_b0715) 2020; 337 Demirer (10.1016/j.cj.2021.06.002_b0585) 2020; 6 Mittler (10.1016/j.cj.2021.06.002_b0475) 2017; 22 Maswada (10.1016/j.cj.2021.06.002_b0745) 2018; 204 Damalas (10.1016/j.cj.2021.06.002_b0275) 2011; 8 Kanhed (10.1016/j.cj.2021.06.002_b0325) 2014; 115 Bakshi (10.1016/j.cj.2021.06.002_b0185) 2020; 182 An (10.1016/j.cj.2021.06.002_b0420) 2020; 12 Sharifi (10.1016/j.cj.2021.06.002_b0445) 2012; 41 10.1016/j.cj.2021.06.002_b0290 Zhu (10.1016/j.cj.2021.06.002_b0505) 2017; 215 Cai (10.1016/j.cj.2021.06.002_b0370) 2018; 9 Sundaria (10.1016/j.cj.2021.06.002_b0740) 2019; 38 White (10.1016/j.cj.2021.06.002_b0140) 2018; 13 Li (10.1016/j.cj.2021.06.002_b0605) 2019; 3 Altpeter (10.1016/j.cj.2021.06.002_b0655) 2016; 28 Wang (10.1016/j.cj.2021.06.002_b0005) 2016; 21 Zhang (10.1016/j.cj.2021.06.002_b0055) 2020; 14 Adisa (10.1016/j.cj.2021.06.002_b0175) 2019; 6 Yao (10.1016/j.cj.2021.06.002_b0230) 2018; 9 Imada (10.1016/j.cj.2021.06.002_b0365) 2016; 65 Popp (10.1016/j.cj.2021.06.002_b0390) 2013; 33 Koman (10.1016/j.cj.2021.06.002_b0530) 2017; 17 Zhao (10.1016/j.cj.2021.06.002_b0145) 2020; 68 10.1016/j.cj.2021.06.002_b0200 Zhang (10.1016/j.cj.2021.06.002_b0085) 2011; 133 Tan (10.1016/j.cj.2021.06.002_b0435) 2017; 222 10.1016/j.cj.2021.06.002_b0205 Acharya (10.1016/j.cj.2021.06.002_b0120) 2019; 7 Jameel (10.1016/j.cj.2021.06.002_b0280) 2020; 5 Xin (10.1016/j.cj.2021.06.002_b0150) 2020; 17 Gao (10.1016/j.cj.2021.06.002_b0020) 2007; 2 Adisa (10.1016/j.cj.2021.06.002_b0380) 2018; 66 Pradhan (10.1016/j.cj.2021.06.002_b0575) 2013; 47 Djanaguiraman (10.1016/j.cj.2021.06.002_b0045) 2018; 3 Giraldo (10.1016/j.cj.2021.06.002_b0075) 2015; 11 Taran (10.1016/j.cj.2021.06.002_b0410) 2017; 12 Antonaru (10.1016/j.cj.2021.06.002_b0780) 2020; 14 Choi (10.1016/j.cj.2021.06.002_b0480) 2014; 111 Demirer (10.1016/j.cj.2021.06.002_b0720) 2021; 16 Exposito-Rodriguez (10.1016/j.cj.2021.06.002_b0500) 2017; 8 Santana (10.1016/j.cj.2021.06.002_b0060) 2020; 11 Spicer (10.1016/j.cj.2021.06.002_b0440) 2018; 47 Liu (10.1016/j.cj.2021.06.002_b0030) 2021; 19 Mitter (10.1016/j.cj.2021.06.002_b0100) 2017; 3 Jiang (10.1016/j.cj.2021.06.002_b0535) 2019; 572 Li (10.1016/j.cj.2021.06.002_b0765) 2015; 10 Lu (10.1016/j.cj.2021.06.002_b0235) 2020; 7 Gilroy (10.1016/j.cj.2021.06.002_b0465) 2014; 19 Wiesholler (10.1016/j.cj.2021.06.002_b0795) 2019; 11 Mahakham (10.1016/j.cj.2021.06.002_b0115) 2017; 7 Gilroy (10.1016/j.cj.2021.06.002_b0470) 2016; 171 Shabala (10.1016/j.cj.2021.06.002_b0485) 2015; 241 Kasote (10.1016/j.cj.2021.06.002_b0770) 2019; 7 Toyota (10.1016/j.cj.2021.06.002_b0490) 2018; 361 Son (10.1016/j.cj.2021.06.002_b0090) 2011; 5 Malik (10.1016/j.cj.2021.06.002_b0800) 2019; 4 Ocsoy (10.1016/j.cj.2021.06.002_b0295) 2013; 7 Setsukinai (10.1016/j.cj.2021.06.002_b0545) 2003; 278 Xu (10.1016/j.cj.2021.06.002_b0210) 2014; 6 Schwartz (10.1016/j.cj.2021.06.002_b0665) 2020; 184 Finch-Savage (10.1016/j.cj.2021.06.002_b0725) 2016; 67 Robatjazi (10.1016/j.cj.2021.06.002_b0825) 2015; 15 Zhao (10.1016/j.cj.2021.06.002_b0245) 2019; 11 So (10.1016/j.cj.2021.06.002_b0820) 2015; 51 Servin (10.1016/j.cj.2021.06.002_b0385) 2015; 17 Erickson (10.1016/j.cj.2021.06.002_b0710) 2009; 11 Jisha (10.1016/j.cj.2021.06.002_b0735) 2014; 20 Foyer (10.1016/j.cj.2021.06.002_b0630) 2011; 155 Wu (10.1016/j.cj.2021.06.002_b0050) 2017; 11 Zhang (10.1016/j.cj.2021.06.002_b0160) 2020; 16 Ali (10.1016/j.cj.2021.06.002_b0310) 2015; 105 Li (10.1016/j.cj.2021.06.002_b0805) 2021; 410 Hu (10.1016/j.cj.2021.06.002_b0015) 2020; 14 Sun (10.1016/j.cj.2021.06.002_b0580) 2017; 18 Lei (10.1016/j.cj.2021.06.002_b0685) 2020; 10 Pirmohamed (10.1016/j.cj.2021.06.002_b0025) 2010; 46 Mikula (10.1016/j.cj.2021.06.002_b0590) 2020; 712 Narayana (10.1016/j.cj.2021.06.002_b0565) 2020; 10 Walkey (10.1016/j.cj.2021.06.002_b0220) 2015; 2 Nietzel (10.1016/j.cj.2021.06.002_b0495) 2019; 221 Mohanta (10.1016/j.cj.2021.06.002_b0680) 2019; 9 |
References_xml | – volume: 13 start-page: 627 year: 2018 end-page: 629 ident: b0140 article-title: Achieving food security through the very small publication-title: Nat. Nanotechnol. – volume: 337 start-page: 333 year: 2020 end-page: 337 ident: b0715 article-title: CRISPR-Casφ from huge phages is a hypercompact genome editor publication-title: Science – volume: 125 start-page: 393 year: 2019 end-page: 401 ident: b0750 article-title: Nanopriming technology enhances vigor and mitotic index of aged vicia faba seeds using chemically synthesized silver nanoparticles publication-title: South African J. Bot. – volume: 14 start-page: 7970 year: 2020 end-page: 7986 ident: b0015 article-title: Nanoparticle charge and size control delivery efficiency to plant cells and organelles publication-title: ACS Nano – volume: 14 start-page: 541 year: 2019 end-page: 553 ident: b0070 article-title: Nanobiotechnology approaches for engineering smart plant sensors publication-title: Nat. Nanotechnol. – volume: 103 start-page: 228 year: 2013 end-page: 236 ident: b0375 article-title: Photocatalysis: effect of light-activated nanoscale formulations of TiO publication-title: Phytopathol. – volume: 24 start-page: 299 year: 2017 end-page: 321 ident: b0405 article-title: Current status of conventional and molecular interventions for blast resistance in rice publication-title: Rice Sci – volume: 66 start-page: 5959 year: 2018 end-page: 5970 ident: b0380 article-title: Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (S publication-title: J. Agric. Food Chem. – volume: 7 start-page: 5142 year: 2019 end-page: 5151 ident: b0770 article-title: Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings publication-title: ACS Sustain. Chem. Eng. – volume: 588 start-page: 3770 year: 2014 end-page: 3777 ident: b0785 article-title: Chlorophyll f and chlorophyll d are produced in the cyanobacterium chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation publication-title: FEBS Lett. – volume: 15 start-page: 6155 year: 2015 end-page: 6161 ident: b0825 article-title: Direct plasmon-driven photoelectrocatalysis publication-title: Nano Lett. – volume: 68 start-page: 1935 year: 2020 end-page: 1947 ident: b0145 article-title: Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance publication-title: J. Agric. Food Chem. – volume: 5 start-page: 1607 year: 2020 end-page: 1615 ident: b0280 article-title: Enhanced insecticidal activity of thiamethoxam by zinc oxide nanoparticles: a novel nanotechnology approach for pest control publication-title: ACS Omega – volume: 6 start-page: 404 year: 2020 end-page: 415 ident: b0555 article-title: Real-time detection of wound-induced H publication-title: Nat. Plants – volume: 66 start-page: 8679 year: 2018 end-page: 8686 ident: b0360 article-title: Antimicrobial magnesium hydroxide nanoparticles as an alternative to Cu biocide for crop protection publication-title: J. Agric. Food Chem. – volume: 22 start-page: 11 year: 2017 end-page: 19 ident: b0475 article-title: ROS are good publication-title: Trends Plant Sci. – volume: 155 start-page: 93 year: 2011 end-page: 100 ident: b0630 article-title: Understanding oxidative stress and antioxidant functions to enhance photosynthesis publication-title: Plant Physiol – volume: 43 start-page: 1862 year: 2020 end-page: 1874 ident: b0755 article-title: Seed priming in nanoparticles of water treatment residual can increase the germination and growth of cucumber seedling under salinity stress publication-title: J. Plant Nutr. – volume: 16 start-page: 1161 year: 2016 end-page: 1172 ident: b0660 article-title: Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism publication-title: Nano Lett. – volume: 21 start-page: 1 year: 2020 end-page: 18 ident: b0265 article-title: Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize publication-title: Int. J. Mol. Sci. – volume: 11 start-page: 3973 year: 2015 end-page: 3984 ident: b0075 article-title: A ratiometric sensor using single chirality near-infrared fluorescent carbon nanotubes: application to publication-title: Small – volume: 18 start-page: 1615 year: 2017 end-page: 1625 ident: b0580 article-title: Delivery of abscisic acid to plants using glutathione responsive mesoporous silica nanoparticles publication-title: J. Nanosci. Nanotechnol. – volume: 278 start-page: 3170 year: 2003 end-page: 3175 ident: b0545 article-title: Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species publication-title: J. Biol. Chem. – reference: S.Y. Kwak, T.T.S. Lew, C.J. Sweeney, V.B. Koman, M.H. Wong, K. Bohmert-Tatarev, K.D. Snell, J.S. Seo, N.H. Chua, M.S. Strano, Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers, Nat. Nanotechnol. 14 (2019) 447–455. – volume: 3 start-page: 881 year: 2013 end-page: 893 ident: b0225 article-title: Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting publication-title: Adv. Energy Mater. – volume: 140 start-page: 185 year: 2014 end-page: 192 ident: b0300 article-title: Antifungal activity of silver nanoparticles synthesized using turnip leaf extract ( publication-title: Eur. J. Plant Pathol. – reference: L. Cao, Z. Zhou, S. Niu, C. Cao, X. Li, Y. Shan, Q. Huang, Positive-charge functionalized mesoporous silica nanoparticles as nanocarriers for controlled 2,4-dichlorophenoxy acetic acid sodium salt release, J. Agric. Food Chem. 66 (2018) 6594–6603. – volume: 10 start-page: 28279 year: 2018 end-page: 28289 ident: b0425 article-title: Standoff optical glucose sensing in photosynthetic organisms by a quantum dot fluorescent probe publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 778 year: 1970 end-page: 786 ident: b0430 article-title: Abundance of chemical elements in the earth’s crust and its major tectonic units publication-title: Int. Geol. Rev. – volume: 3 start-page: 103 year: 2019 end-page: 110 ident: b0605 article-title: A triple-stimuli responsive hormone delivery system equipped with pillararene magnetic nanovalves publication-title: Mater. Chem. Front. – volume: 75 start-page: 346 year: 2015 end-page: 353 ident: b0460 article-title: Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato publication-title: Int. J. Biol. Macromol. – volume: 47 start-page: 13122 year: 2013 end-page: 13131 ident: b0575 article-title: Photochemical modulation of biosafe manganese nanoparticles on vigna radiata: a detailed molecular, biochemical, and biophysical study publication-title: Environ. Sci. Technol. – volume: 1 start-page: 200 year: 2020 end-page: 205 ident: b0690 article-title: A CRISPR way for accelerating improvement of food crops publication-title: Nat. Food. – volume: 9 start-page: 790 year: 2018 ident: b0370 article-title: Magnesium oxide nanoparticles: effective agricultural antibacterial agent against publication-title: Front. Microbiol. – volume: 15 start-page: 801 year: 2020 end-page: 810 ident: b0170 article-title: Guiding the design space for nanotechnology to advance sustainable crop production publication-title: Nat. Nanotechnol. – volume: 13 start-page: 400 year: 2014 end-page: 408 ident: b0515 article-title: Plant nanobionics approach to augment photosynthesis and biochemical sensing publication-title: Nat. Mater. – volume: 20 start-page: 303 year: 2014 end-page: 312 ident: b0735 article-title: Halopriming of seeds imparts tolerance to nacl and peg induced stress in publication-title: Physiol. Mol. Biol. Plants. – volume: 7 start-page: 8263 year: 2017 ident: b0115 article-title: Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles publication-title: Sci. Rep. – volume: 6 start-page: 2002 year: 2019 end-page: 2030 ident: b0175 article-title: Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action publication-title: Environ. Sci.-Nano – volume: 572 start-page: 341 year: 2019 end-page: 346 ident: b0535 article-title: Plant cell-surface gipc sphingolipids sense salt to trigger Ca publication-title: Nature – volume: 17 start-page: 4015 year: 2017 end-page: 4024 ident: b0530 article-title: Persistent drought monitoring using a microfluidic-printed electro-mechanical sensor of stomata: publication-title: Lab Chip – volume: 2 start-page: 33 year: 2015 end-page: 53 ident: b0220 article-title: Catalytic properties and biomedical applications of cerium oxide nanoparticles publication-title: Environ. Sci.-Nano – volume: 7 start-page: 1692 year: 2020 end-page: 1703 ident: b0235 article-title: Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber ( publication-title: Environ. Sci.-Nano – volume: 14 start-page: 507 year: 2019 ident: b0135 article-title: Nano in the future of crops publication-title: Nat. Nanotechnol. – volume: 203 start-page: 32 year: 2014 end-page: 43 ident: b0560 article-title: Abiotic and biotic stress combinations publication-title: New Phytol. – volume: 12 start-page: 158 year: 2017 end-page: 169 ident: b0195 article-title: Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms publication-title: J. Plant Interact. – volume: 9 start-page: 2927 year: 2018 end-page: 2933 ident: b0230 article-title: ROS scavenging Mn publication-title: Chem. Sci. – volume: 66 start-page: 5491 year: 2018 end-page: 5498 ident: b0340 article-title: Pesticidal activity of nanostructured metal oxides for generation of alternative pesticide formulations publication-title: J. Agric. Food Chem. – volume: 7 start-page: 14580 year: 2019 end-page: 14590 ident: b0165 article-title: Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion ( publication-title: ACS Sustain. Chem. Eng. – volume: 184 start-page: 647 year: 2020 end-page: 657 ident: b0665 article-title: Carbon dots for efficient sirna delivery and gene silencing in plants publication-title: Plant Physiol. – reference: M. Rizwan, S. Ali, B. Ali, M. Adrees, M. Arshad, A. Hussain, M. Zia ur Rehman, A.A. Waris, Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat, Chemosphere 214 (2019) 269–277. – reference: M. Kah, R.S. Kookana, A. Gogos, T.D. Bucheli, A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues, Nat. Nanotechnol. 13 (2018) 677–684. – volume: 19 start-page: 623 year: 2014 end-page: 630 ident: b0465 article-title: A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling publication-title: Trends Plant Sci. – volume: 5 start-page: 1567 year: 2018 end-page: 1583 ident: b0035 article-title: Hydroxyl radical scavenging by cerium oxide nanoparticles improves arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention publication-title: Environ. Sci.-Nano. – volume: 329 start-page: 96 year: 2017 end-page: 111 ident: b0155 article-title: Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks publication-title: Toxicol. Appl. Pharmacol. – volume: 175 start-page: 186 year: 2017 end-page: 193 ident: b0650 article-title: Efficient plastid transformation in arabidopsis publication-title: Plant Physiol. – volume: 15 start-page: 1033 year: 2020 end-page: 1042 ident: b0285 article-title: Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome publication-title: Nat. Nanotechnol. – volume: 13 start-page: 1781 year: 2021 ident: b0180 article-title: Nanobiotechnology for agriculture: smart technology for combating nutrient deficiencies with nanotoxicity challenges publication-title: Sustainability – volume: 222 start-page: 64 year: 2017 end-page: 72 ident: b0435 article-title: Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil ( publication-title: Environ. Pollut. – volume: 6 year: 2014 ident: b0210 article-title: Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications publication-title: NPG Asia Mater. – volume: 8 start-page: 1402 year: 2011 end-page: 1419 ident: b0275 article-title: Pesticide exposure, safety issues, and risk assessment indicators publication-title: Int. J. Environ. Res. Public Health – volume: 46 start-page: 460 year: 2014 end-page: 468 ident: b0455 article-title: Surface engineering of nanoparticles for therapeutic applications publication-title: Polym. J. – volume: 14 start-page: 10954 year: 2020 end-page: 10965 ident: b0055 article-title: Temperature and pH responsive star polymers as nano-carriers with potential for publication-title: ACS Nano – volume: 66 start-page: 6487 year: 2018 end-page: 6503 ident: b0610 article-title: Nanofertilizer for precision and sustainable agriculture: current state and future perspectives publication-title: J. Agric. Food Chem. – volume: 20 start-page: 2432 year: 2020 end-page: 2442 ident: b0080 article-title: Monitoring plant health with near-infrared fluorescent H publication-title: Nano Lett. – volume: 215 start-page: 65 year: 2017 end-page: 72 ident: b0505 article-title: FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots publication-title: J. Plant Physiol. – volume: 7 start-page: 19649 year: 2019 end-page: 19659 ident: b0355 article-title: Chitosan-coated mesoporous silica nanoparticle treatment of publication-title: ACS Sustain. Chem. Eng. – volume: 21 start-page: 2755 year: 2020 end-page: 2763 ident: b0010 article-title: Bio-based lignin nanocarriers loaded with fungicides as a versatile platform for drug delivery in plants publication-title: Biomarcomolecules – volume: 204 start-page: 577 year: 2018 end-page: 587 ident: b0745 article-title: Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum publication-title: J. Agron. Crop Sci. – volume: 7 start-page: 443 year: 2020 end-page: 461 ident: b0255 article-title: Nanosilicon-based recovery of barley ( publication-title: Environ. Sci.-Nano – volume: 8 start-page: 49 year: 2017 ident: b0500 article-title: Photosynthesis-dependent H publication-title: Nat. Commun. – volume: 219 start-page: 28 year: 2016 end-page: 36 ident: b0040 article-title: The impact of cerium oxide nanoparticles on the salt stress responses of publication-title: Environ. Pollut. – volume: 35 start-page: 905 year: 2012 end-page: 927 ident: b0760 article-title: Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut publication-title: J. Plant Nutr. – volume: 6 start-page: 2508 year: 2019 end-page: 2519 ident: b0625 article-title: Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy publication-title: Environ. Sci.-Nano – volume: 182 year: 2020 ident: b0185 article-title: Impact of nanomaterials on ecosystems: mechanistic aspects publication-title: Environ. Res. – volume: 2 start-page: 53 year: 2014 ident: b0640 article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants publication-title: Front. Environ. Sci. – volume: 2 start-page: 577 year: 2007 end-page: 583 ident: b0020 article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles publication-title: Nat. Nanotechnol. – volume: 3 start-page: 17770 year: 2018 end-page: 17777 ident: b0240 article-title: Carbon nanodots for enhancing the stress resistance of peanut plants publication-title: ACS Omega – volume: 105 start-page: 1183 year: 2015 end-page: 1190 ident: b0310 article-title: Inhibition of publication-title: Phytopathology – reference: M.K. van Ittersum, L.G.J. van Bussel, J. Wolf, P. Grassini, J. van Wart, N. Guilpart, L. Claessens, H. de Groot, K. Wiebe, D. Mason-D’Croz, H. Yang, H. Boogaard, P.A.J. van Oort, M.P. van Loon, K. Saito, O. Adimo, S. Adjei-Nsiah, A. Agali, A. Bala, R. Chikowo, K. Kaizzi, M. Kouressy, J.H.J.R. Makoi, K. Ouattara, K. Tesfaye, K.G. Cassman, Can sub-saharan africa feed itself?, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 14964–14969. – volume: 3 start-page: 14406 year: 2018 end-page: 14416 ident: b0045 article-title: Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield publication-title: ACS Omega – volume: 373 start-page: 572 year: 2007 end-page: 575 ident: b0320 article-title: Susceptibility constants of publication-title: Sci. Total Environ. – volume: 241 start-page: 109 year: 2015 end-page: 119 ident: b0485 article-title: Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis publication-title: Plant Sci. – volume: 11 start-page: 2045 year: 2020 ident: b0060 article-title: Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif publication-title: Nat. Commun. – volume: 14 start-page: 456 year: 2019 end-page: 464 ident: b0095 article-title: High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants publication-title: Nat. Nanotechnol. – volume: 333 start-page: 569 year: 2011 end-page: 573 ident: b0125 article-title: The outlook for population growth publication-title: Science – volume: 154 start-page: 134 year: 2018 end-page: 142 ident: b0815 article-title: Reactive oxygen species, oxidative signaling and the regulation of photosynthesis publication-title: Environ. Exp. Bot. – volume: 7 start-page: 12699 year: 2016 ident: b0810 article-title: Photon management for augmented photosynthesis publication-title: Nat. Commun. – volume: 12 start-page: 631 year: 2017 ident: b0260 article-title: Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in publication-title: Nanoscale Res. Lett. – volume: 11 start-page: 3232 year: 2020 ident: b0700 article-title: Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing publication-title: Nat. Commun. – volume: 7 start-page: 8972 year: 2013 end-page: 8980 ident: b0295 article-title: Nanotechnology in plant disease management: dna-directed silver nanoparticles on graphene oxide as an antibacterial against xanthomonas perforans publication-title: ACS Nano – volume: 171 start-page: 1606 year: 2016 end-page: 1615 ident: b0470 article-title: ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants publication-title: Plant Physiol. – volume: 46 start-page: 261 year: 2014 end-page: 266 ident: b0315 article-title: Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass publication-title: J. Nematol. – volume: 65 start-page: 551 year: 2016 end-page: 560 ident: b0365 article-title: Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease publication-title: Plant Pathol. – volume: 10 year: 2015 ident: b0765 article-title: Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations publication-title: PLoS ONE – volume: 19 start-page: 153 year: 2021 ident: b0030 article-title: Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K publication-title: J. Nanobiotechnol. – volume: 6 start-page: eaaz0495 year: 2020 ident: b0585 article-title: Carbon nanocarriers deliver sirna to intact plant cells for efficient gene knockdown publication-title: Sci. Adv. – volume: 17 start-page: 413 year: 2020 end-page: 425 ident: b0150 article-title: Nano-enabled agriculture: from nanoparticles to smart nanodelivery systems publication-title: Environ. Chem. – volume: 10 start-page: 19300 year: 2020 end-page: 19308 ident: b0685 article-title: Construction of gold-sirnanpr1nanoparticles for effective and quick silencing ofnpr1 in publication-title: RSC Adv. – volume: 6 start-page: 1902064 year: 2019 ident: b0670 article-title: Targeted gene delivery into various plastids mediated by clustered cell-penetrating and chloroplast-targeting peptides publication-title: Adv. Sci. – volume: 2010 year: 2010 ident: b0395 article-title: Proteomics of plant pathogenic fungi publication-title: J. Biomed. Biotechnol. – volume: 9 year: 2014 ident: b0305 article-title: Biofabricated silver nanoparticles act as a strong fungicide against bipolaris sorokiniana causing spot blotch disease in wheat publication-title: PLoS ONE – volume: 12 start-page: 2214 year: 2020 end-page: 2248 ident: b0420 article-title: Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles publication-title: Environ. Sci.-Nano – reference: C. Ma, J.C. White, O.P. Dhankher, B. Xing, Metal-based nanotoxicity and detoxification pathways in higher plants, Environ. Sci. Technol. 49 (2015) 7109–7122. – volume: 3 start-page: 16207 year: 2017 ident: b0100 article-title: Clay nanosheets for topical delivery of rnai for sustained protection against plant viruses publication-title: Nat. Plants – volume: 12 start-page: 60 year: 2017 ident: b0410 article-title: Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings publication-title: Nanoscale Res. Lett. – volume: 112 start-page: 4541 year: 2015 end-page: 4545 ident: b0520 article-title: Plant nanobionic materials with a giant temperature response mediated by pectin-Ca publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 start-page: 11283 year: 2017 end-page: 11297 ident: b0050 article-title: Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species publication-title: ACS Nano – volume: 410 year: 2021 ident: b0805 article-title: Carbon dots as light converter for plant photosynthesis: augmenting light coverage and quantum yield effect publication-title: J. Hazard. Mater. – volume: 10 start-page: 13532 year: 2020 end-page: 13542 ident: b0565 article-title: Green and low-cost synthesis of zinc oxide nanoparticles and their application in transistor-based carbon monoxide sensing publication-title: RSC Adv. – volume: 6 start-page: 14847 year: 2018 end-page: 14856 ident: b0335 article-title: Copper based nanomaterials suppress root fungal disease in watermelon ( publication-title: ACS Sustainable Chem. Eng. – volume: 46 start-page: 12391 year: 2012 end-page: 12398 ident: b0620 article-title: Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species publication-title: Environ. Sci. Technol. – volume: 117 start-page: 103 year: 2020 end-page: 113 ident: b0450 article-title: Unexpected intracellular biodegradation and recrystallization of gold nanoparticles publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 38 start-page: 122 year: 2019 end-page: 131 ident: b0740 article-title: Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat ( publication-title: J. Plant Growth Regul. – volume: 7 start-page: 14580 year: 2019 end-page: 14590 ident: b0120 article-title: Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion ( publication-title: ACS Sustain. Chem. Eng. – volume: 28 start-page: 1510 year: 2016 end-page: 1520 ident: b0655 article-title: Advancing crop transformation in the era of genome editing publication-title: Plant Cell – volume: 14 start-page: 512 year: 2019 end-page: 514 ident: b0645 article-title: How nanocarriers delivering cargos in plants can change the gmo landscape publication-title: Nat. Nanotechnol. – volume: 10 start-page: 113 year: 2017 end-page: 140 ident: b0065 article-title: Nanosensor technology applied to living plant systems publication-title: Annu. Rev. Anal. Chem. – volume: 16 start-page: 2000705 year: 2020 ident: b0160 article-title: Nanomaterial transformation in the soil–plant system: implications for food safety and application in agriculture publication-title: Small – volume: 17 start-page: 92 year: 2015 ident: b0385 article-title: A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield publication-title: J. Nanoparticle Res. – volume: 97 start-page: 1 year: 2005 end-page: 6 ident: b0570 article-title: The contribution of commercial fertilizer nutrients to food production publication-title: Agron. J. – volume: 400 year: 2019 ident: b0790 article-title: Upconversion and downconversion nanoparticles for biophotonics and nanomedicine publication-title: Coord. Chem. Rev. – volume: 68 start-page: 798 year: 2014 end-page: 806 ident: b0345 article-title: Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen publication-title: Carbon – volume: 111 start-page: 6497 year: 2014 end-page: 6502 ident: b0480 article-title: Salt stress-induced Ca publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 116 start-page: 7543 year: 2019 end-page: 7548 ident: b0675 article-title: DNA nanostructures coordinate gene silencing in mature plants publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 62 start-page: 2411 year: 2011 end-page: 2417 ident: b0510 article-title: Dynamic imaging of glucose flux impedance using fret sensors in wild-type arabidopsis plants publication-title: J. Exp. Bot. – volume: 13 start-page: 3552 year: 2021 ident: b0635 publication-title: ROS, homeostasis and plant salt tolerance: plant nanobiotechnology updates, Sustainability – volume: 11 start-page: 32 year: 2009 end-page: 51 ident: b0710 article-title: Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy publication-title: Biol. Proced. Online – volume: 5 start-page: 3888 year: 2011 end-page: 3895 ident: b0090 article-title: Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions publication-title: ACS Nano – volume: 51 start-page: 3501 year: 2015 end-page: 3510 ident: b0820 article-title: Metal-organic framework materials for light-harvesting and energy transfer publication-title: Chem. Commun. – volume: 66 start-page: 6462 year: 2018 end-page: 6473 ident: b0595 article-title: Nanofertilizers: new products for the industry? publication-title: J. Agric. Food Chem. – volume: 14 start-page: 2275 year: 2020 end-page: 2287 ident: b0780 article-title: Global distribution of a chlorophyll f cyanobacterial marker publication-title: ISME J. – volume: 14 start-page: 1 year: 2016 end-page: 14 ident: b0250 article-title: Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity publication-title: J. Nanobiotechnol. – volume: 115 start-page: 13 year: 2014 end-page: 17 ident: b0325 article-title: In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi publication-title: Mater. Lett. – volume: 2 start-page: 1700223 year: 2017 ident: b0525 article-title: High-resolution patterning and transferring of graphene-based nanomaterials onto tape toward roll-to-roll production of tape-based wearable sensors publication-title: Adv. Mater. Technol. – volume: 712 year: 2020 ident: b0590 article-title: Controlled release micronutrient fertilizers for precision agriculture - a review publication-title: Sci. Total Environ. – volume: 1 start-page: 10 year: 2016 end-page: 29 ident: b0615 article-title: Nanoparticles in the clinic publication-title: Bioeng. Transl. Med. – volume: 4 start-page: 4259 year: 2019 end-page: 4268 ident: b0800 article-title: Downconversion luminescence-based nanosensor for label-free detection of explosives publication-title: ACS Omega – volume: 9 start-page: 293 year: 2019 end-page: 300 ident: b0680 article-title: Carbon nanotubes: evaluation of toxicity at biointerfaces publication-title: J. Pharm. Anal. – volume: 361 start-page: 1112 year: 2018 end-page: 1115 ident: b0490 article-title: Glutamate triggers long-distance, calcium-based plant defense signaling publication-title: Science – volume: 6 start-page: 215 year: 2018 end-page: 225 ident: b0540 article-title: Plant salt tolerance and Na publication-title: Crop J. – volume: 16 start-page: 243 year: 2021 end-page: 250 ident: b0720 article-title: Nanotechnology to advance CRISPR–Cas genetic engineering of plants publication-title: Nat. Nanotechnol. – reference: A.E. Stapleton, Ultraviolet radiation and plants: burning questions, Plant Cell. 4 (1992) 1353–1358. – volume: 46 start-page: 2736 year: 2010 ident: b0025 article-title: Nanoceria exhibit redox state-dependent catalase mimetic activity publication-title: Chem. Commun. – volume: 70 start-page: 667 year: 2019 end-page: 697 ident: b0695 article-title: CRISPR/Cas genome editing and precision plant breeding in agriculture publication-title: Annu. Rev. Plant Biol. – volume: 17 start-page: 100 year: 2019 ident: b0600 article-title: Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture publication-title: J. Nanobiotechnol. – volume: 245 start-page: 82 year: 2019 end-page: 89 ident: b0330 article-title: The application of copper nanoparticles and potassium silicate stimulate the tolerance to clavibacter michiganensis in tomato plants publication-title: Sci. Hortic. – volume: 47 start-page: 3574 year: 2018 end-page: 3620 ident: b0440 article-title: Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications publication-title: Chem. Soc. Rev. – volume: 12 start-page: 109 year: 2019 end-page: 128 ident: b0550 article-title: Recent developments in nanosensors for imaging applications in biological systems publication-title: Annu. Rev. Anal. Chem. – volume: 4 start-page: 437 year: 2020 end-page: 448 ident: b0350 article-title: A review on the effects of carbon dots in plant systems publication-title: Mater. Chem. Front. – volume: 21 start-page: 699 year: 2016 end-page: 712 ident: b0005 article-title: Nanotechnology: a new opportunity in plant sciences publication-title: Trends Plant Sci. – reference: K.J. Dietz, S. Herth, plant nanotoxicology, Trends Plant Sci. 16 (2011) 582–589. – volume: 11 start-page: 10511 year: 2019 end-page: 10523 ident: b0245 article-title: Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity publication-title: Nanoscale – volume: 67 start-page: 245 year: 2021 end-page: 259 ident: b0415 article-title: Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize publication-title: Arch. Agron. Soil Sci. – volume: 33 start-page: 243 year: 2013 end-page: 255 ident: b0390 article-title: Pesticide productivity and food security. A review publication-title: Agron. Sustain. Dev. – volume: 221 start-page: 1649 year: 2019 end-page: 1664 ident: b0495 article-title: The fluorescent protein sensor rogfp2-orp1 monitors publication-title: New Phytol. – volume: 41 start-page: 2323 year: 2012 end-page: 2343 ident: b0445 article-title: Toxicity of nanomaterials publication-title: Chem. Soc. Rev. – volume: 67 start-page: 567 year: 2016 end-page: 591 ident: b0725 article-title: Seed vigour and crop establishment: extending performance beyond adaptation publication-title: J. Exp. Bot. – volume: 133 start-page: 567 year: 2011 end-page: 581 ident: b0085 article-title: Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 1281 year: 2015 end-page: 1293 ident: b0730 article-title: Seed priming: state of the art and new perspectives publication-title: Plant Cell Rep. – volume: 18 start-page: 5144 year: 2006 end-page: 5146 ident: b0215 article-title: Concentration of ce publication-title: Chem. Mater. – volume: 11 start-page: 13440 year: 2019 end-page: 13449 ident: b0795 article-title: Yb, Nd, Er-doped upconversion nanoparticles: 980 nm: versus 808 nm excitation publication-title: Nanoscale – volume: 29 start-page: 1065 year: 2018 end-page: 1073 ident: b0270 article-title: Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions publication-title: Land Degrad. Dev. – volume: 10 start-page: 16233 year: 2020 ident: b0400 article-title: Efficacy of fungicides in controlling rice blast and dirty panicle diseases in Thailand publication-title: Sci. Rep. – year: 2011 ident: b0705 article-title: Cell walls and plant anatomy publication-title: Plant Cell Walls – volume: 66 start-page: 6487 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0610 article-title: Nanofertilizer for precision and sustainable agriculture: current state and future perspectives publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b02178 – volume: 12 start-page: 60 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0410 article-title: Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-1839-9 – volume: 6 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0210 article-title: Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications publication-title: NPG Asia Mater. doi: 10.1038/am.2013.88 – volume: 14 start-page: 541 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0070 article-title: Nanobiotechnology approaches for engineering smart plant sensors publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0470-6 – volume: 11 start-page: 3973 year: 2015 ident: 10.1016/j.cj.2021.06.002_b0075 article-title: A ratiometric sensor using single chirality near-infrared fluorescent carbon nanotubes: application to in vivo monitoring publication-title: Small doi: 10.1002/smll.201403276 – volume: 2 start-page: 33 year: 2015 ident: 10.1016/j.cj.2021.06.002_b0220 article-title: Catalytic properties and biomedical applications of cerium oxide nanoparticles publication-title: Environ. Sci.-Nano doi: 10.1039/C4EN00138A – volume: 14 start-page: 1 year: 2016 ident: 10.1016/j.cj.2021.06.002_b0250 article-title: Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-016-0199-4 – volume: 155 start-page: 93 year: 2011 ident: 10.1016/j.cj.2021.06.002_b0630 article-title: Understanding oxidative stress and antioxidant functions to enhance photosynthesis publication-title: Plant Physiol doi: 10.1104/pp.110.166181 – volume: 21 start-page: 2755 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0010 article-title: Bio-based lignin nanocarriers loaded with fungicides as a versatile platform for drug delivery in plants publication-title: Biomarcomolecules doi: 10.1021/acs.biomac.0c00487 – year: 2011 ident: 10.1016/j.cj.2021.06.002_b0705 article-title: Cell walls and plant anatomy – volume: 14 start-page: 10954 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0055 article-title: Temperature and pH responsive star polymers as nano-carriers with potential for in vivo agrochemical delivery publication-title: ACS Nano doi: 10.1021/acsnano.0c03140 – volume: 7 start-page: 8972 year: 2013 ident: 10.1016/j.cj.2021.06.002_b0295 article-title: Nanotechnology in plant disease management: dna-directed silver nanoparticles on graphene oxide as an antibacterial against xanthomonas perforans publication-title: ACS Nano doi: 10.1021/nn4034794 – volume: 105 start-page: 1183 year: 2015 ident: 10.1016/j.cj.2021.06.002_b0310 article-title: Inhibition of Phytophthora parasitica and P. capsici by silver nanoparticles synthesized using aqueous extract of artemisia absinthium publication-title: Phytopathology doi: 10.1094/PHYTO-01-15-0006-R – volume: 17 start-page: 100 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0600 article-title: Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-019-0533-8 – volume: 13 start-page: 400 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0515 article-title: Plant nanobionics approach to augment photosynthesis and biochemical sensing publication-title: Nat. Mater. doi: 10.1038/nmat3890 – volume: 103 start-page: 228 year: 2013 ident: 10.1016/j.cj.2021.06.002_b0375 article-title: Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on xanthomonas perforans and control of bacterial spot of tomato publication-title: Phytopathol. doi: 10.1094/PHYTO-08-12-0183-R – volume: 410 year: 2021 ident: 10.1016/j.cj.2021.06.002_b0805 article-title: Carbon dots as light converter for plant photosynthesis: augmenting light coverage and quantum yield effect publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124534 – volume: 46 start-page: 2736 year: 2010 ident: 10.1016/j.cj.2021.06.002_b0025 article-title: Nanoceria exhibit redox state-dependent catalase mimetic activity publication-title: Chem. Commun. doi: 10.1039/b922024k – volume: 175 start-page: 186 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0650 article-title: Efficient plastid transformation in arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.17.00857 – ident: 10.1016/j.cj.2021.06.002_b0200 doi: 10.1016/j.tplants.2011.08.003 – volume: 66 start-page: 6462 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0595 article-title: Nanofertilizers: new products for the industry? publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b02150 – volume: 203 start-page: 32 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0560 article-title: Abiotic and biotic stress combinations publication-title: New Phytol. doi: 10.1111/nph.12797 – volume: 12 start-page: 109 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0550 article-title: Recent developments in nanosensors for imaging applications in biological systems publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-061417-125747 – volume: 14 start-page: 512 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0645 article-title: How nanocarriers delivering cargos in plants can change the gmo landscape publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0463-5 – volume: 7 start-page: 14580 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0165 article-title: Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.) publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02180 – volume: 17 start-page: 92 year: 2015 ident: 10.1016/j.cj.2021.06.002_b0385 article-title: A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-015-2907-7 – volume: 11 start-page: 3232 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0700 article-title: Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing publication-title: Nat. Commun. doi: 10.1038/s41467-020-17029-3 – volume: 7 start-page: 1692 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0235 article-title: Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress publication-title: Environ. Sci.-Nano doi: 10.1039/D0EN00214C – volume: 22 start-page: 11 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0475 article-title: ROS are good publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.08.002 – volume: 5 start-page: 1567 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0035 article-title: Hydroxyl radical scavenging by cerium oxide nanoparticles improves arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention publication-title: Environ. Sci.-Nano. doi: 10.1039/C8EN00323H – volume: 3 start-page: 14406 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0045 article-title: Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield publication-title: ACS Omega doi: 10.1021/acsomega.8b01894 – volume: 329 start-page: 96 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0155 article-title: Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2017.05.025 – volume: 215 start-page: 65 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0505 article-title: FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2017.05.007 – volume: 7 start-page: 19649 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0355 article-title: Chitosan-coated mesoporous silica nanoparticle treatment of Citrullus lanatus (watermelon): enhanced fungal disease suppression and modulated expression of stress-related genes publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b04800 – volume: 184 start-page: 647 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0665 article-title: Carbon dots for efficient sirna delivery and gene silencing in plants publication-title: Plant Physiol. doi: 10.1104/pp.20.00733 – volume: 66 start-page: 8679 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0360 article-title: Antimicrobial magnesium hydroxide nanoparticles as an alternative to Cu biocide for crop protection publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b01727 – volume: 10 start-page: 19300 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0685 article-title: Construction of gold-sirnanpr1nanoparticles for effective and quick silencing ofnpr1 in Arabidopsis thaliana publication-title: RSC Adv. doi: 10.1039/D0RA02156C – volume: 14 start-page: 456 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0095 article-title: High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0382-5 – volume: 16 start-page: 2000705 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0160 article-title: Nanomaterial transformation in the soil–plant system: implications for food safety and application in agriculture publication-title: Small doi: 10.1002/smll.202000705 – volume: 6 start-page: 2002 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0175 article-title: Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action publication-title: Environ. Sci.-Nano doi: 10.1039/C9EN00265K – volume: 17 start-page: 413 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0150 article-title: Nano-enabled agriculture: from nanoparticles to smart nanodelivery systems publication-title: Environ. Chem. doi: 10.1071/EN19254 – volume: 18 start-page: 5144 year: 2006 ident: 10.1016/j.cj.2021.06.002_b0215 article-title: Concentration of ce3+ and oxygen vacancies in cerium oxide nanoparticles publication-title: Chem. Mater. doi: 10.1021/cm061580n – volume: 67 start-page: 245 year: 2021 ident: 10.1016/j.cj.2021.06.002_b0415 article-title: Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2020.1723003 – volume: 10 start-page: 28279 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0425 article-title: Standoff optical glucose sensing in photosynthetic organisms by a quantum dot fluorescent probe publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07179 – volume: 46 start-page: 460 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0455 article-title: Surface engineering of nanoparticles for therapeutic applications publication-title: Polym. J. doi: 10.1038/pj.2014.40 – volume: 68 start-page: 798 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0345 article-title: Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen publication-title: Carbon doi: 10.1016/j.carbon.2013.11.072 – volume: 222 start-page: 64 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0435 article-title: Surface coating changes the physiological and biochemical impacts of nano-TiO2 in basil (Ocimum basilicum) plants publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.01.002 – volume: 400 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0790 article-title: Upconversion and downconversion nanoparticles for biophotonics and nanomedicine publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.213042 – ident: 10.1016/j.cj.2021.06.002_b0110 doi: 10.1016/j.chemosphere.2018.09.120 – volume: 14 start-page: 7970 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0015 article-title: Nanoparticle charge and size control delivery efficiency to plant cells and organelles publication-title: ACS Nano doi: 10.1021/acsnano.9b09178 – ident: 10.1016/j.cj.2021.06.002_b0130 doi: 10.1073/pnas.1610359113 – volume: 13 start-page: 3552 year: 2021 ident: 10.1016/j.cj.2021.06.002_b0635 publication-title: ROS, homeostasis and plant salt tolerance: plant nanobiotechnology updates, Sustainability – volume: 6 start-page: 14847 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0335 article-title: Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior, publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b03379 – volume: 8 start-page: 49 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0500 article-title: Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism publication-title: Nat. Commun. doi: 10.1038/s41467-017-00074-w – volume: 43 start-page: 1862 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0755 article-title: Seed priming in nanoparticles of water treatment residual can increase the germination and growth of cucumber seedling under salinity stress publication-title: J. Plant Nutr. doi: 10.1080/01904167.2020.1750647 – volume: 75 start-page: 346 year: 2015 ident: 10.1016/j.cj.2021.06.002_b0460 article-title: Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.01.027 – volume: 41 start-page: 2323 year: 2012 ident: 10.1016/j.cj.2021.06.002_b0445 article-title: Toxicity of nanomaterials publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15188F – volume: 66 start-page: 5491 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0340 article-title: Pesticidal activity of nanostructured metal oxides for generation of alternative pesticide formulations publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b01600 – volume: 16 start-page: 243 year: 2021 ident: 10.1016/j.cj.2021.06.002_b0720 article-title: Nanotechnology to advance CRISPR–Cas genetic engineering of plants publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00854-y – ident: 10.1016/j.cj.2021.06.002_b0290 doi: 10.1021/acs.jafc.7b01957 – volume: 7 start-page: 12699 year: 2016 ident: 10.1016/j.cj.2021.06.002_b0810 article-title: Photon management for augmented photosynthesis publication-title: Nat. Commun. doi: 10.1038/ncomms12699 – volume: 111 start-page: 6497 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0480 article-title: Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1319955111 – volume: 14 start-page: 507 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0135 article-title: Nano in the future of crops publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0475-1 – volume: 572 start-page: 341 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0535 article-title: Plant cell-surface gipc sphingolipids sense salt to trigger Ca2+ influx publication-title: Nature doi: 10.1038/s41586-019-1449-z – volume: 15 start-page: 801 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0170 article-title: Guiding the design space for nanotechnology to advance sustainable crop production publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0706-5 – volume: 5 start-page: 1607 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0280 article-title: Enhanced insecticidal activity of thiamethoxam by zinc oxide nanoparticles: a novel nanotechnology approach for pest control publication-title: ACS Omega doi: 10.1021/acsomega.9b03680 – ident: 10.1016/j.cj.2021.06.002_b0105 doi: 10.1038/s41565-019-0375-4 – volume: 1 start-page: 200 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0690 article-title: A CRISPR way for accelerating improvement of food crops publication-title: Nat. Food. doi: 10.1038/s43016-020-0051-8 – volume: 19 start-page: 153 year: 2021 ident: 10.1016/j.cj.2021.06.002_b0030 article-title: Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-021-00892-7 – volume: 2 start-page: 577 year: 2007 ident: 10.1016/j.cj.2021.06.002_b0020 article-title: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.260 – volume: 2 start-page: 1700223 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0525 article-title: High-resolution patterning and transferring of graphene-based nanomaterials onto tape toward roll-to-roll production of tape-based wearable sensors publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201700223 – volume: 116 start-page: 7543 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0675 article-title: DNA nanostructures coordinate gene silencing in mature plants publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1818290116 – volume: 182 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0185 article-title: Impact of nanomaterials on ecosystems: mechanistic aspects in vivo publication-title: Environ. Res. doi: 10.1016/j.envres.2019.109099 – volume: 3 start-page: 16207 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0100 article-title: Clay nanosheets for topical delivery of rnai for sustained protection against plant viruses publication-title: Nat. Plants doi: 10.1038/nplants.2016.207 – volume: 11 start-page: 32 year: 2009 ident: 10.1016/j.cj.2021.06.002_b0710 article-title: Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy publication-title: Biol. Proced. Online doi: 10.1007/s12575-009-9008-x – volume: 11 start-page: 11283 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0050 article-title: Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species publication-title: ACS Nano doi: 10.1021/acsnano.7b05723 – volume: 6 start-page: 404 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0555 article-title: Real-time detection of wound-induced H2O2 signalling waves in plants with optical nanosensors publication-title: Nat. Plants doi: 10.1038/s41477-020-0632-4 – volume: 67 start-page: 567 year: 2016 ident: 10.1016/j.cj.2021.06.002_b0725 article-title: Seed vigour and crop establishment: extending performance beyond adaptation publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv490 – volume: 588 start-page: 3770 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0785 article-title: Chlorophyll f and chlorophyll d are produced in the cyanobacterium chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation publication-title: FEBS Lett. doi: 10.1016/j.febslet.2014.08.026 – volume: 97 start-page: 1 year: 2005 ident: 10.1016/j.cj.2021.06.002_b0570 article-title: The contribution of commercial fertilizer nutrients to food production publication-title: Agron. J. doi: 10.2134/agronj2005.0001 – volume: 219 start-page: 28 year: 2016 ident: 10.1016/j.cj.2021.06.002_b0040 article-title: The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.09.060 – volume: 14 start-page: 2275 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0780 article-title: Global distribution of a chlorophyll f cyanobacterial marker publication-title: ISME J. doi: 10.1038/s41396-020-0670-y – volume: 8 start-page: 1402 year: 2011 ident: 10.1016/j.cj.2021.06.002_b0275 article-title: Pesticide exposure, safety issues, and risk assessment indicators publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph8051402 – volume: 3 start-page: 103 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0605 article-title: A triple-stimuli responsive hormone delivery system equipped with pillararene magnetic nanovalves publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00509E – volume: 361 start-page: 1112 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0490 article-title: Glutamate triggers long-distance, calcium-based plant defense signaling publication-title: Science doi: 10.1126/science.aat7744 – volume: 1 start-page: 10 year: 2016 ident: 10.1016/j.cj.2021.06.002_b0615 article-title: Nanoparticles in the clinic publication-title: Bioeng. Transl. Med. doi: 10.1002/btm2.10003 – volume: 6 start-page: 2508 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0625 article-title: Nanoparticle surface charge influences translocation and leaf distribution in vascular plants with contrasting anatomy publication-title: Environ. Sci.-Nano doi: 10.1039/C9EN00626E – volume: 10 year: 2015 ident: 10.1016/j.cj.2021.06.002_b0765 article-title: Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations publication-title: PLoS ONE – volume: 9 start-page: 790 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0370 article-title: Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00790 – volume: 10 start-page: 13532 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0565 article-title: Green and low-cost synthesis of zinc oxide nanoparticles and their application in transistor-based carbon monoxide sensing publication-title: RSC Adv. doi: 10.1039/D0RA00478B – volume: 7 start-page: 8263 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0115 article-title: Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles publication-title: Sci. Rep. doi: 10.1038/s41598-017-08669-5 – volume: 6 start-page: 1902064 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0670 article-title: Targeted gene delivery into various plastids mediated by clustered cell-penetrating and chloroplast-targeting peptides publication-title: Adv. Sci. doi: 10.1002/advs.201902064 – ident: 10.1016/j.cj.2021.06.002_b0775 doi: 10.1105/tpc.4.11.1353 – volume: 35 start-page: 905 year: 2012 ident: 10.1016/j.cj.2021.06.002_b0760 article-title: Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut publication-title: J. Plant Nutr. doi: 10.1080/01904167.2012.663443 – volume: 47 start-page: 3574 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0440 article-title: Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00877E – volume: 47 start-page: 13122 year: 2013 ident: 10.1016/j.cj.2021.06.002_b0575 article-title: Photochemical modulation of biosafe manganese nanoparticles on vigna radiata: a detailed molecular, biochemical, and biophysical study publication-title: Environ. Sci. Technol. doi: 10.1021/es402659t – volume: 115 start-page: 13 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0325 article-title: In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.10.011 – volume: 12 start-page: 2214 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0420 article-title: Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles publication-title: Environ. Sci.-Nano doi: 10.1039/D0EN00387E – volume: 7 start-page: 443 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0255 article-title: Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress publication-title: Environ. Sci.-Nano doi: 10.1039/C9EN00973F – volume: 66 start-page: 5959 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0380 article-title: Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (Solanum lycopersicum) publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b01345 – volume: 2 start-page: 53 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0640 article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2014.00053 – volume: 19 start-page: 623 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0465 article-title: A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.06.013 – volume: 373 start-page: 572 year: 2007 ident: 10.1016/j.cj.2021.06.002_b0320 article-title: Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2006.11.007 – volume: 9 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0305 article-title: Biofabricated silver nanoparticles act as a strong fungicide against bipolaris sorokiniana causing spot blotch disease in wheat publication-title: PLoS ONE doi: 10.1371/journal.pone.0097881 – volume: 12 start-page: 631 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0260 article-title: Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-2404-2 – volume: 333 start-page: 569 year: 2011 ident: 10.1016/j.cj.2021.06.002_b0125 article-title: The outlook for population growth publication-title: Science doi: 10.1126/science.1208859 – volume: 33 start-page: 243 issue: 1 year: 2013 ident: 10.1016/j.cj.2021.06.002_b0390 article-title: Pesticide productivity and food security. A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-012-0105-x – volume: 5 start-page: 3888 year: 2011 ident: 10.1016/j.cj.2021.06.002_b0090 article-title: Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions publication-title: ACS Nano doi: 10.1021/nn200262u – volume: 13 start-page: 627 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0140 article-title: Achieving food security through the very small publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0223-y – ident: 10.1016/j.cj.2021.06.002_b0205 doi: 10.1038/s41565-018-0131-1 – volume: 117 start-page: 103 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0450 article-title: Unexpected intracellular biodegradation and recrystallization of gold nanoparticles publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1911734116 – volume: 204 start-page: 577 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0745 article-title: Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12280 – volume: 3 start-page: 881 year: 2013 ident: 10.1016/j.cj.2021.06.002_b0225 article-title: Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201201014 – volume: 7 start-page: 14580 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0120 article-title: Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.) publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02180 – volume: 712 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0590 article-title: Controlled release micronutrient fertilizers for precision agriculture - a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.136365 – volume: 21 start-page: 1 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0265 article-title: Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize publication-title: Int. J. Mol. Sci. – volume: 16 start-page: 1161 year: 2016 ident: 10.1016/j.cj.2021.06.002_b0660 article-title: Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04467 – volume: 24 start-page: 299 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0405 article-title: Current status of conventional and molecular interventions for blast resistance in rice publication-title: Rice Sci doi: 10.1016/j.rsci.2017.08.001 – volume: 12 start-page: 778 year: 1970 ident: 10.1016/j.cj.2021.06.002_b0430 article-title: Abundance of chemical elements in the earth’s crust and its major tectonic units publication-title: Int. Geol. Rev. doi: 10.1080/00206817009475289 – volume: 51 start-page: 3501 year: 2015 ident: 10.1016/j.cj.2021.06.002_b0820 article-title: Metal-organic framework materials for light-harvesting and energy transfer publication-title: Chem. Commun. doi: 10.1039/C4CC09596K – volume: 68 start-page: 1935 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0145 article-title: Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b06615 – volume: 4 start-page: 437 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0350 article-title: A review on the effects of carbon dots in plant systems publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00614A – volume: 20 start-page: 303 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0735 article-title: Halopriming of seeds imparts tolerance to nacl and peg induced stress in Vigna radiata (L.) wilczek varieties publication-title: Physiol. Mol. Biol. Plants. doi: 10.1007/s12298-014-0234-6 – volume: 62 start-page: 2411 year: 2011 ident: 10.1016/j.cj.2021.06.002_b0510 article-title: Dynamic imaging of glucose flux impedance using fret sensors in wild-type arabidopsis plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq444 – volume: 18 start-page: 1615 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0580 article-title: Delivery of abscisic acid to plants using glutathione responsive mesoporous silica nanoparticles publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2018.14262 – volume: 2010 year: 2010 ident: 10.1016/j.cj.2021.06.002_b0395 article-title: Proteomics of plant pathogenic fungi publication-title: J. Biomed. Biotechnol. doi: 10.1155/2010/932527 – volume: 337 start-page: 333 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0715 article-title: CRISPR-Casφ from huge phages is a hypercompact genome editor publication-title: Science doi: 10.1126/science.abb1400 – volume: 65 start-page: 551 year: 2016 ident: 10.1016/j.cj.2021.06.002_b0365 article-title: Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease publication-title: Plant Pathol. doi: 10.1111/ppa.12443 – volume: 12 start-page: 158 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0195 article-title: Interactions between nanoparticles and plants: phytotoxicity and defense mechanisms publication-title: J. Plant Interact. doi: 10.1080/17429145.2017.1310944 – volume: 112 start-page: 4541 year: 2015 ident: 10.1016/j.cj.2021.06.002_b0520 article-title: Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+ publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1421020112 – volume: 4 start-page: 4259 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0800 article-title: Downconversion luminescence-based nanosensor for label-free detection of explosives publication-title: ACS Omega doi: 10.1021/acsomega.8b03491 – volume: 17 start-page: 4015 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0530 article-title: Persistent drought monitoring using a microfluidic-printed electro-mechanical sensor of stomata: in planta publication-title: Lab Chip doi: 10.1039/C7LC00930E – volume: 133 start-page: 567 year: 2011 ident: 10.1016/j.cj.2021.06.002_b0085 article-title: Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1084942 – volume: 140 start-page: 185 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0300 article-title: Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-014-0399-4 – volume: 29 start-page: 1065 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0270 article-title: Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2780 – volume: 11 start-page: 13440 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0795 article-title: Yb, Nd, Er-doped upconversion nanoparticles: 980 nm: versus 808 nm excitation publication-title: Nanoscale doi: 10.1039/C9NR03127H – volume: 15 start-page: 1033 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0285 article-title: Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00776-1 – volume: 7 start-page: 5142 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0770 article-title: Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06013 – volume: 171 start-page: 1606 year: 2016 ident: 10.1016/j.cj.2021.06.002_b0470 article-title: ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants publication-title: Plant Physiol. doi: 10.1104/pp.16.00434 – volume: 9 start-page: 293 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0680 article-title: Carbon nanotubes: evaluation of toxicity at biointerfaces publication-title: J. Pharm. Anal. doi: 10.1016/j.jpha.2019.04.003 – volume: 3 start-page: 17770 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0240 article-title: Carbon nanodots for enhancing the stress resistance of peanut plants publication-title: ACS Omega doi: 10.1021/acsomega.8b02604 – volume: 28 start-page: 1510 year: 2016 ident: 10.1016/j.cj.2021.06.002_b0655 article-title: Advancing crop transformation in the era of genome editing publication-title: Plant Cell – volume: 46 start-page: 261 year: 2014 ident: 10.1016/j.cj.2021.06.002_b0315 article-title: Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass publication-title: J. Nematol. – volume: 6 start-page: eaaz0495 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0585 article-title: Carbon nanocarriers deliver sirna to intact plant cells for efficient gene knockdown publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz0495 – volume: 15 start-page: 6155 year: 2015 ident: 10.1016/j.cj.2021.06.002_b0825 article-title: Direct plasmon-driven photoelectrocatalysis publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02453 – volume: 6 start-page: 215 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0540 article-title: Plant salt tolerance and Na+ sensing and transport publication-title: Crop J. doi: 10.1016/j.cj.2018.01.003 – volume: 38 start-page: 122 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0740 article-title: Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-018-9818-7 – volume: 9 start-page: 2927 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0230 article-title: ROS scavenging Mn3O4 nanozymes for: in vivo anti-inflammation publication-title: Chem. Sci. doi: 10.1039/C7SC05476A – volume: 154 start-page: 134 year: 2018 ident: 10.1016/j.cj.2021.06.002_b0815 article-title: Reactive oxygen species, oxidative signaling and the regulation of photosynthesis publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.05.003 – volume: 10 start-page: 113 year: 2017 ident: 10.1016/j.cj.2021.06.002_b0065 article-title: Nanosensor technology applied to living plant systems publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-061516-045310 – volume: 11 start-page: 10511 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0245 article-title: Nitrate reductase-dependent nitric oxide is crucial for multi-walled carbon nanotube-induced plant tolerance against salinity publication-title: Nanoscale doi: 10.1039/C8NR10514F – volume: 221 start-page: 1649 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0495 article-title: The fluorescent protein sensor rogfp2-orp1 monitors in vivo H2O2 and thiol redox integration and elucidates intracellular H2O2 dynamics during elicitor-induced oxidative burst in Arabidopsis publication-title: New Phytol. doi: 10.1111/nph.15550 – volume: 70 start-page: 667 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0695 article-title: CRISPR/Cas genome editing and precision plant breeding in agriculture publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-100049 – volume: 10 start-page: 16233 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0400 article-title: Efficacy of fungicides in controlling rice blast and dirty panicle diseases in Thailand publication-title: Sci. Rep. doi: 10.1038/s41598-020-73222-w – volume: 278 start-page: 3170 year: 2003 ident: 10.1016/j.cj.2021.06.002_b0545 article-title: Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species publication-title: J. Biol. Chem. doi: 10.1074/jbc.M209264200 – volume: 241 start-page: 109 year: 2015 ident: 10.1016/j.cj.2021.06.002_b0485 article-title: Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis publication-title: Plant Sci. doi: 10.1016/j.plantsci.2015.10.003 – volume: 20 start-page: 2432 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0080 article-title: Monitoring plant health with near-infrared fluorescent H2O2 nanosensors publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b05159 – ident: 10.1016/j.cj.2021.06.002_b0190 doi: 10.1021/acs.est.5b00685 – volume: 11 start-page: 2045 year: 2020 ident: 10.1016/j.cj.2021.06.002_b0060 article-title: Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif publication-title: Nat. Commun. doi: 10.1038/s41467-020-15731-w – volume: 21 start-page: 699 year: 2016 ident: 10.1016/j.cj.2021.06.002_b0005 article-title: Nanotechnology: a new opportunity in plant sciences publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.04.005 – volume: 13 start-page: 1781 year: 2021 ident: 10.1016/j.cj.2021.06.002_b0180 article-title: Nanobiotechnology for agriculture: smart technology for combating nutrient deficiencies with nanotoxicity challenges publication-title: Sustainability doi: 10.3390/su13041781 – volume: 46 start-page: 12391 year: 2012 ident: 10.1016/j.cj.2021.06.002_b0620 article-title: Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species publication-title: Environ. Sci. Technol. doi: 10.1021/es301977w – volume: 34 start-page: 1281 year: 2015 ident: 10.1016/j.cj.2021.06.002_b0730 article-title: Seed priming: state of the art and new perspectives publication-title: Plant Cell Rep. doi: 10.1007/s00299-015-1784-y – volume: 245 start-page: 82 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0330 article-title: The application of copper nanoparticles and potassium silicate stimulate the tolerance to clavibacter michiganensis in tomato plants publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.10.007 – volume: 125 start-page: 393 year: 2019 ident: 10.1016/j.cj.2021.06.002_b0750 article-title: Nanopriming technology enhances vigor and mitotic index of aged vicia faba seeds using chemically synthesized silver nanoparticles publication-title: South African J. Bot. doi: 10.1016/j.sajb.2019.08.018 |
SSID | ssj0001344260 |
Score | 2.5388906 |
SecondaryResourceType | review_article |
Snippet | Nano-enabled agriculture is an emerging hot topic. To facilitate the development of nano-enabled agriculture, reviews addressing or discussing the... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | agrochemicals crops genetically modified organisms light Mechanisms Nano-enabled agriculture nanobiotechnology Nanosensors Photosynthesis Signaling molecules Stress tolerance |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09axwxEBXGVZrgkIQ4joMCblKIO-1KWqm0TYxJcJrEcJ3Qx6zZw-wd57v_7xmd1sYpXKQVklbMaGeeNDNPjJ3J0PWICnoBWrZCoU8SMWcnIroW6TQ02VGB881vc32rfi704oBdTrUwlFZZbf_ephdrXVtmVZqz9TDM_jREsi0VMWChlVV0bm-VLUV8i4vne5ZWEQk7vTGH_QUNqNHKfZpXWuIhsZGFxLPerUzeqZD4v3BS_5jr4oOujtjbCh75-X5979gBjO_ZL0R-6Dl4jeY_8GHkYxhXAkpZVObhblMJNoAjROXDdI_A1_coV75-rh34wG6vfvy9vBb1iQSR0MJthUuUA2pdtk0fIBOBF2IwrSTCOtt1uY-NtiY4ACIKzLLrYspat1EG6-YqtR_Z4bga4RPjLrYZkpUmO_RYnYkBcPkGIYMK2Nwcs9kkGp8qfzg9Y3Hvp0SxpU9LT8L0JVcOR3x_GrHec2e80veCpP3Uj1ivS8Nqc-er2n0_D8ZY08cYrAKt7RzA5E66FECGPhyzdtKVf7GJcKrhlU9_m9Tq8d-igEkYYbV78I2hIK1Tnfr8XzOfsDcNVUuUJO8v7HC72cEpYpht_Fo26SMYF-z6 priority: 102 providerName: Elsevier |
Title | Recent advances in nano-enabled agriculture for improving plant performance |
URI | https://dx.doi.org/10.1016/j.cj.2021.06.002 https://www.proquest.com/docview/2636459474 https://doaj.org/article/f0a6686fbba84e5580ee6d719cae1afa |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqemkPCCgIykNG6oWDxTqxHfu4S7viofZUpL1ZfkyqXaHsCpb_37HjAOVAL1xysOzEGk88nz0z3xDyjbumRVTQMpC8ZgJtEvMxGubRtHAjoYomJTj__KUub8X1TM5elPpKMWE9PXAvuPN25JTSqvXeaQFS6hGAig03wQF3bYZGaPNeHKby7UotEvV6qixXccEQFfDio-yDu8ICj4YVz9Sd5UZlsEmZuv8f0_Rqk86WZ7pFNgtkpON-qtvkA3Q75PP4z32hzYAv5AbRH1oPWjz6D3Te0c51SwY5NSpS99ybIkyl8-Euga7uULZ09Zw_sEtupz9-X1yyUiaBBdzl1syEFAeqTdRV6yAmEi_EYVJwhHa6aWLrK6mVMwCJLDDypvEhSll77rQZiVDvkY1u2cE-ocbXEYLmKhq0Wo3yDnD6CmGDcNhcHZDzQVA2FA7xVMrizg7BYgsbFjaJ1uZ4ORxx9jRi1fNnvNF3kmT_1C8xX-cG1Adb9MH-Tx8OSD2snC0gogcH-Kr5G58-HRbZ4v-VnCaug-Xjg61UctQa0Yiv7zG9Q_KpSgkUOe77iGys7x_hGGHN2p-Qj-PJ98n0JGsyPq9mk7_mc_ZR |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07TxwxELYQFEkTJUqikBeOlCaFdeddP8uAQEd4NAHpOsuvRXtCe6fj-P-Z8XlBpKCgtWyvNfbOfPbMfEPIT-51B6igY1nylgmwSSykZFkA08KtzE2ymOB8calm1-LPXM53yNGYC4NhlVX3b3V60da1ZVKlOVn1_eRvgyTbXCADFmhZAff2PUADGus3nM4PHx9aWoEs7FhkDgYwHFHdlds4r7iAW2LDC4tnfVwZzVNh8X9ipf7T18UInbwlbyp6pL-3C3xHdvLwnpwB9APTQas7_472Ax38sGS55EUl6m_WlWEjU8CotB8fEujqFgRLV4_JAx_I9cnx1dGM1RoJLIKK2zAbMQjU2GSazueEDF4AwqTggOuM1qkLjTTK25yRKTBxrUNMUraBe2OnIrYfye6wHPInQm1oU46Gq2TBZGkVfIblK8AMwkNzs08mo2hcrATiWMfi1o2RYgsXFw6F6UqwHIz49TBitSXPeKbvIUr7oR_SXpeG5frG1X133dQrZVQXgjciS2mmOaukuY0-c9_5fdKOe-WenCKYqn_m0z_GbXXwc6HHxA95eX_nGoVeWiu0-PyimQ_Iq9nVxbk7P708-0JeN5g6USK-v5Ldzfo-fwNAswnfy4H9Bwkz8Bk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+nano-enabled+agriculture+for+improving+plant+performance&rft.jtitle=The+Crop+journal&rft.au=Honghong+Wu&rft.au=Zhaohu+Li&rft.date=2022-02-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.issn=2214-5141&rft.eissn=2214-5141&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1016%2Fj.cj.2021.06.002&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f0a6686fbba84e5580ee6d719cae1afa |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5141&client=summon |